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INTRODUCTION 

 
         We  will  present  and  discuss  three  distinct  ideas  in  this  report. 
          
         In  the  first  section  we  illustrate, by an example,  a  direct  method 
of  obtaining  from the series expansions  of  a  function  approximations  to 
the  branch  points of the function.  This  is  done  by matching  the  series 
with  an  S fraction and  taking  advantage  of  the  quasi-periodicity  of 
the  coefficients in the S  fraction  to  estimate  the  positions  of  the 
branch  points.  The  essential  property  of  periodic  continued  fractions 
is  developed  generally. 
        
        The  heart of this  report  is  contained  in  the  next  three  sections. 
We develop in section 32  a  neat  symmetrical  theory  for  M  fractions. 
We  then broaden the class of functions to which the  theory  is  applicable 
and  we  indicate  the  important  concepts  of  multiplying,  differentiating 
and  integrating  functions  expressible  as  M  fractions.  A  slight  shift 
enables  us  to  considerably  extend  the  usefulness  of  these  fractions. 
An  M fraction is developed which matches the  series expansions  for a 
function  about  two  finite  points. Subsequently this result is  generalised 
to one that matches the Taylor expansions for a function  about  three 
more points in the complex plane. Our examples indicate the  power  of  the 
approximations  that can be obtained. 
         
       The  third concept  runs  through  the  report  and ties the  various 
sections together. A continued fraction, and hence the  rational  functions 
obtained by truncating it, can be arranged to fit a mixture  of  conditions 
by suitably setting up the linear equations bearing in mind the error  term. 
We can, for example, deduce rational functions which fit derivatives at 
more than one point and simultaneously take particular values at given 
points. 
 
        We generate rational function approximations by developing our 
continued fractions as a set of linear equations. This  process  often 
necessitates  working  with  considerably  more  significant  figures  than 
is required in the final coefficients of  the continued  fraction. 

         In  this report we refer directly to some basic results on continued 
fractions contained in section  1 of the technical report  TR/25. 

 
 
 
 
 
 
 
 
 
 
 



2. 

          31.  Matching Termsin a Series with an Sfraction. 

        Let us start   by constructing rational functions which fit  the 

derivatives  of  a   function f at  a regular point ;  without losing 

       generality we  can  take  the point as  the  origin and match the 

       Maclaurin series  for f.    The following solution was  outlined in 

       section 1 of TR/25. 
 

      Given f  = A 1  + A2 x   +   A3x 2   +      - - -                                    (31.1)  

 we  successively construct  the  three  term linear relations 

f1  =f  -P1                                          P1≡ A1  

f2  = f1+p2xf 

----------- 

fj  = fj-1 + pj x fj-2 

------------------    (31.2) 

 the pj being chosen so that the first term in the series for fj. 

 is of degree xj. 
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and equating coefficients in (31.2) we readily deduce 
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3. 

Truncating  this  C.F.   after  the  nth   term  gives  a  rational  function 

which  fits  f  and    its  first  n-1   derivatives  at  the  origin  as 

proved by  (1.8)  of  TR/25.     When  one  or  more  of  the  initial 

coefficients  in  the  series  for  an  fj   are  zero,   say  the  first  r 

coefficients,  the  above  must be   modified  since  the  pj  are  of 

necessity  non-zero.   We  take  advantage  of  this  situation by  making 

the  (j+l) th  equation  in  (31.2) 

.1jf
r1x1jpjf1jf −

+
++=+

                    
                          (31.6) 

The effect  is to fit 1+r  derivatives of f in one go.   

    In general we then obtain an S fraction whose nth convergent 
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matches the  first (n+r1+ r2+ ..rn  ) terms in the Maclaurin series 

for f. 

Most  rational functions which fit derivatives  at  just one 

point can be constructed by the above technique.   To obtain the 

J fraction for f we can simply contract  (31.5) 

;
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while  to  construct  Padé  approximates to f we convert the  series 

commencing  with  the  mth term  of  the  series  for  f see(1.20))
f

1
(or     

into  an  S  fraction. It  is  crucial when  matching  rational 
functions  to  Î  series  to  arrange  that  they behave at  infinity 
in  a  manner  not  too  different  from  that  of  the  function. 
Let  us  consider  a  simple  example  of  (31.5).  The  S  fraction 
that  matches  the  Maclaurin series for the sum 

3
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x)(1
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4.  

                 has coefficients pj. as follows : 
 

  j           p
 j

  1 2.00000000 
  2 0.58333333 
  3 0.50000000 
  4 0.55886243 
  5 0.63226183 
  6 0.44110785 
  7 0.45272735 
  8 0.49832286 
  9 0.57734169 
10 0.48074673 
11 0.46470721 
12  0.48757704 
13 0.55432919 
14 0.49479358 
15 0.47309508 
16 0.48417838 
17 0.54114572 
18 0.50129380 
19 0.47897225 
20 0.48308332 
21 0.53250687 
22 0.50468423 
23 0.48327576 
24 0.48293517 

Approximaing Branch Points 
 

Now, suppose in the above example  we  knew only the Maclaurin 

series but not  the function (31.9).From it we could deduce a 

number of S fractions corresponding to the Padé approximants of 

which the above would be one. The factor that would make this C.F 

stand out would be the manner in which the coefficients almost 

repeat every four terms and tend to settle. This  quasi-periodicity 

of  the  coefficients  pj is  something that we observed in TR/26 

We  can use  it to  predict  the  approximate positions  of  the branch 

 points of the function defined by the series. In this  particular 

example we can of course check our results as we know the function (31. 9)                                        



 

                                                                                                                     5. 

  

 
from which the original series came. We will develop a general 

analysis of periodicity and then perform this calculation as a 

particular  case. 

Periodic  Continued Fractions. 

Consider  an  S  fraction with period  m, it can always he written 
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Denoting  the mth   numerator and denominator  by C m  and D m  

respectively,  we  find                 

                         1mDRmD
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       And hence R is a root of the quadratic equation
                                        

(31.12)
                       

0.CR)C(D2RD −−−+− m1mm1m =
 

The discriminant  Δ of this quadratic equation gives the branch 

points of R and is 
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where  we  have  used  the  result  ( l . 12 ) .  

We  will  evaluate  the  cases  m = 3  to  6  in detail,  since  they 

occur frequently.   In  doing  this  it  is  convenient  to  change  our 

notation  slightly  and write 
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6. 
                      the first x convergents of R are 
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                                  Thus when  the  continued fraction has: 

                      Periodicity three          
.R1
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                      By (31.12) with m  = 3 

(1+ rx) R2 + [1 + rx + sx = qx] R- qx(l + sx) = 0 

                     and the discriminant (31.13) is 
               Δ=[1 +(q+r+s)x]2 +4qrsx3.         (31.15) 

                     Periodicity four    
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                     The disoriminant, with σ  = q+r+ s + t,  is 

                Δ = (D4, +C3 )2   - 4 qrstx4

               = [l+ σ x+(rt+qs)x2]2 -  4 qrstx4                (31.16) 

                     Periodicity five           
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                    The discriminant ,       Δ = (D5+ C 4 ) 2 + 4 qrstux5

               =    [1 + σ X+ τ X2]2+ 4qrstux5                    (3.17) 
                               where  = (q+r+s + t + u ) ,  σ τ  =   (qs+ qt+ rt + ru + su). 
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Periodicity six        
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The discriminant,  Δ = [ 1 + o x + T x  + ( qsu + rtv)x3]2 - 4 qrstuvx6   (31.18) 

where  = (q+r+ s+t-m + v) , σ

τ  = q(s+t+u)+r (t+u+v) + s(u+v)+tv, 

When the continued fraction is of even periodicity the discriminant 

immediately factorises into two terms. We also note the number of parameters 

in the discriminant is less than the degree of the discriminant, e.g.with 

the periodicity five there are at most three parameters σ , τ  and the 

coefficient of x5.Consequently the five singularities (branch points) 

cannot  be  positioned independently. This suggests that some of the roots the 

discriminant  are  repeated,  or  in pairs. 

The  Branch Points. 

Let us now return to our original problem which was to determine 

the branch points of a function defined by its Maclaurin series. The 

series we  converted into an S fraotion whose coefficients pj are listed 

in(31.10). We had observed that the coefficients pj almost repeated 

themselves  every four terms, we therefore write 
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For sufficiently large n,R* is almost the same function of x as R . 

Thus, if we replace R* by R, the discriminant of the resulting quadratic 

equation must approximately give the branch points of R and hence 

those of the function defined by the S fraction. The periodicity is 

four, therefore by (31.16) the discriminant is     
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Setting  Δ= 0,   the   approximate   positions   of   the   branch   points  

of   the   function   defined   by  the   S   fraction  are   the solutions   of  the  

equations 

             .0xPPPP2xx1
2

3n2n1nn

2
=±τ+σ+

+++
                                (31.21) 

Using   he  pj   listed  in   (31.10)   the   following   values   are 

readily   calculated 

                                                σ    τ     2  

n = 13     2· 0064 0·5018 0·5013 

n = 17     2·0045 0·5014 0·5012 

n = 21     2·0034 0·5011 0·5011 

 

With   the  last  set  of  values  we would  estimate  that  the  branch 

points  of  the  function   defined   by   the   series   are  at 

                                             x = - 1·034,      - 0·965 and -0·499 , 

the fourth root being large and negative.  These are reasonable 

approximations to the branch points -1 and -0.5 of the original 

function  (31.9). 

The values for  ,   and the root suggest that all we need do is σ τ

increase n and (31.21) with the + sign will tend to 1 + 2x + x 2, 

while with the - sign it will tend to 1 + 2x. In practice to lengthen 

our table for pj significantly, with the above method, would require 

working to many more figures. The table was obtained using double 

precision arithmetic (20 figures). 

 

The alternative is to make assumptions concerning the variation 

of ,  and the square root with n and attempt to extrapolate to σ τ

their limiting values. For example a Richardson    2
n

1  extrapolation 

on  the  values  for   σ

                    using  the  n=   13  and  21   values      gives o  =2·0015,  

                    using  the  n  =  17  and  21   values      gives o = 2·0013. 

. 



                                                                                                                                         9. 
Connecting he branch points are branch cuts. Let us simply 

remark that the poles and zeros of the nth convergent of the 

C.F. settle on to lines as n is increased, and in fact etch 

out these cuts, for this point is discussed in the section on 

quasi-periodicity in TR/26. 

So far our rational functions simply match the terms in a series 

expansion  of a function. When additional information about the 

function is available the approximations are often considerably 

improved if this information can be built into our C.F. A case  of 

particular importance is when a series expansion, or part of one, 

about a second point is known. We will now construct a C.F, which 

matches two series, one at the origin and the other at infinity. 

In the subsequent section we will extend this C.F. so as to obtain 

a C.F. which matches two series expansions both about finite points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

10. 

  32. Matching Terms in Two Series with an M fraction. 

                             Given a function f(x) with  the following expansions 

               for        |x |        small         (32.1)                     ...xLxLxLf
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             for        |x |        large,                                        

                       

           

we can successively construct  the linear relations 

f1  = (L1x + H1)f- L1 H1x 

                                                       f2 = (α2x +ß2) f1- α2ß2xf 

                                                              -------------- 

                                                        fj =(ajx+ßj)fj-1-αjßjxfj-2                                                   (32.2) 

                                                    --------------- 
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                    Then substituting these series for fj in (32.2) and equating 

                    coefficients, we readily deduce for j > 2 and i > 1, 
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provided that the L1,j and H1,j are non-zero for all j < n 

when constructing n of the equations (32.2). 

      The set of equations 32.2) are equivalent to Murphy's M fraction 

      for f(x) 
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where α1 = L1  and β1 = H1   . 

              This M fraction possesses the important property that its nth 

     convergent matches n terms in each of the series(32.1),a fact 

     readily established by differentiating the error term for the nth 

    convergent 
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  The M fraction (32.5) terminates when f is a rational function. 

  Otherwise in the above derivation none of the first terms, L1,j-1  

   and  H1j+1 , in the series can be zero. When one is  zero there is some 

   choice as to how to rectify the situation. We will simply construct 

   the  jth  partial quotient to match two terms from each series bearing 

   in  mind  the  ratio
1j

j

f

f

−

 must be  in  a  suitable  form for  continuing  the 

M  fraction. 

               Suppose L1,j-1   =   0 ,   but  H1, j-1  ≠  0  and L2,j-1  ≠  0. 
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                         We take in our M fraction for the jth partial quotient 

                             

)7.32(
xyx

x,

jj

2

j

2

j

β++α

βα−

 
 

                  and choose the yj to fit a second terra of the H series. In 

                  the linear relations (32.2), we then have 
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the ratio
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regains the form of f and we can continue to spin out 

subsequent  terms of the M fraction. 

                       When   H1,j-1 = 0  and L1,j-1  ≠  0  and H2,j-1 ≠ 0. 

                        The  appropriate  form for  the  j th  partial  quotient  is 
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              where the yj is to be chosen so that a second term of the L series 
 

              is matched. From the linear relation 
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           we then have, for  | x|  small, that 
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          again  the  series for  
1j

j

f

f
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 are in the correct form for producing 

the  subsequent  partial quotients in the M fraction. 

With (32.7), or (32.10), as the jth partial quotient in Murphy's 

M fraction a simple consideration of the error term immediately 

verifies that the jth  convergent matches j +  1 terms in each of the 

series (32.1) for f. In general  (32.5) may include a number of 

terms like (32.7) and (32.10), but even when it does we will still 

refer to it as an M fraction. 

The special  case  (32.7) and  (32.10) can  be extended  to  allow  for 

two or more leading L and/or H to be zero by simply increasing the 

number of unknowns in the partial denominator. The partial numerator 

is the product of the first and last terms in the denominator. Only 

one further case is worth mentioning. When  both  L1,j-1 and H1,j-1 

are zero, the form for the jth  partial  quotient  is 
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Our special cases are in fact of considerable interest. The 

     product of two functions with expansions of the form  (32.1)  give  a 
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function g(x)  which behaves  as 

 

g  =  Lx 2+  0(x3) for  |x|  small, 

~ H  +  0(1/x ) for  |x|  large. 

              

                 By  (32.7)  the  M  fraction  for  such  a  function  has  as  first   partial 

                 quotient 
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                 when  γ   is  chosen  so  that  a  second  term  of  the H series is matched. 

                          Similarly  (32.10)  gives  the  form  of   the  first  partial quotient 

                 of    the    M    fraction    for    the    derivative    of    (32.1) 
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             where  R has  an M fraction representation. 

             Hence  the  derivative 
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                           and we  can deduce  its  M fraction. 

                                  Only   a  few  common  functions   can  be   expressed   in  the   form 

(32.1).   It   would    therefore   be    useful    to    generalise    the    concept 

of  fitting  a  C.F.  simultaneously  to  an expansion  at  the  origin 

and   one  at   infinity,   to  a  function  g(x)   that  can be 
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written 
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where  h(x)  is  an  irrational  function which cannot be  expanded  in 

integer  powers  of  x˚    A  neat  general  solution  is  not  known.  Particular 

examples  can,  however,  be  dealt  with  numerically by  subtracting 

from f (x)  a  simple  function with  a  Maclaurin  series  expansion  and 

which  tends  to  h(x) as  x → ∞, then  expressing  the  difference  as  an 

M  fraction. 

As   an  example   we   construct   such a  solution for  the  integral  of 

the  function, 

f(x)  =    L1   +  L2X  +  L3x2      + ...     for  |x|   small,            (32.17)                             

                       +++ 3
3

2
21

x

H

x

H
x

H
~          ....     for  |x|   large , 

which  can  itself  be  written  as  an  M  fraction. 

Integrating 

....
x2

H
x

H
cxlogH~

)18.32(

....
3
xL

2
xLxLdx)x(fg

2
32

1

x

o

3

3

2

21

−−−+

+++== ∫
 

where    C  is   the  constant  of  integration  and  must  be  evaluated. 

Now 

,....
x3

1

x2

1
x
1xlog

....
4

x
3
x

2
xx)x1log(

32

432

−+−+=

+−+−=+
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hence the difference 

.........
x2

1)HH(
x
1)HH(c~

)19.32(

.....
3
x)HL(

2
x)HL(x)HL()x1log(Hdx)x(f

21312

3

13

2

1211

x

o

1

−−−+−

+−+++−=+−∫

 

is  in  the  form  of  (32.1) and can therefore be expressed as an M fraction. 

Finally let us make two remarks concerning the numerical determina- 

tion  of  the  coefficients  in  an  M fraction. The numerical stability of 

the  equations  (32.4)  is  such  that  it  is usually necessary to work 

Double  length  in  order  to  evaluate  sufficient  coefficients  αj,ßj to 

single length accuracy. 

Since  ßj is  never  zero  we  can  rewrite (32.5) in the alternative 

 

form 

 )20.32(....
xq1

xP
....

xq1
xP

xq1
xP

f
j

j

2

2

1

1

++++++
=  

 We will often tabulate pj and qj rather than αj and  βj. Two 

examples of M fractions are given in TR/26. 

The matching of a C.F. to the asymptotic behaviour of a function 

at infinity, as well as its Maclaurin expansion, is often not 

practical.    In the next section we will modify our M fraction and 

construct a C.F. which matches the series expansions of a function 

about two points in the finite complex plane. This will considerably 

extend our use of M fractions. 
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33.     M fraction matching Series at Two Finite Points. 

 

Suppose   the   function   F(t)   is   regular   at   two   finite   points   in   the 

complex   plane    and   we  are   given   its   series   expansions   about   these points. 

Without   loss   of   generality   we   can   adjust   the   points   so   that   they   are  at 

the   origin   and   at    t = 1 .    Further   we   can   also   arrange   that   F(t)   is   zero 

at   both   points,    so   that 

F(t)  =  A1t + A2t2   + A3t3    +      ....      for | t |small 

                                                                           (33.1) 

                                          = B1 τ  + B2 2τ     + B 3 τ 3 +    .......    for | τ | small 

 

where  = 1 - t. τ

Proceeding   along   lines      parallel   to   those   of   the   previous   section, 

as   a   first  approximation  to  F(t)  we have 

   τBtA
tτBA

11

11

+  
and in general 

 

(33.2)...
βtα

tβα
....

βtα
tβα

βtα
tβα

F(t)
nn

nn

22

22

11

11

−τ+

τ

−τ+

τ

−τ+

τ

 

where α1  ≡ A1   and ß1  ≡ B1 . When necessary we incorporate terms 

equivalent  to  (32.7)  and  (32.10).   This  we  refer   to  as  an  M fraction 

for  two finite  points. 

To deduce  (33.2) we can define 

           
....BB

)3.33(....tAtA)t(F
2j

j,2

1j

j,1

2j

j,2

1j

j,1j

+τ+τ=

++=
++

++

and construct the linear relations for j > 2, 

               
2jjj1jjjj

FtF)t(F
−−

τβα−τβ+α=                     (33.4) 
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From which  we  find 

 

2j,1

1j,1
j

2j,1

1j,1
j B

B
,

A

A

−

−

−

− =β=α       (33.5) 

                 and         )AA(AA)(A
2j,1i2j,ijj1j,1ij1j,ijjj,1 −+−−+−

−βα+β+β−α=     

                with  a  similar  expression  for  Bi,j

               Further,since  the denominator  polynomials, 

              
,nτ1n,1β...nt1n1,A)nτnβ..2β1β...ntn..α2α1(αnD −++−=++=

 

                the  error  in  approximating  F(t)  by  the  nth covergent of  (33.2)  is 

             

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+
+

τ
−

+
+

−==−

....
1n

1n,1
A

n,1B

,...
1n

t
1n,1

B
n,1

A

)t(nD

)t(nF

)t(nD

)t(nc
)t(F      (33.6)                                      

 

               As  a  corollary we  can then verify  that the  nth  convergent 

             
)t(D
)t(c

n

n   fits   n   terms  in  each  of   the  series(33.1)  of F(t). 

             Alternatively   we    could   derive   the  continued  fraction  (33.2) 

              directly   from   (32.5)   by putting 
t1

tx
−

=
   

In  fact  this  was  how 

              we  first   obtained  (33.2),    Setting 

              

,small||for...)1(H)1(HH~

,small|t|for....)t1(tL)t1(tLtL)t(F

)7.33()x(f)t1()t(F

23

3

12

21

23

3

12

21

τ+τ−τ+τ−τ+τ

+−+−+=

−=

−−

−−

 

            It    follows    that    the   Aj    are    related   to   the  Lj,  and   similarly   the 

             ßj    to   the   Hj,  by   linear    relations  of   a   Pascal   triangle    type. 
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A2   =  L2                                     L2   =  A2

A3  =  L2   + L3                             L3   =  A3  -  A2 
A4  = L2  + 2L3  + L4    L4         = A4       -     2A3  +  A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (33.8) 
A5   =  L2   + 3L3  + 3L4  +  L5       L5  = A5 - 3A4 +  3A3  -  A2

 
We  will  now  demonstrate   the  power  of  the  convergents   of  the 

M   fraction   (33.2)    in   approximating   functions.    The   coefficients   in 
the   M   fraction   in  our  two  examples  were  evaluated  by  changing  the 
series    (33.1)    to    the   series    (32.1)    and  determining  the  M  fraction 
(32.20).     We   therefore   tabulate   pj   and   qj   rather   than   aj   and  ßj  

A  function   with   the   correct    form    (33.1)    at    t   =  o   and    t  =  1 
is  sin π t   , 

 

               

......
!5!3

,....t
!5

t
!3

ttsin

5
5

3
3

5
5

3
3

−τ
π

+τ
π

−πτ=

−
π

+
π

−π=π
 

where  τ    =   1   - t. 
Clearly αj  = ßj     and  there fore   qj = 1 .     Hence 

                  ...
1

tP
...

1
tP

1
tP

)t(F n21

+

τ

+

τ

+

τ
=                                               (33.9)                          

       
where   the  first   eight pj   are 
  

j           Pj
1   3·1415926536 
2  -1.0000000000 
3   0.6449340668 
4  -0.0943879701 
5   0.1896765053 
6  -0.0359889578 
7   0.0936058123 
8  -0.0186821135 
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          Some   values   of   the   fifth   and   eighth   convergents   of   (33.9) 

    for   a   few   values   of   t   are   listed   in   the   following   table : 

 

   
1x

xtx
+

=                    F0/5                                         F0/8                                    sinπt                            

5
1

4
1

                     0·5877852288               as                0·5877852523 

           
3
1

2
1                      0.8660252297              sinπt                0.8660254038                      

7
3

4
3                      0.9749275967                 column      0.9749279122     

2
11

                     0.9999996420                                        1.0000000000 

 

         The   Theconvergents   of   F(t)   are   symmetrical   about   t = ½ . 

     The   continued   fraction   (33.9)   can   be   recommended   for   its  simplicity. 

Nevertheless    more   effective   M   fractions   for   calculating   the   sine   (and 

cosine)   function   can   be   constructed.     The   fifth   convergent   of   (33.10) 

yields    sin    π/2   t   to    nine   decimal  places. 

The   function   sin )t
2

(π
 
-t   has   the   series   expansions 

.......
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)
2

(
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)
2

(
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)
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(
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2

(
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2
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2
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4
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2

2

5

5

3

3

−τ

π

+τ

π

−τ=

−

ππ

−−
π

=−
π

 

 
where      =  1  -  t, τ

and  these  series  can be  matched  simultaneously by  the    M  fraction 
 

)10.33(....
tq

tP
....
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tP
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)t(F
n

n

2

2

1

1

−+τ

τ

−+τ

τ

−+τ

τ
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                            The  first eight values  pf  pj  and  qj  are 

j            Pj              qj 

1  0·5707963268 0·5707963268 

2 -0·5707963268 1·9296159323 

3  0·0530340085 0·7213280285 

4 -0·0727047212 1·3386167399 

5  0·0154574880 0·8114789728 

6 -0·0282468746 1·2123789943 

7  0·0074338105 0·8575377249 

8 -0·0149091582 1·1550923321 

 

 

  We give just a  We  give just a short table of t plus the fourth convergent and  t 

  plus the fifth convergent of (33.10). 

    

X    t=
1x

x
+

 t+ F0/4           t+ F0/5 sin  t2/π

4
1  

5
1  

 
0.3090169922 0.3090169944 0.3090169944

2
1  

3
1  

0.4999999887 0.4999999999 0.5000000000

 
1 2

1  0.7071067605 0.7071067810 0.7071067812

 
2 3

2  0.8660253922 0.8660254038 0.8660254038

 
4 5

4  
0.9510565141 0.9510565163 0.9510565163
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34. Matching Series  at three  or more Points. 
 

Our concept of matching the derivatives of a function at two 

points by rational functions readily extends  to matching the 

derivatives  of a  function at three  or more points in the complex 

plane.    The  analysis  in section 33 generalises and for three finite 

points  is as follows. 

Suppose F(t)  is regular at the origin,  t = b and t = c  and has the 

following Taylor expansions  at  these points. 

....
c
t1Tand

b
t1where

,small|T|for...TcTcTc

)1.34(,small||for...BBB

,small|t|for...tAtAtA)t(F

3

3

2

21

3

3

2

21

3

3

2

21

−=−=τ

+++=

τ+τ+τ+τ=

+++=

Now   the   rational function 

τ++τ

τ

tBAtTCATCB
TtCBA

111111

111  

correctly  matches the first terms of  the above series  at   the three points. 

This   suggests   that  we  construct   the  linear relations 

.2jforTFtF)ttTT(F
)2.34(TtCBAF)tBAtTCATCB(F

2jjjj1jjjjjjjj

1111111111

≥τγβα−τβα+γα+τγβ=
τ−τ++τ=

−−

 

 

in which we  successively choose  the αj ßj γj   so that the form of Fj

                     is 

.small|T|for..TCTC

)3.34(,small||for..BB

,small|t|for...tAtA)t(F

2j

j,2

1j

j,1

2j

j,2

1j

j,1

2j

j,2

1j

j,1j

++=

τ+τ+τ=

++=

++

++

++

 

 
 



 
                                                                                                                           23. 

We  find  for  j  >  2, 

            )4.34(
C

C
,

B

B
,

A

A

2j,1

1j,1
j

2j,1

1j,1
j

2j,1

1j,1
j

−

−

−

−

−

− =γ=β=α  

  and from the coefficient of t J+1,     the general  expression for the 

  Ai , j,  i  ≥ 1,  is 

+γ+βα−γβ+−γβ=
−−+ 1j,ijjjjj1j,1ijjj,i

A])()
c
1

b
1([AA  

 −
γ

+
β
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γβ
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jjjj A])
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)5.34(,]A
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1A)

c
1

b
1(A[

2j,1i2j,i2j,1ijjj −−−−+
++−γβα−  

 

with  similar  expressions  for  the  Bi , j   and  the  C i , j
The   linear   relations   (34.2)   can  be   spun  out   to   give   for   F(t) 

the  continued  fraction  form 

1n

n
nnnnnn

nnn

111111

111

F
F

)ttTT(

Tt
.....

)ttTT(
Tt

)t(F

−

−τβα+γα+τγβ−

τγβα

−τβα+γα+τγβ

τγβα
=         (34.6) 

 

where α1   = A1   ,ß1   = B1     and y1  =   C1  .  

 

We   see   that  the  denominator  polynomial  Dn  ( t)    of  the   n th

Convergent   is   dominated,   when   either  t or  τ   or  T   is   small, by   the   product 

.)ttTT(..
..)ttTT()ttTT(

nnnnnn

222222111111

τβα+γα+τγβ
β γ α+τ γ + τβα β γ τ + α γ + α γ τ

 

In particular when t  is small   the  constant  term is 

 

;CB.....
1n,11n,1nn2211 −−

=γβγβγβ  
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                             the corresponding result when r is small is A1,n-1 C1,n-1, and 

  

                             when T is small is A1,n-1 B1,n-1

                                 Consequently the error in approximating F(t)  by the nth  convergent 

                             of  (34.6)  is 

                        

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+

+τ

+

==−

+

−−

+

−−

+

−−

.....T
BA

C

)7.34(.....
CA

B

.....t
CS

A

)t(D
)t(F

)t(D
)t(c

)t(F

1n

1n,11n,1

n,1

1n

1n,11n,1

n,1

1n

1n,11n,1

n,1

n

n

n

n  

                          for  |t|,  | |  and  |T|  small respectively.    From this result we  can τ

                         immediately establish that  the  rational function 
)t(D
)t(C

n

n matches  n 

                         terms   in  each  of   the   series   (34.1) . 
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35.      Fitting Values  at Given Points 

 

      Just   as   we   have   generated   a   C.F,    to   fit   derivatives   of   a 

function    at   one   or   more   points,   so  we   can  design  a  C.F.  to  take  on 

particular   values   at   given   points.    Let   us   start   with    an   example. 

     A  rearrangement   of   the  S  fraction  for   (1+t)x    gives 

....
)2()12(

)(.....
)2(5
)4(

)2(3
)1(

21)1(
1)1( 2222222
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t
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t
xt

t
t

x

x

                    
 

Substituting,  e12Ø   =  1+t,  we  find. 

)1.35(..
1n2

tan)nx(..
5

tan)4x(
3

tan)1x(
1

tanxxtan
2222222

−+
φ−

−
φ−

−
φ−

−
φ

=Φ

 and   in  particular 

                    )2.35(...
1n2

)nx(....
5

)4x(
3

)1x(
1
x

4
x

2222

−+
−

−
−

−
−

−
=

πtan  

Clearly    this    C.F.    is   fitting   values  of   the  function   tan ...,2,1,0xat
4

x ±±=
π  

Its    nth    convergent    is    a   rational   function  which   as   n  is   increased 

progressively    approximates    more   of    the   function.   (35.2)   is   a  member 

of   a   class   of   C.F's   which   fit   values   of   even   and   odd  functions;  as 

few   appear   in   the   literature   we   give   some   examples. 

           a)    Fitting  the  values  of  cos  ,)1n(...2,1,0xatx
2

+±±±=
π     we  obtain 

           )3.35(
1n2
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1  

b)    Fitting   the   values   of    sin  
2
π  x at   x = 0 ,  +   1,  +  2   ...  + ( n + l )   gives 

        .]
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                                                                                                              (35.4) 

         c) While  for the  tangent  function tan
2
π x, we  have 
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Successive  convergents  of  this  last  expression  lie  on  opposite 

sides  of  tan π/2 x and  provide  reasonable  approximations  to  it.  But 

in  general  the  addition  of  a  partial  quotient  only  has  a  large 

influence  on  the  approximations  near  the  points  being  fitted;  for 

a  given  x  the  convergents  tend  to  oscillate.   These  examples  are  of 

analytic  interest but  we  will  not,  discuss  them  further  here. 

In   principle   to   construct   a   rational  function  which  fits  a  set 

of   values   of   a   function   f(x)   at  given  points  x1  x2 ....   xn ,  we 

simply  set  up  the  linear  equations 

                                                        Po=    f  +  (x  - x1, )f1

                                                                                p1  f     =     f1 + (x  - x2)f2    

                                                            ---------------                                                                         (35.6) 

   P n-1  fn-2=   f n-1 ,    +    (x   -   x n )f n
 and   successively   compute   pi-1  at   x i  and   f i  at   x i+1.   .   ....  xn

        These  equations  can  be  written  as  the  C. F. 

 

(35.7) 
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n
n

1n1n2211o
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1
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−
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−

+

−

+

−
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                 and   hence   we   obtain   a   rational   function  which  fits   the   set   of  values 

                 as   shown   by   the   error   term   for  this  C.P. 

                     .
Q
f

)xx(..)xx()xx()1(
Q
P

f
n

n
n21

n

n

n −−−−=−                   
(35.8)

 

P n   (x)  and  Q n (x)  are  the  nth   numerator  and  denominator  polynomials. 

        However   there   is    little   to   ensure   that   the   rational   function   is   a 

good   approximation   to   f.  There   is   not   a  unique   rational  function  which 

fits    the   data.    Different   rational   approximations   would   be    obtained, 

for   example,   by   fitting   some   values  to  a  polynomial,  and  then  the 

remainder   to   a  C.F.    in  the  above  manner   The   position   is  rather 

similar   to   that   of    S   fractions,  we   require   further   information   on 

the   general   form   that   the    rational    approximations   should   take.               
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36.     General  Fitting  of  Conditions 

 

The coefficients  in  all  the  continued  fractions  that we  have 

discussed  have  been  generated  by  setting  up  three  term relations, 

thus  in  principle, by  propagating  the  necessary  information through 

these  linear  relations  we  can  switch from  producing one  type of 

fraction to developing another  type.  When  the  Maclaurin series for  a 

function is  known, hut  only a limited number of asymptotic terms  in the 

form n
1n

x

H
+  

 
are   available,  it   is  possible  to  incorporate  the  latter 

by  initially forming  M  fraction  type  partial quotients and  later 

switching  to the  S  fraction  type.  Similarly  the rational  function 

approximations  obtained  by  truncating a C.F. designed to match 

derivatives  can be  made  to take  a  particular value at a   given 

point  (or  points)  by appending  to  the  truncated  C.F. a  suitable 

additional   partial    quotient. 

 

To illustrate this point let us modify the convergents of the  M 

fraction (33.9)  for sin  πt  so  that  the  rational functions take the 

value one  when t = ½, as this is the point where the maximum error 

occurs. Computing  the linear  relations  successively  with t  = ½, 

we find the term to be  added  to the  truncated  C.F to produce this 

value   of   one. 

The  values  of  the  fifth convergent of (33.9) F ° /5   are  given in 

the  table  on  page  20. The  values  of  the  sixth  convergent  of 

 

)
2
1t(0/

1
tP

1
tP

....
1

tP
1

tP *
6521 −

τ

+

τ

+

τ

+

τ
+

                  (36.1) 

   

with  P*6  =  - 0·0351623 instead  of  the value  of  p6  of (3.3.9) are   
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                  given   for   the  same  values  of  t below 

                                       x            t sixth convergent of (36·1) 

          5
1

4
1

                
0·58773 5252 

            3
1

2
1

              
0· 86602 5404  

          
7
3

4
3

                
0·97492 7912 

          
2
11

                
0.974927912 

                 These  figures,  which  are  the  correct  values  of  sin  π t   to 

                  nine   decimal   places   for   the    four  values  of  t,   indicate a 

                 significant   improvement   in   the   numerical   accuracy   of    the   approxima- 

                 tions.   We   have,   of   course,  lost  some   of   the  simplicity  in  our  method 

                of   generating    the   approximations   to   sin  π t. 



                                                                                                                                                           29. 
Conclusion 
 
 

The    approach   to   rational   functions   through    linear  equations  that 

we   advocate   in  this  report   is   both  powerful   and   flexible.   It   is   clear 

that    rational     functions,   like    polynomials,   can    incorporate    much   of   the 

available    information   on    a    given    function,    and    produce  a   satisfactory 

representation   of   it.     Many   of    our    approximations    fit    the    function 

smoothly   and   hence,    unlike   Chebyshev   series,   can    give   reasonable 

approximations     to    the   derivatives   of   the   function   as   well   as   the 

function    itself. 

The    most    significant    result    is    contained    in    Sections  33  and  34 

where    we    design    rational    functions    that    can    fit    the    derivatives    of   a 

function   at   two   or   more   points    in   the   complex   plane.    There   will    be 

difficulties    in    obtaining    the    initial    series,    but     the    method    has 

considerable      potential      for     approximating     the     solutions     of     differential 

equations     and     for    approximating     indefinite     integrals     etc.     The 

technique    is    simple     and     the    approximations    often    efficient,    further 

the   maximum   error   can    often   be    roughly    located    and  troublesome  branch 

cuts    will    frequently   be    squeezed    away    fro    the   region   of   interest   in 

the    complex    plane.     The    error   terms   are   given   only   in   terms   of   series, 

and,    except    in    a    few    special    cases,    it   will  not   be   easy   to   obtain 

asymptotic    estimates    for    these    errors. 

Determining    the    branch    points    from    a   Taylor   series   for   the 

function    is    not    an    easy    problem,    and    indeed   the    position    of    the 

branch    cuts    is    dependent    on    the    method    of    approximating  the  function. 

Our    approach    in    the    first    section    is    simple    but   calls    for   a  deeper 

and    more    thorough    analysis   especially   of    the   nature   of    the    branch 

points.      Nevertheless    some     useful    expressions    for    the    discriminant  Δ 

for    quasi-periodic     continued     fractions    are     recorded. 
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