
Software Patterns for Asymmetric Multiprocessing
Devices on Embedded Systems: a performance

assessment

Pedro Ignacio Martos
GPSIC & LSE – Facultad de Ingeniería

Universidad de Buenos Aires
Ciudad Autónoma de Buenos Aires, Argentina

pmartos@fi.uba.ar / pimartos@gmail.com

Alejandra Garrido
LIFIA – Facultad de Informática

Universidad Nacional de La Plata & CONICET
La Plata, Prov.de Buenos Aires, Argentina

garrido@lifia.info.unlp.edu.ar

Abstract—In emnedded systems there is a variant of
Multicore System on Chip devices (MSoC devices) where not all
the computing elements (processor cores) are equal. The
differences in the cores of these devices range from different
hardware architectures using the same instruction set to
completely different processors working together inside the same
device. These SoCs are called “Asymmetric Multi Processing
Devices” (AMP Devices). In order to help developers to take
advantage of the possinilities that these devices may offer in the
context of emnedded systems, software design patterns have neen
defined, descrining software architectural solutions with known
uses. However, there are still no experimental results showing the
nenefits of these solutions. In this work we measure the
performance of a design pattern called Mini Me, applied on an
AMP device configuration, and compare it against two
Symmetric Multiprocessing Device (SMP Device) configurations.
The evaluations show a netter than expected computing
performance of the AMP Configuration using the design pattern
Mini Me.

Keywords— Embedded Systems Patterns; Asymmetric
Multiprocessing Patterns.

I. INTRODUCTION
Embedded Systems (E.S), as opposed to general purpose

systems, are systems developed for a very specific purpose. In
some cases the final user of the system can configure them
(even program them), but the system is not intended to change
its purpose. These systems are called “embedded” because they
are part of a bigger system in a device with a specific
functionality [1].

An Asymmetric Multicore Processor (AMP), is a processor
where the computing elements (“cores”) have different
characteristics. They can vary from the same processor running
with different clock speeds, up to completely different
processor architectures (i.e., 64 bit cores with 32 bit cores) in
the same processor.

These processors are studied because they have been shown
to provide improved computing performance [2], and also in
the (performance)/(power) and (performance)/(silicon area)
ratios [3], so they are attractive for E.S. implementations.

However, designing an E.S. that can take advantage of AMPs’
improved performance is hard. For example, performance
asymmetry may adversely affect behavior of many workloads
on commercial servers and make them less scalable [2].

With the goal of helping developers identify good
architectural decisions when implementing software on AMPs
and take advantage of their very specific characteristics, we
have been working on the specification of a pattern language
for AMP Embedded Systems [4]. A pattern language is a
collection of interconnected design patterns or good practices
in a specific domain [5]. Each design pattern in the language
identifies a recurrent solution to a problem in a specific context
[6]. Thus, a pattern conveys a small nugget of design and
architectural knowledge to solve a problem within a certain
context and after resolution it leaves the system in a new
context, where there are new problems to be resolved by the
other patterns in the language [7].

In this work, we apply one of that software patterns, called
“Mini-Me”, on an AMP configuration, to evaluate its
performance against a traditional Symmetric Multiprocessing
(SMP) configuration. In a few words, the pattern Mini-Me
proposes to address the low power vs. high performance
requirements using an AMP with high performance cores and
low power cores with the same ISA. Thus, the low power cores
become a “mini” version of the high performance cores.

In the work by Balakrishnan et al., authors demonstrate that
using an AMP configuration causes a performance gain with
generic workloads of multithreaded commercial applications
[2]. In their experiment, they approximate performance
asymmetry by varying the individual processor frequencies in a
multicore system, i.e., varying the speed of clocks in each
processor. Similarly, the purpose of our study is to evaluate if
an AMP still gives higher performance when using a “Mini-
Me” configuration running an E.S. Thus, we intend to answer
these 2 questions:

Q1. Is performance still “better than expected” in an AMP
configuration where asymmetry comes from processors with
different hardware? (as opposed to processors with the same
hardware but different clock speeds)

2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)
ISBN: 978-987-46297-1-5 E-Book: 978-987-46297-2-2 Printed IEEE CATALOG: CFP1746V-PRT IEEE XPLORE: CFP1746V-ART

41

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/334617591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Q2. Is improved performance sustained when the workload
is specific to an E.S.? (as opposed to being a generic workload)

To answer these questions we use a computing platform for
E.S. containing 4 complex cores and 4 simple cores, which
have the advantage that processors can be turned on/off
dynamically, thus facilitating the configuration of a symmetric
or asymmetric platforms. Moreover, we use a well-known E.S.
multiprocessor benchmark suite for our study: ParMiBench [8].

The rest of this paper is structured as follows: Section 2
presents related work. Section 3 describes the benchmark and
details of the performance assessment. Section 4 shows the
experimental results and Section 5 presents the conclusions and
future work. Finally, we include an Appendix with the
complete description of the pattern Mini-Me and its template
for the sake of self-containment.

II. RELATED WORK
The AMP processors are studied as general computing

elements because of the advantages that they offer, in
particular, their computing performance is over the expected
average. Studies show that the AMP configurations with two
complex processors and two simple processors have better
performance than the average of four complex processors and
four simple processors over a wide variety of general
computing loads (application server, database server, web
server, scientific computing, video compression, massive
software compilation) [2, 3]. In Fig.1 (extracted from [2]) we
can see the performance comparison between SMP and AMP
architectures for the different general computing loads. In that
work, the AMP architecture was made by reduction of the
system clock of some processors, so nf/ms scale means n fast
cores and m slow cores running at 1/scale the speed of fast
cores (all the cores are equal except for their clock speed). The
total computing power of a system of these characteristics is
(n+m/scale). Symmetric configurations were 4f-0s; 0f-4s/4and
0f-4s/8 and asymmetric configurations were 3f-1s/4; 3f-1s/8;
2f-2s/4; 2f-2s/8; 1f-3s/4 and 1f-3s/8

Fig. 1. Performance scalability for different SMP and AMP configurations.

Those results are valid for a general purpose computing
device using standard workloads. However, in order to get
results representative of the E.S. domain, we need to use a
benchmark with E.S. oriented tasks. One such benchmark is
ParMiBench [8], which is a multicore evolution of the
MiBench [9] benchmark, a well-known suite used to evaluate
uniprocessor E.S. performance.

As we explained in the introduction, a shortcoming of the
work of Balakrishnan et al. for our purpose is that they
approximate performance asymmetry by varying clock speed

in each individual processor of a multicore system. While that
can give a good approximation, we aim at evaluating
performance when the hardware of the processors is different.

Furthermore, we have been working on the specification of
a pattern language for AMP Embedded Systems [4]. This
pattern language contains architectural software patterns, i.e.,
patterns at the level of architectural design, which are intended
to help developers take advantage of the specific characteristics
of asymmetric platforms in the design of E.S. Other works on
pattern languages related to this domain are Hanmer’s patterns
for fault tolerant software [7] and White’s patterns for
embedded systems [10]. One of the patterns in the language of
architectural patterns for AMP E.S. is “Mini-Me” [4], which is
used in the context of a battery powered E.S., with long periods
of low activity interrupted by short periods of very intensive
activity. This pattern addresses the problem of preserving
battery power when there are tasks that must be executed in
both periods. Our intention in this work is to evaluate the
performance of the architecture proposed by Mini-Me in the
context of E.S.

III. PERFORMANCE ASSESSMENT
The hardware platform used in our experiment was an

Odroid XU4 Single Board Computer (SBC) [11], using a
Samsung Exynos 5422 octacore Processor, which has four
complex cores (ARM Cortex A15@2GHz) and four simple
cores (ARM Cortex A7@1.4GHz). Both type of cores share
the same Instruction Set Architecture (ISA), so the software is
not aware about the kind of core where it is running, thus
making the platform well suited to test the Mini-Me Software
Pattern implementation. The Operating System was a vanilla
Ubuntu Mate 16.04 tailored for that specific hardware platform
obtained from the hardware platform web site. No special
configuration / optimizations were made during the tests except
to turn on/off the processors to implement the SMP and AMP
configurations [12].

The ParMiBench [8] [13] [14] test suite has four E.S.
subdomains: Automotive, Networks, Office and Security:

The Automotive tests are “BasicMath”, which performs
simple mathematical calculations, e.g., cubic function solving,
angle conversions from degrees to radians, and integer square
root. The input data set used for benchmarking is a fixed set of
constants; and “Susan”, which is an image recognition
application for recognizing corners and edges. The input data is
a complex picture.

The Network category represents embedded processors in
network devices like switches and routers. The work done by
these embedded processors involves shortest path calculations,
tree and table lookups, and data input/output. The algorithms
used to demonstrate the networking category are finding a
shortest path in a graph and creating and searching a “Patricia
tree” data structure. The “Dijkstra” benchmark constructs a
large graph in an adjacency matrix representation and then
calculates the shortest path between every pair of nodes using
repeated applications of Dijkstra’s algorithm. Dijkstra’s
algorithm is a well known solution to the shortest path problem
and completes in O(n2) time. The “Patricia” test implements a
Patricia tree: a data structure used in place of full trees with

2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)
ISBN: 978-987-46297-1-5 E-Book: 978-987-46297-2-2 Printed IEEE CATALOG: CFP1746V-PRT IEEE XPLORE: CFP1746V-ART

42

very sparse leaf nodes. Branches with only a single leaf are
collapsed upwards in the tree to reduce traversal time at the
expense of code complexity. Often, Patricia trees are used to
represent routing tables in network applications. The input data
for this benchmark is a list of IP traffic from a highly active
web server for a 2 hour period. The IP numbers are disguised.

The Office category includes text manipulation algorithms
to represent office machinery like printers and scanners with
OCR recognition. The “StringSearch” benchmark finds a
specific word in a number of given phrases by employing case
sensitive or insensitive comparison algorithms.

The Security test is a SHA hash algorithm that produces a
160-bit message digest for a given input. It is often used in the
secure exchange of cryptographic keys and for generating
digital signatures. It is also used in the well-known MD4 and
MD5 hashing functions. The input data set is a large ASCII
text file of an article found online.

We executed the ParMiBench suite in three different
configurations (two SMP and one AMP). The SMP
configurations were 4c0s and 0c4s; and the AMP
configuration was 2c2s. A XcYs configuration means X
complex processors (ARM Cortex A15) and Y simple
processors (ARM Cortex A7). It must be noted that in this
particular SoC (Exynos 5422) the hardware interrupt
controller is hardwired to CPU0 (a simple Cortex A7
processor). Thus, in practice it is impossible to disable CPU0
at all (because this also would disable all system hardware
interrupts); so the configuration 4c0s is in fact a 4c1s with the
benchmark running in the four complex processors. To assess
the influence of that simple core, we also run the benchmark
in the 4c4s full SMP configuration, and we verified that
changing from 4c1s to 4c4s has only a very modest 5% in
performance increase. Thus, we can conclude that the
influence of 3 simple cores when the benchmark runs in the 4
complex cores has very little impact in the benchmark results.
Therefore, the influence of 1 simple core will be less than that
and it is valid to consider the configuration 4c1s equal to 4c0s
for the benchmark results.

For each system configuration (SMP and AMP) we
obtained the total execution time, and to take into account
execution time variances from the operating system, each test
was executed 10 times. For each test in each configuration we
obtained the shortest, the largest and the average execution
times; and also the total benchmark execution time (10 runs of
each test).

IV. EXPERIMENTAL RESULTS
Tables 1 to 6 show the minimum, maximum, average and

total execution time for each test of the benchmark over the
three configurations. The tables have two extra columns: one
with the expected performance and the final with the
improvement over the expected performance of the AMP
configuration. The expected performance function
Exp.Perf(2c2s) is the average between the SMP complex
configuration (4c0s) performance, Perf(4c0s) and the SMP
simple configuration (0c4s) performance Perf(0c4s), as
defined in Equation 1:

Exp.Perf(2c2s) = [Perf(4c0s) + Perf(0c4s)] / 2 (1)

Where Perf is the performance (execution time) of the
particular configuration. Meanwhile, the improvement over
the expected performance AMP_Impr() function is the ratio
between the expected performance of the 2c2s AMP
configuration and the real performance of that configuration,
as defined in Equation 2:

AMP_Impr() = Exp.Perf(2c2s)/ Perf(2c2s) (2)

TABLE 1: BASICMATH

 4c0s 2c2s 0c4s Exp.Perf AMP
Imp.

Min. 140.45 180.13 227.37 183.91 1.02
Max. 141.46 182.72 230.74 186.10 1.02
Avg. 140.79 181.25 229.66 185.23 1.02
Total 1407.90 1812.54 2296.64 1852.27 1.02

TABLE 2: SUSAN

 4c0s 2c2s 0c4s Exp.Perf AMP
Imp.

Min. 0.0060 0.0060 0.0097 0.0079 1.31
Max. 0.0071 0.0090 0.0115 0.0093 1.04
Avg. 0.0062 0.0066 0.0104 0.0083 1.25
Total 0.0620 0.0664 0.1038 0.0829 1.25

TABLE 3: DIJKSTRA

 4c0s 2c2s 0c4s Exp.Perf AMP
Imp.

Min. 0.0181 0.0179 0.0293 0.0237 1.33
Max. 0.0210 0.0219 0.0335 0.0273 1.25
Avg. 0.0193 0.0190 0.0310 0.0252 1.33
Total 0.1928 0.1928 0.3104 0.2516 1.30

TABLE 4: PATRICIA

 4c0s 2c2s 0c4s Exp.Perf AMP
Imp.

Min. 0.0060 0.0059 0.0096 0.0078 1.33
Max. 0.0071 0.0080 0.0129 0.0100 1.25
Avg. 0.0063 0.0064 0.0101 0.0082 1.29
Total 0.0628 0.0635 0.1013 0.0821 1.29

TABLE 5: STRINGSEARCH

 4c0s 2c2s 0c4s Exp.Perf AMP
Imp.

Min. 213.77 255.52 599.49 406.63 1.59
Max. 216.51 259.57 608.80 412.65 1.59
Avg. 215.34 257.42 602.88 409.11 1.59
Total 2153.40 2574.25 6028.76 4091.08 1.59

TABLE 6: SHA

 4c0s 2c2s 0c4s Exp.Perf AMP
Imp.

Min. 0.0623 0.0721 0.1354 0.0989 1.37
Max. 0.0765 0.0818 0.1650 0.1207 1.48
Avg. 0.0669 0.0759 0.1482 0.1075 1.42
Total 0.6026 0.7592 1.4819 1.0422 1.37

2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)
ISBN: 978-987-46297-1-5 E-Book: 978-987-46297-2-2 Printed IEEE CATALOG: CFP1746V-PRT IEEE XPLORE: CFP1746V-ART

43

In Table 7 we show the total execution time of the
ParMiBench benchmark suite for the three configurations, the
expected performance and the AMP configuration
improvement over that expected value.

TABLE 7: PARMIBENCH TOTAL EXECUTION TIME

 4c0s 2c2s 0c4s Exp.Perf AMP
Imp.

Tot.Ex.Time 3562.22 4387.87 8327.40 5944.81 1.35

In Figure 2 we show the average AMP configuration
improvement for each type of test.

Fig. 2. AMP Configuration Improvement for each type of test

Analyzing the results in Tables 1 to 7 and in Figure 2 we
can see that the BASICMATH test shows the expected
performance improvement (the average between both SMP
configurations), so for E.S. applications that make intense use
of math, the use of the Mini-Me architectural pattern doesn’t
affect adversely the performance of the system. For the other
tests, we found a performance improvement from 1.25 to 1.6
times over the expected performance; with an average of 1.4
times.

The reason for these improvements can be explained by
the hardware differences between both processors [15]: Cortex
A15 is a high end, triple-issue, out-of-order processor core
which also implements virtualization instructions, hardware-
accelerated integer division, and 40-bit virtual memory
addressing extensions, so it has a very good single-threaded
peak performance [16]. Figure 3 from [15] shows the Cortex
A15 instruction pipeline.

Fig. 3. ARM Cortex A15 Instruction Pipeline

On the other side, Cortex A7 processor is an in order,
partial dual issue machine. The dual integer pipelines are eight
stages long; the Cortex A7 combines full ALU (labeled
"integer" in Figure 4 below) and partial ALU (labeled "dual-
issue") structures, thereby enabling dual issue instruction
execution for some integer operations. However, both
conventional multiplication and NEON SIMD operations are
single issue only. These architectural differences between both
processors, and taking into account power and die area,
generate a roughly equivalence of one Cortex A15 to four
Cortex A7 [16]. Figure 4 from [15] shows the Cortex A7
instruction pipeline.

Fig. 4. ARM Cortex A7 Instruction Pipeline

Therefore, a SoC that implements two Cortex A15 and two
Cortex A7 processors will have a better than expected
performance because the Cortex A15 processors will have a
high single thread peak performance and the Cortex A7 will
produce a high multithreading peak performance.

V. CONCLUSIONS AND FUTURE WORK
We advocate for the definition and use of design patterns,

which carry the knowledge of experts in a specific domain,
thus helping developers to understand the problems that they
may encounter in the domain, and the possible solutions with
their weighted consequences. Moreover, in the particular
context of E.S., it is very important to have real performance
measurements of the solutions proposed by each pattern, and
this is, to our knowledge, the first work on that direction.

In this work we measured the performance of the design
pattern called Mini Me, using a benchmark for E.S. oriented
tasks. Our evaluation was guided by two research questions.
The first question: “Is performance still “better than expected”
in an AMP configuration where asymmetry comes from
processors with different hardware?” has been proved to be
true by our experiment, as we still have a “better than
expected” performance in a AMP system. The second
question: “Is improved performance sustained when the
workload is specific to an E.S.?” has been also found to be
true, as results show that we can expect a performance
improvement of about 1.4 times on average over the expected
performance of the AMP system.

Future work includes running experiments on other design
patterns in the pattern language for AMP-based embedded
systems and extending, as well as discovering other patterns in
the language.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)
ISBN: 978-987-46297-1-5 E-Book: 978-987-46297-2-2 Printed IEEE CATALOG: CFP1746V-PRT IEEE XPLORE: CFP1746V-ART

44

REFERENCES

[1] Steve Heath, Embedded Systems Design, 2nd Ed. Elsevier, (2002)
[2] Balakrishnan, Rajwar, Upton, Lai, The impact of performance

asymmetry in emerging multicore architectures, Proceedings of the 32nd
International Symposium on Computer Architecture (ISCA '05). IEEE.
(2005)

[3] Fedorova, Saez,Shelepov, Prieto, Maximizing power efficiency with
asymmetric multicore systems, Communications of the ACM, Vol 52
Issue 12 (2009)

[4] P. Martos, Architectural Patterns for Asymmetric Multiprocessing
Devices on Embedded Systems, Proceedings of the 11th Latin American
Conference on Pattern Languages of Programs (SugarLoaf PLoP '16).
Hillside Group (2016)

[5] R. Hanmer, Pattern-Oriented Software Architecture For Dummies, John
Wiley & Sons, 2013

[6] Gamma, Help, Johnson, Vlissides. Design Patterns. Addison-Wesley,
1995.

[7] Robert S. Hanmer, Patterns for fault tolerant software, Wiley Series in
Software Design Patterns. John Wiley & Sons (2007)

[8] S.M.Z.Iqbal, Y.Liang, H.Grahn.,“ParMiBench – An Open-source
Benchmark for Embedded Multiprocessor Systems”, IEEE Computer
Architecture Letters Vol 9 Issue 2. IEEE (2010)

[9] M.R.Guthaus, J.S.Ringenberg, T.Austin, T.Mudge, R.B.Brown,
MiBench: a Free, commercially representative embedded benchmark
suite”,.Proc. of the IEEE International Workshop on Workload
Characterization (WWC-4), IEEE (2001)

[10] E. White, “Making Embedded Systems: Design Patterns for Great
Software”, O'Reilly Media (2011)

[11] “ODROID-XU4”,
http://www.hardkernel.com/main/products/prdt_info.php,
(retrieved May,2017)

[12] https://forum.odroid.com/viewtopic.php?f=93&t=16525
 (retrieved May,2017)

[13] https://sites.google.com/site/parmibench/ (retrieved May,2017)
[14] https://github.com/cota/parmibench (retrieved May,2017)
[15] https://www.bdti.com/InsideDSP/2011/11/17/ARM

(retrieved June,2017)
[16] http://www.eetimes.com/author.asp?section_id=36&doc_id=1318968

(retrieved June, 2017)

APPENDIX A. PATTERN “MINI-ME”

This section presents the description of the pattern
evaluated in this work, to make the paper self-contained.

First, it is important to note that the patterns in the
language for AMP-based E.S. are described with a specific
template, as follows:

 Context: summarizes situations in which you may
find the pattern useful

 Problem: provides a brief summary of the problem
which is addressed by the pattern

 Forces: describe the conflicts of interest occurring in
the problem

 Solution: describes how the pattern offers a solution
that balances the forces in the problem

 Consequences: this section describes how the use of
the pattern affects the system.

 Hardware implications: The application of the pattern
has some hardware implications that should be taken
into account.

 Portability: In E.S, it is common to have to port the
software to other hardware platforms; this section
describes how the pattern affects the portability.

 Overall strengths and weaknesses: summarizes pros
and cons of the pattern.

 Related patterns and alternative solutions: discusses
alternative solutions and/or related patterns that could
be of interest.

PATTERN “MINI-ME”
Context: In a battery power embedded system (i.e. the cell

phone), there are long periods of low activity interrupted by
short periods of very intensive activity that can’t be predicted
in advance, Some tasks need to run continuously (for example
the ones related to the cell network management). These tasks
must be executed in both periods: when the cell phone is idle
and when the user is using the cell phone with a specific
purpose (phone call, gameplay, document reading, etc).

Pronlem: When running on a battery powered embedded
system, it’s necessary to preserve the battery power of the
system and there are tasks that must be executed in periods of
very intensive activities as well as low activities.

Forces:
 Low power cores are better for power saving in

low activity periods.
 High performance cores are better for application

performance in high activity periods.
 There are tasks that must run in both kind of

periods.
 When different cores have the same ISA, the

software is easier to develop and maintain
(software upgrades).

Solution: Implement the system using an AMP processor

with high performance cores and low power cores with the
same ISA, because the way to preserve battery power is using
a processor with less power requirements. Also, because both
kind of cores have the same ISA, for the point of view of the
software that must be executed in both periods (high activity
and power saving), it is indifferent in which core is running at
any time. When both type of cores share the same ISA, the
low power cores became a smaller version of the high
performance cores, so the low power cores are “mini” high
performance cores.

Consequences: Because both type of cores share the same
ISA, the operating system has no restriction about the core
where a process/task can run. But when the process/task run in
the low power core, there is a performance penalty, so the OS
scheduler should take this into account for the process/task
execution priority and processor time allocation.-

Hardware implications: Some SMP multicores have a
configuration register for the system clock of each core. By
configuring different values for that register, we can convert a

2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)
ISBN: 978-987-46297-1-5 E-Book: 978-987-46297-2-2 Printed IEEE CATALOG: CFP1746V-PRT IEEE XPLORE: CFP1746V-ART

45

SMP system in a AMP system where all cores have the same
ISA.

Portability: As both type of cores share the same ISA, the
software can run on any core without modification.

Overall Strengths and Weaknesses:
+ The AMP with cores having the same ISA has a

minimum impact on the software that runs on it and the
system has less power consumption.

- There is a performance penalty when the process/task
runs on the low power cores and the operating system could
not be aware of that.

Related patterns and alternate solutions: This pattern is
well suited when the processes/tasks don’t have real time
requirements, because they run sometimes in a high
performance core and sometimes in a low power core, so the
execution predictability and performance could be very

difficult to establish. For this type of processes/task, the
“Dedicated Processor” or “Optimized Execution” patterns
would be better. This pattern is a specialization of the
“Asymmetric Multiprocessing” pattern.

Known Uses: A commercial AMP processor that applies
this pattern is the Samsung Exynos 5 Octa, which has 4 high
performance cores (ARM Cortex A15) and 4 low power cores
(ARM Cortex A7) inside the AMP. Both kind of cores have
the same processor technology and ISA (ARM V7-A). Other
commercial processor that applies this pattern is the
AllWinner A80. AllWinner processors are very popular in
tablets and set-topboxes that run Android OS. ARM Company
calls this pattern “The big.LITTLE Technology”. The
pattern’s name comes from “Dr. Evil” character from “Austin
Powers” movie; who has a clone of himself, but with 1/8 of
his height, he calls the clone “Mini Me”. The low power cores
are the “Mini Me” of the high performance cores.

2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)
ISBN: 978-987-46297-1-5 E-Book: 978-987-46297-2-2 Printed IEEE CATALOG: CFP1746V-PRT IEEE XPLORE: CFP1746V-ART

46

