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ABSTRACT

Plant vendors nowadays propose software-based systems even for the most critical safety functions.
The reliability estimation of safety critical software-based systems is difficult since the conventional
modeling techniques do not necessarily apply to the analysis of these systems, and the quantification
seems to be impossible. Due to lack of operational experience and due to the nature of software
faults, the conventional reliability estimation methods can not be applied.

New methods are therefore needed for the safety assessment of software-based systems. In the
research project “Programmable automation systems in nuclear power plants (OHA)”, financed
together by the Finnish Centre for Radiation and Nuclear Safety, the Ministry of Trade and Industry
and the Technical Research Centre of Finland, various safety assessment methods and tools for
software based systems are developed and evaluated.

This volume in the OHA-report series deals with the statistical reliability assessment of software
based systems on the basis of dynamic test results and qualitative evidence from the system design
process. Other reports to be published later on in OHA-report series will handle the diversity
requirements in safety critical software-based systems, generation of test data from operational profiles
and handling of programmable automation in plant PSA-studies.
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Ydinvoimalaitosten toimittajat tarjoavat nykyään ohjelmoitavaa tekniikkaa kaikkein turvallisuus-
kriittisimpiinkin turvatoimintoihin. Turvallisuuskriittisten ohjelmoitavien järjestelmien luotetta-
vuuden arviointi on vaikeaa koska tavanomaiset mallinnusmenetelmät eivät välttämättä sovellu
näiden analyysiin, ja luotettavuuden kvantifiontia pidetään mahdottomana. Käyttökokemusten puute
ja ohjelmistovikojen luonne aiheuttavat sen, että tavanomaisia luotettavuuden arviointimenetelmiä
ei voida soveltaa.

Uusia menetelmiä tarvitaan näinollen ohjelmoitavien järjestelmien turvallisuuden arviointiin.
”Ydinvoimalaitosten ohjelmoitavat automaatiojärjestelmät (OHA)” -tutkimushankkeessa kehitetään
ja arvioidaan erilaisia ohjelmoitavien järjestelmien turvallisuuden arviointimenetelmiä. Hanketta
rahoittavat Säteilyturvakeskus (STUK), Kauppa- ja teollisuusministeriö (KTM) sekä Valtion
teknillinen tutkimuskeskus (VTT).

OHA-projektin raporttisarjan tämä osa käsittelee ohjelmoitavien järjestelmien luotettavuuden
tilastollista arviointia järjestelmän dynaamisten testien tulosten ja sen suunnitteluprosessin laatua
kuvaavan kvalitatiivisen evidenssin avulla. Myöhemmin julkaistavissa sarjan muissa raporteissa
käsitellään turvallisuuskriittisten ohjelmoitavien järjestelmien diversiteettivaatimuksia, testidatan
generointia käyttöprofiileista sekä ohjelmoitavien järjestelmien käsittelyä laitoksen PSA-tutki-
muksissa.
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Plant specific PSAs are required by the safety
authorities in many countries, and quantitative
safety goals are set on the core melt frequency
and possibly also on the reliability of the most
critical safety functions, e.g. the reactor scram.
For example the Finnish YVL-requirements state
that the “failure probability of the reactor scram
shall be less than 10-5 per demand with a good
confidence”.

Plant vendors nowadays propose software-based
systems even for the most critical safety func-
tions. The reliability modeling of safety critical
software-based systems is difficult since the con-
ventional modeling techniques do not necessar-
ily apply to the analysis of these systems, and
the quantification seems to be impossible. Due
to lack of operational experience and due to the
nature of software faults, the conventional reli-
ability estimation methods can not be applied.

The reliability of software-based systems is a
property of the operation environment as well as
that of the system itself. Although there may be
errors in the software, these errors can cause a
loss of safety function only when inputs occur-
ring with very low probability are introduced to
the system. In other words, the reliability of pro-
grammable systems depends on the operational
profile, which as the probability distribution of
input sequences, varies from one environment to
another. This restricts the use of generic opera-
tional experience in determination of reliability
parameters.

Quantitative reliability estimates are always
based on certain evidence, which is most often
operational experience statistics. For software-
based systems this evidence is either very lim-
ited or not applicable due to differences between

the operational profiles of the data source and
the actual system. Another source of evidence is
obtained from the dynamic testing of the system.
If high reliability is required, the number of tests
is very large, and it may be practically impossi-
ble to test the system extensively enough. Thus
additional evidence from other sources is needed
to make the reliability estimation practicable.

To obtain better estimates for reliability of pro-
grammable systems, all possible evidence should
be applied in the analysis. This requires exten-
sive applications of experts opinions about the
weight of various pieces of evidence. A most suit-
able approach for using analyzing experts judge-
ments is based on Bayesian models. Part of the
factors may be directly observable and measur-
able, part of the may be unobservable and quali-
tative characterization of the system and its de-
velopment process.

The development process of the system follows
certain quality assurance and quality control prin-
ciples, which are based on applicable standards,
but which may vary from one developer to an-
other. More strict principles are believed to re-
sult to more reliable products. Thus the quality
assurance process provides evidence on reliabil-
ity. Same may apply to other tools and principles
followed during the development process. To use
this kind of evidence in determining the reliabil-
ity estimates requires models and ability to weight
the evidence.

In this study, which is a part of the research project
“Programmable automation systems in nuclear
power plants (OHA)”, various approaches to
quantify the reliability of software-based systems
using dynamic test results and other qualitative
evidence are discussed. The OHA-project is fi-

1 INTRODUCTION
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nanced together by the Finnish Centre for Ra-
diation and Nuclear Safety, the Ministry of Trade
and Industry and the Technical Research Centre
of Finland.

1.1 Dynamic testing as a process

The technical or mathematical meaning of ran-
dom testing refers to an explicit lack of “system”
in the choice of test data. Statistical testing, as a
special case of random testing, uses random sam-
pling of what is considered the usage distribu-
tion of system inputs. This distribution describes
the eventual usage of the system in its intented
environment.

Statistical testing involves various tasks and ac-
tivities, which are outlined in Fig. 1. The most
essential activities of the testing process include
generation of test cases, testing itself and calcu-
lation of system reliability on the bases of test
results. This report will mostly deal with the se-
lection or development of the method to assess
reliability. The most promising alternatives of
different assessment approaches will be dis-
cussed. Such issues that may influence on the
selection of the assessment method (like required
reliability and confidence level) will also be stud-
ied in the report.

Once the assessment method is known and test
results are available, application of the method
(see Fig. 1) is in principle a straightforward and
easy task. Statistical testing has at this phase of
the process been performed and the test results
are available. The rest of the process is to feed
the results into the method, write the estimated
reliability into the test report and draw the inevi-
table conclusions regarding the required reliabil-
ity and estimated reliability. In practice, however,
if errors have been detected, things are not usu-
ally this simple.

The first problem that is encountered in the case
of software failure, is the interpretation of the
terms fault and failure. As the system is in dy-
namic testing tested against its specification, all
the anomalies that in general can be found, are
between the system and its specification. Lets
assume that a deviation has been detected. When
things have been sorted out, the cause of the er-
ror is traced to the system specification that in
fact specifies the desired behavior in an imper-
fect manner. So actually there is no fault in the
software itself, but in its specification. Should
this kind of a fault be counted into those faults
that are used in reliability assessment? Probably
yes, as the procedure has revealed an inconsist-

Figure 1. A general model of the dynamic testing process.
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ency in the system specification, which raises
suspicions towards the development process.
Similar examples, which certainly need further
analysis, are for instance:

What is the cause of the error? Is it likely that
similar errors exist elsewhere in the system?

Did the error prevent the system from executing
its main functions (i.e. how much the error did
affect the functionality of the system)?

Is the nature of the error deterministic (i.e. if the
test case is repeated, does the error manifest it-
self in the same manner)?

These kind of issues usually lead to intervene
human judgment into the assessment. Though the
mixture of human judgment and quantitative as-
sessment is not always a desirable combination,
it may be the only option in this case. Certainly
an important goal of the assessment is to mini-
mize the possible sources of subjectivity, which
can be achieved for instance by providing such
information that will support quantitative reliabil-
ity judgment. This is a noteworthy point also in
selecting the assessment method, i.e. to examine

the data that the assessment method requires and
the possibilities to provide such data in an objec-
tive manner.

The “frame” which includes all the elements used
in the evaluation of test results, has thus an obvi-
ous tendency to expand much wider than the
original, purely quantitative results suggest. It is
important to be aware of this, and study and de-
fine the frame before the startup of testing (see
for instance [IEEE94] for error classification).

Once the necessary definitions of terms have been
agreed and the target values for the reliability and
confidence level been set, testing can started.
Thus prior to testing it is possible to estimate the
number of test cases that are needed if the sys-
tem operates according to its specification. But
if errors are found during testing, how can we
calculate the new amount of test cases? Certainly
the number of tests can not be the same as origi-
nally estimated. What kind of methods can be
used for this? Are we able to utilize those posi-
tive experiences that we got about the system
before it failed or should we make a fresh start?
These and other interesting reliability assessment
themes are discussed in this report.

Figure 2. Human judgement in assessing the results of dynamic testing.
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2.1 Definitions of software
reliability

The reliability of a software product can be de-
fined in several ways. Generally, software reli-
ability means the probability of failure-free op-
eration of a computer program in a specified en-
vironment for a specified time [see Musa et al,
1987]. The IEEE standards define software reli-
ability more specifically [IEEE 199x]. One meas-
ure for software reliability given by the standard
[IEEE 199x] is the probability of successful run,
which is defined as the sum of the probabilities
of successful runs divided by the sum of prob-
abilities of all runs. Statistically it may be esti-
mated for example from the results of a test by
dividing the number of successful runs by the
number of all runs. The run reliability, R

k
, is

defined as the probability that randomly selected
k runs give correct results.

Software reliability may be defined also in terms
of time. Measures as mean time to failure, MTTF,
or mean time between failures, MTBF, can be
used. These measures can be defined in continu-
ous or discrete time. Closely related to these
measures are various failure rates, the definition
of which corresponds to those of hardware reli-
ability [see Musa et al, 1987].

In the case of emergency systems, it is important
that the system operates correctly when it is de-
manded. The systems must generate the emer-
gency function when a certain input occurs. For
example, the reactor protection signal should
occur in certain situations. The failures, in which
the system does not produce the emergency func-
tion are most important for the safety of the plant;
these failures are the ones which are modelled in

PSAs. The reliability in this case is measured by
the probability of failure on demand. The safe
failures, in which the emergency function occurs
although they are not demanded, are not as im-
portant. However, the existence of safe failures
may be seen as evidence on the existence of fail-
ures in general.

In addition to the above measures, the software
reliability may be characterized by the number
of errors in the program. In this case one may be
interested to determine the probability distri-
bution of the number of errors. The reliability
is then measured by the probability that there
are less the n failures. Usually this type of reli-
ability measures are applied when the software
reliability growth during the testing and devel-
opment process is considered.

Many of the above mentioned software reliabil-
ity measures are not purely describing the target
system but they depend essentially on its opera-
tional profile. This mean leads to certain require-
ments for the software testing, e.g. the test cases
should correspond to the actual user profile.

2.2 Some concepts of statistics

As already discussed software reliability is meas-
ured in terms of probability. The reliability meas-
ures are thus statistical concepts, and their inter-
pretation must be considered carefully. The
operationalization and the practical use of the
quantitative reliability characteristics depend on
the interpretation of statistical concepts. In the
interpretation of statistical concepts one must be
aware of the fact that probability is very abstract
notion formulated as an measure theoretic model
for uncertainty.

2 THEORETICAL BACKGROUND
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the confidence intervals are not applicable, and
one must define confidence regions. Often these
regions are defined as ellipsoids covering the true
value of the parameter with fixed confidence
(confidence ellipsoids).

Various “confidence” concepts may be defined
also based on the Bayesian interpretation. To
define these concept we must take a look at the
Bayesian estimation. The Bayesian estimation
follows the likelihood principle, and it uses the
likelihood function defined earlier. The basic idea
of the Bayesian inference is to express the un-
certainty of all the unknown variables of the
model by probability distributions. This means
that the parameter, which is unknown a priori is
modelled as a random variable.

The observable variables, or the evidence E =
(x

1
,...,x

n
 ), are modelled by their joint distribu-

tion, i.e. the likelihood function. Before obser-
vations are made, the uncertainty about the value
of the parameter (θ) is modelled by a probability
distribution, the prior distribution, which we
denote by g(θ). The evidence E provides addi-
tional information about θ, and the distribution
of θ is updated by using the Bayes’ rule. The up-
dated distribution, the posterior distribution, is
the conditional distribution of θ given the evi-
dence, and we denote it by g(θ|E). The posterior
distribution is obtained from

g E
l x x g

l x x g d
n

n

( | )
( , , | ) ( )

( , , | ) ( )
.θ θ θ

θ θ θ
θ

=

∈
z

1

1

K

K
Θ

(5)

The posterior distribution describes the uncer-
tainty about the parameter when the information
from the observed sample is taken into account.
In the predictive Bayesian framework we are in-
terested in predicting the next observation, x

n+1
,

on the basis of the evidence E = (x
1
,...,x

n
 ). The

prediction is given in terms of predictive distri-
bution, defined by

p x E p x g E dn n( | ) ( | ) ( | ) .+ +
∈

= z1 1 θ θ θ
θ Θ

(6)

The predictive distribution expresses the uncer-
tainty on the next observation, given the earlier
observations. The uncertainty on the parameter
is taken into account by integrating the condi-
tional distribution of x

n+1
, over the posterior dis-

tribution of θ, or using the rule of total probabil-
ity.

In many cases we are interested to evaluate cer-
tain posterior probability intervals for θ. One
possibility is to apply so called Highest Poste-
rior Probability Density (HPD) regions [see Box
& Tiao, 1973, or Tanner, 1991]. A region R ⊂⊂⊂⊂⊂ ΘΘΘΘΘ
is HPD region of content γ (i.e. at confidence level
γ), if

a) P R E( | )θ γ∈ = (7)

b) for ,     θ θ θ θ1 2 1 2∈ ∉ ≥R R, ( | ) ( | )p E p E . (8)

In other word, HPD region is a kind of central
posterior confidence interval. If θ is one-dimen-
sional, another possibility is to define upper and
lower posterior uncertainty bounds, θ

U
 and θ

L 
sim-

ply as the posterior γ-fractiles

θ θ θ γ
θ

U g E d
U

: ( | ) ,
−∞
z = (9)

and

θ θ θ γ
θ

L g E d
L

: ( | ) .
∞

z = (10)

The problems of Bayesian approaches are con-
nected with the selection of the prior distribu-
tion. The specification of the prior is basically a
subjective expression of the uncertainty about the
parameter prior to any observations. If the
number of observations is large the likelihood
determines almost totally the posterior distribu-
tion, and “the subjectivity of the prior” vanishes.
However, we should notice that also the likeli-
hood model is based on subjective judgements.
This is true also for frequentistic approach, which
also requires specification of statistical model a
priori.
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In the dynamic testing of software-based systems
it is important to be able to draw statistical con-
clusions from test results. If, for instance, the tar-
get system has been tested with 1000 independ-
ent test cases, and no erroneous behaviour of the
system has been detected, what can be said about
the reliability of system or the probability of fail-
ure during next 1000 demands? An interesting
question will also be confronted, if an error or
several errors have been detected during dynamic
testing. What kind of attitude should be taken
towards system reliability and especially, towards
the general fitness of the system for its purpose?

The quantitative software reliability estimation
is necessary when the quantitative safety criteria
are set on the reliability of emergency systems at
nuclear power plants. The objectivity of reliabil-
ity depends on the nature and amount of the evi-
dence behind the estimates. It can be argued that
the most objective evidence originates from sys-
tematic random test of the system. In the follow-
ing, the strength of that evidence is evaluated on
the basis of statistical analysis.

3.1 Success in dynamic testing

Parnas et.al. [1990] argue that the validation of
system safety and trustworthiness should rest on
a tripod made up of testing, mathematical review
and certification of personnel and production
process. So roughly one third of the assessment
result should be based on quantitative assessment,
the rest being more or less qualitative. Leveson
[1986] proposes that the influence of quantita-
tive methods should be even smaller in safety
evaluation.

The approach for quantitative reliability assess-
ment proposed by Parnas et.al. [1990] is simple.

They state that in most safety-critical applica-
tions it is not necessary to know the actual prob-
ability of failure; it is enough if it can be shown
that the failure probability is below a specified
upper limit. Before the testing is started, the prob-
ability for the correctness of the result should be
set. That is, we have to specify how sure we want
to be that the result is correct. From the statisti-
cal point of view this means that a confidence
level (see section 2.2) must be set for the assess-
ment process.

The choice of the confidence level is not trivial.
From frequentistic point of view the upper con-
fidence bound for system failure probability (p

U
)

at confidence level γ means that if a large number
of test sets, each including several test cases, is
performed, then 100γ% of tests sets are such that
the true failure probability is covered by the in-
terval [0, p

U
] and that in 100(1-γ)% of test cases

the true failure probability is larger than the up-
per confidence bound. Thus there is a 100(1-γ)%
chance to make an erroneous judgement on the
failure probability. In some cases 90% confidence
level is high enough, while in some other case
we'll need to be 99,99% sure that the probability
estimate is correct. Actually the choice of confi-
dence level depends on the possible consequences
of the erroneous judgement, which depend on the
consequences of systems failure. Further, the
confidence level should correspond somehow to
the decision makers risk attitude. We discuss the
choice of confidence level from decision theo-
retic point of view later in this report.

A notable feature of the procedure discussed by
Parnas [1990] is the repetition of testing in case
of a failure: if a failure is detected during testing,

3 STATISTICAL MODELLING
APPROACHES
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the fault is corrected and whole testing process
is started again from the beginning. This is justi-
fied by the fact that if a software fault is detected
and corrected, we cannot know the real conse-
quences of the repair. The "new" reliability may
be slightly better or it may even be much worse
than before the repair. Thus the previous, suc-
cessful test results should not be used in favour
of the system after a failure.

Test cases in this method should be statistically
independent and taken from a distribution that
represents the actual usage of the target system.
This may in many cases be a tough job that re-
quires careful analysis of operational environ-
ment of the system. The methods for the analy-
sis depend on the type of the system: if there is a
user interface in the system, then Markov chains
are perhaps the best means to describe the usage
information [see Whittaker & Thomason, 1994,
and Whittaker & Poore, 1993]. If the system is
connected to other systems or sensors, the fre-
quencies of different stimuli can provide some
help for the analysis.

Time trajectories are only one example of a more
general issue with programmable systems: the
concern about the determinism of software. This
is expressed by Parnas, for instance. Unfortu-
nately time is not the only thing that creates
nondeterminism into programmable systems.
Concurrent task handling is the most common
cause of nondeterminism, as concurrent event
handling lead in many cases to nondeterminism
in the implementation of software. Here non-
determinism is deliberate and implemented by
means of an operating system to schedule con-
current processes.

Time trajectories and other causes of state be-
haviour should be considered before dynamic
testing. A study of these issues may provide a
great deal of help in determining the correct
length for test cases. Though the state behaviour
of a target system gets its final outlook during
the implementation, the things that influence in
it can already be seen in specifications. Detailed
knowledge of system implementation is there-
fore not necessary, but an analysis of specifica-
tions is generally enough to determine the dura-
tion of test cases.

In the following analyses that can be done on the
bases of a succesful test, we first assume that the
usage model describes the actual usage of the
target system. Later we (in section 3.3) shortly
discuss the case in which the usage model is
approximative.

We denote by p = 1/h the probability that a test
case which is randomly selected from the opera-
tional profile leads to a failure. Thus 1-p = 1-1/h
represents the probability that the target system
operates according to its specifications, and it
may be interpreted as the reliability of the soft-
ware. The series of independent test cases can be
modelled as Bernoulli trials and thus the prob-
ability that N independent random tests are suc-
cessful (given that the failure probability is p) is
given by

P N
h

N(“ ( ) . tests succesful”|p) =  (1- p)N = −1
1

(11)

From (11) we may easily determine the classical
upper confidence bound for p at any confidence
level

pU
N= − −1 1 1( ) ,/γ (12)

where γ is the confidence level. If the reliability
requirement is that the failure probability is at
most p

U
 at confidence level γ , then the number

of successful test to show that is given by

N
pU

= −
−

ln( )

ln( )
.

1

1

γ
(13)

Here we must emphasize the probabilistic inter-
pretation of the upper confidence bound p

U
. Ac-

cording to the definition discussed in section 2.2,
p

U
 (at confidence level γ) is the largest value of

the parameter p which leads to N successful tests
at most with probability (1-γ). We notice that p =
p

U
 , then there is (1-γ) change to obtain N suc-

cessful tests, i.e. the upper confidence bound
gives the probability of observing a successful
test result, although the failure probability is un-
acceptable. Further, we notice that the probabil-
ity statement leading to the upper confidence
bound doesn’t say anything about the parameter
(p), but it is about the test sample (=“N success-
ful tests”).
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Fig. 3 gives the numbers of successful tests re-
quired to demonstrate different failure probabili-
ties at different confidence levels. Increase in the
confidence level does not effect the number of
test cases much. If the required confidence level
is 99,9%, the number of test cases is 6 904. And
if a still higher confidence is needed, 99,99% for
instance, the number of test cases is 9 205. Thus
the error marginal of the result can be squeezed
very low with a reasonable increase in the number
of test cases. However, in many life-critical sys-
tems the reliability requirements are higher - fail-
ure probabilities of 10-6 or 10-7 per demand or per
mission are not unusual.

From the Bayesian point of view the above sta-
tistical inference gets another form. The likeli-
hood describing the evidence (E = “no failures
in N tests”) is given by

l E p p N( | ) ( )= −1 . (14)

If the prior distribution is g(p) then the posterior
distribution is

g p E
p g p

p g p dp

N

N

( | )
( ) ( )

( ) ( )

,= −

−z
1

1
0

1

(15)

which must be, in the general case, evaluated nu-
merically. If we apply a conjugate beta-prior dis-

tribution, having density function

g p
B

p p( | , )
( , )

( ) ,α β
α β

α β= −− −1
11 1

(16)

in which α > 0, β > 0 fixed parameters and B(⋅,⋅)
is the beta function we obtain the posterior

g p E
B n

p p n( | , , )
( , )

( ) .α β
α β

α β=
+

−− + −1
11 1

(17)

If α = 1 and β = 1, i.e. the prior distribution is
uniform, the posterior is

g p E n p n( | , , ) ( )( ) .α β = + −1 1 (18)

The upper posterior γ-fractile corresponding to
(18) is given by

pU
N= − − +1 1 1 1( ) ,/γ (19)

and the number of successful test required to
show that p � p

U
 with probability γ is

N
pU

= −
−

−ln( )

ln( )
.

1

1
1

γ
(20)

Opposite to the classical confidence bounds, the
Bayesian “confidence bound” is based on a prob-
ability statement on the value of the parameter.
This is due to the Bayesian setting, in which the
parameter is assumed to be a random variable.
However, we notice that when uniform prior dis-
tribution is applied, the classical and Bayesian
upper bound are close to each other. If other pri-

Figure 3. Number of tests required to accept failure probabilities at selected confidence levels.
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ors are applied, this it not true [see e.g. Martz &
Waller, 1982, Box & Tiao, 1973, Kapur &
Lamberson, 1977].

The selection of the prior distribution is one of
the most important issues of Bayesian statistical
inference. The prior distribution should express
a priori knowledge on the parameter. If little is
known about the parameter, then the prior should
be flat. However, if the decision maker wants to
give the greatest weight to the sample, the so
called noninformative priors should be applied
(see Box & Tiao, 1973, for details). In the case
of binomial of Bernoulli sampling, which is the
setting here, the approximately noninformative
and data translated prior distribution is the beta
distribution with parameters α = ½ and β = ½.
The Bayesian upper bound for the parameter
based on the noninformative prior is close to the
one given in equation (19).

If there is prior evidence (in the form of earlier
operational experiences or tests, expert judge-
ments, etc.) which is powerful enough to give
reasons to apply informative priors, then the

number of tests can be smaller. When non-
informative priors are applied their use must be
justified and the arguments behind the prior must
be documented clearly. To demonstrate the im-
pact of prior distributions we present Fig. 4,
where the Bayesian upper bounds are given for
certain beta prior distributions as the function of
the number of successful tests. We notice that if
very high reliability is required, the prior distri-
bution doesn’t have much effect on the required
number of successful tests, unless α >1 (α is the
parameter of the prior distribution, see equation
(16)). If α is small, but β is large, then smaller
number of tests are needed to justify that p is
smaller that some fixed limit with a high prob-
ability.

3.2 Errors found during testing

The assessment of software reliability during
dynamic testing is more difficult when failures
occur during test. Littlewood & Wright, [1995],
argue that the earlier failure information needs
to be taken into account when new tests are
planned for a system that has once failed and then

Figure 4. Bayesian acceptance testing: upper posterior fractiles for selected beta-prior distributions.
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been modified. The method suggests that if a fail-
ure is detected, the number of test cases in the
next dynamic testing should increase, i.e. reli-
ability requirements should be more stringent.

The problem with dynamic testing is how to deal
with found errors. Parnas [1990] recommends on
the basis of a classical statistical model that the
test procedure should start again from the very
beginning with same initial requirements. In this
case the criteria for accepting the dynamic test
does not change; after software has been updated
testing will be redone with the same confidence
level and reliability requirement (see section 3.1).

However, one could ask if our prior beliefs to-
wards the system have changed due to found er-
rors. It may well be that the regulator considers
the errors as an evidence of low software quality
or poor production process, and therefore requires
a more stringent testing. Should the requirements
be changed and if so, how much, are questions
that need to be answered in this situation.

Littlewood & Wright [1995] propose the follow-
ing Bayesian approach for resolving the reliabil-
ity estimation problem:

At the start of the test, the number, n
0
, of demands

that must be executed failure-free for the test to
succeed, is computed.

The system is put on test and either successfully
executes the n

0
 demands, in which case the test

stops and the system is declared to have achieved
its pfd (probability of failure upon demand) re-
quirement, or a failure is observed on demand s

1

(<n
0
), in which case the test is stopped.

In the light of the evidence of one failure in s
1

demands, we compute the number, n
1
, of further

demands that must be executed failure-free for
the next test to succeed and stop.

The system is put on test again and either suc-
cessfully executes the n

1
 demands, in which case

the test stops and the system is declared to have
achieved its pfd requirement, or a failure is ob-
served on demand s

1
+s

2
 (s

2
<n

1
), in which case

this test is stopped.

In graphical form (Fig. 5), the initial amount of
demands is n

0
, the failure is observed on demand

s
1
 (<n

0
), and a new number of demands after the

failure is n
1
.

It is important to notice that between steps 2 and
3 the fault has been removed. The other alterna-
tive is naturally to continue testing regardless of
the failure, and hope that the system will finally
reach the required reliability level. However, in
this approach it is assumed that the cause of the
failure is removed, and that the assumed reliabil-
ity of the system remains the same. The latter
assumption simply means that we do not want to
change our a priori knowledge about the system.

For solving the stopping rule in pfd-based test-
ing, the Bayesian framework is used. Before cal-
culations can be done, some assumptions have
to be made:

As in section 3.1, the successive demands are
assumed to be statistically independent Bernoulli
trials; p is the probability of failure per demand.
Thus the basic random variable, number of fail-
ures (K) in n demands follows the Binomial dis-
tribution (given p), i.e.

P K k p n
n

k
p pk n k( | , ) ( )= =

F
HG
I
KJ − −1 (21)

If k=0 we have the situation already discussed in
section 3.1.

Figure 5. Number of additional tests required.

0 _________s1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  n0

0_____________________________________ n1



18

FINNISH CENTRE FOR RADIATION
AND NUCLEAR SAFETY STUK-YTO-TR 119

As in section 3.1, our a priori knowledge about
the parameter of interest, p, must be presented.
Here the prior distribution is selected from the
conjugate beta-family (see equation (16))

The posterior distribution of p is a beta distribu-
tion, given by:

g p K k n g p E

B k n k
p pk n k

( | , , , ) ( | , , )

( , )
( ) .

= =

=
+ + −

−+ − + − −

α β α β

α β
α β1

11 1

(22)

The requirement can now be expressed as a pair
(p

U
, γ) so that

P p p EU( | , , ) ,≤ ≥α β γ (23)

where γ is the confidence level.

According to recommendations of Littlewood &
Wright [1995] one should apply the uniform or
ignorant prior (α = 1, β = 1), which leads to the
posterior

g p E
B k n k

p pk n k( | , , )
( , )

( ) .α β =
+ + −

− −1

1 1
1

(24)

Next we assume that system has failed j times
and that the failures have occurred at tests s

1
,

(s
1
+s

2
), ..., (s

1
+s

2
+...+s

j
). After jth failure the sys-

tem has been tested totally

n si
i

j

=
=
∑

1
(25)

times, and the posterior distribution based on uni-
form prior is

g p E
B j n j

p pj n j( | , , )
( , )

( ) .α β =
+ + −

− −1

1 1
1

(26)

After nth test, the system doesn’t fulfill the reli-
ability requirement, and we are interested to de-
termine, how many additional successful tests are
needed to achieve the reliability requirement (23).
We denote by n

j
 the number additional success-

ful tests, and when the additional tests have been
performed the total number of tests will be n+n

j
.

The posterior distribution after these tests is

g p E

B j n n j
p p

j

j n n jj

( | , , )

( , )
( ) ,

α β =

+ + + −
− + −1

1 1
1 (27)

and it must, in spite of failures, fulfill the require-
ment. The minimum number additional success-
ful tests is the smallest n

j
 which satisfies

0

1

1 1
1

p

j

j n n j
U

j

B j n n j
p p dpz + + + −

− ≥+ −

( , )
( ) .γ

(28)

This formula in fact represent the cumulative pos-
terior distribution, based on evidence consisting
of several parts (the number of the parts is j+1)
of failure-free behaviour of the system. Had we
detected only one failure, then the posterior dis-
tribution would contain two parts: s

1
-1 demands

before the failure and then the calculated, addi-
tional number of demands after the failure, n

1
.

The fact that when the failure happens, does not
change the posterior distribution, is due to the
Bernoulli-trial model assumption. The calcula-
tion of n

j 
from (28) can be made numerically.

In Tab. I we present the number of tests required
to demonstrate failure probability 10-3 /demand
for some cases.

Conclusions from the model are obvious: the time
of the failure in the test is not important. No
matter whether the failure happens in the begin-
ning of the test or on the last demand, the number
of test cases is constant. For instance, if the
number of failures is two, the pfd-based approach
requires exactly 8402 test cases. According to the
approach, it is totally unrelevant, if the failures
did happen on the two first demands, or on the
two last demands. This is due to the assumption
that the test sequence is a Bernoulli trial.

The last column of the Tab. I reveals an interest-
ing feature in the approach. The trend of the incre-
ment in the number of demands with j is decreas-
ing, whereas common sense would suggest the
very opposite. Common sense reasoning or ex-
pert reasoning would probably go as follows: “As
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the number of failures grows, the mistrust to-
wards the quality of the software is increasing.
To overcome this, I propose an increasing trend
in the increment of number of test cases.” The
explanation for this observation is the following.
In most Bayesian statistical models the increas-
ing evidence reduces the variances of unknown
variables, which means that the posterior distri-
bution is narrower. If the mean value of poste-
rior doesn’t essentially change with increasing
evidence, then the probability that the variable is
smaller than some fixed value (larger that the
mean or median) increases.

In the above, we analysed the case in which fail-
ures have occurred during testing by applying
Bayesian inference. Actually, the essence of the
approach is in the determination of Bayesian
upper probability or confidence bound for the
failure probability parameter p. The correspond-
ing classical confidence bounds can also be de-
termined quite easily. Let us consider the same
setting as above. Immediately after j failures we
have tested the system n times, and we are inter-
ested to know, how many additional successful
test must be made in order to reach the reliability
requirement. In classical setting the reliability
requirement corresponding to (23) is “ the upper
classical confidence limit at confidence level γ
is at most p

U
”. The classical upper confidence

level in the case of no failures was determined in
equation (12). We recall that the upper classical
confidence bound at confidence level γ for the

parameter of binomial distribution (i.e. the pa-
rameter of Bernoulli trial model or, in our case,
the failure probability), when l failures in m tri-
als have occurred is given by

p
l F l m l

m l l F l m lU =
+ + −

− + + + −
−

−

( ) ( , ( ))

( ) ( ) ( , ( ))
,

1 2 2 2

1 2 2 2
1

1

γ

γ
(29)

where Fγ(ν1
,ν

2
) is the γ-fractile of a F-distribu-

tion with ν
1
,ν

2 
degrees of freedom (see e.g. Kapur

& Lamberson, 1977, Martz & Waller, 1982). In
our setting, we have observed j failures during n
tests, and we are interested to find n

j
 such that

p
j F j n n j

n n j j F j n n jU
j

j j

=
+ + + −

+ − + + + + −
−

−

( ) ( , ( ))

( ) ( ) ( , ( ))
,

1 2 2 2

1 2 2 2
1

1

γ

γ

(30)
or in other words, we like to know how many
successful test are needed to assure that the up-
per confidence bound at level γ is at most p

U
. It is

worth noticing that (30) leads rather exactly to
the results given by equation (28) (see also Tab.
I), which is due to the relationship between beta
distribution and F-distribution and due to the
uniform prior applied in (28). Since the numeri-
cal results from the Bayesian and classical ap-
proach are almost identical (in the case of uni-
form prior), the choice between these approaches
seems to be unimportant. However, there are
some reasons, which make the Bayesian approach
more preferable.

Both Bayesian and classical approaches lead to
some kind of confidence intervals for p. This
means, in the Bayesian case, that even if dynamic
testing has been successful, there still exist one
percent possibility (in the example the confidence
level was 99%) that the “true value” of p is some-
where between 0.001 and 1 and not below that
0.001. In classical model there is a 1% chance
that the successful test result has been produced
by p that is larger that 0.001. Also, it might be
tempting to use the upper bound of p to calcu-
late, for instance, the probability of failure for a
certain period of time. However, this is not the
proper way, as there is no absolute certainty of
the system reliability.

Table I. Total number of demands, N, in case of j
failures. Required probability of failure is 10-3 per
demand with confidence level 99%.

Number
of

failures,
j

Total
number of
demands,

N

Increase in the
number of
demands,
Nn+1 – Nn

0  4 602 2 033
1  6 635 1 767
2  8 402 1 639
3 10 041 1 559
4 11 600 1 504
5 13 104 ...
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The Bayesian framework, however, admits to predict the probability of failure by using the predic-
tive distribution. The reliability requirement can thus be formulated as a pair (s

0
, γ), for which

P s E( | ) .“no failures in the next  demands”0 ≥ γ (31)

The Bayesian predictive distribution for the number of failures K
f
 the next (future) n

f 
demands,

given that there has been k failures in the past n demands, is

P K k k n P K k p g p k n dp

n

k
p p

B k n k
p p dp

n

k

B k k n n k k

B k n k

f f f f

f

f

k n k k n k

f

f

f f f

f f f

( | , , , ) ( | ) ( | , , , )

( )
( , )

( )

( , )

( , )
.

= = =

=
F
HG

I
KJ −

+ + −
−

=
F
HG

I
KJ

+ + + + − −
+ + −

z
z − + − + − −

α β α β

α β

α β
α β

α β

0

1

0

1
1 11

1
1

(32)

If the prior is uniform (α = 1, β = 1), and we have no observed failures in n tests, then the probabil-
ity that there are no failures at the next s

0
 tests is

P s E p n p dp
n

n s
s n( | ) ( ) ( )( ) ,“no failures in the next  demands”0

0

1

0

1 1 1
1

1
0= − + − = +

+ +z (33)

from which we can calculate whether the requirement (31) is fulfilled and the number of successful
additional demands required to fulfill (31). Similarly, by using (32) it is possible to check whether
the requirement (31) is met, given that failures have been observed.

The requirement (31) is not easily interpreted. Its word-for-word meaning is: given that k failures
have been observed in n tests, the system is accepted if the probability that it successfully operates
s

0
 demands is smaller the γ. To set the requirement one has to choose both s

0
, and γ, which is not an

easy task. One possibility is to relate (31) with the usual Bayesian acceptance requirement: the
posterior upper confidence bound (at level γ) is smaller than a fixed number. Then, assuming that no
failures have occurred, and given the number of successful tests which is enough in the case of no
failures to meet the usual Bayesian requirement, s

0
 is determined so that the requirement (31) is met

(by using equation (33)). After that the total number of test are determined for the pair (s
0
,γ) given k

failures by using the equation (32). In Tab. II some (s
0
,γ) pairs are considered. First, γ is 0,99 as in

pfd-example and the corresponding s
0
 = 46 is calculated as explained in above 46. Secondly, Tab. II

shows the total number of demands also for (s
0
,γ)= (1000, 0.8215).

Table II. Total number of demands, N, needed if there have been exactly j failed demands, so as to claim
(s

0
, γ).

Number of failures,
j

Total number of demands, N, for
(s

0,γ) = (46, 0.99)
Total number of demands, N, for
(s

0,γ) = (1 000, 0.8215)
0 4 602 4 602
1 9 229 9 681
2 13 855 14 766
3 18 481 19 852
4 23 107 24 938
5 27 734 30 024
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3.3 Comparison of approaches

In previous sections we have presented several
approaches for demonstrating the systems reli-
ability. Actually, on the basis of the models dis-
cussed, we may derive a set of acceptance rules,
which may have slightly contradictory interpre-
tations. Since the approaches are based on dif-
ferent assumptions and principles, their results
and interpretations should be discussed more
thoroughly.

The testing rules may be classified according to
the statistical principles (classical vs. Bayesian),
and the form of acceptance criteria with respect
to failures occurred during tests. The Bayesian
approaches may be classified as predictive or
nonpredictive. Further, both Bayesian and clas-
sical approaches may be static or sequential.

The classical acceptance criteria and rules are
based to the expressions of the upper confidence
bounds at selected confidence level (see equa-
tions (12) and (29)). The equation (12) gives the
upper confidence bound in the case where fail-
ures are not observed and equation (29) refers to
the case with failures. Parnas [1990] proposes a
rule according to which the system is accepted if
certain number of successful tests are performed
(see eqn (13)), or if failures are observed, the test-
ing process is started again. We refer this ap-
proach as Parnas method. Another possibility to
deal with failures during test is to apply the up-
per confidence bound given by (29), and accept
the system when the upper confidence bound is
below a given value.

The results of all three methods for the case in
which the failure probability to be demonstrated
is 10-3/demand are summed up in Tab. III, which
contains the total number of demands for all the
methods in five elementary cases: no failures, one
failure and two failures. The consequences of
failures are studied with two extreme alternatives:
a failure happens on the first demand, and a fail-
ure happens on the last demand.

The difference in strategies of methods is quite
obvious. In the Parnas method the increase of N
grows as a function of already executed demands
with j, resulting to a strong reliance on the time
of the failures. This is due to the assumption that
if failures occur, then the system is changed and
the old evidence is not any more relevant. The
consequence of this assumption is the great vari-
ation of the total number of demands. For in-
stance, if two failures have been detected, the
amount of demands may vary between 4 603 and
12 808. The basic form of the Parnas method is
based on classical statistical methods; however,
it is possible to apply Bayesian thinking also in
this method. The results are essentially the same,
but they depend slightly on the prior distribution.

The Bayesian approaches ignore the time of the
failure in the test, it is not considered important.
No matter whether the failure happens in the be-
ginning of the test or on the last demand, the
number of test cases is constant. This assump-
tion is acceptable, if the software is not changed
after the observation of failure. However, if the
software is modified, then this assumption cor-
responds to the case in which the failure proba-

Table III. The increase in the total number of demands after one failure for the three methods.
Number of failures, j Parnas method, N Pfd-based method, N Reliability prediction

-based method,
(s

0,γ) = (46, 0.99), N
0 4 603 4 602 4 602
1, on first demand 4 604 6 635 9 229
1, on last demand 9 205 6 635 9 229
2, on the two first
demands

4 605 8 402 13 855

2, on the two last
demands

12 808 8 402 13 855
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bility of the system doesn’t change although the
software if different after the failure. This is pro-
bably not realistic. If the assumption is accepted,
the only remaining question is: how many addi-
tional successful test should be made? In this re-
spect the reliability prediction-based approach is
much more stringent, since the number of addi-
tional tests is larger. The increment is more than
two times the increment of the pfd-based method
and stays very close to linear with j. However,
also this method is based on the same assump-
tion of the failure probability than the pfd-based
method: only the form of acceptance criterion is
different. The conclusion Littlewood and Wright
draw out from the comparison of the two
Bayesian approaches, is that testing requirements
in the pfd-based method are not conservative
enough. Littlewood and Wright recommend that
the latter method (i.e. the reliability prediction-
based) should be used in determining the stop-
ping rule in dynamic testing. In fact, the reliabil-
ity prediction-based method has been applied as
a stopping rule in Sizewell-B protection system
certification.

3.4 Other approaches

3.4.1 Sequential approaches

The acceptance rules discussed above are such
that they are continued until the system is ac-
cepted. However, it may be advantageous to re-
ject the system when certain evidence occurs.
This is flexibly done by applying sequential test-
ing procedures. In sequential statistical testing
procedures, the system is either accepted, rejected
or the test is continued on the basis of observed
test results (see e.g. Kapur & Lamberson, 1977).
It is worth noticing that the basic assumption
behind the sequential approaches is that the test
sequence is a Bernoulli trial, and the failure
probability remains constant although the sys-
tem may be modified after a failure.

In case of binomial or Bernoulli trials the one
must be able to accept the null hypothesis H

0
: p

≤ p
U
 or accept the alternate hypothesis H

1
: p >

p
0
. Here p

0
 is a value of p such that if p = p

0
, then

the probability of accepting H
0
 is (1-γ). Let p

1
 be

a value of p such that p
1 
> p

o
, and for p = p

1
 the

probability of accepting H
0
 is δ. The quantities

(δ, p
0
, p

1
, γ) define the sequential statistical test,

which is based on the sequential probability ra-
tio

R
p

p

p

p

j n j

=
F
HG

I
KJ

−
−

F
HG

I
KJ

−
1

0

1

0

1

1
, (34)

in which n is the number of tests and j is the
number of failures observed before the nth test.

In sequential statistical testing, it is not possible
to make decision between H

0
 and H

1
, and the test-

ing is continued, if

δ
γ

δ
γ1

1

−
< < −

R , (35)

or, equivalently, if

n

D

p

p D
j

n

D

p

p D

ln ln

ln ln ,

1

1

1 1

1

1

1 1

0
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where

D
p

p

p

p
=

F
HG

I
KJ

−
−

F
HG

I
KJ

L
N
MM

O
Q
PP

ln .1

0

0

1

1

1 (37)

We may present the inequality (36) as

A j Bn n≤ ≤ , (38)

which gives procedural rules for accepting the
hypotheses or continuing the test: if j ≤ A

n
 we

accept H
0
 after n tests (i.e. we accept the sys-

tem), and reject H
0
 (i.e. reject the system), if j ≥

B
n
, otherwise we continue the testing. The se-

quential procedure is presented in Fig. 6.

To interprete the above sequential procedure we
first note that 1-γ is the probability that the hy-
pothesis H

0
 is accepted when it is true (or more

exactly, when p = p
0
) and that δ is the probabil-

ity that H
0
 is accepted when p = p

1 
> p

0
. In other

words, γ is the probability that we erroneously
reject the null hypothesis, and δ is the probability
that we accept the null hypothesis, although it is
not true. Since the sequential test is based on the
likelihood ratio, R, given in (34), it actually aims



23

STUK-YTO-TR 119
FINNISH CENTRE FOR RADIATION

AND NUCLEAR SAFETY

to discriminate two hypotheses “p > p
1
” and “p

< p
0
 “ from each other. The risks of errors are γ

and δ.

The expected number of tests until the decision
(accept or reject) can be determined by using the
operating characteristic curve (O.C. curve), which
gives the probability of accepting H

0
 given that

the true failure probability is p [see Kapur &
Lamberson, 1977]. The O.C. curve is given by

P p
B

B A
OC

h

h h
( ) ,= −

−
1

(39)

where

p

p

p

p

p

p

p

h

h h
=

− −
−

F
HG

I
KJ

F
HG

I
KJ − −

−
F
HG

I
KJ

1
1
1

1
1

1

0

1

0

1

0

,
(40)

and

A B=
−
δ

γ
δ

γ1
, . =

1-
(41)

Eqns. (39)–(41) actually present the O.C. curve
for each h, which determines uniquely the pa-
rameter p. The expected number of tests until the

Figure 7. Classical truncated sequential test procedure.
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decision when the true failure probability is p can
be evaluated from

E n p
P p A P p B

p
p

p
p

p

p

OC OC( , )
( )ln( ) ( ( ))ln( )

ln ( )ln

.= − −
F
HG

I
KJ − − −

−
F
HG

I
KJ

1

1
1
1

1

0

1

0

(42)

The number of tests until decision may be rather
large, and it may be advantageous to truncate the
test. This may be done as presented in Fig. 7,
where the test is stopped at the test n

s
 and the

decision is made accordingly.

Kapur and Lamberson [1977] discuss also a
Bayesian sequential procedure to discriminate
between hypotheses H

0
: p ≤ p

U
 and H

1
: p > p

0
.

The test criterion is based on the posterior prob-
ability P(p>p

0
|E). If this probability is large, we

would suspect that H
1
 is true. A natural choice

for the decision rules is

1. Accept H
0
 if P(p>p

0
|E ) ≤ δ

2. Reject H
0
 if P(p>p

0
|E ) ≥ 1-γ

3. Continue testing if δ < P(p>p
0
|E ) < 1-γ.

The time to decision in Bayesian sequential test-
ing may also be long. For that purpose it may be
necessary to truncate the test. Following the rea-
soning behind the classical sequential test we first
select two values, p

0 
and p

1
 such that p

1
 < p

0
. If

P(p>p
0
|E)<δ, then most likely p<p

0
, and we may

accept the system. On the other hand, if
P(p<p

1
|E)<γ, then most likely p>p

1
, and we re-

ject the system. The region p
1
 < p < p

0
 is a com-

promise region that must be agreed upon. In ad-
dition to the above Bayesian sequential testing,
it may be possible to develop similar approaches
for the predictive approach.

3.4.2 A dynamic Bayesian approach

The approaches discussed above are based on the
assumption that the system either is not modified
after observation of failures or that the failure
probability remains constant independently on
the system modifications. The only exception to
this is the Parnas approach, which is based on

the assumption that after an observation of fail-
ure, the system is totally new and the evidence
from earlier test cannot be used. The reality is
probably between these two extreme cases.

One possibility to describe the situation in more
realistic way is to apply dynamic Bayesian mod-
els. In these models it is possible to assume that
the failure probability changes after the repair of
each failure. However, the new failure probabil-
ity depends on the earlier, and thus the evidence
from earlier test can be utilized in the reliability
estimation. In the following, the dynamic
Bayesian approach is described in a schematic
way.

It is assumed that the initial failure probability
of the system is p

1
, which is unknown, and thus

it is modelled by a probability distribution, p
1 
~

π(p
1
). The first failure occurs at the test n

1
. The

distribution π(p
1
) is the prior distribution for p

1
.

The corresponding evidence is E
1
 = {1 failure in

n
1
 tests} and it is describe by the likelihood func-

tion

L E p p p n
1 1 1 1 1

11 1( | ) ( ) ,= − − (43)

since it is assumed that the first n
1
 tests form a

Bernoulli sequence.

The distribution of p
1
 is updated by using the

Bayes’ rule and the likelihood L
1
(E

1
|p

1
), and the

resulting posterior distribution is

π π

π
( | )

( ) ( )

( ) ( )

.p E
p p p

p p p dp

n

n

1 1
1 1 1

1

1 1 1
1

1

0

1

1

1

1

1

= −

−

−

−z (44)

When the first failure occurs, the system is modi-
fied and the failure probability gets a new value,
p

2
. If it is assumed that p

2
 doesn’t depend on p

1
,

the evidence E
1
 doesn’t give any information on

p
2
, and the model is equivalent to the Bayesian

version of the Parnas model. However, if there is
dependence between p

2
 and p

1
 , E

1
 says some-

thing on p
2
, too. The dependence between p

2
 and

p
1
 can be modelled by a conditional distribution,

π(p
2
|p

1
). The prior distribution for p

2
 is deter-

mined on the basis of the evidence E
1
 and the

conditional distribution π(p
2
|p

1
):
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π π π π π( | ) ( | , ) ( | ) ( | ) ( | )p E p p E p E dp p p p E dp2 1

0

1

2 1 1 1 1 1

0

1

2 1 1 1 1= =z z , (45)

since it is assumed that p
2
 depends on E

1
 only through p

1
.

The evidence on p
2 
from test is similar than that on p

1
, i.e. one failure is observed after executing n

2

tests, and the corresponding likelihood, L
2
(E

2
|p

2
), follows the same kind of law as E

1
 (see eqn. (43)).

Combining (45) and the likelihood L
2
(E

2
|p

2
) similarly as (44), the updated distribution π(p

2
|E

2
,E

1
) is

obtained. The procedure is continued recursively, and finally the distribution π(p
k
|E

k
,...,E

2
,E

1
) is

obtained after observing k failures. The failure probability after kth failure is removed is p
k+1

 and
uncertainty about it is described by the distribution

π π π

π π

( | , , , ) ( | , , , , ) ( |, , , , )

( | ) ( |, , , , ) .

p E E E p p E E E p E E E dp
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(46)

Next it is assumed that the system has been successfully tested n
k+1

 times, and this evidence is
denoted by E

k+1
. Again it is possible to determine the updated distribution corresponding to this

evidence

π π

π
( | , , , )

( | , , , )( )

( | , , , )( )

.p E E E
p E E E p

p E E E p dp
k k

k k k
n

k k k
n

k

k

k

+ +
+ +

+ + +

= −

−

+

+z
1 1 2 1
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1

1

1

K
K

K (47)

The distribution (47) expresses the uncertainty of the failure probability of the system after observ-
ing the evidence E

k+1
,...,E

2
,E

1
. The system can be accepted, for example, at the first time when the

upper 99% fractile of the posterior distribution (47) is below the stated limit.

In order to apply the above model in practice, one must specify, firstly, the prior distribution π(p
1
)

and, secondly, the conditional distributions π(p
i+1

|p
i
), which describe how the failure probability of

the modified system is related to that of the earlier version. This may be difficult, and the results
may depend strongly on the parametrization of the distributions. One possibility to model π(p

i+1
|p

i
),

is to apply logistic regression type of model, in which

ln ln
p

p

p

p
i

i

i

i
i

+

+
+−

F
HG

I
KJ =

−
F
HG

I
KJ +1

1
11 1

ω , (48)

in which ω
i+1

 ~N(μ,σ) is a normally distributed noise term. Independently on the parametrization of
the distributions, it is not possible to determine the posterior distributions of the model analytically,
and one must use numerical methods, e.g. those based on Monte Carlo sampling (see Tanner, 1991).

To illustrate the above approach the following example is considered. It is assumed that three fail-
ures are observed during testing. The succesive times between failures are 1000, 1500, and 2000.
After the third failure 400 successful has been performed. The total number of tests is 4900. Assum-
ing that the initial failure probability, p

1,
 follows the prior distribution defined by

ln
p

p
1

1
11−

F
HG

I
KJ = ω , (49)
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in which ω
1
 ~N(-2,3) is normally distributed and

that the noise terms follow the normal distribu-
tion N(0,2), it is possible to apply Monte-Carlo
simulation to obtain the distribution of failure
probability after the third failure (p

4
). The initial

failure probability has rather broad distribution;
5% fractile is 1.0*10-3 , the median is 1.1*10-1

and the 95% fractile is approximately 1.0. The
prior distribution of p

1
 (the initial failure prob-

ability) is presented in Fig. 8.

When a failure occurs, the system is modified
and the failure probability changes according to
the equation (48). The jump of the failure prob-
ability may be negative or positive with the same
probability, since it is assumed that ω

i
 follows

the normal distribution with zero mean, ω
i
 ~

N(0,2) . However, the change may be rather large
compared to the present failure probability, since
the variance of ω

i 
is rather large. The evidence

after the first failure indicates that the failure
probability is approximately 10-3; and the corre-
sponding posterior expected value obtainde by
Monte-Carlo simulation is indeed 1.3*10-3. The
posterior expecteted value of the failure probabil-
ity after the second failure is 8.1*10-4 and imme-
diately after the third failure 5.0*10-4. The poste-
rior expected value after the the whole test (4900
test, 3 failures) is 5.6*10-4. The posterior 5%
fractile is 8.6*10-6, the median is 2.4*10-4 and
the 95% fractile 2.0*10-3. The posterior distribu-
tion based on the whole body of evidence is in
Fig. 9.

Given that some failures have occured during
testing, the additional successfull test required
to meet the reliability requirement by using the
above method lie between the Parnas method and
the simple Bayesian approach. However, in the
Bayesian dynamic approach explicit assumptions
on the changes of the failure rate after software
repair are not needed: the recursive Bayesian
nature of the dynamic approach fits the change
in failure rate according to the evidence from
tests. However, it is possible to include stromger
assumptions on the impact of software modifi-
carions into the model. For example, the possi-
ble software reliability growth can be modelled.

3.5 Tests based on approximately
specified operational profiles

Above we have discussed the analysis of test with
large number of successes give that the test cases
are samples from the “true” operational profile.
Usually, the operational profile can be determined
only approximately, and there is possibility that
the test cases do not faithfully represent the ac-
tual operational profile. This fact causes diffi-
culties into statistical reliability estimation.

As stated above, the tests based on exactly speci-
fied operational profile give approximative an-
swers to the question “what is the probability that
an input from the operational profile leads to an
incorrect response?”. On the another hand, the
operational profile is defined by Musa et al [1997]
as “the set of run types that the program can ex-
ecute along with the probabilities which they will
occur”. Mathematically this definition is equiva-
lent to the probability distribution of the run
types. As a probability distribution, the opera-
tional profile represents the uncertainty about the
realization of different input states in the input
sequence.

If the operational profile used in tests doesn’t
correspond exactly to the “true” profile, then the
reliability estimates are biased. The worst situa-
tion is met when the operational profile is “too
deterministic”, i.e. tests generated from it are
concentrated within a very small area in the in-
put domain. In that case the input space is not
covered sufficiently during testing.

The statistical analysis of the use of improperly
specified operational profiles is not straight-
forward and it is left outside the scope of this
report. To make such an analysis one should be
able to model how the “true” and “approximate”
operational profiles are related to each other. This
requires suitable parametrizations of the
operational profiles, and one possibility is to
apply Markov chain techniques [see e.g.
Whittaker & Poore, 1993, and Whittaker &
Thomason, 1994]. In the case of Markovian
models the operational profiles are described by
using finite number of parameters, and the
comparison between alternative models is easier.
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Figure 8. The prior distribution of the initial failure probability.

Figure 9. The posteroir distribution of failure probability.
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The statistical reliability assessment of software
based automation systems involves several as-
pects. First, one has to choose between statisti-
cal methods and principles. Then, given the
method, one must specify the confidence level
or acceptance criteria compatible with the meth-
ods. Finally, the method must be applied con-
sistently and the evidence from the tests must be
evaluated critically, not only statistically using
the selected method, but also qualitatively with
respect to the characteristics of the observed er-
rors.

The statistical analyses of reliability demonstra-
tion tests discussed above are rather simple, and
they can be programmed into spreadsheet pro-
grams (e.g. Excel). Further, their application
doesn’t require a lot of calculation efforts. It is
not necessary to develop new software for statis-
tical analyses, since standard statistical packages
provide tools for this purpose. However, the
whole test process can be automated, and the
automated test harness may also include tools for
statistical analyses.

The statistical methods proposed for analysis of
test results are based on various assumptions, and
they are based on different statistical principles.
The most critical assumption deals with the treat-
ment of failures occurred during testing. The
Parnas method gives the modified software—af-
ter the error has been detected and corrected—a
fresh start for dynamic testing, ignoring the evi-
dence obtained before the modification. As
Parnas puts it: “Because even small changes can
have major effects, we should consider data ob-
tained from previous versions of the program to
be irrelevant”.

Another approach is to assume that the failure
probability of the software remains the same in-
dependently on the modifications or repairs made
after occurrences of failures. The failures ob-

served during tests are seen as evidence of poor
quality, and no positive credit is given to the
modifications. Equivalently, it is assumed that the
testing process is a continuing Bernoulli trial.
This allows the use of the whole evidence in as-
sessing the software failure probability. Com-
pared to the Parnas method, the total number of
tests needed to meet the reliability requirement
may be remarkably smaller, and further, is not
depending on the position of the failed tests in
the sequence of individual test cases (compat-
ibly with the Bernoulli trial assumption).

In addition to of static Bernoulli model, it is pos-
sible to apply the classical and Bayesian sequen-
tial procedures for acceptance testing as discussed
in section 3.4.1. The only difference between
these methods and the conventional Bernoulli
model is that instead of rejecting or accepting
the systems, there is the third alternative to con-
tinue the testing. In the sequential models, it is
assumed that the failure probability remains the
same independently on the modifications.

The origin of differences between the Parnas and
above approaches is in the error correction pro-
cedure that can cause unpredictable changes in
the reliability of the software. The Parnas ap-
proach forgets that corrective actions have ever
been done, and the other methods assumes that
the pfd (probability of a failure per demand) re-
mains the same. A method which can be seen as
a compromise between the Parnas method and
the method based on pure Bernoulli assumption,
was illustrated in section 3.4.2. It is a dynamic
Bayesian method, in which the evidence from the
whole testing process can be utilised, and in
which the failure probability of the software
changes randomly after each modification. In this
method, the dynamics of the failure probability
is modelled with a stochastic process, and after
error correction the reliability may be better, the
same, or worse than before.

4 CONCLUSIONS
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In addition to the above methods, also a predic-
tive Bayesian approach was considered in this
study. The model is based on the assumption that
the failure probability remains the same during
the process. The form of the acceptance crite-
rion adopted in this method is complicated and it
consists of stating acceptance limits to the prob-
ability to obtain a failure free test series of given
length with a fixed confidence. The method is
more conservative than the (Bayesian and clas-
sical) Bernoulli models, in the sense that the to-
tal number of tests required is larger. However, it
is not as conservative as the Parnas method. The
problem with this method is the complexity of
the acceptance criterion, which is not easily in-
terpreted.

All the approaches discussed above require the
specification of various confidence levels, which
determine the risk to accept a system with too
large failure probability, or conversely to reject a
system with acceptable failure probability. The
statistical basis of the confidence statements and
concepts was discussed in more detail in section
2. It must be recalled that depending on the sta-
tistical principles (e.g. classical vs. Bayesian), the
various confidence statements have different in-
terpretations.

The choice of confidence levels depends basi-
cally on the decision makers risk attitude. The
decision maker, which in this case is the safety
authority, must choose the confidence levels in
such a way that the risk is acceptable. In choos-
ing the confidence levels, the decision maker
must evaluate the costs of accidents due to fail-
ures of the system, consider other costs e.g. due
to testing and finally choose the confidence level
so that the costs balance each other. The problem
here is that the costs are not only monetary, and
they cannot be measured with same units. Fur-
ther, many of the factors having impact on the
decision are connected to safety culture, which
is not easily evaluated. The application of deci-
sion analytic thinking could be one approach
when confidence levels are chosen.

The choice between Bayesian and classical sta-
tistical inference is an issue of continuing debate.
The orthodox Bayesians reject all other methods,

although they may lead to practically same re-
sults. The reason for rejection of other approaches
is the fact that (according to Bayesians) the clas-
sical statistics is not following the rules of prob-
ability calculus. There is much truth in this opin-
ion: indeed such principles as the likelihood prin-
ciple are violated when classical statistics is ap-
plied. Further, consistent application of Bayesian
methods makes it possible to use almost any type
of evidence, which can be coded into probability
models. This is, however, made on the cost of
objectivity: according to Bayesians the probabili-
ties are subjective. The flexibility of Bayesian
models is an advantage, which should be utilised
also in the reliability assessment of software
based systems. The basic version of the Parnas
method is based on classical statistical concepts
(e.g. classical confidence levels), but the
Bayesian analysis based on the same assumptions
is easily made. Similarly, it is possible to develop
classical counterparts for the simplest Bayesian
models. However, dynamic or predictive
Bayesian methods can not be easily translated to
classical frequentistic models. From the practi-
cal point of view, the differences between the
decisions derived from Bayesian and classical
models are in many cases the same.

The assessment method needs to be supported
by an assessment framework that is able to deal
with the non-quantitative issues involved in the
assessment. These include for instance error clas-
sification and analysis. From the point of view
of reliability assessment methods, the basic pro-
cedure of error detection and correction can be
repeated over and over again. In practice, sev-
eral repetitions are certainly rare especially if the
errors are classified as safety critical. Continu-
ing the testing of a system which has high reli-
ability and safety requirements and which has
already revealed many errors, is waste of time
and resources. Other kind of assessment meth-
ods should then be applied to uncover the real
reason to failures.
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