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Abstract—In emnedded systems there is a variant of 
Multicore System on Chip devices (MSoC devices) where not all 
the computing elements (processor cores) are equal. The 
differences in the cores of these devices range from different 
hardware architectures using the same instruction set to 
completely different processors working together inside the same 
device. These SoCs are called “Asymmetric Multi Processing 
Devices” (AMP Devices). In order to help developers to take 
advantage of the possinilities that these devices may offer in the 
context of emnedded systems, software design patterns have neen 
defined, descrining software architectural solutions with known 
uses. However, there are still no experimental results showing the 
nenefits of these solutions. In this work we measure the 
performance of a design pattern called Mini Me, applied on an 
AMP device configuration, and compare it against two 
Symmetric Multiprocessing Device (SMP Device) configurations. 
The evaluations show a netter than expected computing 
performance of the AMP Configuration using the design pattern 
Mini Me. 

Keywords— Embedded Systems Patterns; Asymmetric 
Multiprocessing Patterns. 

I. INTRODUCTION  
Embedded Systems (E.S), as opposed to general purpose 

systems, are systems developed for a very specific purpose. In 
some cases the final user of the system can configure them 
(even program them), but the system is not intended to change 
its purpose. These systems are called “embedded” because they 
are part of a bigger system in a device with a specific 
functionality [1]. 

An Asymmetric Multicore Processor (AMP), is a processor 
where the computing elements (“cores”) have different 
characteristics. They can vary from the same processor running 
with different clock speeds, up to completely different 
processor architectures (i.e., 64 bit cores with 32 bit cores) in 
the same processor. 

These processors are studied because they have been shown 
to provide improved computing performance [2], and also in 
the (performance)/(power) and (performance)/(silicon area) 
ratios [3], so they are attractive for E.S. implementations. 

However, designing an E.S. that can take advantage of AMPs’ 
improved performance is hard. For example, performance 
asymmetry may adversely affect behavior of many workloads 
on commercial servers and make them less scalable [2]. 

With the goal of helping developers identify good 
architectural decisions when implementing software on AMPs 
and take advantage of their very specific characteristics, we 
have been working on the specification of a pattern language 
for AMP Embedded Systems [4]. A pattern language is a 
collection of interconnected design patterns or good practices 
in a specific domain [5]. Each design pattern in the language 
identifies a recurrent solution to a problem in a specific context 
[6]. Thus, a pattern conveys a small nugget of design and 
architectural knowledge to solve a problem within a certain 
context and after resolution it leaves the system in a new 
context, where there are new problems to be resolved by the 
other patterns in the language [7].  

In this work, we apply one of that software patterns, called 
“Mini-Me”, on an AMP configuration, to evaluate its 
performance against a traditional Symmetric Multiprocessing 
(SMP) configuration. In a few words, the pattern Mini-Me 
proposes to address the low power vs. high performance 
requirements using an AMP with high performance cores and 
low power cores with the same ISA. Thus, the low power cores 
become a “mini” version of the high performance cores. 

In the work by Balakrishnan et al., authors demonstrate that 
using an AMP configuration causes a performance gain with 
generic workloads of multithreaded commercial applications 
[2]. In their experiment, they approximate performance 
asymmetry by varying the individual processor frequencies in a 
multicore system, i.e., varying the speed of clocks in each 
processor. Similarly, the purpose of our study is to evaluate if 
an AMP still gives higher performance when using a “Mini-
Me” configuration running an E.S. Thus, we intend to answer 
these 2 questions: 

Q1. Is performance still “better than expected” in an AMP 
configuration where asymmetry comes from processors with 
different hardware? (as opposed to processors with the same 
hardware but different clock speeds) 
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Q2. Is improved performance sustained when the workload 
is specific to an E.S.? (as opposed to being a generic workload) 

To answer these questions we use a computing platform for 
E.S. containing 4 complex cores and 4 simple cores, which 
have the advantage that processors can be turned on/off 
dynamically, thus facilitating the configuration of a symmetric 
or asymmetric platforms. Moreover, we use a well-known E.S. 
multiprocessor benchmark suite for our study: ParMiBench [8]. 

The rest of this paper is structured as follows: Section 2 
presents related work. Section 3 describes the benchmark and 
details of the performance assessment. Section 4 shows the 
experimental results and Section 5 presents the conclusions and 
future work. Finally, we include an Appendix with the 
complete description of the pattern Mini-Me and its template 
for the sake of self-containment. 

II. RELATED WORK 
The AMP processors are studied as general computing 

elements because of the advantages that they offer, in 
particular, their computing performance is over the expected 
average. Studies show that the AMP configurations with two 
complex processors and two simple processors have better 
performance than the average of four complex processors and 
four simple processors over a wide variety of general 
computing loads (application server, database server, web 
server, scientific computing, video compression, massive 
software compilation) [2, 3]. In Fig.1 (extracted from [2]) we 
can see the performance comparison between SMP and AMP 
architectures for the different general computing loads. In that 
work, the AMP architecture was made by reduction of the 
system clock of some processors, so nf/ms scale means n fast 
cores and m slow cores running at 1/scale the speed of fast 
cores (all the cores are equal except for their clock speed). The 
total computing power of a system of these characteristics is 
(n+m/scale). Symmetric configurations were 4f-0s; 0f-4s/4and 
0f-4s/8 and asymmetric configurations were 3f-1s/4; 3f-1s/8; 
2f-2s/4; 2f-2s/8; 1f-3s/4 and 1f-3s/8 

 

Fig. 1. Performance scalability for different SMP and AMP configurations. 

Those results are valid for a general purpose computing 
device using standard workloads. However, in order to get 
results representative of the E.S. domain, we need to use a 
benchmark with E.S. oriented tasks. One such benchmark is 
ParMiBench [8], which is a multicore evolution of the 
MiBench [9] benchmark, a well-known suite used to evaluate 
uniprocessor E.S. performance. 

As we explained in the introduction, a shortcoming of the 
work of Balakrishnan et al. for our purpose is that they 
approximate performance asymmetry by varying clock speed 

in each individual processor of a multicore system. While that 
can give a good approximation, we aim at evaluating 
performance when the hardware of the processors is different.  

Furthermore, we have been working on the specification of 
a pattern language for AMP Embedded Systems [4]. This 
pattern language contains architectural software patterns, i.e., 
patterns at the level of architectural design, which are intended 
to help developers take advantage of the specific characteristics 
of asymmetric platforms in the design of E.S. Other works on 
pattern languages related to this domain are Hanmer’s patterns 
for fault tolerant software [7] and White’s patterns for 
embedded systems [10]. One of the patterns in the language of 
architectural patterns for AMP E.S. is “Mini-Me” [4], which is 
used in the context of a battery powered E.S., with long periods 
of low activity interrupted by short periods of very intensive 
activity. This pattern addresses the problem of preserving 
battery power when there are tasks that must be executed in 
both periods. Our intention in this work is to evaluate the 
performance of the architecture proposed by Mini-Me in the 
context of  E.S. 

III. PERFORMANCE ASSESSMENT 
The hardware platform used in our experiment was an 

Odroid XU4 Single Board Computer (SBC) [11], using a 
Samsung Exynos 5422 octacore Processor, which has four 
complex cores (ARM Cortex A15@2GHz) and four simple 
cores (ARM Cortex A7@1.4GHz). Both type of cores share 
the same Instruction Set Architecture (ISA), so the software is 
not aware about the kind of core where it is running, thus 
making the platform well suited to test the Mini-Me Software 
Pattern implementation. The Operating System was a vanilla 
Ubuntu Mate 16.04 tailored for that specific hardware platform 
obtained from the hardware platform web site. No special 
configuration / optimizations were made during the tests except 
to turn on/off the processors to implement the SMP and AMP 
configurations [12].  

The ParMiBench [8] [13] [14] test suite has four E.S. 
subdomains: Automotive, Networks, Office and Security: 

The Automotive tests are “BasicMath”, which performs 
simple mathematical calculations, e.g., cubic function solving, 
angle conversions from degrees to radians, and integer square 
root. The input data set used for benchmarking is a fixed set of 
constants; and “Susan”, which is an image recognition 
application for recognizing corners and edges. The input data is 
a complex picture. 

The Network category represents embedded processors in 
network devices like switches and routers. The work done by 
these embedded processors involves shortest path calculations, 
tree and table lookups, and data input/output. The algorithms 
used to demonstrate the networking category are finding a 
shortest path in a graph and creating and searching a “Patricia 
tree” data structure. The “Dijkstra” benchmark constructs a 
large graph in an adjacency matrix representation and then 
calculates the shortest path between every pair of nodes using 
repeated applications of Dijkstra’s algorithm. Dijkstra’s 
algorithm is a well known solution to the shortest path problem 
and completes in O(n2) time. The “Patricia” test implements a 
Patricia tree: a data structure used in place of full trees with 
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very sparse leaf nodes. Branches with only a single leaf are 
collapsed upwards in the tree to reduce traversal time at the 
expense of code complexity. Often, Patricia trees are used to 
represent routing tables in network applications. The input data 
for this benchmark is a list of IP traffic from a highly active 
web server for a 2 hour period. The IP numbers are disguised. 

The Office category includes text manipulation algorithms 
to represent office machinery like printers and scanners with 
OCR recognition. The “StringSearch” benchmark finds a 
specific word in a number of given phrases by employing case 
sensitive or insensitive comparison algorithms. 

The Security test is a SHA hash algorithm that produces a 
160-bit message digest for a given input. It is often used in the 
secure exchange of cryptographic keys and for generating 
digital signatures. It is also used in the well-known MD4 and 
MD5 hashing functions. The input data set is a large ASCII 
text file of an article found online. 

We executed the ParMiBench suite in three different 
configurations (two SMP and one AMP). The SMP 
configurations were 4c0s and 0c4s; and the AMP 
configuration was 2c2s. A XcYs configuration means X 
complex processors (ARM Cortex A15) and Y simple 
processors (ARM Cortex A7). It must be noted that in this 
particular SoC (Exynos 5422) the hardware interrupt 
controller is hardwired to CPU0 (a simple Cortex A7 
processor). Thus, in practice it is impossible to disable CPU0 
at all (because this also would disable all system hardware 
interrupts); so the configuration 4c0s is in fact a 4c1s with the 
benchmark running in the four complex processors. To assess 
the influence of that simple core, we also run the benchmark 
in the 4c4s full SMP configuration, and we verified that 
changing from 4c1s to 4c4s has only a very modest 5% in 
performance increase. Thus, we can conclude that the 
influence of 3 simple cores when the benchmark runs in the 4 
complex cores has very little impact in the benchmark results. 
Therefore, the influence of 1 simple core will be less than that 
and it is valid to consider the configuration 4c1s equal to 4c0s 
for the benchmark results. 

For each system configuration (SMP and AMP) we 
obtained the total execution time, and to take into account 
execution time variances from the operating system, each test 
was executed 10 times. For each test in each configuration we 
obtained the shortest, the largest and the average execution 
times; and also the total benchmark execution time (10 runs of 
each test). 

IV. EXPERIMENTAL RESULTS 
Tables 1 to 6 show the minimum, maximum, average and 

total execution time for each test of the benchmark over the 
three configurations. The tables have two extra columns: one 
with the expected performance and the final with the 
improvement over the expected performance of the AMP 
configuration. The expected performance function 
Exp.Perf(2c2s) is the average between the SMP complex 
configuration (4c0s) performance, Perf(4c0s) and the SMP 
simple configuration (0c4s) performance Perf(0c4s), as 
defined in Equation 1: 

Exp.Perf(2c2s) = [Perf(4c0s) + Perf(0c4s)] / 2        (1) 

Where Perf is the performance (execution time) of the 
particular configuration. Meanwhile, the improvement over 
the expected performance AMP_Impr() function is the ratio 
between the expected performance of the 2c2s AMP 
configuration and the real performance of that configuration, 
as defined in Equation 2: 

AMP_Impr() = Exp.Perf(2c2s)/ Perf(2c2s)  (2) 

TABLE 1: BASICMATH 

 4c0s 2c2s 0c4s Exp.Perf AMP 
Imp. 

Min. 140.45 180.13 227.37 183.91 1.02 
Max. 141.46 182.72 230.74 186.10 1.02 
Avg. 140.79 181.25 229.66 185.23 1.02 
Total 1407.90 1812.54 2296.64 1852.27 1.02 

TABLE 2: SUSAN 

 4c0s 2c2s 0c4s Exp.Perf AMP 
Imp. 

Min. 0.0060 0.0060 0.0097 0.0079 1.31 
Max. 0.0071 0.0090 0.0115 0.0093 1.04 
Avg. 0.0062 0.0066 0.0104 0.0083 1.25 
Total 0.0620 0.0664 0.1038 0.0829 1.25 

TABLE 3: DIJKSTRA 

 4c0s 2c2s 0c4s Exp.Perf AMP 
Imp. 

Min. 0.0181 0.0179 0.0293 0.0237 1.33 
Max. 0.0210 0.0219 0.0335 0.0273 1.25 
Avg. 0.0193 0.0190 0.0310 0.0252 1.33 
Total 0.1928 0.1928 0.3104 0.2516 1.30 

TABLE 4: PATRICIA 

 4c0s 2c2s 0c4s Exp.Perf AMP 
Imp. 

Min. 0.0060 0.0059 0.0096 0.0078 1.33 
Max. 0.0071 0.0080 0.0129 0.0100 1.25 
Avg. 0.0063 0.0064 0.0101 0.0082 1.29 
Total 0.0628 0.0635 0.1013 0.0821 1.29 

TABLE 5: STRINGSEARCH 

 4c0s 2c2s 0c4s Exp.Perf AMP 
Imp. 

Min. 213.77 255.52 599.49 406.63 1.59 
Max. 216.51 259.57 608.80 412.65 1.59 
Avg. 215.34 257.42 602.88 409.11 1.59 
Total 2153.40 2574.25 6028.76 4091.08 1.59 

TABLE 6: SHA 

 4c0s 2c2s 0c4s Exp.Perf AMP 
Imp. 

Min. 0.0623 0.0721 0.1354 0.0989 1.37 
Max. 0.0765 0.0818 0.1650 0.1207 1.48 
Avg. 0.0669 0.0759 0.1482 0.1075 1.42 
Total 0.6026 0.7592 1.4819 1.0422 1.37 
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In Table 7 we show the total execution time of the 
ParMiBench benchmark suite for the three configurations, the 
expected performance and the AMP configuration 
improvement over that expected value. 

TABLE 7: PARMIBENCH TOTAL EXECUTION TIME 

 4c0s 2c2s 0c4s Exp.Perf AMP 
Imp. 

Tot.Ex.Time 3562.22 4387.87 8327.40 5944.81 1.35 
 

In Figure 2 we show the average AMP configuration 
improvement for each type of test. 

 

Fig. 2. AMP Configuration Improvement for each type of test 

Analyzing the results in Tables 1 to 7 and in Figure 2 we 
can see that the BASICMATH test shows the expected 
performance improvement (the average between both SMP 
configurations), so for E.S. applications that make intense use 
of math, the use of the Mini-Me architectural pattern doesn’t 
affect adversely the performance of the system. For the other 
tests, we found a performance improvement from 1.25 to 1.6 
times over the expected performance; with an average of 1.4 
times.  

The reason for these improvements can be explained by 
the hardware differences between both processors [15]: Cortex 
A15 is a high end, triple-issue, out-of-order processor core 
which also implements virtualization instructions, hardware-
accelerated integer division, and 40-bit virtual memory 
addressing extensions, so it has a very good single-threaded 
peak performance [16]. Figure 3 from [15] shows the Cortex 
A15 instruction pipeline. 

 

Fig. 3. ARM Cortex A15 Instruction Pipeline 

On the other side, Cortex A7 processor is an in order, 
partial dual issue machine. The dual integer pipelines are eight 
stages long; the Cortex A7 combines full ALU (labeled 
"integer" in Figure 4 below) and partial ALU (labeled "dual-
issue") structures, thereby enabling dual issue instruction 
execution for some integer operations. However, both 
conventional multiplication and NEON SIMD operations are 
single issue only. These architectural differences between both 
processors, and taking into account power and die area, 
generate a roughly equivalence of one Cortex A15 to four 
Cortex A7 [16]. Figure 4 from [15] shows the Cortex A7 
instruction pipeline. 

 

Fig. 4. ARM Cortex A7 Instruction Pipeline 

Therefore, a SoC that implements two Cortex A15 and two 
Cortex A7 processors will have a better than expected 
performance because the Cortex A15 processors will have a 
high single thread peak performance and the Cortex A7 will 
produce a high multithreading peak performance.  

V. CONCLUSIONS AND FUTURE WORK 
We advocate for the definition and use of design patterns, 

which carry the knowledge of experts in a specific domain, 
thus helping developers to understand the problems that they 
may encounter in the domain, and the possible solutions with 
their weighted consequences. Moreover, in the particular 
context of E.S., it is very important to have real performance 
measurements of the solutions proposed by each pattern, and 
this is, to our knowledge, the first work on that direction. 

In this work we measured the performance of the design 
pattern called Mini Me, using a benchmark for E.S. oriented 
tasks. Our evaluation was guided by two research questions. 
The first question: “Is performance still “better than expected” 
in an AMP configuration where asymmetry comes from 
processors with different hardware?” has been proved to be 
true by our experiment, as we still have a “better than 
expected” performance in a AMP system. The second 
question: “Is improved performance sustained when the 
workload is specific to an E.S.?” has been also found to be 
true, as results show that we can expect a performance 
improvement of about 1.4 times on average over the expected 
performance of the AMP system. 

Future work includes running experiments on other design 
patterns in the pattern language for AMP-based embedded 
systems and extending, as well as discovering other patterns in 
the language. 
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APPENDIX A. PATTERN “MINI-ME” 
 

This section presents the description of the pattern 
evaluated in this work, to make the paper self-contained. 

First, it is important to note that the patterns in the 
language for AMP-based E.S. are described with a specific 
template, as follows: 

 Context: summarizes situations in which you may 
find the pattern useful 

 Problem: provides a brief summary of the problem 
which is addressed by the pattern 

 Forces: describe the conflicts of interest occurring in 
the problem 

 Solution: describes how the pattern offers a solution 
that balances the forces in the problem 

 Consequences: this section describes how the use of 
the pattern affects the system. 

 Hardware implications: The application of the pattern 
has some hardware implications that should be taken 
into account. 

 Portability: In E.S, it is common to have to port the 
software to other hardware platforms; this section 
describes how the pattern affects the portability. 

 Overall strengths and weaknesses: summarizes pros 
and cons of the pattern.  

 Related patterns and alternative solutions: discusses 
alternative solutions and/or related patterns that could 
be of interest. 

PATTERN “MINI-ME” 
Context: In a battery power embedded system (i.e. the cell 

phone), there are long periods of low activity interrupted by 
short periods of very intensive activity that can’t be predicted 
in advance, Some tasks need to run continuously (for example 
the ones related to the cell network management). These tasks 
must be executed in both periods: when the cell phone is idle 
and when the user is using the cell phone with a specific 
purpose (phone call, gameplay, document reading, etc). 

Pronlem: When running on a battery powered embedded 
system, it’s necessary to preserve the battery power of the 
system and there are tasks that must be executed in periods of 
very intensive activities as well as low activities. 

Forces:  
 Low power cores are better for power saving in 

low activity periods. 
 High performance cores are better for application 

performance in high activity periods. 
 There are tasks that must run in both kind of 

periods. 
 When different cores have the same ISA, the 

software is easier to develop and maintain 
(software upgrades). 

 
Solution: Implement the system using an AMP processor 

with high performance cores and low power cores with the 
same ISA, because the way to preserve battery power is using 
a processor with less power requirements. Also, because both 
kind of cores have the same ISA, for the point of view of the 
software that must be executed in both periods (high activity 
and power saving), it is indifferent in which core is running at 
any time. When both type of cores share the same ISA, the 
low power cores became a smaller version of the high 
performance cores, so the low power cores are “mini” high 
performance cores. 

Consequences: Because both type of cores share the same 
ISA, the operating system has no restriction about the core 
where a process/task can run. But when the process/task run in 
the low power core, there is a performance penalty, so the OS 
scheduler should take this into account for the process/task 
execution priority and processor time allocation.- 

Hardware implications: Some SMP multicores have a 
configuration register for the system clock of each core. By 
configuring different values for that register, we can convert a 
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SMP system in a AMP system where all cores have the same 
ISA. 

Portability: As both type of cores share the same ISA, the 
software can run on any core without modification. 

Overall Strengths and Weaknesses: 
+ The AMP with cores having the same ISA has a 

minimum impact on the software that runs on it and the 
system has less power consumption. 

- There is a performance penalty when the process/task 
runs on the low power cores and the operating system could 
not be aware of that. 

Related patterns and alternate solutions: This pattern is 
well suited when the processes/tasks don’t have real time 
requirements, because they run sometimes in a high 
performance core and sometimes in a low power core, so the 
execution predictability and performance could be very 

difficult to establish. For this type of processes/task, the 
“Dedicated Processor” or “Optimized Execution” patterns 
would be better. This pattern is a specialization of the 
“Asymmetric Multiprocessing” pattern. 

Known Uses: A commercial AMP processor that applies 
this pattern is the Samsung Exynos 5 Octa, which has 4 high 
performance cores (ARM Cortex A15) and 4 low power cores 
(ARM Cortex A7) inside the AMP. Both kind of cores have 
the same processor technology and ISA (ARM V7-A). Other 
commercial processor that applies this pattern is the 
AllWinner A80. AllWinner processors are very popular in 
tablets and set-topboxes that run Android OS. ARM Company 
calls this pattern “The big.LITTLE Technology”. The 
pattern’s name comes from “Dr. Evil” character from “Austin 
Powers” movie; who has a clone of himself, but with 1/8 of 
his height, he calls the clone “Mini Me”. The low power cores 
are the “Mini Me” of the high performance cores. 
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