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The Asteraceae (sunflowers and daisies) are the most diverse
family of flowering plants. Despite their prominent role in extant
terrestrial ecosystems, the early evolutionary history of this family
remains poorly understood. Here we report the discovery of a
number of fossil pollen grains preserved in dinosaur-bearing deposits
from the Late Cretaceous of Antarctica that drastically pushes back
the timing of assumed origin of the family. Reliably dated to ∼76–66
Mya, these specimens are about 20 million years older than previ-
ously known records for the Asteraceae. Using a phylogenetic ap-
proach, we interpreted these fossil specimens as members of an
extinct early diverging clade of the family, associated with subfamily
Barnadesioideae. Based on a molecular phylogenetic tree calibrated
using fossils, including the ones reported here, we estimated that the
most recent common ancestor of the family lived at least 80 Mya in
Gondwana, well before the thermal and biogeographical isolation of
Antarctica. Most of the early diverging lineages of the family origi-
nated in a narrow time interval after the K/P boundary, 60–50 Mya,
coinciding with a pronounced climatic warming during the Late Pa-
leocene and Early Eocene, and the scene of a dramatic rise in flower-
ing plant diversity. Our age estimates reduce earlier discrepancies
between the age of the fossil record and previous molecular esti-
mates for the origin of the family, bearing important implications
in the evolution of flowering plants in general.
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Flowering plants underwent a rapid ecological radiation and
taxonomic diversification in the Early Cretaceous, about 121–

99 Mya (1). Asterids, in particular, represent an extraordinarily
diverse clade of extant angiosperms that includes more than
80,000 species. This clade contains the most species-rich angio-
sperm family, the Asteraceae, with 23,000 species, many of which
are economically important taxa, such as sunflowers, lettuce, and
gerberas. The origin and early diversification of family Aster-
aceae were important events in the history of life largely because
this lineage has been a dominant component for the past several
millions of years in numerous biomes around the world, primarily
in open habitat ecosystems. Particularly, the evolution of Aster-
aceae, typically characterized by bearing attractive inflorescences
(or capitula), may have promoted the radiation of insect polli-
nators (e.g., solitary bees) that heavily rely on this family to feed
and reproduce (2). To date, the oldest fossil confidently assigned
to Asteraceae is from the Middle Eocene of Patagonia. It consists
of an inflorescence and associated pollen grains assigned to an
extinct clade of Asteraceae, phylogenetically placed at a moder-
ately derived position within the phylogenetic tree of the family
(3). The discovery of these Eocene specimens indicated that the
crucial split between subfamily Barnadesioideae, the earliest di-
verging branch of the family, and the rest of Asteraceae occurred
even earlier, either during the early Paleogene or Late Creta-
ceous (4, 5). Recent molecular dating analyses support a Late
Cretaceous origin for the crown group Asterales (4, 6), whereas
the emergence of Asteraceae was estimated to have occurred in
the Early Eocene (4).

Here we report fossil pollen evidence from exposed Campanian/
Maastrichtian sediments from the Antarctic Peninsula (Fig. 1, Fig. S1,
and SI Materials and Methods, Fossiliferous Localities) (7) that radi-
cally changes our understanding of the early evolution of Asteraceae.

Results and Discussion
The pollen grains reported here and discovered in the Late Cre-
taceous of Antarctica are tricolporate, microechinate, with long
colpi and rimmed margins. We placed these specimens within the
wide-ranging variable fossil species Tubulifloridites lilliei (Couper)
Farabee and Canright previously recorded in a restricted time in-
terval within the Late Cretaceous of western Gondwana (8, 9) (see
also Supporting Data, Systematic Remarks). It has been botanically
related to a number of eudicot families (Supporting Data, System-
atic Remarks; see also Figs. S2B and S3F for comparison) based on
superficial similarities of the pollen grains or considered as an
angiosperm of uncertain position (9). We assembled our specimens
from Antarctica as a subgroup of the polymorphic T. lilliei that here
we informally denominate as T. lilliei type A, which is distinguished
from other T. lilliei specimens by several specific morphological
characters (e.g., clearly tricolporate pollen grains with well-
defined lalongate ora and intercolpal depressions) (see Supporting
Data, Systematic Remarks for a full description). Morphologically
identical specimens of T. lilliei type A were also recovered in the
Late Cretaceous of New Zealand (Fig. S4). Tubulifloridites lilliei,
including T. lilliei type A, disappeared almost simultaneously from
Antarctica, Australia, Patagonia, and New Zealand about 66 Mya
(K/P boundary) (see Supporting Data, Systematic Remarks).

Significance

The flowering plant family Asteraceae (e.g. sunflowers, daisies,
chrysanthemums), with about 23,000 species, is found almost
everywhere in the world except in Antarctica. Asteraceae (or
Compositae) are regarded as one of the most influential fam-
ilies in the diversification and evolution of a large number of
animals that heavily depends on their inflorescences to survive
(e.g. bees, hummingbirds, wasps). Here we report the discov-
ery of pollen grains unambiguously assigned to Asteraceae
that remained buried in Antarctic deposits for more than 65
million years along with other extinct groups (e.g. Dinosaurs,
Ammonites). Our discovery drastically pushes back the as-
sumed origin of Asteraceae, because these pollen grains are
the oldest fossils ever found for the family.
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Using an apomorphy-based method [in the sense of Sauquet
et al. (10)] as a first attempt at comparing the Antarctic fossils
(T. lilliei type A) and the pollen produced by extant eudicots (all

supported by a single morphological synapomorphy: triaperturate
pollen), we found strong morphological similarities between
T. lilliei type A and some members of Asterales (Supporting Data
and Figs. S2A and S3C). We explored further the phylogenetic
placement of T. lilliei type A within Asterales in a parsimonious
framework by using a matrix of pollen morphological characters
(Supporting Data, List of Characters and Character State Definitions
Used to Compile a Matrix Used as Input in Parsimony Analyses
Aimed at Placing the Fossil Taxa and Table S1) and a phylogenetic
tree of Asterales as backbone constraint (Fig. 2). After conducting
a sensitivity analysis (see SI Materials and Methods, Estimation of
Divergence Times) we found one position suitable for calibration
based on the single most-parsimonious tree (188 steps). This single
most-parsimonious tree places T. lilliei type A within Dasyphyllum
of the Barnadesioideae (Fig. 2), the earliest diverging subfamily of
the Asteraceae; the fossil possesses most of the derived morpho-
logical character states of the Dasyphyllum pollen (Figs. 3 and 4 and
Fig. S3 A, B,D, and E). We also explored other scenarios, assuming
T. lilliei type A was either an extinct stem relative of Asteraceae or
more closely related to other members of the Asterales (Fig. S5 and
Table S2). Here, we discuss the age of the origin of the daisy family
considering T. lilliei type A as a crown group member (i.e., nested
within Dasyphyllum).
The crown of Asteraceae [i.e., the most recent common an-

cestor (MRCA) of the family plus all extant and extinct lineages
that descended from it] is inferred to have been present from the
Late Cretaceous, estimated here at 85.9 Mya [95% highest
posterior density (HPD) interval: 82.3–91.5 Mya] (Fig. 5), co-
inciding in part with the expansion of other eudicot lineages,
herbivorous and social insects, birds, mammals, and some di-
nosaur groups (1, 11–14). The MRCA of Asteraceae other than

Fig. 1. Map showing distribution of Upper Cretaceous rocks of the Snow Hill
Island and López de Bertodano Formations. The studied sections in Brandy
Bay–Santa Marta Cove (James Ross Island) and Cape Lamb (Vega Island) are
also indicated. Adapted from Olivero (7).

Fig. 2. Phylogenetic analyses of the fossil taxa. Branching positions of the fossil T. lilliei type A mapped onto a backbone tree derived from a molecular
analysis of Beaulieu et al. (4), with some asteracean taxa added, following a recent comprehensive analyses of Panero et al. (24). Thicker black lines indicate
the most parsimonious (MP), one step less parsimonious (MP + 1), and two steps less parsimonious (MP + 2) positions for T. lilliei type A. Letters indicate the
nodes used to calibrate alternative scenarios, A: Fig. 5; B–E: Fig. S5 and Table S2.
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Barnadesioideae is estimated to have evolved about 60 Mya
during the Paleocene. Interestingly, the major clades of the family
diverged from this common ancestor after the K–P mass extinction
event and during a relatively short time interval during the late
Paleocene-early Eocene, the Cenozoic’s most pronounced warm
interval (59–52 Mya) (15), which was in turn associated with a
dramatic rise in flowering plant diversity and a sharp increase in
insect herbivory (6, 16, 17). The analysis, assuming that the fossil is
a stem relative of Asteraceae, indicated an age for Asteraceae of
67.9 Mya, also within the Late Cretaceous (Fig. S5A and Table S2).
The tolerance of some of the early diverging taxa of Aster-

aceae, and most members of its sister family Calyceraceae, to ex-
treme environmental and ecological conditions leads us to believe
that this resistance might have played a major role in the early
evolution of Asteraceae. The earliest lineage of Asteraceae and
Calyceraceae occur today in a limited number of restricted regions
in South America (18), and several of their members can tolerate
the extreme climatic conditions that characterize the Patagonian
desert of today (e.g., intense winds, droughts, salt-sprays). As-
suming that T. lilliei type A pollen grains might represent a member
of the crown Barnadesioideae, their parent plants may have been
able to cope with environmental stress. We infer that T. lilliei type
A parent plants occupied a wide geographic range, as suggested by
their distribution across western Gondwana during the Late Cre-
taceous, but may have become drastically reduced close to the K/P
boundary, with persistence only in some areas of western Gond-
wana. Their descendants survived and expanded in South America,
probably during the Miocene, as indicated by several fossil pollen

records (19). It is assumed that plant lineages characterized by
higher adaptability and increased tolerance to harsh environmental
conditions (e.g., earliest branches of Asteraceae and sister Caly-
ceraceae) were probably less affected during global extinction
events. It has also been observed that the survival probability in
these severe conditions would have been better for plants with
polyploid genomes (20). Polyploidy is common in Asteraceae and
occurs in virtually all species of subfamily Barnadesioideae (21)
and family Calyceraceae (22); thus, polyploidization in the early-
diverging lineages of Asteraceae may also have contributed to the
survival of this group across the K–P extinction event. The pro-
nounced climatic warming during the Late Paleocene and the Early
Eocene Climatic Optimum might have also influenced the di-
versification of Asteraceae. We show here that most of the major
lineages of Asteraceae, which mainly occur today in South Amer-
ica, diverged during this period of global warmth (Fig. 5) and later
became isolated when cool-temperate conditions were established
in the more austral regions during the Oligocene. For example, in
the Guyana Highlands of northeastern South America some spe-
cies of the earliest-diverging lineages (e.g., Stenopadus group) co-
exist as relictual patches (23). The presence in Patagonia of an
Eocene inflorescence and pollen grains displaying some of the
characters of this Stenopadus group (5) supports the notion that
the MRCA of Asteraceae, excluding Barnadesioideae, existed in
the southernmost latitudes of South America, and began to diverge
and disperse northward following the equable conditions of the
early Cenozoic. The global drop in temperatures during the late
Cenozoic may have caused the local extinction of these Guyana

Fig. 3. Fossil and extant representatives of Asteraceae observed by light microscopy. (A, B, D, E, G, H) Specimens of Tubulifloridites lilliei type A from the Late
Cretaceous of Antarctica (blue frames). Specimens on slide BAPal. ex CIRGEO Palin 963b; (A and B) N42(4); (D and E) L36(0); (G and H) P57(1). (A, B, D, E)
Equatorial view. (G and H) Subpolar view. (A and B) Exine thickened at the poles (arrowhead). (A, E, and H) Microechinate-baculate sculpture. (D and E)
Thickened exine at apertures level (arrowhead). (B, G, and H) Poorly defined intercolpal depressions (arrowhead). (G and H) Rounded colpi ends. (C, F, and I)
Pollen of extant species for comparison (pink frames). (C and I) Extant Dasyphyllum inerme (Rusby) Cabrera, with well–defined intercolpal depressions and
rounded colpi ends comparable to those of T. lilliei type A (arrowheads). (F) Extant Dasyphyllum velutinum (Baker) Cabrera, with microechinate-baculate
exine surface similar to that of T. lilliei type A. (Scale bars, 5 μm.)
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Highland-centered genera from the higher latitudes and their
consequent restriction in low latitudes of South America.
Our new divergence time-estimate analysis contradicts some

previous assumptions about a geologically recent origin of the
Asteraceae (18), indicating instead that the MRCA of the family
existed far back into the Late Cretaceous. However, we also infer
that the vast majority of the present-day diversity of the Aster-
aceae is the result of a radiation event that took place during the
early Cenozoic, several millions of years after the origin of the
family. This finding has important implications for our under-
standing of the evolution of this highly diverse and ecologically
important family. The Cretaceous record from Antarctica is still
poorly explored and much evidence on the early evolution of the
Asterales, and potentially other groups, probably remains buried
beneath present-day ice sheets. From our present knowledge,
however, we estimate that the world’s highest Southern Hemi-
sphere latitudes (i.e., Patagonia, New Zealand, Antarctica, and
Australia) witnessed the emergence and early evolution of what is
today the most diverse flowering plant family.

Materials and Methods
Fossil Samples. Rock samples were recovered from the Campanian/Maas-
trichtian Snow Hill and López de Bertodano Formations on the James Ross
and Vega islands, in Antarctica by E.B.O. Samples were chemically treated
following standard palynological techniques (SI Materials and Methods,
Fossiliferous Localities and Fossil Pollen Morphotypes, and Fig. S1). The slides
are housed in the palynological collection of the Museo Argentino de

Ciencias Naturales (Buenos Aires, Argentina): BAPal, ex CIRGEO Palin 605–
613, 962–965.

Phylogenetic Placement of the Fossil. The apomorphy-based method was used
first to compare the fossil T. lilliei type A with extant angiosperm families,
particularly those having triaperturate microechinate pollen grains (e.g.,
Ranunculaceae, Rubiaceae, Euphorbiaceae, Campanulaceae, Calyceraceae,
Asteraceae) by using information available in the literature. We observed
strong morphological similarities between T. lilliei type A and some mem-
bers of Asterales. To increase the taxonomic resolution of this assignment
we conducted a parsimony analysis to evaluate the placement of the fossils
from Antarctica within the order. Pollen characters for 55 extant species of
Asterales were scored (SI Materials and Methods, Extant Reference Samples,
and Supporting Data, List of Characters and Character State Definitions Used
to Compile a Matrix Used as Input in Parsimony Analyses Aimed at Placing
the Fossil Taxa and Details of the Extant Material Examined for Morpho-
logical Characters Provided in Data Matrix and References for Scoring). The
morphological matrix comprises 26 binary and multistate pollen characters,
and 55 taxa chosen to represent all families and tribes in Asterales, along
with one outgroup taxon, Ilex from family Aquifoliaceae (Supporting Data,
Details of the Extant Material Examined for Morphological Characters Pro-
vided in Data Matrix and References for Scoring and Table S1). We used a
backbone tree derived from a molecular analysis of Beaulieu et al. (4), with
some additional taxa, following the recent comprehensive analysis of Panero
et al. (24). We conducted the analyses using the parsimony criterion as
implemented in the software PAUP (25), enforcing the topological con-
straint, with the heuristic search option of 1,000 random addition repli-
cates and tree bisection and reconnection branch swapping. Alternative
phylogenetic positions of T. lilliei type A were evaluated by searching for
the bootstrap consensus tree, the most parsimonious tree, and by searching
for trees one and two steps longer than the most parsimonious tree

Fig. 4. Fossil and extant representatives of Asteraceae observed by scanning electron microscopy. (A, D, E, G) Specimens of Tubulifloridites lilliei type A from
the Late Cretaceous of Antarctica (blue frames). (A) Subpolar view showing details of sculpture and poorly defined depressions (arrowhead); note the
microgranulate apertural membrane. (D) Subequatorial view showing a poorly defined depression (arrowhead). (E) Polar view with small apocolpium and
thickened colpi margins. (G) Equatorial view showing the microechinate-baculate-verrucate sculpture. (B) Specimen ofQuilembaypollis tayuoides Barreda and
Palazzesi from the Miocene of Patagonia (light blue frame) that shares morphological features with both the Cretaceous and extant asteraceous specimens;
note the microechinate-baculate sculpture. (C, F, H, I) Extant species of Dasyphyllum (pink frames) showing variations in the development and number of
intercolpal depressions. (C and H) Dasyphyllum inerme (Rusby) Cabrera. (F) Dasyphyllum latifolium (Gardner) Cabrera. (I) Dasyphyllum leptacanthum
(Gardner) Cabrera. (Scale bars, 5 μm.)
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(SI Materials and Methods, Estimation of Divergence Times) and by assigning
the fossil manually to different branches with MacClade (26), following the
approach of Doyle and Endress (27).

Divergence Time Estimates. We selected DNA sequences of 101 species of
Asteraceae, with an additional 36 species used as outgroup taxa. Three
protein-coding genes from the plastid genome (ndhF, rbcL, matK ) were
obtained for all taxa from GenBank (Table S3). Alignment of individual re-
gions was completed using default settings in MAFFT v.7 (28).

Divergence time estimates and phylogenetic relationships were inferred
using Markov Chain-Monte Carlo methods implemented in BEAST2 (29). A
GTR + Γ substitution model applied to the entire dataset, and the birth–
death model of speciation and an uncorrelated lognormal-relaxed molecular
clock model were used. Prior distributions on the root and two other nodes
were applied based on the interpretation from the fossil record of Aster-
aceae. A complete list of the fossil species used to calibrate the tree, geologic
ages, and citations is given in Table S4 and Fig. S6, and a list of the explored
calibration scenarios is given in Table S2 and illustrated in Fig. S5. We ran

four independent chains for each calibration scenario, each for 100 million
iterations, sampling every 1,000th generation using the CIPRES Science
Gateway. The program Tracer (29) was used to confirm that the four in-
dependent runs converged on the same stationary distribution. Post burn-in
samples from the marginal posterior distribution were combined using
LogCombiner v1.5.4 (29) and trees summarized with TreeAnnotator (29).
The topology of the tree broadly corresponds with that obtained by Panero
et al. (24).
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