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1. 

1. Introduction. The general problem of finding the  best  uniform 

approximation, in a given interval,of a polynomial of degree in by 

a polynomial of degree n < m has been solved analytically in only 

two cases: (i) by Chebyshev, when m = n + 1, (ii) by Zolotarev, 

when m = n + 2. In case (i) the solution  is expressible  in terms 

of the Chebyshev polynomial Tm (x). In case (ii) the solution (see 

for example Achieser [1], p. 280) involves elliptic functions. 

Chebyshev did in fact consider the general case in [4], and showed 

that hyperelliptic functions are involved, but he did not obtain 

any solutions. 

      Since analytic solutions are effectively excluded when m>n+2, 

another approach is required. This was first  provided, for large n, 

by Bernstein [3] and Achieser [2], It consists in seeking a rational 

function which (a) is a good approximation to the given polynomial, 

and (b) has a fractional part which for large n is small in the 

interval. Its integral part is then the polynomial approximation 

desired: not optimal, but asymptotically optimal. 

In 1964 Clenshaw [6] considered the ratio Sn /En of the uniform 

error norms Sn and En respectively of the truncated Chebyshev 

expansion of the given polynomial (which has the least possible L2 

error norm) and the best uniform approximation. He used Bernstein's 

method to estimate En when m — n = 2, 3, or 4, but could go no 

further because of the complication of the calculations. Clenshaw 

was interested in a question of practical importance, namely whether 

the truncated Chebyshev expansion, which is easy to obtain, is or 

is not nearly as good an approximation as the optimum. He therefore 

tackled the problem of finding the maximum value of Sn /En for a 

given m -n. Subject to an assumption which he verified experimentally, 



Clenshaw   solved  the  problem  for  the  three  cases  mentioned,  and 

noticed some surprising regularities in the solution, in 

particular the fact that  certain constants obtained were the 

first 2, 3 and 4 coefficients respectively of the binomial 

expansion  of  (1 - t)- 2
1  . He  put  forward the conjecture that 

this would generalise  for any  value  of m - n, and on this basis 

obtained a general formula for max (Sn /En ). 

The first published proof of Clenshaw's conjecture was 

given by Lam and Elliott [8] in 1972. Using  the  same  method 

and assumption as Clenshaw, they were able to generalise his 

results to any value of m - n, although they failed to consider 

the important question of whether the error of approximation 

must always be  representable in the form they  assumed for it. 

This omission was remedied in their recent second  paper [7], 

in which not only is this question considered, but the norm of 

error is shown to be given by an eigenvalue of a certain matrix. 

That this should be so is not at all surprising however, for as 

is clear from the author's papers [10] and [11], any  problem of 

uniform approximation of polynomials or rational functions by 

polynomials or rational functions is likely to lead to an 

eigenvalue problem. 

The present paper uses a simplified form of the "u-method" 

developed in [10] and [11], to deal with the problem treated 

by Lam and Elliott. The treatment here is quite different from 

that of Lam and Elliott, in particular  in invoking standard 

approximation theory results instead of matrix theorems,and is, 

I believe,  very  much  simpler. In one respect the paper improves 

2. 
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on  their results, namely in showing that the desired solution 

exists  unconditionally. A proof of  Clenshaw's conjecture is 

also given. 

2. Preliminary discussion. We denote the given polynomial of 

degree m by f(x), and for convenience write m = n + r + l .  We 

take the given interval as [-1,1],Let f(x) have the expansion 
 
(with ar ≠ 0) 

 
f(x) = a r Tm (x) + ar-1 Tm-1 (x) + ... + a0Tn+1 (x) + lower order terms. (1) 

 

Then the error norm Sn of the truncated expansion  is 

Sn = ||( ar Tm + ... + a0Tn+1 ||                      (2) 

 

where || • |[ denotes  maximum  modulus in [-1,1]. The error norm 

En of the best n-th degree polynomial approximation to f is np̂

 

||fnp̂||fp||
npp

infnE −=−
∈

=           (3)  

  
 

where Pn denotes  the set of all real polynomials of degree ≤ n . 

We note that by the Alternation Theorem,  - f = ± Enp̂ n

alternately at n + 2 or more points on [-1,1]. 

Instead of  finding   we shall obtain  an infinite  set of np̂

rational functions Q/D, where Q  є  Pn+r, . D є Pr , with error function(A) 
                  

                   DFQM,
D
M

f
D
Q

R −==−=       (4)
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such that R = ± ||R|| alternately at n + 2 or more points on 1-1,1.1. 

A unique member of this set is of  course the "best" or optimal

rational approximation, i.e. that which minimises  ||R|| for all 

possible choices of Q є Pn+r ,D  є Pr . As is well known, this R 

exhibits alternation not merely at n + 2 points but in general at 

n + 2r + 2 points. We shall show that another likewise unique 

member of the set has the additional property that ||Fr(Q/D) || → 0 

as n → ∞ , where Fr denotes "fractional part", and that its 

integral part is the desired polynomial approximation to f. In 

order to do this we shall demonstrate a close "dual" relationship 

between the desired function Q/D and the optimal rational 

approximation to a certain polynomial g of degree m related in a 

special way to f. Since the algebraic solution for the desired 

Q/D is exactly the same as for the optimal Q/D, we shall start by 

considering the problem of finding the optimal approximation Q/D to f. 

If for this optimum, expressed in its lowest terms, the actual 

degrees of D and Q are respectively s =r-d and n  + s ' = n + r - d ' ,  

where d, d' ≥ 0 , the problem has "deficiency" δ = min(d,d'), and 

by the Alternation Theorem for rational approximation (see for example 

Rivlin [9], Th.5.2), 

R = ± ||R|[ alternately at K = n + 2r + 2 - d or more points on [-1,1 ]. 

Let E = || R || . Then R2 - E2 has at least K distinct zeros in [-1,1], of 

which τ ≤ 2 are at the end points ±1 and K - τ are internal and of 

order at least 2. Thus M2 - E2D2 has at least 2(K-τ) + τ = 2K-τ zeros 

in [-1,1], counting multiplicities.But its degree is 2(m+s)≤ 2(K-1), 



5. 
since s ≤ r - d. It follows that τ = 2, i.e. R = ±E at both end-points, 
 
and that d = d, i.e. s1 ≤ s, so that Q  has degree at most n +s. 

Further, M2 - E2D2 has precisely K - 2  internal zeros of order 2, 

and no external zeros. We may therefore write, noting that 

M2 - E2D2 ≤ 0 in [-1,1], 

M2 - E2D2 = (x2-l) W2 , (5) 

where W is real, of degree  n + r + s, and  has all its roots in [-1,11. 

It is clear that if M, D, W is any triplet of real polynomials 

satisfying (5) for some value of E, then  ||M/D|| = E. We shall see 

that for any suitable D it is easy to obtain many such triplets, and 

that if we impose the further condition that the corresponding Q = M + Df 

shall have nominal degree n + s (if D has degree s) instead of m + s, 

the degree of M and Df, we can obtain both the optimal Q/D and the 

'asymptotic' Q/D which we seek. In section 3 we obtain general 

solutions of (5) and consider the implications of the desired asymptotic 

property, in section 4 we involve the given f explicitly by imposing 

the degree condition on Q, and in section 5 we use the existence of 

the optimal Q/D to establish the existence of the Q/D sought. 

The method used is that already described in the author's earlier 

papers [10] and [11], However, a key step in the process, namely the 

discussion of the factorization of (18) below, is much simpler here 

than the treatment in those papers, which was based on the rather 

complicated Surd Factorization Theorem in [10]. For the sake of 

completeness the method is described in full, reference to [10] 

being made only at one point in section 4. 
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Remark. The method to be described  requires (5) or an equivalent 

equation as a starting point. Unfortunately best-approximation 

problems involving polynomials and rational functions do not always 

lead to equations of this form. For example, in  the case r = 1 

(i.e. the case solved by Zolotarev) the optimal error function 

satisfies an equation either of the form 

R2 - E2 = (x+l)(x-β)W2

(so that only one of the end-points is a "norm-point") which is 

reducible to the form (5) by a simple linear transformation in x; 

or of the form 

R2 - E2 = (x2-l)(x-a)(x- β)W2 

which requires elliptic functions for its solution, and cannot be 

dealt with by the present method. 



3. General solutions of (5) 

We rewrite (5) as 

M2 – (x2-1)w2 = E2D2 

and make the left-hand-side factorizable by means of the substitution 

                              x = 
2
1  (u+u-1 )  , 

giving 

x2 - 1 = 
4
1  (u-u-1) 2 . 

We note that 

Tk(x) = 
2
1  (uk + u-k) , k = 0, 1, 2, ... 

 

Now to allow for possibly degenerate solutions we suppose D has 

degree s = r — d, d ≥ 0, say 

           .]1,1[x,)xx( jj

s

l
D −∉−π=

Each xj can be expressed as 

                         ,)u 1
jju(

2
1

jx −+=  

where there is ambiguity in the choice of uj. As we shall see, 

a particular choice is required for the solution we seek. 

Combining  (7) and  (11)  gives 

 

        ,)ju
1

u()juu(
ju2

1
jxx −

−
−

−
=−          

so that if we write 

01
s

sj

s

l
u....u)uu()u( φ+φ++φ=−π=φ  

we have 

.)u()u(
2

1
D

1

0
s

−
φφ

φ
=  

 

7. 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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We now define 

p(u) = M(x) + 
2
1  (u-u_1)w(x) , (15) 

with the sign of W chosen so that  p(u)  is  of  order  0(um+s )  for 

large u (i.e. there is no cancellation of leading terms in (15)). 

Then 

p(u-1) = M(x) - 
2
1 (u-u-1)w(x) , (16) 

and we have 

M = 
2
1 (P(u) + p(u-1)) , (17) 

while by (6) 

     .)u()u(2)
2

E
()u(p)u(p

122

0
s

1 −−
φφ

φ
=     (18)

Now  by  (15)  and  (16)  p(u) and  p(u-1 )  have  no  poles  except  possibly 

at  u = 0, so  by  (18)  they  can  have  no  zeros  except at  u = 0 and at 

zeros  of  φ (u) , φ (u-1 ). There are then only  two  distinct  possibilities 

arising  from  (18): 

 

     ,u)u(
2

)u(p)a(
2

0
s

τ
φ

φ

λ−
=      (λ = ±E , τ an integer) ,

 
or   

     .)u()u()u(where,u)u()u()u(
2

)u(p)b( 21
2
2

1
11

0
s

φ=φφφφ
φ

λ−
=

τ−
φ  

Case (b) leads to a solution in which M, W and D automatically 

have common factors, and we disregard this as it is not needed. 

An apparent modification of (a) in which some or all of the factors 

of  (u) are replaced by corresponding factors of φ φ (u-1 ) is easily 

seen to lead to the same solution as (a), bearing in mind that 

   u-1 - uj = -uju-1 (u - u-1j ) , 
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where is an alternative choice for uu j
1−

j, for a given xj. 

Thus we shall take (a) as our expression for φ  (u). Since 

p(u) - 0(um+s ), it follows at once that 

τ = m - s  = n + l + d  . 

Thus 

and ,)||()u(u
2

)u(p E,E
2d1n

0
s

λ=±=λφ
φ

λ−
=

++
       (19)       

and
                

                .))u(u)u(u
2

)x(
12d1n2d1n

0
s

M
−−−−++

φ+φ
φ

λ−
==  

 

Now if the xj are  all distinct  (and  otherwise a continuity  argument 

may be used), 

∑
−

=
)jx(D)jxx(

)jx(M
)

D
M

(Fr)
D
Q

(Fr
'

 

(20) 

  

where    

.)u 1
j(

2d1n
ju

0
1s

2
)jx(M −φ−−−

φ
+

λ−
=                           (21) 

As will be seen in section 4, the uj and λ depend only on the r + 1 

prescribed leading coefficients in the expansion (1) of f†, and 

not at all on n. Hence 

0||)
D
Q

(Fr|| →−  as n → ∞ if and only if all |uj|>1 .                      (22) 

Now as will be seen later, our solution process leads to Q/D in 

lowest terms, i.e. M and D without common factors. This means by 

(14) and (20) that φ (u) and φ (u -1) have no common factor, in other 

words |uj|≠1 for all j. (Note that this also implies that our 

solutions do not contravene the condition on xj in (10).) 

† The remaining coefficients are unimportant, for they contribute 

merely an additive polynomial of degree n to the solution. 
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Thus if we denote by  β the number of  zeros  uj of φ (u) inside the 

unit  circle,  the asymptotic  property  sought will be achieved if 

β = 0. 

We now derive a simple general relation between β and the  

number α of alternation points on [-1,1] (i.e. points at which  

R = ±E alternately.)  For  this,  we note that the transformation (7) 

maps the semicircle u = eiθ , 0 ≤ 0 ≤ π onto  the interval 1 > x > -1, 

where x = cos θ . On moving round the semicircle, we have by (19) 

  Δ arg p = (n + l + d )  π + 2 ßπ. 

On the other hand, we have on the semicircle 

p(u) = M + i W sin θ , 

where M and W are real, so that 

Δ arg p = (α - 1) π . 

It follows that 

α = n + 2 + d + 2ß .                              (23) 

Thus for any solution of (5) in which D has degree s = r - d the 

number of alternation points must be at least n + 2 + d, and for 

the solution we seek (if it exists) for which β = 0  the number is 

precisely n + 2 + d ,  i.e. in the case d = 0 the same as for the 

optimal polynomial p̂ n . For the optimal rational function on the 

other hand the number is at least k = n + 2 + 2 r - d , so that for 

this solution ß must be equal to s, its maximum possible value. 

We have thus exhibited a kind of inverse relationship between 

the optimal Q/D and the  Q/D we seek. We shall see in Section 6 

that there is a further relationship between these two through 



which wo can prove the existence of the Q/D we seek. Now assuming 

this for a moment,suppose that the alternation points in |-|,| | 

are y1 , y2 , ... in ascending order.  Then if P = Int (Q/D), 

P(yk) - f(yk) = ε(-l) kE - Fr )
D
Q

(  (yk) , k = l ,  . . . , n + 2 + d ,  

where ε = ±1. Thus  If  ||Fr(Q/D)|| =  v < E, P-f alternates in sign 

at the yk , and, using de  la Vallee Poussin's theorem (e.g. Cheney [5], 

p.77) accordingly, 

E - ν ≤ En+d ≤ En ≤ ||P - f || ≤ E + v .                 (24) 

Since  as  we  have seen ν → 0 as n → ∞, and moreover, because of 

the form of f in (1), En ≤ |a 0 | (see [5], p.137, Th.5), it follows 

that, for fixed r and fixed a0 , .. . , ar , 

                                   →
nE

E
1  as  n   ∞ . (25) →

 

11, 
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4. Solutions for given f(x)

we have so far considered solutions of (5) with arbitrary D 

of degree s (and non-zero on [-1,1]), but without reference to f(x). 

We must now impose the condition that Q = M + Df has degree n + s 

(or less) instead of m + s = n + s + r + l . Now for large u we 

have, on dividing by φ (u) , 

 

)
s

us...
1

u10(

0
1s

2

1
))

m
u(0)u(

1dn
u(

0
1s

2
)u(
DfM −

φ+
−

φ+φ
φ

++
−

+φ
++

φ
+

λ−
=

φ

+
 

   

)...ua...uaua(
1n

0
1m

1r
m

r ++++
+−

−
 

while  
)u(

Q
φ

 = 0(un) .  Equating coefficients of un+1 , un+2 ,. . . ,um 

on both sides of the equation 

                       
(u)

Q

(u)

DfM

φ
=

φ

+
 

gives a set  of equation which may be written  
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or briefly 

)d(
~

d
s)d(

~
A φλ=φ

(27) 

where A is the (r + 1) x (r + 1) triangular Hankel matrix shown, 

)d(
~
φ is an (r + 1)-element vector consisting of the s + 1 coefficients 

of φ(u) (forming a vector , say) supplemented by d zero elements, 
~
φ

and S is a shifting matrix dφefined by 

(S)i j = 1 if i = j + 1 = 2, . . . , r  +  l , 

 = 0 otherwise. 
Now it is clear by inspection of (26) that if Ah is the matrix 

(with leading element a, and of similar form to A) obtained from 

A by deleting the first h rows and the last h columns (so that 

A0 = A), then (26) implies that 

,
(k)~
φksλ

(k)~
φkdA =−            k = 0, 1, ..., d .                        (28) 

                                                     
Thus in particular λ is an eigenvalue of A, and

~
φan eigenvector. 

It is now obvious that with such λ and 
~
φ  , if d > 0 the first d 

equations in (26) will not in general be satisfied. Thus in general 

we must have d = 0, and λ an eigenvalue of A with eigenvector  
~
φ

In exceptional (degenerate) cases however (27) may have a 

solution for some d > 0. It then follows (as was shown in [10]) 

that the equations 

                                                         (29) ,)k(ysyA
~

k

)k(~
λ=

                                                          (30)  ,)k(zszA
~

k

)k(~
λ=

both have solutions for k = d-1, d-2, ..., 1, 0 . (These solutions 

correspond to multiplying ø (u) by one or more of 1 + u,1- u, or 
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factors of the form 1 + 2cu + u2 (with arbitrary c), and hence  

D, M and 0 by one or more common factors x + 1, x - 1 or (x + c)2.)  

ln particular, taking k. = 0, it follows that if (27) has a solution  

for some d > 0, then although 
~
φ (d) is not an eigenvector of A, both  

λ and - λ must be eigenvalues of A. (In fact, as was shown in [103, 

A is an eigenvalue of order at least [½(d+2)1 and -λ of order at  

least )]1d(
2
1

[ +  . 

For eigenvalues λ of A we shall denote by d(λ) the largest 

value of d for which  (27) has  a  solution ; for  non-eigenvalues 

λ it is convenient to let d(λ) = -1. Now (27) has a solution if 

and only if the first r +  l - d = s + l columns of A -λ Sd are 

linearly  dependents i.e. the  matrix 
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It is convenient to use the notation 

Dp (λ) = det (Ap - λI) , D(λ) - det(A - λI) = D0 (λ) 

  

LEMMA 1. D (λ) = Dp+2 (λ) = 0 ==> Dp+1 (λ) = 0 .  

Proof. Let A be such that D (A) = Dp+2 (λ) = 0. Then corresponding 

to the eigenvalue A of A there is  an eigenvector  (xp ,xp+1 , ... , xr )'  

with xp = xr = 0, in other words the columns of Ap - λI other than 
 
the first and last are linearly dependent. For consider the cofactors 

of top-row elements in det(A - λI), Those of a - A and a , 

namely -λDp+2 (λ) and ± ar Dp+2 (λ), are both zero. If any of the 

remainder are non-zero, we can take the set of cofactors as our 

eigenvector elements, since Dp (λ) = 0. If all are zero , the rows 

of AP - λI after the first are linearly dependent, with multipliers 

mp+1 , ... , mr , say, and by symmetry the same applies to the columns. 

But since λ≠0 it is obvious by inspection of the last row that  

m =0, and we may take (0, mp+1 , ..., mr-1 , 0)' as our eigenvector. 

(Alternatively, since ar xp = λxr for an eigenvector, xp = 0 if and 

only if x =0.) In either case, x = x - 0 . 

Now it is easy to verify that 

 
Ap+1 (0, xp+1, . . . , xr-1)' =λ (xp+1 ,. . . , xr-1 ,0)'  

Ap+1 ( xp+1 ,. . . ,  0)'   = λ (0, xp+1 ,. . . , xr-1)' 

It follows that A is an eigenvalue of Ap+1, with eigenvector 

(xp+1, xp+1 +xp+2 , . . . , xr-2 + xr-1 , xr-1)' .               (35)
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LEMMA 2. If λ is an eigenvalue of A , with eigenvector 
 
(xp , . . . , xr )', and Dp+1 (λ) ≠ 0, then xp ≠ 0, xr ≠ 0 . 
 

Proof. By  Lemma  1, Dp+2 (λ) ≠ 0.Thus the cofactor of ap – λ  

in Ap -λI is non-zero, while det(Ap - λI) =  0 .  It follows 

that the space of solutions of 
~~p xxA λ=  has dimension 1,and  

any solution has elements proportional to the cofactors of top-row 

elements of A . In particular xp ≠ 0, which implies xr ≠ 0. 

We may note that in the case p = 0, i.e. when D(≠) = 0, 

D1(λ) ≠ 0, we have d(λ) = 0 

LEMMA 3. Let D (λ) = Dp+1 (λ) = 0, Dp+1 (λ) ≠ 0. Then if is 
~
x

an eigenvector of AP+1 corresponding to λ, 
  

 .xsxA
)1(~)1(~p λ=                                                                                             (36)

 

Proof. For simplicity we shall prove this for the case p = 0: 

the result immediately generalises for any p > 0. We assume then 

that D(A) = D1 (λ) = 0, D2(λ) ≠ 0. 

By Lemma 1, D3 (λ) ≠ 0. Since the only term in D (λ) containing 

a1 is (a1 - λ)D3 (λ) , then D1 (λ) = 0 is equivalent to 

a1 = a1 (a2 , . . . , ar, λ) , (37) 
 

where a1 ( ) is a certain  rational  function in  the  variables,  

Similarly, with D2 (λ) ≠ 0, D (λ) = 0 is equivalent to 

a0 = a0 (a1, a2 ,. . . , ar, λ) 

which when combined with (37) gives 
 
           a0 = ã0 (a2, .... ar , λ) .                        (38) 
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)'.x,....,1x(x,xxAletNow r~~~1 =λ=   Here  x1  ≠  0,  by  Lemma  2. 

Then (36) will hold provided the additional condition 

a0x1 + a1x2 + ... + ar-1 xr = 0     (39) 

is satisfied. Since x 1  , . . . , xr are all expressible as polynomials 

in a2 , . . . , ar , λ, with x1 ≠ 0, (39) when combined with (37) is 

equivalent to 

a0 = a  (a2 , . . . , ar, λ) .      (40) 

Further, if (36) holds then X is an eigenvalue of A. We have 

therefore the following sequence of implications: 

D2  (λ)≠0,D3 (λ)≠0, (37) and (40) ⇒ D1 (λ)=0,D2 (λ)≠0, (37) and (40) 

    )39()37(,0)(,)( 2
~~~1 andDxsomeforxxA ≠=⇒ λλ  

                                                   ⇒ (36), D2(λ)≠0, and (37) 

                      ⇒ D(λ)=0, D2(λ)≠0, and (37) 

                      ⇒ (38) . 

Thus  for  almost  arbitrary  λ, a2, ..., a (restricted only by the 

conditions D2(λ) ≠ 0, D3(λ) ≠ 0), (40) implies (38). We can 

therefore conclude that the functions a
~

0 and a
~

0 are identical, and 

we may now write 

 

  D,xxA,0)(D
~~1 λ==λ 2(λ)≠ 0 ⇒ D2(λ) ≠ 0, D3(λ) ≠ 0, (37)and (38) 

      ⇒ D2(λ) ≠ 0, D3 (λ) ≠ 0, (37)and (40) 
      ⇒ (36) , 

which proves the theorem. 

We note that in the case p = 0, d(λ) — 1 . 

As a corollary of Lemma 3 we have: 
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LEMMA 4. If p ≥ 1 and D (λ) = Dp+1 (λ) - 0, Dp+2 (λ) ≠ 0, 

then  Dp-1 (λ )=0. 

 
Proof . By Lemma 3, 

Ap (xp+1 ,..., xr, 0)’ = λ (0,  xp+1, . . . , xr)’. 

It  immediately  follows  that 

   Ap-1 (0,  xp+1 , . . . ,  xr, 0)’ = λ (0,  xp+1 , . . . , xr ,   0)’ ,   ( 41) 

whence λ is an eigenvalue of Ap-1 .

It is obvious that in the case  p = 1 ,  d(λ) ≤ 2. In general 

however we will have d(λ) = 0 in this case, since a0 is arbitrary. 
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5. Optimal rational approximation. We consider now the optimal 

Q/D for the given f(x), with Q є, Pn+r 
,
  D є Pr . We know from the 

 existence theorem for rational approximation that there exists a 

unique optimum, say Q  in lowest terms, and we have seen in D/ ˆˆ

section 2 that if D has actual degree s = r - d the problem has 

"deficiency" d = d, and Q has actual degree n + s' ≤ n + s. 

Further, the optimum must satisfy (5) and hence (27). Now any 

solution of (27) with any valtie of d yields Q/D with error norm 

E = |λ|, where λ is an eigenvalue of A; while on the other hand 

any eigenvalue and its eigenvector satisfy an equation of form (27) 

with d = 0. Since the optimum has minimum error norm for all Q/D 

considered, it follows that its error norm is 

Ê = min |λ| (42) 

taken over all eigenvalues λ of A. 

If the deficiency is d, (27) holds with d = d and λ = Ê or 

-Ê (but not both since the optimum is unique), and if d > 0, (29) and 

(30) hold with k = 0, 1, ...,δ -1. Moreover (27) cannot hold with 

A = Ê or-Ê for d > δ, since then (29) and (30) would both hold with 

k = δ, and the optimum would not be unique. Since A, being symmetric, 

has a full set of distinct eignevectors even if some of its eigenvalues 

are multiple we have proved the following theorem: 

THEOREM 1. The  unique  rational  approximation  Q/D to f(x) on  [-1,1], 

with Q є Pn+r , D є Pr and f (x) given as in (1) , has error norm Ê = 

minimum  eigenvalue  modulus of the matrix A in (26), and  actual  degree 

of D equal to r - δ , where δ is the deficiency. 
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If the eigenvalue of minimum modulus is unique, d = 0(and 

conversely.) Otherwise both Ê and -Ê are eigenvalues of A and 

δ- max (d(Ê), d(-Ê)) , (43) 

i.e. δ is the largest d for which (27) has a solution with 

λ = Ê or —Ê , there being only one such solution for d = δ 

(i.e. d(Ê ) ≠ d(-Ê ).) 
 

An upper bound on d can be found from the orders of the 

eigenvalues Ê and —Ê of A. If these are p and q, then as already 

noted ])2(
2
1

[ +δ  ≤ p and [ ½(d+1)] ≤ q, or vice versa. It follows that 

  δ ≤ 2 min (p,q) i f  p  ≠ q ,  δ ≤ 2p - 1 if p = q .  (44) 

It is important to note that since D(x) and therefore φ (u) has 

actual degree s = r - δ, our solution φ (u) has φs ≠ 0, from which 

it follows by (27) that φ0 ≠ 0. This also means that the matrix   (31), 

with d = δ, has rank precisely s. 
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6. Existence  of  desired  solution

To complete our analysis of the problem we have to show that 

among the solutions of (27) there is at least one giving φ (u) with 

all its roots outside the unit circle. To do this we exploit still 

further the dual relationship already noted between the solution 

Q/D sought, for which β = 0, and an optimal solution, for which 

β = s. The key to our proof is the observation, easily proved by 

 
induction, that A has an inverse A -1 which is of similar form when 

reflected in the secondary diagonal, i.e. 

(45) 

Thus if we denote by P the unit matrix with its columns (or rows) 

reversed, then B - P A-1 P  has  the  same  form  as  A, and  corresponds 

to a given polynomial 

g(x) =  br  Tm  (x) +  br-1  T r-1 (x) + ... +  b0  Tn+1 (x) + ... . (46) 

We note that the eigenvalues of B are the reciprocals of those of A. 

Now the unique optimal Q/D for g(x) is governed by Theorem 1, 

with A replaced by B, and(27) replaced by 

                                      (47)
)d(~

d
s

)d(~
ψμ=ψΒ



23. 
 

say, where we are using the notation instead of
 
and μ 

~
ψ

~
φ

instead of A. Then if (47) holds for some μ and
 
and ,

)d(~
ψ

we write=   

     (φ,
)d(~

φ 0 ,. . . , φs  0, . . ., 0) ' = (ψs ,. . . , ψ0, o, . . . , 0)' ,    (48) 

   

we have         

                                 (49) 
)d(~

d

)d(~)d(~

d

)d(~
sp,sp φ=ψψ=φ

and 
 

,
)d(~

d
s

)d(~
A φλ=φ         (50)

where  λ = 1/μ.  Conversely  (50)  implies  (47).  Thus  (47)  and  (50) 

are equivalent dual relationships, linked by (48), and to any 

eigenvalue  μ  of  B  for  which  (47)  holds  corresponds  an  eigenvalue 

λ = 1/μ of A for which (50) holds. 
 

The optimal Q/D for g has deficiency d equal to the largest 

d for which (47) has a solution when μ is an eigenvalue of 
)(~ d

φ

B of minimum modulus. By the duality it is clear that d is also 

equal to the largest d for which (50) has a solution (d). when A 

is an. eigenvalue of A of maximum modulus. 

Now the optimal
 
yields  a  polynomial 

)(~ δ
φ

ψ(u) = ψ0 + ψ1,u + ... + φs u3 , with s - r - d, having all its roots 

inside the unit circle (β = s). The dual vector yields 
)(~ δ

φ

φ (u) = ψS + ψS-1 u + „ .. + ψous = u
sψ (1/u), which  has  all  its roots 

outside the unit circle (β = 0). We have thus established the 

existence of the desired solution. Its uniqueness follows from 

that of the optimal Q/D, which is characterised by the condition β = s. 
Further, as already noted in section 5, any solution of (50) 

with any value of d yields Q/D with  error norm E =  ||Q/D - f || = |λ|. 
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Thus the "asymptotic" Q/D we have found has error norm Ẽ equal to  
the largest eigenvalue modulus of A: 

Ẽ = max |λ | .                               (51) 

We can now state the analogue of Theorem 1: 

THEOREM 2. 

    There is a unique ' asymptotic' rational approximation Q/D to 

f(x) on [-l,l], with Q ∈ Pn+r , D ∈ Pr and f(x) given as in (1). It 

has error norm Ẽ = maximum eigenvalue modulus of the matrix A in (26), 

and actual degree of D equal to r - d, where d is the deficiency. 

If the eigenvalue of maximum modulus is unique, δ =  0  (and 

conversely). Otherwise both Ẽ and -Ẽ are eigenvalues of A, and δ 

is equal to the largest d for which (27) has a solution with λ = Ẽ or- Ẽ, 

there being only one such solution for d = d, i.e. d( Ẽ) = d(- Ẽ) ±1, 

and 

δ = max (d(Ẽ), d(-Ẽ) .     (52) 

Remarks. 

1) The dual matrix B and function g(x), having been introduced in 

order to prove the existence of the asymptotic solution, and to uncover 

its properties, have served their purpose: they are not needed for 

finding the solution to a specific problem. 

2) Bounds on δ are given by (44), with p and q the orders of the 

eigenvalues Ẽ and -Ẽ. 

3) Just as for optimal approximation, our solution must give 

φ0 ≠ 0,  φs ≠ 0 . 
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4) Theorem 4.2 of Elliott and Lam |7| states,  in  the  notation  

of  this paper:  If   |λ| =  maximum  eigenvalue  modulus of A, ,
~~

A φλ=φ

φ0 ≠ 0 , and D1 (λ) ≠ 0 , D1 (-λ) ≠ 0 , then Ẽ = |λ| and no other 

eigenvalue has this modulus. 

In fact, when D1 (λ) ≠ 0 (for any eigenvalue λ of A) the 

condition φ0 ≠ 0 is superfluous, by Lemma 2 with p = 0. This means 

also that Lemma 4.5 of [7], which gives a sufficient condition for 

φ0 ≠ 0, is also superfluous. (Moreover in the condition given, 

namely that D2 (λ) ≠ 0 , D2 (-λ) ≠ 0 , the second part is irrelevant, 

for , as the proof of our Lemma 2 shows, D2 (λ) ≠ 0 => φ0 ≠ 0.) 

By our Theorem 2 it is always true that Ẽ = maximum eigenvalue 

modulus of A. The conditions on D1 in Theorem 4.2 of [7]  merely 

ensure the uniqueness of λ, for they imply d(λ) = 0 , d(-λ) ≤ 0 

(in fact d(-λ) = -1 , since d(-λ) ≠ d(λ) when λ = ±Ẽ) , and hence 

δ = 0. 

Example. As a simple illustration of a case with  positive  deficiency, 

and therefore not covered by Elliott and Lam's Theorem 4.2, consider 

the problem of approximating to Tn+3 (x) by a polynomial of degree n. 

(The solution is of course the zero polynomial, by the alternation 

theorem, for the error fuction has not merely the necessary n + 2 

but in fact n + 4 alternation points.) 

Here r = 2, a2 = 1, a1 = a0 = 0. The eigenvalues of A are 

1, 1, -1, so that Ê = Ẽ = 1. For λ = 1 and d = 0, 1, 2  the first 

s + 1 = 3 - d columns of A - λ Sd have rank 1, 1, 0, i.e. in each 

case ≤ s. Thus the largest d for which this  is true is  d(l) = 2. 

Similarly, for λ = -1 the ranks are  2, 1, 1, and d(-l) = 1.  Thus 

the deficiency δ = 2 =  d(l), and we must use λ = 1 in solving the 
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problem. Then (27) gives = [1], ø(u) = 1, M = -½( u

~
φ n+3 + u -n-3 ) 

= -Tn+3 (x), D = 1, and hence Q = M + Df = O, giving the zero 

polynomial as our solution. We note that the number of alternation 

points is indeed n + 2 + d as predicted in Section 3. 

Now A1 has eigenvalues 1, -1 and A2 has eigenvalue 1. Clearly 

the condition on A1 in [7, Theorem 4.2] is not satisfied. 

Similarly, [7, Theorem 3.2 ], which requires (in our notation)  φ0 ≠ 0 

and all roots of ø(u) outside the unit circle, where φ is an 

eigenvector of A, is also inapplicable, for λ = 1 has general 

eigenvector (1, c, 1) ', with c arbitrary, and λ = -1 has eigenvector 

(1, 0, -1)', and in both cases the condition on ø (u) is not satisfied. 
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7. Clenshaw's conjecture. As we have seen, the 'asymptotic' 

approximation sought is given by the unique solution of (26), 

where | λ | = Ẽ, the maximum eigenvalue modulus of A, and s = r - δ, 

d being the deficiency of the problem. To the solution of 
~
φ

(26) corresponds a polynomial  φ (u) = φs us + ... + φ0, with φs

and φ 0 ≠ 0. Now let. 

ψ(u) = (u+l) φ (u) = ψs+1 +us+1 + . . . + ψ0, = (ψ 0 , . . .  ,ψ
~
ψ s+1)’. 

Then it is easy to verify that (as already indicated in section 4) 

               .1)(δ
~
ψ

1δ
λs1)(δ

~
ψA −

−
=−

 

By repeated multiplication by u + 1 it is clear we eventually 

obtain 

.*

~
φλ*

~
φAand

,0sφφ *r,φ *r.....
r

uφ *rφ(u)
δ

1)(u(u)
*

φ

=

≠=+==+=

 

We have thus established that to the eigenvalue X of A corresponds 

an  eigenvector      For .0)*
0henceand*

0with)*
0...,*

0( ≠φφφφ

simplicity we shall now drop the asterisk, and normalize φ by 
taking φ 0 = 1 : 

A(l, φ 1,  ..., φ r)' = λ(l, φ 1,  ..., φr)' , (53) 

with λ = ε Ẽ , ε = ±1 . 

Now Clenshaw in [6] was interested in finding the maximum 

ratio of the error norms Sn and En , given in (2) and (3), for 

all possible given polynomials f(x), i.e. all possible coefficients 

ar , ..., a0 . It is of course difficult to compute Sn for given a's 

but we shall, following Clenshaw (who confirmed this empirically 

in a number of cases) make the plausible assumption that when Sn/En
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is maximum, the norm Sn is attained at x = ±1, i.e. the a's are 

cither all of the same sign, or of alternating signs. The latter 

case becomes the former on changing x to -x, so without loss of 

generality we shall assume the a's all of the same sign, and 

 

Sn = |a r  + . .. + a0 | .                       (54) 

 

Further, we know from (25) that Ẽ/En → 1 as n → ∞ (with r and 

the ai fixed). Thus, letting 

p = (ar + ... + a0)/Ẽ ,                         (55) 

we shall choose the ai so as to maximise |p|. If we normalize 

the a. by writing 
ci = ai/εẼ , i = 0, ..., r ,                    (56) 

then (53) becomes, on rearrangement , 

 

(57) 
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We may now solve for p and obtain 
 

    

 

:havewertFor.rt,0
t

rH
,1

r

rH
,Clearly <>=

φ∂

∂
−=

φ∂

∂
 

 

∑
−

=
<≤−φ−−γ=

φ∂

∂ tr

1k
rt1,)kHk(ktr

t

rH
.5LAMMA  

 

∑
= −−≤<φ−γ−=γ=γ
p

1q .1trp0,qppp,10

where

                    (60) 

Proof. We use induction on r. First, H2 =  ,12II
2
12H +φ−φ−φ−φ

and ∂H2/∂ø1 = 2ø1 - 1 = ø1 - H1 , so that the lemma holds for r = 2.  

Now suppose it holds for r = 2, 3, ... r-1. Then for t < r, 
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t

qrH
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−∂
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−

=
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φ∂

∂
 

  

⎥⎦
⎤

⎢⎣
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⎦

⎤
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⎣
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−−

=
φ−−−∑

−−

=
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ktr
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1tr

Ik
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=
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−

=
−φ−−=  

which proves the lerama. 

Now by (58),                             
r

1p p1rF ∑
=

φ+= pH .

 
(61) 

Hence     ,rrH
r

rF φ−=
φ∂

∂
 

.rt,)H(H
F

kkktp

tp

1k

r

1tp
ptt

t

r <
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−φγφ+φ−=

φ∂
∂

−−

−

=+=
∑∑

   

Thus a sufficient condition that p is a stationary function of 

φ1 , .. φr is that 

φk = Hk ,  k = 1, .... r , (62) 

i. e. 

          .1tr

r

o
t =φφ −∑
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This  means that for small u , 

φ2 (u) = 1 + u + . . . + ur + 0(ur+1 ) 

= (1 - u)-1 + 0(ur+1) 

whence 

φ (u) = (1 - u)- 
2
1

 + 0(ur+1)  
(63) 

In other words, 

             φk = coefficient of uk in (1-u)-
2
1

 , k = 1, 2, ... 

 

,
....2k42..

1)...(2k3.1 −
=

(64) 
which was Clenshaw's conjecture. 

The corresponding value of Sn /Ẽ , i.e. |p |  , is then, by (58), 

(61) and (62), 

                                                             (65)∑+= φ
r

1
.2

p1rF

The values of the γ' s  in (60) are easily determined by writing 

 
γ(u) = 1 + γ 1 u + . . . + γ r ur . 

 
It then follows by (60) that γ(u) φ(u) = 1 + 0(ur+1 ) , whence 

γ(u) = (1-u) 2
1  + 0(ur+1) , 

and 

          γk, = coefficient of uk in (1 - u) 2

1
 , k = 1, 2, ... 

 

    
.2k.6..42.

.3).(2k..3.1.1.

.
−−=

    (66)
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Further, if C denotes the matrix  A/ λ, we have 

                                                                (67) ,
~~

C φφ =

 
which  gives the c’s in succession from 

~
φ by 

Cr = φr

Cr-1 = φr-1 - crφ1 

C
r-2 = φr-2 - Cr-l φ1 - crφ2                                                    (68) 

. . . . . . . . . . . . . .                                                   

 

c0 = 1 - c1φ1 - c2φ2 - ... - cr φr .                        
 

It is not immediately apparent that if the φ's of (64) are 

substituted here, the resulting c's are all of the same sign 

(i.e. positive) - without which (54) and hence our whole 

solution is invalid. However, it can be shown that the values 

c )r(
i  of c. corresponding to any value of r are given by 

 

   ,r,...,1,0i,
1i2
1r2

rir
)r(

ic =φφ
+
+

= −              (69)

and thus are all positive as required. 

What we have shown, then, is that the ø's of (64) give a 

matrix C with positive elements c. and eigenvalue unity (or 

equivalently a matrix A = λC with elements a. all of the same 

sign and eigenvalue λ ———— λ being an arbitrary scaling factor), 

and are such as to make the corresponding sum c0 + ... + cr 

(i.e. (a0 + ... + ar )/λ) a stationary function of the φ 's. We 

have not however shown that the eigenvalue 1 is an eigenvalue 
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of maximum modulus for C, nor that the stationary function is in 

fact a global or even a local maximum. Clenshaw [ 6 ] verified the 

global maximum property in. the cases r = 1, 2 and 3, and Lam and 

Elliott [8] reported that they had verified the local maximum 

property in the cases r = 1, 2, 3 and 4. The global maximum 

property for general r remains unproved, and at present I see no 

way of proving it. 
On the other hand the maximum modulus property for the 

eigenvalue 1 of C, or λ of A, is equivalent, as we have seen, to 

the polynomial φ(u) having no roots inside  the unit  circle. Thus 

to prove it we must prove that all partial sums 1 + ½u + ... of 

the Maclaurin series for (1 - u) - 2
1  have no roots inside the unit 

circle. This can indeed be proved, but, in the absence of any 

general theory yielding results such as this, the proof is long 

and complicated, and would be out of place here. I hope to publish 

it separately elsewhere. 

Assuming therefore that 

(a) when Sn /En is maximum, Sn is attained at x = ±1 , and 

(b) c0 + . .. + cr is maximum when the øk are as in (64) , 

we have shown that for all f(x) as in (1), and large n, 

    ∑+≤ φ
r

1
.2

r1
E

nS~
nE
nS

~  
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