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ABSTRACT 

The use of Lagrangian finite element methods for 
solving a Poisson problem produces systems of linear 
equations, the global stiffness equations. The 
components of the vectors which are the solutions 
of these systems are approximations to the exact 
solution of the problem at nodal points in the 
region of definition. There is thus associated 
with each nodal point an equation which can be 
thought of as a difference equation. Difference 
equations resulting from the use of polynomial trial 
functions of various orders on regular meshes of 
square and isosceles right triangular elements are 
derived. The rival merits of this technique of 
setting up a standard difference equation, as distinct 
from the more usual practice with finite elements 
of the repeated use of local stiffness matrices, are 
considered. 



 



1. 

1 . Introduction and Finite Element Method

Two methods for producing numerical approximations 

to the solutions of el1iptic boundary value problems are 

those of finite elements and finite differences. However, 

these methods are closely related. In this paper an 

approach is adopted whereby the linear equation which 

results at a mesh point from the application of the 

finite element method is regarded as a difference 

equation. Thus emphasis is placed on the idea of using 

the finite element method with a regular grid to 

produce difference molecules which are used repeatedly 

over the mesh and which change only when affected by 

the boundary. 

The discussion is restricted to two dimensional 

Poisson problems with Dirichlet boundary conditions, 

Let the function u(x,y) be the solution of the problem 
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where Ω ε E2 is an open bounded domain with polygonal 

boundary  A is the Laplacian operator and g ε LΩ∂
2 (Ω ). 

Under these assumptions the solution u(x,y) of (1) 

minimizes the energy functional 
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over the class of functions  ),(

10
W2 Ω  , see Zlamal (11). As

usual 
)(

2
1W Ω

is the Sobolev space of functions which 
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together with their first generalized derivatives exist 

and are in L2, and 

 
) ( 

2 
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0 
Ω 

is the subspace of functions 

in  
)(

2
1W Ω

which are identically zero on ∂Ω. 

The region Ω is divided into a number of 

non-overlapping triangular or rectangular elements, and 

it is assumed that on the partition there are m mesh 

nodes: in Ω and n nodes on ∂Ω 

An approximation U(x,y) to u(x,y) is constructed 

using the Ritz method by solving 

             ( )I[V]

S
oh
min                     (3)

 
where is an m-dimensional subspace of ),,(

1
2

O
W Ω and the  the 

parameter h is a measure of the size of the elements. 

ho
S  

The finite dimensional space  consists of functions 
Oh
S

which are piecewise polynomial over Ω, and satisfy the 

homogeneous boundary conditions on ∂Ω. 

In each element for Lagrangian methods the choice 

of the approximating function is motivated by an 

interpolating function which takes the values of u at k 

nodes in the element. Let the interpolant u~ in each 

element have the form 
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 where the φi are the cardinal basis functions (shape 

functions) of the interpolation with respect to the 

values ui of u at the k nodal points. Note that in (4) 

the numbering of the shape functions is local to the 

element. The approximating function Ue (x,y) then has 
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in each element the form 

y),(x,iφ
e
iU
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where now the  are the values of U at the same nodal e
iU

points of the element as those of u in (4). For the 

whole of Ω. the nodes have a global ordering p = 1,2,..,m, 

and the collection of all shape functions associated 

with the pth node defines a function Bp (x,y). This 

method of construction results in the Bp being nonzero 

only in elements which contain the pth node. Thus the 

shape functions Φ of (4) and (5), considered over the 

total number of elements in Ω, form the linearly 

independent set 

{Bp}, p = 1,2,...,m, 

members of which span the space A function  ho
S hSV

o
ε

can therefore be written as 
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In order hat  may be a subspace of 
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interpolating polynomials and nodes in each element 

must be chosen so that  satisfies certain 
oh
SVε

continuity 

properties across interelement boundaries. The 

condition that  is the 1
2CW

oh
S conforming condition, and  

for problems of type (1)it is that )(CS
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(see | 8 | ) so that we may write 
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where ue is the local trial function in the eth element 

and Ωe is the area of that element . From (5) and (7) 

it follows that for the eth  element: 
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where,see Zlamal |11|,Ke 
is the elements  stiffness

matrix, Ue   vec(u1. u2e, . . . . , uek), z is a column 

vector the components of which depend on g(x,y). The 

summing of I | ue | to form I | V | as in (7) produces a 

quadmatic function of the variables U1, U2, . .. ,Um, 

where these U's are simply the total number over all 

the elements of the Uo1 associated with the m nodes in 

Ω The vector U vec (U1, U2, . . . . , Um ) can be found  

by solving, the tinear system 

 
O, 

p U 
|| V || = 

∂ 
∂  p = 1 , 2, . .. , m.      (9) 

 

which, after the boundary conditions have been taken 
into account, is written 

KU = Z .                       (l0) 
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The mxm matrix K is the global stiffness matrix. 
Substitution of u in (6) gives the approximation U(x,y) 
to the solution u(x,y) of (1). 

2. Difference Stars Using Langrangian Interpolation 
with CO Approximating Functions

The above procedure may be termed a standard 
finite element approach for setting up the global 

stillness equations (10), and requires that the local 
stiffness matrix Ke be calculated for each element. 

For a regular mesh, using co-ordinates local to each 
element, the Ke will all be the same. However, their 

repeated use will be necessary for the construction of 

(10). 

An alternative method, which is useful for regular 

meshes, is suggested by thinking of the equations (10) 

as difference equations, so that the equation 

∂Ι  |V |/∂Up =0 is the difference equation at the pth

node. Nonzero contributions to the function ∂Ι[V]∂Up 

come only from the set of elements, {Np }, which contain 

the pth node. Thus the summation in (7) need only be 

performed over these elements. The technique adopted 

here is for every node in Ω to form I| ue| , I, and hence 

∂Ι |ue|/∂Up , for all elements of {Np } and then to form 

0
pU

]eI[U
Np

=
∂

∂
∑

                      (11) 
          

 
Equation (11) is exactly the pth equation of (9). 

As a difference equation it is derived only once. 

However, the region Ω is covered with a regular mesh, 

and so equation (11) is used for all nodal points at 
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which the element contiguration is as in { N p }.  As 

before the boundary conditions have to be taken into 

account 

In Sections 2.1. — 2.3 various interpolating 

functions are used to produce difference molecules at 

nodes on regular triangular and square meshes. As the 

main interest is the form of the difference molecules at 

general interior mesh nodes, no account is taken of the 

boundary or boundary conditions. 

2.1Standard Triangular Elements

Consider a mesh made up entirely of isosceles 

right angled triangles as in Figure 1. 

 

Figure 1

The complete Mth order polynomial

 jyixijα
M

oji 
(x) 

M
L ∑ 

= + 
= 

 

can ho used to interpolate a function at k = 
2
1
(M+l)(M+2) 

symmetrically placed nodes in a triangle. This k is 

the same as the upper limit of summation of the series 

in (5). Interpolation using different orders of 

polynomial is now illustrated. 
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Linear Interpolation ; M = 1 
 

Here k = 3 and in any triangle of the mesh the 

nodes are taken at the vertices. Linear interpolation 

to the values of U at these nodes produces over Ω a 

global approximating function which is continuous, so 

that the conforming condition is satisfied. 

Use is now made of the standard triangle T, see 

Birkhoff and Mansfield [1]. In terms of local 

co-ordinates (X,Y) this has vertices 

 (0,0), 2 (h,0) and 3 ≡ (0,h), as in Figure 2. 

 
X 

(0,0) (h,0) 

Figure 2 

The Function which is linear in X and Y and which 

interpolates to the values 
e
1U
 ≡ Ue(0,0),  U

 e
2U e(h,0), 

e
3U
 Ue (O,h) can be written in cardinal basis form as 

 U
e(X,Y) = (l-X/h-Y/h) + x/h + Y/h .           (12) e

1U e
2U e

1U

Thus for the standard triangle, if G(X,Y) g(x,y) , 
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 where Fe is the appropriate linear function of the 

variables Ue1, Ue2, U3, so that 

and 
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(15) 

(16) 

Any interior point of the mesh is a node for six 

elements, the assemblage of these being as in Figure 3. 

In particular the pth node of the global ordering may 

be taken as the node 1 of the standard triangle T. 

Considering only the part of I[U] which is associated 

with the Laplacian -ΔU, it follows from (14) that the 
 
contribution to from the triangle T at the point 

(x,y) εΩ is 

2 U(x,y) - U(x+h,y) - U(x,y+h) . 

pU
I[U]

∂

∂
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Figure 3 

The contributions from the other five elements of Np

follow immediately from (14)-(16) using symmetry, and 

on summation produce at the point (x,y) the familiar 

five-point finite difference replacement 

4 U(x,y) - U(x+h,y) - U(x,y+h) - U(x-h,y) - U(x,y-h) 
                                                     (17) 

for the Laplacian, which has 0(h2) local discretization 
error. 

The fact that this five point formula can be 

obtained using linear interpolants is well known, and 

has been pointed out by Fix and Strang [6], Pian [7] 

and Whiteman [10]. 
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Quadratic Interpolation; M = 2 

Here k = 6 and in any triangle the nodes are taken 

as the vertices and the centre points of the sides. 

Interpolation with the complete quadratic in x and y to 

values at these nodes again produces a continuous 

global approximating function. For the standard 

triangle the quadratic interpolant to the function 

values Uei i = 1, 2, ..., 6 at the six nodes 1 ≡ (0,0), 

2 = (h,0), 3 ≡ (0,h), 4 ≡ 
,0)

2
h(

, 5 ≡ 
)

2
h,

2
h(

, 6 ≡ 
)

2
h(O,
 

can be written in cardinal basis form as 

 

(18)).
h
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X(1

h
Y4e
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X4e

5U)
h
Y
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X(1
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X4e
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2Y(
h
Ye

3U1)
h

2X(
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Xe

2U)
h

2Y
h

2X)(1
h
Y

h
X(1e

1UY)(X,eU

−++−−+

−+−+−−−−=

In a completely analogous manner to that used with 

linear interpolation, the interpolant (18) leads at a 

mesh point with co-ordinates (x,y), which is a vertex 

of a triangle, to a non-standard nine-point difference 

replacement for the Laplacian of the form 

(19)h).yU(x,y)h,U(xh)yU(x,y)h,U(x

)}
2
hyU(x,y),

2
hU(x)

2
hyU(x,y),

2
h4{U(xy)12U(x,

−+−+++++

−+−++++−

 

Formula (19) is clearly a combination of five-point 

replacements at (x,y) based on mesh lengths h and

However, at a mid-side node (e.g. nodes 4,5 or 6 

2
h
.

of the standard triangle) contributions to ∂I[U]/∂Up
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come only from two elements, and in this case the 

difference replacement is again the familiar five—point 

formula (17), except that now it is based on a mesh of 

length h/2. 

It is thus clear that the use of this form of 

quadratic interpolation leads to a double system of 

difference equations the form of which differs between 

vertex and mid-side nodes. 

Cubic and Higher Order Interpolation

In the previous two cases the difference replace- 

ments produced have been either of a familiar form or 

closely related to this. There is with the increase in 

order of interpolating polynomial an increase in the 

number of nodes in each triangle (M = 3, k = 10; M = 4 

k = 15;..,). There are also more classes of nodes and 

for each class the replacement is so complicated as to 

be worthless in its own right as a difference 

replacement. 

As an illustration, we give in Figure 4 in 

tabular form the replacement at a mesh point which is 

an element vertex obtained using cubic interpolants to 

function values at the vertices, the points of 

trisection of the sides and the centre of the triangle 

of the mesh of isosceles right angled triangles. 
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Figure 4. 
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2.2 Standard Square Elements
 

Consider now a mesh made up entirely of squares of 

side h. The interpolation is performed with polynomials 

of the form 

,jyixijα
M

0j

M

0i
y)(x,MQ ∑

=
∑
=

=  

where successively M = 1 (bilinear), M = 2 (biquadratic) 

etc. 

Bilinear Interpolation; M = 1 

In this case there are four terms in Q (x,y) so 

that, using square elements, a continuous global 

approximating function can be obtained if interpolation 

to function values at the corners of the squares is 

performed. 

The bilinear function which interpolates to the 

values Ue1 ≡ Ue1(0,0), Ue2 = Ue(h,0), ue3 ≡ Ue(h,h), 

Ue4 ≡ Ue (0,h) at the corners of the standard square is, 

in cardinal basis form 

.
h
Y)

h
X(1e

4U
h
Y

h
Xe

3U)
h
Y(1

h
Xe

2U)
h
Y)(1

h
x(1e

1UY)(X,eU −++−+−−=  

                                                                   (20) 

Use of (20) leads at a point (x,y) of the mesh to 

another non-standard nine-point finite difference 

replacement for the Laplacian of the form 

8U(x,y) - U(x+h,y) - U(x,y+h) - U(x-h.y) - U(x,y-h) 

- U(x+h,y+h) - U(x-h,y+h) - U(x-h,y-h) - U(x+h,y-h) 

                                                          (21) 
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This replacement has 0(h2) local discretization error, 

and is given by Birkhoff, Schultz and Varga in [2]. 

Biquadratic Interpolation; M = 2 

For biquadratic interpolation nine nodes on the 

standard square are. used, and these are taken at the 

h).(h, 9 h),,
2
h( 8 h),(0, 7 ),

2
h(h, 6 ),

2
h,

2
h( 5

),
2
h(o, 4 o),(h, 3 ,0),

2
h( 2 (0,0), 1 Points

≡≡≡≡≡

≡≡≡≡

 

The biquadratic interpolant to function values at these 

nodes is , in cardinal basis form, 

 Ue(X,Y)  =   {  p(X) +  q(X) + e
1U

e
2U

e
3U  r(X)} p(Y) 

+{  p(X) +  q(X) + e
4U

e
5U

e
6U  r(X)} q(Y) 

+{  p(X) +  q(X) + e
7U

e
8U

e
9U  r(X)} r(Y) ,             (22) 

where p(t) = (1-t) (l-2t) , 

q(t) = 4t (l-t) , 

r(t) = t (2t-l) . 

Use of (22) leads at a node (x,y) which is a corner of 

a mesh square to the twenty-five-point replacement of 

Figure 5. 
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     Figure 5 

At nodes which are respectively centre points of the 

squares and mid—points of sides of squares the 

replacements of Figures 6 and 7 are obtained. The 

difference replacements of Figures 5, 6 and 7 all have 

0(h2) local discretization errors. 
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Figure 6 (Mid-point of square) 
 

 

 

 

 

 

 

 

 

 

 

Figure 7 (Mid—point of side) 
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2.3 A. Nonconforming Element

 

If in each element of a triangular mesh a Linear 

trial function interpolates to function values at the 

mid-points of the sides of the triangle, then the 

global approximating function so produced is not in 

general continuous and the conforming condition is 

violated. 

Suppose that for the standard triangle of Section 

2.1 the nodes are now taken at the points 

In cardinal basis form the linear 

interpolant to the function values at these points can 

be written as 

 

Use of (23) leads at a point of type 

mid-point of the hypotenuse of a 

triangle, to the 

difference replacement 

(24) 

However, at the mid-point of a vertical side (x=constant) 

of; a triangle, the replacement is 

(25) 

and at the mid-point of a horizontal side (y = constant) 

it is 

).
2
hyU(x,)

2
hyU(x,y)2U(x, −−+−  

Both of the difference replacements (25) and (26) are 

inconsistent. 

)
2
h,

2
h(,0),

2
h(

 and )
2
h(0,

(23)).
h
X2)(1

2
hU(0,1)

h
Y2

h
X)(2

2
h,

2
hU()

h
Y2,0)(1

2
hU(Y)(X,eU −+−++−=  

)
2
h,

2
h( that is the

).
2
hyU(x,y),

2
hU(x)

2
hyU(x,y),

2
hU(xy)4U(x, −−−−+−+−  

y),
2
hU(xy),

2
hU(xy)2U(x, −−+−
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3. Discussion and Application to Model Problem

 

It has been shown in Sections 2.1 - 2.3 that 

finite element techniques, based on Lagrangian 

interpolauts with triangular and square elements, 

produce difference replacements for the Laplacian, 

and that the systems of equations so derived are 

exactly those of (9) and (10). Most of these 

replacements are not those with which the users of 

finite differences are familiar; see for example 

Collatz |4 |, pp.542-543. However, the methods of 

Sections 2.1 and 2.2 produce consistent replacements 

for which, with the usual techniques based on Taylor's 

series, it can be shown that the local discretization 

errors are 0(h2). Some of these schemes are 

unconventional in that with a single trial function the 

finite element technique produces several difference 

replacements; the particular replacement which is 

appropriate to a mesh point being determined by the 

position of this (nodal) point in an element. The 

mesh points thus fall into classes with each of which 

is associated a particular type of replacement. This 

property suggests that it may be possible, by 

permuting the rows and columns, to rearrange the global 

stiffness matrix K so that it can be partitioned in a 

form which facilitates the solution of the linear 

system (10). 

Many theoretical bounds have been derived for the 

error in the finite element approximations to the 

solutions of problems of the type (1); see for example 

Bramble and Zlamal [3] for triangular elements and 
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Birkhoff, Schultz and Varga [2] for rectangular 

elements. Provided that the conforming condition 

))(1
2

O
W,

hO
S

is satisfied, and that the solution u of  ( Ω

 

(1) has specific derivatives bounded throughoutΩ, 

these hounds hold. The difference methods of Sections 

2.1 and 2.2, being exactly "conforming finite element 

methods", are subject to these same error bounds and so, 

under the same conditions on u, convergence with 

decreasing mesh size of the "finite difference" 

solution to the true solution is assured. 

The discussion in this paper has been limited to 

finite element methods based on Lagrangian 

interpolation. In higher order problems it is usual 

for trial functions to interpolate to values of 

derivatives at nodal points as well as to function 

values. These are finite element methods based on 

Hermite interpolation, such as are discussed in (2). 

In biharmonic problems, for example, the integrand in 

the energy functional which corresponds to (2) contains 

second derivatives, and conforming global trial 

functions possess continuous first derivatives. The 

final system of global stiffness equations in this 

case involves derivative values. Clearly such linear 

equations involving function and derivative values as 

unknowns cannot be thought of as conventional 

difference equations. However, in the difference 

context such Hermitean methods (mehrstellenverfahren) 

have been considered by Collatz [5]. 

The difference approach based on finite element 

techniques does not allow for the full exploitation of 
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the versatility of the standard f i n i t e  element method; 

namely that the form of local trial function in each 

element may be varied over Ω so as to produce better 

numerical approximations. Further, the difference 

approach is only really useful when regular meshes are 

involved. However, as has been indicated, when the 

difference approach is viable, it produces equations 

which are identical with the global stiffness 

equations. 

The criterion by which to judge the two methods 

is the respective computation times taken to produce 

the same numerical solutions. The approach adopted 

here is to use the standard finite element method to 

solve a model problem and to analyse the times taken 

for the various parts of the computation. This 

computation involves the repeated call of local 

stiffness matrices for the assembly of the global 

stiffness matrix; a process which will largely be 

absent in the difference approach. In the model 

problem Ω is the square 

Ω  {(x,y) : O ≤ x ≤  l  , O ≤ y ≤ l } 

with interior Ω and boundary ∂Ω, and the function 

u(x,y) satisfies 

−Δ[u(x,y)] = x-x2+y-y2 , (x,y) εΩ , 

            u(x,y) = 0 ,   (x,y) ε ∂Ω, . 
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This problem has exact solution u(x,y) = 
2
1 xy (l-x) (1-y). 

      The. region Ω is partitioned into right triangular 

elements by subdivision first into equal squares, and 

then by further subdivision of each square into two 

triangles along the diagonal parallel to x+y = 1. 

Numerical approximations U to u are calculated using 

respectively piecewise linear, quadratic and cubic 

approximating functions on meshes of the above type. 

As accuracy is not the main aim here, the partitions 

for the three cases are chosen so that the total 

number of nodes is approximately constant. Results at 

two points in are given in Table 1. Details of the 

partitions and the global stiffness matrices are given 

 

Trial functions 
in Each Element 

Total 
Number of 
Nodes 

Values of 
  U at 

  ⎟
⎠
⎞⎜

⎝
⎛

2
1,

2
1  

Values of 
  U at 

  ⎟
⎠
⎞⎜

⎝
⎛

4
1,

4
3  

Linear 

Quadratic 

Cubic 

289 

289 

256 

.031017 

.031254 

.031243 

.017496 

.017578 

.017581 

   
 Exact solution 

  
.031250 

   
   .017578 

Table 1 

in Table 2, together with a break down of the 

computation times. It is seen that the generation of 

the local stiffness matrix, and of the global stiffness 

equations through its repeated call, in the three cases 

takes respectively 45, 30 and 35 seconds. When the 

difference approach is adopted, the generation of the 
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TABLE 2 
 PARTITIONS    

Trial Functions Linear Quadratic Cubic 

Length of short sides 
of each triangle 

1/16 1/8 1/5 

No. of nodes in Ω  289 289 256 

No. of boundary nodes     64     64 60 

No, of elements 512 128 50 

 
GLOBAL STIFFNESS 
MATRICES 

   

Bandwidth  42 82 96 

No. of non-zero 
elements 
(i) in half of g.s.m. 

 
 
 709 

 
 
 793 

 
 
 1197 

(ii) with fill in 
using Gaussian 
elimination 

  3363   4653  6737 

 
COMPUTATION TIMES IN 
SECS ON CDC 6500 

   

Generation of mesh, 
co-ordinates, data 

30 25 20 

Generation of standard 
element stiffness 
matrix 

7 14 24 

Generation of global 
stiffness matrix 

 38 16 11 

Gaussian elimination 8 15 35 

Back substitution 3      6       6 

 
TOTAL TIMES 

 
 86 

 
76 

 
96 
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global stiffness equations in each case takes 

approximately 5 seconds. As can be seen from Table 2, 

this results in savings of the order of 45%, 40% and 

30% in the respective computation times. 

Clearly this model problem is ideally suited for 

the difference approach, so that this is not a totally 

Lair comparison. However, it does illustrate the 

potential of this alternative way of viewing the global 

stiffness equations. 
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