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Groups  of  type  (p,  p)  acting; on  p-soluble  groups

      by 

Andrew  Rae 

In this  paper  we  continue  with the  work   of   (l)   and  (2),   considering 

now  an  operator  group  A  of  type  (p,  p)  acting on  a  p-  soluble  group  G. 

The  aim  is  to  show  that  if  the  p  length  of  G  is  large  enough,   fixed 

points  appear  for  such  an  operator   group  on a  P′     section;    moreover 

this  is   non   trivial   in  the  sense   that   it  is  not   centralized  by e very 

Sylow  p  subgroup  of  G.    We  show  that  such  fixed  points  must  appear  if 

the  p  length of   G/Op     is  at   least  5   (if p  =  2)  or  7  (if p  -  2).     This 

improves  on  the  bound  for  odd p  given in  (l)   ;    for  p  =  2  such  fixed 

points  do  not  seem  to  have  been  found  before.   Our  result   is   almost 

certainly  not  the  best possible;    our  method  is  based  on  a  device  due  to 

Hartley  (3)  which    probably  gives  a bound  2k -  1  where k  is  the  best 

possible. 

The  search  for  such  fixed  points  was  motivated  by  a  conjecture  of 

J.G.  Thompson  which  states that  if a  p  group  A  of  given  order  pk .  is 

contained  in only  one  Sylow p  subgroup  of  the  p-soluble  group  G then 

the  p  length  of  G  should  be  bounded  by  a  linear  function  of k  .    An 

exponential  bound  was  found  in  (l)  for p  odd,  and  the  linear  bound 

2k +  1  for  A  cyclic  and  any  p  .    We  hope  that  this  paper  may  suggest 

a  way  of  getting  a  linear  bound  if  A  is  elementary  Abelian. 

This  paper  may  be  regarded  as  of  "Hall  Higman  type"   (see  (4))   ; 

we  proceed  by  showing  that  if  no  fixed  points  of  the  required  type 

appear  in  the  top 4  (or  6  if p  =  2)  p    sections  of  the  upper  p  series, 

then  a  free  module  for A must  occur  in the  next  one  down(Theorem  D 

below  gives   a   linear version  of  this).     In  fact   it   seems  likely  that 



such  free  modules  must   continue  to  appear  at  each  successive  stage, 

but  we  have  not  been  able  to  establish  this.    We  also  give  a  number 

of  results  analogous  to  Hall-Higman's  Theorem  B  for  an  operator  group  of 

of  type  (p,  p)   (see  section  one)   . 

The  proof uses  the  same  overall  method  as  Shult  in  (5)  where  the 

case  that  A  and  G  have  coprime  orders  is  solved;    this  case  has 

subsequently  been  investigated  for  general  A by  T.R.  Berger  (6),  (7), 

(8),  but  we  have  not  been  able  to  use  any  of  his  powerful methods. 

The  main  difference  between the  methods used  here  and  those  of  (3) 

is  that  we  have,  essentially,  to  keep  track  of  the  whole  of  G     and, 

unlike  (5),  we  are  not  able  to   use   induction   on    G    to   any   significant 

extent.    This,   together  with  the  calculations  necessary  to  handle 

p  =  2  and  3,  is  responsible  for  the  length of the  paper. 



1. 

S
S   1.       Statement  of Results 

Theorem  A.     Let  A  be  elementary  Abelian  of  order  p2    and  let  A  act  on  the 

p-soluble  group  G.    Suppose  the  p  length  1p    of  G/0p    satisfies 

1p    ≥  5    if    p  ≥  3 

1 p    ≥ 7    if    p  =  2 
 

then A  has  a  fixed  point  on  some  A  invariant  P′    section  which  is   acted  on 

fixed  point  freely  by  an A  invariant  p-subgroup  of  G. 

We  shall  prove  this  by  assuming  that  A  has  no  such  fixed  points  in 

the  top  few members  of  a  p-series  and  then  forcing their  existence  lower 

down.    It  will  be  convenient  to  refer  to  such  fixed points  as  disallowed. 

Note.     It  is  not  difficult  to  see  that  if  A  is  a  subgroup  of  G  this 

Theorem  forces  A  to  be  contained  in  at  least  two  distinct Sylow  p  subgroups, 

provided  the  p  length  satisfies  the  stated  inequality  (see  (2)  "Lemma"). 

From now  on,  unless  otherwise  stated, 

A  will  always  denote  an  elementary  Abelian 

group  of  order  p2    acting  on  a p-soluble  group  G. 

In addition,  in Theorem  B,  D  and  Proposition E,  F  below we  always  assume 

that,  writing 

     01  =   0 p p       ;     02  =  0 p'p p'p      ; .................  
                 

we  have 

(α)     [A,   G  ]      ⊈ 01p    (G)        ; 

(ß)    A  has  no  fixed  points  on  any  disallowed  p  sections  of  G. 

For  all  except  Bi  and  C1    V will  denote  an  irreducible  module  for 

AG  over  some  finite  field  k .    For  all  but  E  and  F,  V  is  faithful 

Our  conclusion  will  always  be  the  existence  of a  cyclic  A  module  U,  of 

dimension ≥  (p  -  l)2    -  which  we  call  "almost  free"  -  or  actually  free. 

This  will  be  found  as  a  submodule  of VA,   except  in  the  case  of 



2. 

B1  and  C1  where  it  will  be  in  some  A  invariant Abelian  p  subgroup 

of  G.     (It  is  of  crucial  importance  that  this  is  in  a  subgroup  not 

just  in  a  p    section  of  G).    We  summarize  our  results  in  the 

following  table; 

U  "in" 

a   p 

subgroup 

of G 

 
 Condition  on 

 
 

 
P 

 
1p 

 
Hypotheses 
(in  addition  to α  and β ) 

 
 

 
Conclusion  about 
            U 

 
 

 
B 

 
≥ 5 

 
2 

 
chk . = p 

 
Almost  free 
dim ≥  (p  -  1)2    . 

 
B* 

 
≥  5 

 
2 

 
ch k = p  ; 
| 0p  ,(G) |   odd. 
 

 
 
Free 

 
C 

 
2 

 
4 

 
chk = p 

 
Free 

 
B1 

 
≥ 5 

 
4 

  
Almost  free 

 
B1* 

 
≥  3 

 
4 

 
|G|  odd 

Free 

 
C1 

 
2 

 
6 

 Free 

 
D 

 
P≥  3 
p  = 2 

4 
6 

 
chk ≠p 

Free 

 
E 
 

  
1 

 
E4.  (Abelian AG p- 
section  in  G/0p  ,)  etc. 

 
p >  2  Almost free;
p  =  2    Free. 

 
F 

 
≥ 3 

 
2 

F4,  5  (two  Abelian AG 
p -  sections)  etc. 

 
Free , 

Theorem A  follows  from B1  and C1  for p ¹   3  ;    from B1*  if  p  =  3 

and    G   is  odd  ;    and  from F if p  =  3.    Proposition  F  is  necessary 

because  the  almost  free  GF(p)  modules  provided  by  E  and  B,  while 

sufficing  for  p ≥ 5,  do  not  suffice  for p  =  3,  due  to  the  simple 



3. 
fact that if the cyclic module  U has dimension 4 then 

]
3

AA,A,[U,
43421

            =    1   . 

 =  1. (see 2.21) 

    We  now  state  these  results  in  detail. 

Theorem  B.      Suppose  p ≥  5  and 

(0)     ch  k  =  p  ,Vis  a  faithful  and  irreducible k AG  module, 

(1)    1p(G)  =  2  . 

Then VA  contains  a  cyclic  submodule  of  dimension ≥  (p  -  1)2  . 

Theorem B*.     If,  in  addition   to   the   hypotheses   of   B,  the  P′   radical 

of  G  has  odd  order,  then  VA.   contains  a  free  A module. 

Theorem  G.    Suppose  p  =  2  and 

(0) ch k  =  p  ; Vis  a    faithful  and  irreducible k  AG module  ; 

(1) 1p  (G) = 4  

Then  VA.   contains  a  free  A  module  . 

Intermediate  between B  and  C  and  A we  have  group  theoretic 

corollaries  of B  and  C  (in  fact  B1*  holds  for p  =  3  as  well)  : 

Theorem  B1.    Suppose  p ≥  5  and  1p  (G)  =  4  • 

 
Then A  has  a  cyclic  module  of  dimension ≥  (p -  1)2    on  some  A 

invariant  Abelian p  subgroup  of G. 

Theorem B1* .    Suppose  p ≥  3,      G    is  odd  and  1p  (G)  =  4  ;    then  A 

has  a  free  module  on  some  A  invariant  Abelian  p  subgroup  of  G  . 

Theorem  C1.    Let  p  =  2  and  1 p (G)  =  6  . 

Then A  has  a  free  module  on  some  A  invariant Abelian  p  subgroup  of  G. 

The  next  result  is  of  particular  interest  in  the  case  p  =  3 

(Theorem  B..   can  only  handle  the  case | G |  odd)   . 

Theorem  D.    Suppose 

(0)V is  a faithful  and  irreducible k  AG module  and  chk  ≠  p  . 



4. 

(1)    1p  (G)  = 4   if   p ≥ 3 
  

l p ( 0)  =6   if   p  = 2 

Then  A  has  a  free  module  on V. 

Theorems B - D  will  be  proved  by  using a device  to  Hartley  ( 3 ) 

to  obtain  a  section  of G having roughly half the p  length of G,  but 

rich in useful  Abelian p  sections,  and then proving two  rather technical 

module  theoretic  results  (Propositions E  and  F below)  about  the  case 

that the  p  length is  1  or  2. 

Proposition E.    Let P  be  an A invariant S    subgroup of  G.    Suppose 

(0) V is  an irreducible k.  AG module  where  ch  k =  P  • 

(1) 1p (G)  =  1  . 
 

(2) [A,  G]    covers  G/0 p'p   which  is  non  trivial. 

(3) Condition  (β)   .    A  has  no  fixed  points  on  any  disallowed  P′  section. 

(4.)      P  contains  an  Abelian  NAG (P) invariant  subgroup B  not  centralised 

by  an  Sp'  subgroup  of NG(P)  ,  and minimal  with  these  properties. 

(5)      BV  is  non  trivial. 

Then  VA.  contains  a  cyclic  module  of dimension ≥  (p  -  1)2    ; 

if  p  =  2  it  contains  a  free  module. 

Proposition  E*.   If we  add  to  hypothesis E4,  that [ B,  0 p']V is  not  a 

2  group,  then  VA  contains  a  free  module. 

Proposition  F.      Suppose  p ≠ 2  and  that  P  is  an  A  invariant SP    subgroup 

of  G.    Suppose 

(0) V  is  an  irreducible k   AG module  where  ch k =  P , 

(1) 1p(G)  =  2  ;    G  =  0 p p'pp'    ;    let  R    =  0 p p'      ,  etc. 
  

(2)        [A,  G]  covers  G/0  p p'pp'  ;   which  is  non trivial. 
(3)        Condition β  (see E3)  . 



(4)       P/Ro    contains  an  Abel.ian  NGA(P)   Invariant  subgroup  B/Ro    not 

centralized  by  an  Sp'   of  NG (p)  and  minima]   with  this  property. 

(5) R    contains  an  Abeliar.  AG  invariant  subgroup  F  not  centralized 

by  an  S p'   subgroup  of [ R1,  B ]  .    F  is  minimal  with  this  property. 
 

(6) Ev    is  non  trivial. 

Then  VA.   contains  a  free  submochile. 

The  major  difficulty  in  proving E  and  F  is  in  handling  the  cases 

o  =  2  or  p =  3   ;    E  is  essentially  to  deal  with  p  =  2,  while  F  gives 

us  a  free  A  submodule,  which  is  required  to  prove  A  and  D  for  p  =  3   . 

Proposition  E  is  also  required  to  prove  Theorems  B  and  C   ;     it  might 

be  possible  to  prove  F  for  p  =  2  as  well  -  thus  making  B,  C  and  E 

unnecessary  for  the  proof  of  Theorem  A,   but  the  proof  of  F  is  somewhat 

more  involved  than  that  of E,  and  B  and  C  may  have  independant 

interest. 

Notation
In addition to notation of (l),   we use 

01   = 0 p'p   ,     02  = 0 p'pp'p   ,     etc.     (02 will not be used  for the 
  

2 radical).     1 p(G)  is the p length of G. 

0t,p'    is defined by 0 t,p'  /0t    = 0p' /(G/0t.)     where  t =  1,   2.   ..  as above. 
   

Thus 0 1, p'      =0p' p p'  , 0 2 p'  0 2, p'  =0 p' p p 'p p'     and  so on. 
 

HG  denotes  the  normal  closure.∩ HG  the  normal   interior 

of  H  under G.     Thus 

II
GX

XHGH
∈

=
 

5. 



6. 

S 2 .      The  main purpose  of  this  section  is  to  deduce  Theorem  A  from 

Propositions  E  and  F.    For  p  ≥  5  the  arguments  are  straightforward; 

this  case  is  covered  in  2.3.    The  cases  p  =  2  and  3  give  rise  to 

some  technical  difficulty  and  have  to  be  settled  by  different 

arguments.     For  the  rest  of  this  paper  we  will  have  two  lines  of 

argument,   one,  via  Proposition  E,  dealing  with  all  p ≠  3,  and  the 

other,  via  Proposition  F,  with p  ≠  2.    It  is  possible  that  the 

latter  could  be  extended  to  deal  with  p  =  2  as  well,   but  since 

this  second  method  is  already  somewhat  more  complicated  it  seems 

worthwhile  to  use  both.    Both  of  these  will  deal  with  p ≥  5  en 

passant,   thus  making  2.3  below  redundant;     however  it  is  so  much 

simpler  that  it  is  probably  worth  retaining. 

We  start  with  two  elementary  lemmas;    these  form,   for p  ≠  3 

the  link  between  the  almost  free  module  U  of  B1  and  C1  and  the 

free  modules  and  fixed  points  of  A  and  D.    The  argument  is  thoroughly 

familiar  (it  forms  the  basis  of  (9)  for  example).     Unfortunately  it 

will   not  be  any use  if p  =  3,  unless  we  restrict  the  2  -  part  of  G. 

2.11  Lemma.     Let  V  be  a  cyclic  module  for  A  =  Ep  2  of  dimension 
 

≥  (p  -  1)2  over GF(p)  . 

Then  provided  p  ≥  5,  the  p  fold  commentator 

U=V(A-1)p≠ 0 . 

Proof.     Since  V is  the  image  of  a  one  generator  free  A  module, 

it  suffices  to  show  that,  if  V  is free,  U  has  dimension    

Let      and      be  generators for  A  and  1  a  generator  for  V.    Then 

(l-α)r  (l-β)s    r +  s  ≥  p  .    r,   s  ≤  p  -  1  

are  linearly  independent  elements  of  U  ;     clearly  there  are  ≥ 
2

1)(pp −



such   ;     for  p  ≥   5  this  is  greater  than  2p  -   1   . 

2.12 Lemma.     Let  G  have  an  elementary  Abelian  A  invariant  subgroup  B 

such  that 
1.]A

P
..A,B,[ ≠
321

 

7. 

Then  if  V  is  a  faithful  irreducible  k AG  module  where  ch k ≠ p,  it  follows 

that  VA   contains  a  free  module. 

Proof.     We  note  first  that  we  may  take   k   to  be  a  splitting  field 

for  all  subgroups  of  AG.     For,  if  not,  let  k 1    be  a  finite  extension  of  k  

which  is  such  a  splitting  field  and  consider 

Let  U  be  an  irreducible   k 1  AG  constituent  of  this.     Then  since 

AG)1(V k ≚   | k 1 : k |  V  , 

Uk AG  is  a  multiple  of  V  ;     thus  U  is  faithful  and  we  may  apply  our 

result  to  deduce  that  UA   contains  a  free  module.     But  then  it 

follows  that  V  must.     Now 

.1]A
P

..AB,[ 1B ≠=
321

 
Let  V1    be  an  irreducible  AB  constituent  of  V  on  which  B1  acts  non 

 

trivially  ;     we  apply  Clifford's  theorem  (Huppert  (10)  page 565 )  to 

B  on  V1  .     Suppose  W1    is  a  homogeneous  component,   that 

L    =    ker  B  on  W1

A    =     stabA   (B  on W1  )   , 

and  that  A1   is  non  trivial.     Then,   since  B1 ⊳    AB  it  is  clear  that 

B1   ⊈    L  .  

On  the  other  hand,   since  k   is  a  splitting  field  for  B,   the  stabilizer  A1 

centralises  B/L  and  so  also  does 

say.KAL]B,1A[ =≤ I

 

V1  =  V ⊗  k 1      .



3. 

But  now  R/K  is  a  cyclic  module   for  A/A1    and  so  K  must  contain  B1 . 

This  contradiction  shows  that  A1 ≠   1,   so  that  A  has  a  free  module 

on  V1    an  required.     It  follows  that  VA    contains  a  free  summand. 

2.13    Corollary.     If  p ≠   3,   Theorem  D  follows  from  B1  and  C1. 

Proof.       Immediate  from  2.11  and  2.12. 

We  next  deduce  Theorem  A,   for  p ≠   3,   from  B1  and  C1.    We  need 

an  elementary  lemma  which  will  be  useful  later. 

2.21.    Lemma.     Let  G/0 p p '     have  an  Abelian  A  invariant  p  subgroup  B 

such  that 

                                                 

.1]A.....B,[ ≠
43421

p
A

 

Then  A  has  a  fixed  point  on  some  disallowed  section  of  0p p' / 0p    . 
    

Proof.    Clearly  we  may  assume  that  0    =  1.     Let  P  be  an  A  invariant 

p  subproun   such   that  P0p' /p'      =    B,  and  Q  an  AP  invariant  Sylow  q  

subgroup  (for  a  suitable  prime  q)  on  which 

]
p

A.....A,P[1P
43421

=

 

acts  non  trivially.     Let  V  be  an  irreducible  AP  constituent  of  Q 

on  which  P1    acts  non  trivially;    then  by  2.12  we  have  a  free  module, 

and  hence  a  fixed  point  for  A  on  V.     Since  V  =    [V,  P1    ]   it  is 

clear  that  this  is  disallowed. 

2.22.     If  p ≠   3,  Theorem  A  follows  from  Theorems  B1  and  C1. 

Proof.   Firstly   it   is   clear   that,    on   factoring   out   by  a  suitable 

term  in  the  upner  p  series  for  G/0p  ,  we  may  assume 

  0p  (G)  =  1  and  1p  (G)  =                      
⎭
⎬                     ⎫

7
5  p ≠ 2 
         p = 2   . 



                                                                                                                                         9. 

Write  1  - 1p  (0)  and  let. 01 -1, p '/01-1  denote the  P′  radical of G/01-1 

(recall   that   0  =  0p'p, 02  =  0p' p 'p p   etc.). Then   it   is   clear   that  

we  may  assume 

                                                      [ A, 0 1-1 p' ]  ⊈  01-1
.  

Now  put 

                      G1= [A, 0 1- 1, p' ]  01-1    

Applying  B1  (p ≥   5)  or  C1  (p  =  2.)  to  G1/01    we  deduce  the  existence 

of  the  subgroup  B  required  by  2.21.     This  lemma  now  completes  the 

proof. 

We  include  here  a  similar  lemma  which  will  be  used  later  to  

handle  the  case  p  =  3  (in  fact  p ≥  3)   .  

2·23    Lemma.      Let  G/0p p'  satisfy  F1  -  5  .     Then,  assuming  Proposition  F, 

there  is  a  disallowed  fixed  point  for  A  in  0 p p' / 0 p   

Proof  of  2.23..     Clearly  we  may  take  0p   =  1   . 

Let  Po   be  an  A  invariant  p  subgroup  of  G  such  that  Po  0 p' /0p'     =    F  . 

Let  P  be  an  A  invariant Sp    subgroup  of  G  containing  P    ,  and  L  an  AP 

invariant  Sylow  s  subgroup  (for  suitable  prime  s)  of  0p'  on  which  

Po    acta  trivially.    Let  N  =  NG(L)  and  V  be  an  AN/L  constituent  of  L  

on  which  Po    acts  non  trivially.     Then,   since  N  covers  G/0 P'  '   A,   N.  V  

satisfy  the  hypotheses  of  Proposition  F  and  2.23  follows. 

We  now  use  Harley's  method  ((3)  section  ?)  to  handle  the  case 

p ≥  5  .     This  is  a  simple  version  of  the  first  main  line  of  argument. 

2.31.   Theorem  B1 follows  from  Theorem  B. 

Proof.   Let 

                                                R  =  C p' p p' p   (G) 



10. 

and  P  be  an  A  invariant  Sp    subgroup  of R  ;    we  shall  use  Hartley's 

method  to  find a  suitable  Abelian  subgroup  B  of P  acted  on  by 

N  =  NG  (P)    -  which  covers  G/R -    and  to  apply  Theorem  B  to  the 

action  of  AN on  B  . 

Let X    =   0 4 (G)   [ A,  G] 

N   =   Nx(P) 
                                       F    =     0 P P 'P P' 'P

(N)

                                       Y    =    0 p p' p p 'p(X)R   . 

Then Y/R  is  non trivial  and  covered  by F.    Let Q be  an  Sp  subgroup  of F; 

then  Q  covers Y/R  . 

Finally,  let 

T    =     [ Q,  P ]. 

We  assert  that T  has  a  characteristic Abelian  subgroup not  centralized by Q. 

Before  proving this  assertion we  show that  it  suffices  to  prove 

2.31.    Let B  be  an AN invariant  subgroup of T minimal  subject to  being 

Abelian and  not  centralized by Q.    Then  since [B,  P] ≠ B this  is 

centralized  by Q  ;    thus Q acts  non  trivially on B/[ B,  P]    ,    Moreover, 

AN  acts  on  this  section  ;    let  V be  an  irreducible  AN constituent  of 

this,subject  to  non  trivial  action by Q.    Let G1 =  Nv. and apply 

Theorem  B  to  A,  G1,  V  ;    the  hypotheses  of  this  are  clear except 

perhaps  that  A might  not  be  faithful.    However  if  some  non  trivial 

subgroup of  A  centralizes  G   and V then  Theorem B  of  (l)  gives a 

fixed point  for A on  some  disallowed p'section  of G1    . 

         Finally we  prove  the  assertion.   We  note  first that  it  suffices 

to prove  that  T does  not  have  class  two  (see  for example  (l0)  Theorem 

13.6 pare  352)  Let 
                                                    P1=P ∩ 0 p' p   
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Then,   since Q ⊈ R ,     T ≰ P1  .    Thus,   since  p ≥  5    Hall Higman' s 

Theorem B shows that 

[P1,   T,  T,  T]  ≠  1   .  

Since [P1,  T]   ≤  T  this  shows  that  T  is  not of class two as required. 

2.32.    Theorem B (B*) follows from Proposition E (E*)   . 

Proof.     Let R = 0 p' p p' p
  ,  X = R [ A,   G]     ,   N = Nx(P)  and F = [ N,  A]   P   . 

Then  if  Q  is  an Sp'   subgroup  of  F,  Q  covers  X/R  ;    let 

T  =  [Q,  P] . 

Now  exactly as  in  2.31  we  may  show  that  T  does  not  have  class  two,  set 

                                                 G1   =      Q    T     0 P’

and  let  V1    be  an  irreducible  AG1   constituent  of V on  which  [ B,  0 p'  ] 
 

acts  non trivially.    Then A,  G1,  V1    satisfies  the  hypotheses  of 

E(E*  in  the  case  that   | 0p'   (G) |     is   odd)   .     For  these   are   all   clear 

except  perhaps  for  E  2.    But  Q ≤  S  [Q,  A]    and  covers  the  non  trivial 

group   X/R  ;    thus   E  2  holds.    The   proof   of  2.32  is  now  clear. 

For  the  rest  of  this  section  we  are  primarily  concerned  with 

the  cases  p  =  2  and  p  =  3.    The   main  difficulty  is  with  repeating 

the  argument  of  2.31  for p  =  2  ;    this  is  done,  using   three  steps 

in  the  p    series  where  two  were  used  before,  in  two  main  stages  ; 

The  first  and  most  technical  is  in  2.41  where  we  show  that  the 

subgroup  T  is  not  of  class  two  provided  T    is,   essentially,   not  contained 

in 0 p  .   We  then  have  to  handle  what  is  really  the  easy  case,that 

T  is  Abelian modulo  0p by,  essentially,  using  Theorem  A in G/0p  to 

obtain  a  disallowed  fixed  point.    This  second  stage  is  also  necessary 

for  the  case  p  =  3  ;    it  is  messy  in  detail  but  straightforward 

conceptually. 
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The  first  and  most  technical  lemma  is  an  extension  of  Lemma  3.1 

of  (1)  to  the  case  that  A  is  non  cyclic.    We  recall  that  01  =  0 p' p     ; 
02  =  0 p' p p' p' ,  .    etc. 

2.41.    Suppose  that  either 

(a) p  =  2  and 1p  (G)  =  3  =1   or 
 

(b) p  ≥   3  and  1p (G)   =2=1     . 

Suppose  G ≠ 01 (G)  = R    ;    that  P  is  an  Sp    subgroup  of G  and  Q a P′  

subgroup  of  NG(P)  covering  G/R  .    Let  T  =  [ P,  Q]    .    Then,  provided 

T ′  ⊈   01-1 (G) 

T  is  not of  class  two. 

Proof.    We  deal with  case  (b)  first  as  this  is  immediate  from Hall  Higman. 

For,   if  P1 =  P ∩  0 p' p  then  (see  (l),  Lemma  2.3  for  example) 

                                                    [ P 1, T ′ ,  T ′ ]   ≠    1   . 

Since    [P1 , T ′ ]     ⊆    T ′  ◁  P  ,  the  conclusion   is   clear. 

Thus  suppose  (a)  holds  ;    p  =  2,  1  =  3.    We  note   first   that,   setting 

Ro    =  0 p'pp'pp'  ,   R1  = 0 p'pp'pp'    ,   . . .  R 3   =  0 p' p       

we  may  assume  that 

(0)  [T ′ ,  R0]  and[T ′ ,  R2 ]    are  both,  modulo  R1   and  R3  respectively, 

non  Abelian  3  groups.     For  if  not,then  3.1  of  (l)   shows  that  T  does 

not  have  class  two  as  required.     Now  let  M  be  an  S p'   subgroup  of  G 

containing  Q  and  let  Mo   =  M ∩ Ro    .    Then  if 

N~     =    NG  (Mo ) 

            we   have   that 

           

.oR/RcoversL(2)
particularIn.NofsubgrouppSanisLThus.RN~/N~coversMnowBut

.)PN~(oMRN~
thathaveweRPoMsinceFor,.N~ofsubgrouppSanisPN~L(1)

(
∩

∩=∩
=∩=
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Now  let 

Ť   =  [  L,   Q ]    .  

Then  since  Ť  ≥  T    it  suffices  to  show  that  T  does  not  have  class  two   ; 

also  since  both  Q  and  L  normalize  Mo    we  have 

(3) Ť    normalizes Mo    .

Now  Ť  covers  T  Ro/Ro  (by  (2))   ;     thus 

(4) Г    =  [T~′   ,  Ro  ]    R1/R1    is  a  non  Abelian  3  group.1 

Now  let  M1    be  a  T ′   invariant  S3  subgroup  of  Mo    (by  (3))  and 

  .]T~,1M[M~ ′=    

We  have 

(5) M~   covers  Г  ;     in  particular    M~ ΄⊈  R1    .   

The  main  step  is  to  prove 

(6) M~   R3/R3  is  not  of  class  two.   This  will  show  that  T  is  not  of 

class  two.     For  then  some  T  invariant  Abelian  subgroup  B/R3  will  not 

be  centralized  by  T~ ΄   and  we  may  apply  3.1  of  (1)  to  deduce  that 

[R3,   Ť,   T~ , T~  ]   ≢       1    modulo  0p,  . 

Since    [P,    Ť]  ≤   T  it  is  clear  that  T  can  not  have  class  two. 

We  now  come  to  the  proof  of  (6).    We  wish  to  apply  our usual 

argument,  with M  in  place  of  T  to  an  S{2,  3} subgroup  of 

                                                     ∆ = Ro /R3  ; 

we  must  first  ensure  that  this  is  sufficiently  large,   which  follows 

from  the  abservation  that 

(7) ∆ 1  = [ ∆ ,   T ]        is  soluble.     For  certainly  this  is  soluble  modulo  R2     ; 

factoring  out  its  3-radical R2  is  centralized  by  T΄ .     Thus 

( ∆ 1 ∩  R2/R3) 

is  a  3  group  and  (7)  is  proved. 
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Now  let  Δ~   be  an S{2, 3}   subgroup  of ∆1  containing M~  modulo  R3  . 

Since ∆1    is  soluble  this is  a  Hall  subgroup  and,   making the  natural 

identifications, 

(8)    M~ '   is  not  contained in the  3-radlcal  of Δ~   .    For if it is  then 

.3/R2R('p0'M~ =Δ⊆  

But  this  contradicts  (5)  . 

Now applying Hall Higman (see for example (1) Lemma 2.3) to the 

group Δ~  we find that (6) holds. As we remarked above this completes 

the  proof of  2.41. 

We  now apply  2.41  to  make  deductions  from E  and F. 

2.42.      Suppose  either 

(a) p = 2 and  t   =  3 or 

(b) p ≥  3  and t  = 2  ;    0 p (G)  =  1  :    in either  case 

that  G = 0 t +1,p'     ≠   0t+1   and  that  [A,  G]  covers   G/0 t+1  . 

Suppose  further that 0 t +1  /0 t, p'       has  an AG invariant  Abelian  subgroup 
 

B/0 t, p'     not  centralized by any S p'  subgroup of G.    Then,  provided  A 
 

has no  fixed points on any disallowed p'  section of G  (condition β ), 

and Propositions E  and F hold,  it  follows that p = 2 and G has an 

elementary Abelian A invariant  p  subgroup which affords  a  free  module  for   A, 

Proof.    Replacing B by a  subgroup if necessary we may assume  that  B  is 

minimal:    now let R  = 0 t, p'   and Po  be  an A  invariant  S p  subgroup of  B. 

Next  let P  = Po ∩  R ,  and N= NG.(P)  .    Let 

F  =  [NR(P)  ,    PO] 

and Q be  an S p'  subgroup of F.    Then T = [P,  Q ] is  not  special.    For 
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we  note   first  that 
T'  ≰    0 t- 1  (G)  =  Ro .  

To  see  this  suppose  T ′  ≤   R ;     consider  first case  (a)  p  =  2,  t  =  3. 

Consider  the  action  of  AN  on  T/T ′    ;    let  V be  a  faithful  irreducible 

AN  constituent  of  T/T ∩  Ro   .    We  assert  that  A,  N,  V  satisfies  the 

hypotheses  of  Proposition  E  (after  taking B1    minimal  in B  as  required 

by  E4).     Thus  A has  a  free  module  on  V  and  by  Lemma  2.21  we  find  a 

disallowed  fixed  point  for  A  in  0 t -1, p'     .  

Case  (b)    p ≥  3  ,  t  =  2  .    Here  we  arrive  at  the  same  conclusion, 

using  F  in  place  of  E.    We  assert  that  G/0p '      satisfies  the  hypotheses 

of  2.23  ;     equivalently  G/0 1,p'  , satisfies  F1  -  5.    But,   since  N  covers 

this  quotient,   it  is  clear  that  F1  -  4 hold  and,  taking  F  minimal  in  T 

subject  to  non  trivial  action by  Q,  that  F5  holds  as  well.    Now  2.23 

ensures  that  A  has  a  disallowed  fixed  point  as  asserted. 

Thus  we  have  that  T  is  non Abelian modulo  Ro , and we  may  apply 

2.41  to  F0t    to  deduce  that  T  is  not  of  class  two.     Thus  T  has  a 

characteristic  Abelian  subgroup  D  not  centralized  by  Q  (see  for  example  (10) 

Theorem  111     13.6  page  352).    Suppose  now  that p  ≥  3.    We  assert  that 

AN  0 p'     satisfies    the   hypotheses  of  2.23   ;     equivalently   (since   0 p  (G)  =  1) 

that  N  satisfies  F1  -   5  modulo  0 p'  .    Since  N  covers  G/0 1, p'    it  is  

clear  that  F1  -  4  hold  ;     finally,   taking   F C  D  minimal  subject  to 

non  trivial  action by  Q,  that  F5  holds  as  well.    Thus  A  has,  by  2.23 

a  disallowed  fixed  point  in  0p,  .   Thus  p = 2 . 

Now  take  V an  irreducible  GF(p)AN  constituent  of  D+    on  which  Q 

acts   non   trivially  ;     then   A,N,V   satisfies   the   hypotheses   of   E   and  A 

has  a  free   module  on  V  as   required.    This   completes   the   proof   of   2.42. 
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2.51    Theorem C1  follows from Proposition E. 

Proof.    Let P be an A invariant S    subgroup of G,  N = NG(P)  and 

F  = [N,  A] P.    Then let Q be an Sp '  subgroup of F and 

T=[P,  Q]   . 

We assert that T is not of class two modulo 03 . 

This  follows  from 2.41  provided 

T ′  ≰   05.

But  if  T ′  ≤ 05,  then we  consider G1   =  G/02 ;  we  assert that this 

satisfies the  hypotheses of 2.42.    But  then 2.21  ensures that A has 

a  disallowed  fixed pointj    thus  ′  ≤  0 5 as  required,  and T is not  of T

class two modulo 03 ·  We  now apply 2.41  again;    this  shows  that A 

on F03  satisfies  the  hypotheses  of 2.42.    This  completes the  proof  of   2.51. 

We do not give  full details of the  following. 

2.52   Theorem B1* follows  from E*. 

Proof:.   this  follows from 2.41  and 2.42 -  suitably amended to use  E* 

in place of E -  exactly as 2.51  does. 

2.61. For p ≥ 3,  Theorem A follows from Proposition F. 

Proof.    This  follows  from 2.41  and 2.42 exactly as 2.51  does. 

2.62. For p ≥  3 Theorem D follows from Proposition F. 

Proofs,   this  follows using a  suitably amended version of 2.42,  from 

2.41  and 2  just as  2.51  does. 

Finally we  do  not  give  full details of the  proof of C  as  this  is 

not  needed. 

2.71.    Theorem C  follows from Proposition E.   We proceed as  in 2.32 

using Lemma 2.41  to ensure  that T does not have  class two. 
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S
3.   S   In  this  section  we  tighten  up   the   structure   of   the   groups 

considered  in  Proposition  E  and  F.     We  first  show  that  in  proving  E 

we  may  take  G  to  satisfy  

Hypothesis  I A  is  elementary  abelian  of  order  p 2   and  G  i s  a 

soluble  group  acted  on by  A;    P  is  an  A  invariant    Sylow  p  subgroup 

of  G. 

(0)      V  is  a   faithful   irreducible   k AG  module  where   k  is  a  field  of 

characteristic  p. 

(1)  G = 0 P' P P' (G)  ; write    R1    = 0 p,  R2 = 0p’p    . p 'p

(2)     A1  = CA(G/R2)  ≠   1   ;        A1  ≠ A      ; 

[A,G]    covers  G/R2    ;    G/R2    is  a  q  group  for  some  prime  q  ≠  p   . 

(3)       E   =  [R1 ,  P  ] is  anr  group  for  some  prime  r   ≠ p  ;  A  has 

no  fixed  points  on  any  section  of  E    not  centralized  by  an  Sp

(4) P  contains  an  abelian  NAG  (P)  invariant  subgroup  B  not  centralized 

by any  Sylow  q  subgroup  Q  of NG    (P);     B  is  minimal  with  these  properties. 

(5) P  is  minimal  subject  to  satisfying  both 

(i)  P  contains  B  satisfying  (4)  

(ii)  There  exists  a  Sylow  q  subgroup  Q  of  NG  (P)  such  that  AQP  

is  a  group. 

(6) R    has  a  normal  Sylow  r  subgroup  R  and  if  Q  is  a  Sylow  q  subgroup 

of  NG  (P)   then  G  =  QPR;     Q  is  minimal  such   that   QPR   is   A  invariant 

and    satisfies   (2)   and   (4);     Q/φ (Q)   is   an   irreducible    A module, 

modulo  P;     if p  =  2,  Q  is  cyclic. 

Hypothesis  I  *    In  addition  to  Hypothesis  I,   r   ≠  2. 

Proposition  3. 1.     In  proving Proposition E  we  may  assume  that  G 

satisfies  Hypothesis  I.    In   proving  Proposition   E*  we   may   assume  I*. 
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Proof.       We  show  that  if  A,   G,  V  satisfy  the  hypothesis  of 

Proposition E,   (E*)  then  there  are  sections  G1 ,  V1    of  G  and  V 

respectively  such that  A,  G1  ,  V1    satisfies  Hypothesis  I  (I*)  . 

We  prove  this  by  induction  on    | G |   ,  assuming that  A,  G,  V 

provides  a  counter  example  with least  possible  |G | . 

Write  R1  =  0 p' (G)   ,    R2   =  0 p' p   (G)   . 
 

(1) G  is  faithful  on  V.    For  if  not,  consider  G*  =  G v  ; 

we  show  that  A,  G*,  V  satisfies  the  conditions  of Proposition E  (E*), 

and  so,  by  induction,   G*  =  G  . 

These  are  clear  except  for  E4,   5  (4*,   5*)  .   Let  B*  =  BV ,  etc.   We 

assert  that,  if  Q  is  an S p '     subgroup  of NG  (P)  , 

(i)     [B*,  Q ] ≠    1 

(ii)      B*  is  minimal  as  required. 

Let S  be  the  kernel  of G  on V,  and  let  S1    = S ∩   B  .    Then  we  are 

given  that  S1   <  B  .    By  the  minimality   of   B,  it   is   clear  that   S1 

is  centralized  by  Q,   so  that 

[Q,  B] ⊈ S1   . 

Thus  (i)  holds.    Now  suppose  B1  * ⊆  B*  satisfies  E(4.).    Then  consider 

B1  ∩  BS  =  (B1  ∩  B)  S  . 

Then B1  ∩  B  cannot be  centralized  by  Q,  and  so,  by  the   minimality 

of  B  is  B  itself. 

Thus  (ii)   is  proved.    It   is   now   clear    that  E4 ,  5  (4*,   5*)  hold  for 

A,   G*,  V  so  that  (1)  is  proved. 

(2) G  satisfies  1.2.  Choose  a prime  q  and  an  Sq  subgroup  Q  of 

NG  (P)  such  that 

(i)    A normalizes  QP 

(ii)    [Q,  B]   ≠   1    . 

Let  Q1   be  an Sq  subgroup of  [Q,  A]  ;  then  by  E2,  Q1  satisfies  (i)  and  (ii). 

Let r    =  Q1  P/CQ1    (B)  P 

Then  Г is  generated  by  the  centralizers  of  non  trivial  elements 

of  A((1.1)  Theorem  3.16,  page  188),  and  so  at  least  one  of  these, 
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CГ,   (A  )   say,   must  fail  to  centralize  A.     Let 

CГ  (A1)  =  Q2/CQ1       (B)       (modulo  P) 

and  Q3  be  an  Sq   subgroup  of  [Q2,   A]   .     Finally  let  G1  =  A  Q3  P  R1  and 

B1 ⊆ B   B  be    minimal   subject  to  E4.    Finally  let  V1    be  an  irreducible 

AG1    constituent   of  V    on  which  [B1 ,   Q3 ]   acts  non  trivially.     Then 

A,   G1 ,  V1   satisfies   conditions   E(E*)  and   so   by  induction   must  be 

A,   G,   V.     But  it  also  satisfies  1.2.     Thus   (2.)   is   proved. 

(3) G   satisfies  1.5.     For   if   not   choose  M  ⊈  P  satisfying   1.5. 

Then  M  contains  an  abelian  normal   subgroup  B1    satisfying   I.4,   and 

for  some  Sq   subgroup   Q1   of  NG   (M) ,     AQ1  M  is  a  subgroup. 

Let  G1  =  AQ1    MR1   and  V1   be  an  irreducible  AG1  constituent  on 

which  [B1  ,  Q1  ]    acts   non   trivially.     Then  A,   G1  ,  V1     satisfies 

conditions  E  (E*)   ,   and  since     | G7 |    <   |G |     we  may  apply  induction. 

(4) G  satisfies  1.3.     Let  R  be  an  AP   invariant   Sr    subgroup   of   R1  , 

for   suitable  r  so   that   B  acts   non   trivially   on  R  (if  E*  holds  we 

take  r  ≠  2).     Let  N  =  NG  (R)  and  Q  be  an  Sq  of  NN  (P)   .     Finally 

let  G1   =  QPR  and  V1   be  an  irreducible  AG1   constituent  of  V1  on  which 

[B,   RJ     acts  non   trivially.     Then  A,   G1  ,   V1    satisfies    conditions 

E(E*)  and  also  I.3. 

(5) G  satisfies  1.6.    We  already  have  in  (4)  above  that  G  =  QPR; 

now  choose  Q1  ⊆ Q  minimal  such  that  G 1 = Q1PR  is  A  invariant  and 

satisfies  1.2  and  1.4.     Then  take  V1    as  an  irreducible  AG1

constituent  of  V.     Clearly  E(E*)  holds  so  that  we  may  take  Q1  =  Q,   V1  =  V. 

Now  if  D  =  CQ     (B)  it  is  clear  that  Q/D  affords  an  irreducible 

A  module  (modulo  P).    Thus  D ⊇  φ  (Q)   ,  and  if 

Q   = Q 1 ⊕ D  

where  Q 1    is,   modulo  P,   an  A  module,then  unless  Q1  =  Q  ,     Q1   gives 
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a  contradiction  to  the  minimality  of  Q.    Thus  D  = f   (Q)  . 

Finally,  if p  =  2  it   is   clear that   Q  is  cyclic.    Thus   (5)  is  proved. 

We  next  tighten  up  Proposition  F  in  a  similar  manner. 

Hypothesis  II.      A,  G,  P  as  in preamble  to  I  above;    p #  2  . 

(0) as  1.0 except  that  ch k  -  s ≠ p  . 

(1) G  =  0 p p' p p'   ;    Ro    =  0 p      ,    R1  =  0 p p'       ,    ,    R 2   =  · ·     . 

(2) I.2. 

(3) -  (6)      I.3  -  6   for  G/Ro      . 

(7)  R    contains  an  abelian AG  invariant  subgroup  F  such that  F 

is  not  centralized  by  any Sr    subgroup  of   [R1,  B]           . 

F  is minimal  with this  property. 

Proposition 3.2.    In proving  Proposition  F   we  may  assume  that 

Hypothesis  II  holds. 

Proof.    The   proof  is  very   similar  to   that   of  3.1;     we   carry  out 

only  the   first   two   steps   in  detail   as  these   involve   all   the 

necessary   modifications   to   the   arguments  of  3.1. 

Proof  of   3.2

(1)    G  is  faithful  on V .    As  before  let  B*  denote  BV  ,   G*  denote  GV

and  so  on.    Then as  in  3.1  we  assert 

(i)    F*  is  not  centralized  by any Sp’  subgroup  of    [R  ,  B] 

(ii)    [B*, Q ] ⊈ 0p (G)  for  Q  an Sp’   subgroup  of  NG  (P)   . 

(iii)    B*  is minimal  in G*/0p    (G*)  as  required  by  F4. 

To  see  this we  let S  be  the kernel  of G on V  .    Let  F1  =  F ∩  S    ; 

then  since  F1    is  properly  contained  in F  it  is  centralized  by 

an Sp,  subgroup  T of    [R1  ,  B  ]  ;    clearly  F/F1    =  F*  cannot  be 

centralized  by  T.    Thus  (i)  holds.    Now  let   R~  ⊇  S  and 

R~ *.                                 0p    (G*)  =  
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Suppose  that 

[B*,  Q]  ⊆  R~ *    .  

Let B2  =  [B,   Q]  . 

Then B2 ⊆    R~  

and   by   the   minimality   of   B   we   deduce   that 

B ⊆    R~  .     

Thus 

[B,  R1 ]   ⊆     [ R~ ,   R1 ]  ⊆    R~  ∩ R1

But 

R~   ∩  R1 ⊆    R    (R1  ∩  S)     .  
 

Thus 

[B,  R1]    ⊆    (R1 ∩ S)  RO    . 

But  now  any Sp'     subgroup  of  [B,  R1 ]  is  contained  in S,  which 

contradicts  (i)   .    Thus  we  have  proved  (ii)   . 

Next  suppose  B3  *  ⊆   B*  and  has  the  required  properties  for  B  (F4)  . 

Then,  as  before,  consider 

B3  ∩  BS  =  (B3 ∩   B)  S     .   

Now  B3  ∩  B  ⊆  B  and  is  not  centralized  by  an  Sp'   subgroup of  NG (P) 

modulo  Ro    .    But  this  means  that  B3 ∩  B  =  B  so  that  B3*  =  B1  *  . 

Finally  let  F1  ≤   F*  be  minimal  subject  to  F5  ;     then  as  in  3.1 

we  have  demonstrated  (1)   . 

(2)      G  satisfies  II.2.    Chose  a  prime  q  and  an  Sq    subgroup  Q  of 

NG   (P)  such  that 

(i)     A  normalizes  QP  

 (ii)     [B,   Q]   ⊈      Ro    . 

Let  Q1  be  an  Sq    subgroup of  [Q,  A]  and  D = CQ1  (B/Ro  ) .  Consider 

Г   = Q1  P/DP 
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Then  Г   is  generated  by  the  centralizers  of non  trivial  elements 

of  A((11)  Theorem  3.16    page  188)  and  so  at  least  one  of these, 

CГ    (A1)  say,   must   fail   to   centralize   A. 

Let 

CГ (A  )  =  Q2/D             modulo  P 

and  Q3  be  an Sq   subgroup  of   [ Q2 ,  A ]   . 

Finally  let 

G1  =  AQ3  PR1

and 

 B1 / Ro  ⊆    B/Ro

be  minimal  subject  to  F4.    Then  if 

 ∆   =  R1/CR1  (F)  Ro

we  have 

 Ro  ⊆  CB   (∆)   B

⊂
≠    B 

and  so  CB(∆)/RB O    is  centralized by Q.    Thus  B1    does  not  centralize   ∆ . 

Now take  F1   minimal in P  subject to  F5  (with G1   and  B1    in place  of 

G  and  B).    Finally  let  V1    be  an irreducible  AG1    constituent  of V 

on which  F1   acts  non  trivially.    Then  as   in  3.1,  we  have   proved  (2). 

Finally  steps  (3),   (4)  and  (5)  of  3.1  carry  over  in  a  similar 

manner;    the  crucial  fact  is  that   CB(∆)/RB o    is   centralized by  Q,    so 

that  we  may  decrease  P,B  and  Q  without  causing B  to  act  trivially 

on    ∆  . 
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 S
S   4.  A  special  case.     In  this  section  we  carry  out  a  simple  version 

of  some  of  the  basic  arguments  and  deal  with  a  technical  difficulty  in 

the  case  that  p  =  2.     Basically  we  show  that,   in  proving  the  special  case 

of  Proposition E  and  F  to  which  section  three  has  reduced  up.   we  may 

assume  that  VR1  is  not  homogeneous  -  or,   for  p  =  2,   somewhat  more 
 
than  this  (see  4.3  below).     For  Proposition  E,   R1    is  just  0p’   and  the 

argument  is   a  straight   forward   version   of  Shult' s  ( 5)   ;     for   F   however, 

R1  is  0 p p'   and  we  have  to  introduce  some  new  methods  -  which  will  be 

important  in     5.  S
S

          A  is, as  always,   elementary  of  order  p2    and  acts  on  the  p  soluble 

group  G, 

4.. 11.     Let  V  be  a  faithful  irreducible    AG  module  where  G  is  an  r  group 

for  some  prime  r  ≠  p  and  chk  =  p  . 

        Then   VA   contain s   a    cyclic    module   of   dimension    at   least  (p  -  1)2   ; 

if  p  =  2 ,   VA   contains  a  free  module. 

4.11*.     If  ≠  2  then  VA   contains  a  free  module. 

Proof.    We  note  first  that,   as  in  2.12,   we  may  assume  that k  is  a 

splitting   field   for   subgroups  of  G. 

We  use  induction  on    | G |   +  dim  V  .     Let  A,   G,   V  be  a  counter  example  

with  | G |   +  dim  V  as  small  as  possible.     Then,   following  Shult  (  5  )   .  

(l)    VG  is  homogeneous.     For  suppose 

                                      VG   = W l  ⊕      ..  ⊕   Wt

where  the  W1    are  Wedderburn  (homogeneous)  components.    Then  if  the 

stabilizer,   I,   of  G  on  W1    is  proper  it  must  be  A1G  for  some  non  trivial  A1 

(by  Clifford's  theorem).    Thus,   by  Hall  Higman 

                                   [ A1 , G ]w 1      =  1  . 
But  since  A  permutes  the  W.   transitively  we  deduce  that 

        [ A1 ,   G ]   =  1  , 

which   is   not  the  case   since  AG  has  trivial    p    radical  -  since  ch k. =  p  . 
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(2) [ G, A]    =    G .    For if not CG (A) covers    G/ [ G,  A]     and if 

VA [A,G]   =  W1  ⊕ ... ⊕ Wt 

the homogeneous components W1  .. Wt   are permuted transitively by 

CG   (A)  .      By induction A is not faithful on 

[ A,   G ]  W1     .   

But  now if A   is  the  kernel of A on this,  we  deduce  that  [ A1 ,  G] V   =1. 

But this  is  not the  case  since  AG has  trivial p  radical. 

(3)    Let M ⊂ G be  a maximal proper AG invariant  subgroup.   Then VM 

is  homogeneous.    For  if  not  let  I  be  the    stabilizer  of a component. 

Since  VG  is homogeneous,  we  may assume  that 

I    =   AM 

(For I  covers  AG/G ;   by Sylow's  theorem it may be  assumed  to  contain A  ; 

since  G/M is  an irreducible  A module,    I ∩ G   =   M)  . 

Since  G is nilpotent,  G/M is Abelian and  so  the  kernel,  A1   say,  of A 

on G/M is non trivial.    Since 

M CG  (A1)    =   G 

the  components  of M on V are  permuted  transitively  by  CG  (A1  ) .  Thus, 

since A does not  centralize  G/M  (  (2)  above),  for  some  x ∈  CR  (A1)  we 

have 
A ∩ Ix   =   A      . 

By Hall Higman's  Theorem B,  and Clifford's  Theorem we  deduce  that 

[ A1 
x-1   ,  M  ] W1    =  1 . 

 

Now,  as  in (1),  it  follows that 

[ A1 , G]  =   1 , 

a  contradiction. 
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(4) For  each AG invariant  subgroup  T  of  G,  VT  is  homogeneous.   If  T 

is  Abelian  it  is  cyclic  and  central   in   AG.     This   follows   immediately 

from  (3).    for  suppose  VT  were  not  homogeneous  ;    let  I ≥  A be  the 

stabilizer  and  I ∩ G =  I1      .    Then,  since  G  is  nilpctert, I1     i 

contained in  some  maximal AG invariant  subgroup M  of G,    But  since  VM  r    p ; 

is  homogeneous, I1    covers  G/M  . 

(5) Every  characteristic  Abelian  subgroup  of  G is  cyclic.    Thus  G  is 

extraspecial    (r ≠  2)  or,  if  r  =  2,  it  is  the   central   product  of 

extraspecial,   dihedral,   generalized   quaternion  and   quasidihedral   groups 

(see  (10)  page  357 Satz    13.10)  . 

By  induction G    is  the  direct  sum of  two   irreducible  A modules.    Let  the 

kernels  of these  be  A1  and A2 .   Then 

G  = [ G,  A1 ]  [  G,  A2 ]   =  G1  G2    say  . 

Now  if p  = 2,  each of G1   and G2  is  Abelian  -  which  contradicts   (4)  ; 

moreover,  in  general,  since  A  centralizes  G   we  have 

Gi    =    CG  (A.) j  ≠  i    . 

The  "three  subgroups  lemma"  applied to  Ai ,  Gj.  and G  for  i  ≠  j  then 

shows   that 

[ Gi , Gj ]   = 1 . 

Thus,  since  neither  G.  can be  Abelian  (4),  AG  is  the  central  product 

of Ai  Gi   and V  is  an  "outer"  tensor product 

V = u1  ⊕k.  U2

where  each Ui  is  an  irreducible  Ai  Gi  module. 

By Hall   Higman  we  have  the  required   result  (note    that   for    4.11*,  if  r ≠ 2 

we  cannot  have  an  "exceptional"  case)   . 

We  now  come  to  the  result  needed  for  the  proof of  Proposition  F. 
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We  are  essentially,  looking  at  the  p  -  ′   radical  of a  group  G  satisfying P

Hypothesis  II. 

4.12.    Let  V be  a  faithful  irreducible k.AG module  where 

(i)    chk. .=  p  ; 

(ii)    G    =0 p,r     (G)  ; 

(iii)  0 p (G) = Ro  contains an Abelian AG  invariant  subgroup  F  such  that 

A acts  faithfully  on  G/RoCG(F)  ; 

(iv)  V  is  homogeneous  for G. 

Then VA.  contains  a  free  submodule. 

Proof.    As  for 4.11  we  note  first  that  we  may  take  k  to  be  a  splitting 

field  for  subgroups  of AG,  and proceed  by  induction on  | G |  +  dim V, 

considering  a  counter  example  in  which this  is   as  small   as   possible. 

(1)   VRo   is  homogeneous.  If not  let M ⊇ R   be  a maximal  proper AG 
 

invariant  subgroup  and  assume  that  VM  is  not  homogeneous.    Since  G/Ro

is  nilpotent,  G/M is  Abelian and 

A1 = CA (G/M) 
is  non trivial.    Now  if  we  let 

D/Ro = CG/Ro (A1) 

we  find  that D  supplements  M.    Let  I  be  the stabilizer of M  on  a  Wedderburn 

constituent   W  say  ;    as  before  we  may  take 

I    =    AM    . 

Thus  I  is  supplemented by  D  .    For  x ∈   D\M 

we  have 
A ∩ Ix      =    A1      . 

Now  considering A1M  on W1 x  ,  letting Q1    be  an Sr  subgroup of   [ A1  ,  G ]   , 

we  find that 

     .1],[
11 =xwFQ
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For,  let L - Ker F on W1    and suppose   [ Q1 ,  F]   is not contained in Lx . 

Then 

[ A1 , F ]     ⊈        Lx    . 
So by a well known argument,  applying Clifford's theorem as in 2.12, 
we find a free module   for A1  on W1 x and,   by Clifford again,    one  for  A on 

(W1x)A1   A   . 

Now  let  Q  be  an  Sr    subgroup  of  G  containing Q1  .     Then  Q1    is  normal  in  Q 
and  since  Q  covers  G/M we  find 

[Q1,    F ]    ⊆      . 
M\G  X ∈

∩ XL

Thus   [  Q1,  F ]   =  1   .  But  now  we  have  a  contradiction  to  (iii).Thus 

(1) is  proved. 

(2) 0P(G)  =  G .   Let Ĝ  =  0P (G)   [G, A] . 

Then  if 0P  ≠  G  ,  it  follows  that  Ĝ ≠  G  . 

Thus  (2)  will  follow  if  we  can  show  that  VĜA.   is  homogeneous.     Suppose  not, 

and  let 

VĜA   =  w1 ⊕ ... ⊕ wt   . 

Then,  by  induction,  for  some  non  trivial  subgroup  A1    of  A  we  have  that, 

for  any  Sr    subgroup  Q1  of  [G,  A1 ] 

[Q1 , F]   ≤    L    =    ker  on   W1     . 

But  now CRo    (Q1)  supplements  Ĝ and  so  must  permute  the  homogeneous 
 

components   transitively  ;     clearly   this  implies,  as   before,   that 

[Q1 , F]    =  1   .    But  this  contradicts  (iii).     Thus  (2)  is  proved. 

To  complete  the  proof  we  show  that  VF  is  homogeneous,  a  contradiction. 

To  achieve  this  we  consider  M  a  maximal  proper  AG  invariant  subgroup  of  Ro    

containing F.    Suppose  VM  is  not  homogeneous.    Let  I  be  the  stabilizer 

in  AG  of a Wedderburn  component W 1   . 
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Then 

(3)  No  conjugate  of  I  contains  A.    For  suppose  I   A.    Consider  first 

Case  (i)    A  is  faithful  on RO/M  .    Then by  4.11  applied  to  the  action 

of AG on R /M,  we  obtain a  cyclic A module,  of dimension at  least  (p -  1)2  , 

contained  in  (Ro /M)+   .    Taking x  as  a  generator of this  we  find  that 

CA    (x)  =  1  ;    now 
 

A∩ Ix   =   (Ax-1 ∩ I )x  ≤   (ARo∩ I)x   =   (AM)X   . 

Thus 

A∩ IX   ≤  A∩Ax   modulo M    . 

But  since  CA(x)    =    1  we  find  that 
 

A ∩ Ix    =    1    . 

Thus we  are  done  by Clifford's  theorem. 

Case  (ii)    The  kernel  A1   of A on Ro/M is  non  trivial.    Let Q1   be  an 

Sr    subgroup of  I  A1,  G]     contained  in I.    Then 

D    =    CR0     (Q 1 ) 
 

covers Ro /M  .    Now by  (2)  above  A does  not  centralize  Ro /M  ;  thus  

we  may  take 

x ∈   D \  CD  (AH/M)     . 

Then 

                                                            A ∩ Ix   =   A1

and  thus, 

                                                    .1],[
11 =xwFA  

 

But  since  the  components  are  permuted by  D,  we  may deduce  that 

                                                       [ Q1 , F ]    =   1   . 

This  contradicts   our   hypothesis   (iii).     Thus   (3)   is   proved. 

We  deduce  that 

(4)     |  Ix ∩  A |      = p    for all x  in G  . 



  To  complete  the  proof we  must use  more  sophisticated versions  of 

the  two  arguments  given  in  (3)  above.    First  we  establish 

(5)    A   is  not  faithful  on Ro/M  .     This  is  similar  to   (3)  case  (i) 

above.    Let  x ∈  Ro    generate  a  cyclic  A module  of  dimension at  least 

(p -  1)2    modulo  M.    Now,  as  before,  if 

T  =  ARo ∩  I  , 

we  have,  for y ∈  G  , 
                                                         Iy ∩ A = Ty ∩ A . 
Now  let 

                                                         T ∩  A    =       <  α  >    ; 

                                                         Tx∩  A    =    < β >    .  

Since  x cannot  centralize   α  we  have,   working modulo  M  , 

                                                         A   =    <  α, β >   ; 

                                                         T   =     < α  ,  β x-1  > . 

Consider  Tx2  ∩   A  ;    we  may  take  this  to  be   αβ  ;    but  now we  have 

                                                          αβ  ∈ <αx2      ,   βx  >      . 

Thus 

                                                        αβ=    αx2   βx    , 

or [α,x2] = [β-1,  x]    . 

It  follows  that 

                                                      [A,   <   x   >  ] 

has  dimension  at most  p -  1,   so  that     <x>   has  dimension  at  most  p 

which  is  not  the  case. 

Finally,   let   A1    =     < β  >  be  the  kernel  of A  on  Ro /M  ;    then   taking   Q1 

as  an S    subgroup  of   [G,  A   ]   contained  in  I  ,  the  centralizer  K  of  Q1

in Ro    covers  Ro /M   .  
  

29. 
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            case (i) I ∩A  = A1  .   Then  clearly Ix ∩ A  = A1  for all  x  in  K2, 

so that 

 [ Q1  ,   F ] xw1        =   1         for x ∈   K     . 

 

But, since K centralizes Q1 ,   vis  find, that    [Q 1,   F ] V    =     1  which is 

not the  case. 

Case  (ii)    I ∩ A    =    A2  ≠ A1     ,   Let  A2   =  < ∝ >  ;   L = ker F on W1, 

and,   if  Q  in  an  Sr     subgroup  of   I   containing    Q1     , 

D   =  CQ   (F/L)   . 

Then D   ⊇   [A2 , Q ]     

Also,   as  in  case  (i),   since  K  covers  Ro  /M,   we  have 

                                                                        
KX

LX

∈
= .1I

                           

Thus  D  ⊉   Q1  ; in  fact  D  does  not  cover [ A,  Q ]  modulo  Ro.  But,  by  (2) 

[  A2 ,   Ro  ]  ≰   M     . 

Thus  we  may  take  x  Î  K  not  centralizing  A2  modulo  M  ;     then 

A  ∩ Ix      =    A3    ≠   A2     . 

We  deduce  that 

[A3 ,  QX ]   ≤    DX 

or                                                .D]Q,
1x

3A[ ⊆
−

Since  A3  and.  A2  are  distinct  module  Ro ,  we  deduce  that  D contains   Q1 . 

a. contradiction. 

This  completes  the  proof of 4.12 . It  is  now   a  simple  matter  to 

deduce an important corollary, E  denotes the subgroup introduced in 

section  three  (Hynothesis  I)     or         Ro  [R1 ,   B  ]    (for  II.) 

4.2    Corollary,     in proving Proposition E and F we may assume that 

A,   G,   V satisfy Hypothesis 1,   II respectively and provided A acts 

faithfully on 

∆     =    E       or    E/CE(F)   Ro

http://sti.nct/
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respectively,  VR  is  not  homogeneous. 

Finally  we  strengthen  4.2  in  the  case  p  =  2. 

4.3    In  proving Proposition  E  for  p  =  2  we  may  assume  that  if A,  G,  V 

satisfy  Hypothesis  I  and  CA    (B)  =  1   ,   then  VBR      is  not  homogeneous. 

Proof.    Suppose  A,   G,  V  satisfy  Hypothesis  I, that  CA    (B)  =  1  and 

p  =  2.     Let  V1    be  an  irreducible  ABR  constituent  of  V.     Then  if  VBR 

is  homogeneous   we   have  that   (V1)BR  is  also,  and   is   faithful   for   BR. 

Thus  V1  is  faithful  for  ABR.    We  first  establish 

0)   [ B,  A,  A]   =    1   .    For  if  not,   choose  an  irreducible  AB  constituent 

U  of E  on  which [B,  A,  A]  acts  non  trivially.     Let  I  be  the  stabilizer 

of  B on a  component  of  U;     as  in  2.12,   I  =  B  and  we  have  a  fixed  point 

for  A  in  U,  by  Clifford.     But  this  contradicts  I. 

(2)    (V1)A[B,A] R  is  not  homogeneous.   For  let  V2  be  an A [B,  A]  R 

constituent  of V1    ;     then  let 

(V2) AR  = W1 ⊕  . .  ⊕   Wt . 

by  4.1,  [A1  ,  R]     ≤     L    =    ker  R on  W1    for  some  non trivial  subgroup 

A1    of  A  ;     also 

],[y  AB
yL

∈
∩    =     ker   R   on  V2     , 

But,  by  (1)  above,  [B,  A] centralizes  A. 

Thus  we  have 

[A1    R]  V2      =   1   . 

Now  B  acts  faithfully  on  R  since  R  contains  E  = [R1,   B]  and  G has 

trivial  p  -  radical. 

Thus  R  is  not  faithful  on  V2  and  (2)  follows. 

Next  let  T ≥  A[B,  A]  be  maximal  in  AB,  chosen  so  that  (V1)T  

is  not  homogeneous. 

Let  b ∈    AB \  T    be  an  involution  (b2  =  1)     . 

31. 
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Then 
(V1)T   -   V11  ⊕  V11 ⊗ b   . 

Let                                               L    =    ker E  on V11 ; 

                                                     S     =    CT  (E/L)     . 

By 4.1, 

                                                     S ∩ A    ≠     1     . 

Now  since  A  has  no  fixed points  on  ,     we  have E

                                                    S  ∩ A   =   A1  ≠  A . 

Let                                               Sb ∩   A  =  A2         . 

Then                                                    A2   ≠  A     . 

Now S  S∧ b     centralizes E and  so 

S ∩  Sb ≤ k   =    CAB  (E)     . 

Also,   since K    AB and K ∩ B     =     1   ,   we have 

K  ≤ CAB  (B)   =     B   , 

since CA  (B)   =  1   .     Thus K    =     1,   and 

S ∩ Sb    =     1     . 

In particular,   A2 ≠ A1     .     Let A1      =    <∝>   ,  A2     = <β>; 

then 

S   ≥   <∝ , βb >     . 

Now  since  ∝  centralizes E/L  , β   can have  no  fixed  points on 

E/L ø   (E)   =  Г     ; 

sitnilarly ∝ b has none.      Thus  α b β must centralize Г ,   so  that 

∝ b  β  ∈    S 

But   α β b   ∈    S     ; thus 

∝  β b  ∈     S ∩  Sb     . 

But  we  have  shown  that  S ∩  Sb  = 1 ;  since  ∝ βb ≠ 1 we  have  a 

contradiction.     This  completes  the  proof  of  4.3. 
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S
S 5.     Proof  of  Propositions  E,   E*  and  F.   In  this  section  we  complete  

the  proof  of  the  special  case  of Propositions  E,  E*  and  F  to  which  3.1 

and  3.2  have  reduced  us.    Many  of  the  methods  have  already appeared  in 

section  four;    thus  we  follow  Shalt' s  approach,  moving  down  the  upper 

p  -  series  of G  showing  that  the  restriction  of V  to  successive  terms 

of  this  series  is  homogeneous.    Using  the  results  of  section  four  it 

is,  loosely  speaking,  only  necessary  to  come  down  as  far  as  0 p p'   =  R1  . 

It  is  perhaps  worth pointing  out  that  the  proof  of  E  for  p ≥  5  occupies 

only  a  small  proportion  of  this  section;    it  is  mainly  proving  F  and 

dealing  with  the  case  p  =  2  where,  as  in  4.3,  a  lot  of  detailed  special 

pleading  is  required.     Since  the  proof  of E*  involves  only  trivial 

modifications  to  that  of E  -  the  only  difference  being  that  exceptional 

Hall  Higman  situations  are  excluded  at  a  number  of points -  we  shall 

leave  these  to  the  reader. 

To  avoid  repetition  we  carry  out  the  proofs  of  Propositions  E  and  F 

simultaneously;     we  assume  that  A,  G,  V  satisfies  either  Hypothesis  I  or  II 

as  the  case  may  be.    Several  frequently  used  arguments  involving  the 

application  of  Clifford's  Theorem have  appeared  in  4.1   ;    we  shall  not 

always  give  full  details  of  these. 

We  note  first  that,  as  in  2.12,  we  may  take  k to  be  a  splitting  field 

for  subgroups  of AG. 

We  recall  that  if  Hypothesis  I  holds  E    =    [  R 1, B ]    ;     if 

Hypothesis  II  holds  let 

E    =    Ro[R1,  B]   . 

Then  let 

∆      =    E    if   I     holds     ; 

∆       =    E/Ro  CE (F)    if    II  holds    . 
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(1) A   acts   faithfully  on  ∆  .    For,  let  U  be  a  non  trivial  irreducible 

AG  constituent  of Δ   ;   then  BU  is Abelian  and  centralized  by  the  kernel 

of  A on U,  but  not  by  A. For  if  it  were  centralized  by  A then  it  would 

be  centralized  by  Q ;    but  the  minimality  of B  ensures  that  no proper 

AG invariant  quotient of B  can be  centralized by  Q.   Thus  the   argument 

of 2.12  shows  that  A/A1   has a free  module  on U,  giving  a  disallowed 

fixed  point  for  A. 

(2) Let  G
(

  =  G A1  .  Then VG  is  homogeneous.    For  suppose  not,  let 

V G
(     =   W1  ⊕  . . . 

be  the Wedderburn  decomposition.    Then 

A    =   StabA  ( G
(

 on W1)     . 

Now  suppose  first  that  Hypothesis  I  holds  ;     we  deduce,  by 

Hall  Higman,  that 

[A1, R1] 1w  = 1  . 

But  since  [A,  A1]  =  1  we  deduce  that  A1  centralizes  R1 and  so  ∆ ,  a 

contradiction to  d).    Suppose  then that  II  holds.    Here  we  deduce  that 

[ A1 ,   F ] 1w      =    1 

and  hence  that  A1    centralizes  F  ;    but  then  A1    centralizes  ∆  and  we 

contradict  (l)  again. 

(3) VG  is  homogeneous.    For  if  not  the  stabilizer  in  A must be  A2  , 

distinct  from  A1..    But  then  it is  clear  that A2  does  not  centralize  R1. 

(in  the  case  of  I)  or  F(in  case  II)  so  we  may proceed  as  in  (2) , 

(4) Let R
(

2  = R2 A1 .    Then   is  homogeneous.  Let M be  the  unique 
2

~RV

maximal  proper  AG  invariant  subgroup of G
(

 containing R~ 2. We show that 

VM is  homogeneous -  from  which  (4)  follows  as  in  (3)  of  4.11. Suppose 

that  VM  is  not  homogeneous.    Then let  I  be  the  stabilizer  in AG of M on 
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A   homogeneous  constituent  W1  say.   Since,  by  (3),  I  covers  AG/G  we 

may  assume  (as  in 4.12  (1)   )  that 

I   =   AM 

Thus 

A1      =    Ix  ∩  A                   for x ∊   G~ \M  . 

Now  let  L  =  ker E  on W1    ;     in  case  I  we  find 

L ⊇  2  [E,  A1 x]                   for  x  ∊  G~ \M  ; 

while  for case  II  , 

L  ⊇     [F,  A1 x]                    for  x  ∊  G~ \M  . 

We  next  deduce  that  if 

H   = < A1
x   |   x  ∊  Q\M > 

then,   writing  P~   =  A1 P  , 

(5)    H has  a P~   invariant  fixed  set  on  some  irreducible  AG  constituent 

U  of Δ  .      Suppose  first  that  Hypothesis  I  holds.    Then,  since 

                                                
GX

LX
~

.1
∈

=I

we  know  that  L  does  not  cover  E   = Δ   ;     (5)  then  follows  immediately 

(note   that   L   is  P~   invariant   and   contains  [H,   E ]  )  . 

Now  suppose  Hypothesis  II  holds.    Let    L ∩ F    =    F1 .    Then 

F1  ⊳  E PA 

and F1   ≠   F    ; 

consider  the  centralizer D  of F/F1    in E.    We  assert  that  this  does 

not  cover  E/Ro  .    For  if  it  did  it  would  contain  the  characteristic 

subgroup  generated  by all  p '  elements  of E,  which would  then  centralize 

F/F1  .    But  since  Ro    is  a p  group  we  would  then have 

[F,  E ]  ≠     F    . 
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This  clearly  contradicts  the  minimality  of  F.     But  now 

[ A1
x,  E ]   ≤   D                 for  x  ∊   G~   \  M    . 

Thus  if 

L1     =    DRo

we  have 

L1  ⊇  CE  (F)  Ro      ; 

L1  ⊉  E   . 

Thus  L   does  not  covert Δ  and  we  have,   writing  1L   for  L1  modulo φ (∆)   , 

[ H, Δ ] ⊆  L1  ≠ ∆ 

Now  H  ≤ P~   which  is  completely  reducible  on Δ   ;   since  L1    is  P~   invariant 

we  have  a   P~   invariant  fixed  set  X  for  H  in   Δ  .    But  now  (5)  follows. 

 The   following  lemma   will  allow  us  to  deduce  a  contradiction  to  (5), 

thus  proving  (4). 

5.1  Lemma.    Let  G  =  PQ    where  P  is  the  p-radical  and  Q  is  an Sq    subgroup. 

Suppose  P  has  an  AG  invariant  Abelian  subgroup  B,  on  which  Q  acts  non 

trivially,   and   minimal   with   this  property.     Suppose 

A1      =    ker  A  on  G/P 

is  non  trivial,  [ A,   Q ] covers  G/P  ,  and  A1G  has  a  unique  maximal  AG 

invariant   subgroup   containing  A1P,   M   say  .     Let   U  be  an  irreducible 

AG  module  on  which  B   acts   non   trivially.     Then   if 

            M\Qx|x
1AH ∈=  

has   a   non   trivial   PA1     fixed   set,    it   follows   that   A   has   a   fixed  point 

on  U. 

Proof.    Write  G
(

    =    GA1    ,   P
(

   =   PA1  .   Then 

(A)     
G

U (    is   homogeneous.     For   if   not   let 

G
U (     =    U1  ⊕ . . 

Then  since  H  is  completely  reducible  on  U  we  may  assume  that  H  has  a 

fixed  point  on  U  .    But  then,   since 

A1 ≤   Hx for  x  ∊   Q \  M  , 
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we  find  that  A1    has  a  fixed  point  on  U1    .    Clearly  it  follows  that 

A  has  a  fixed  point  on  U. 

(B)     is  homogeneous.    For  consider 
P~

U

UM   =   U1 ⊕... 

                                                       I      =    StabAG  ( M  on U1)  

Then  if  I    AG  we  have,  as  in  (4),  that 

 I    =    AM    ; 

IX∩  A    =   A1                   for x ∊    \  M    . G~

Case  (a).    H    has  a  fixed  point,  u  say,  on U1      . 

Choose 

x  ∊ \M    . G~

We  assert that u  x is  a  fixed point  for  A.,  and,  if   ∝  ∊  A  \ A 1 ,  that 

u  ⊗  x  (1  + ∝ + + ∝ p-1 ) 

is  a  non  trivial  fixed point  for A. 

Case  (b).   [ H,  U1  ]   =   U1    .    Then H has a  fixed point u Ä x  say on U1 ⊗ x 

for  some  x ∊ \M.    Then,  choosing G~

y ∊  \  M    ; y ≇ x    (M) G~

(for   | G
(

/M |     ≠      2  )  we  find  that,  if A1      =   < β >  , 

u ⊗ y  β      =     u ⊗ x β  y-1x  x-1y     =    u ⊗ y 

since  y-1 x ∉   M .    Thus we may proceed as in (a) above. 

It  now  follows  that  UP  is  homogeneous  as  asserted.    But  now,   since 

H has  a P~    invariant   fixed   set,   H    must  in  fact   act   trivially   on  U.     But  then, 

since 
A1    ≤   HG

we  have   that   A1   acts   trivially.     But   since  [A,  B ]   does  not,  we  find  a 
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fixed  point  for  A  as  in  (l)  above.    This  completes  the  proof  of  5.1. 

(6) VR2    is  homogeneous.    For let  I  be  the  stabilizer  of a Wedderburn 

constituent.    Then  by  (3)  we  may  assume  I  contains  A  ;  by  (4)  that 

I  covers  AG/ R
(

2  ;    thus  I  = G as  required. 

(7) VR 1  is  homogeneous  provided  either 

(i)    {p,  q }  ≠   {2,  3}   ;                           or

(ii)    p  =  3  and for every maximal AG invariant  subgroup M of R
(

2    containing 

B  we  have  VM homogeneous.    The  proof of  (7)  will  involve  a  substantial 

amount- of argument.  We  take M a maximal AG invariant  subgroup  of R~ 2 

containing  R1    and   show that,  under  (i)  or  (ii),  VM is  homogeneous. 

Assume  then  that  ( i )   or   (ii)  holds but  that VM is  inhomogeneous. 

Then by  (6)  above  M  is  not  R2  ;    let  I   be   the   stabilizer of  M on a 

homogeneous  component W1 say.  By  (4)  above  I  covers AG/R2   and  so 

contains  an S    subgroup of  G,  and  further 

I  ∩ R~ 2    =   M    . 

The   proof  divides  into   three  cases. 

Case . (a).   Some  conjugate of I  contains  A.    Here  we  may assume  that  I 

actually  contains  A.    We  note  first  that 

M ≱  B    . 

For  if M  contains  B,   since  I  contains  an  S    subgroup  of  G  we  have  a 

contradiction  to  1.5  (the  minimality  of P)  . 

We  deduce  that  [B,  Q ]  covers  R~ 2/M  ;    moreover  B ∩ M  is  AG  invariant 

and  so must  be  centralized  by  Q    (and hence  also by P  = [p, Q ]  )    .    Thus 

                                                      [B,  Q ]   complements  M  in R
(

2    . 

Now   since   A  ≤   I  we  must  have  A1   ≤   M;    thus  if 

                                     X    =      {   [  B,   Q ] \ CG          (AM/M)   }
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we have 

A 1     =    I ∩ Ax for x ∊ X     . 

Let H      =     <  A1
x  |  x ∊ X  >   . 

We shall prove that 

(λ)    H ⊇ A1 ,  [B,   Q]

and,   letting 

L    =    ker M on W1       ; 

Lo    =    CE  (F)  Ro   (under  Hyp. II)     : 

L1   =    L ∩  E (under  Hyp.I) 

=  CE  ( F/F ∩ L)  RO/LO     (under  Hyp.II)     , 

that 

(µ)    [H,  ∆]     ⊆    L1     and        ∩ L1 
 [ B, Q ]  =  1 

(where,  as  above,   ∆   =    E  or E/Lo   under  I  and  II  respectively). 

         These  two  statements  show  that  A1    acts  trivially  on   ∆   ,  contradicting  (1). 

         We  first  prove  (λ).    Since  A  does  not  centralize  R~ 2/M  we  know  that 

X  is  non  empty.    Let 

1  ≠  x ∊  X    . 

Then  if y   ∊   [B,  Q ]  \  X  we  have 

x y ∊  X    . 

Thus,   since  B  is  Abelian 

   β  xy   =    β  [β,   x] [β,  y ]    =  β X [ β  ,  y]   ∈   H  ,  and  <β >   =  A1   , 

and  hence 

[β, y] ∊   H . 

Also   
β x2 = β x [β , x]        and,  if p ≠  2

we deduce that 

[β   ,  x]   ∊   H . 

Alternatively,  if   p  =  2  ,   since q  ≠  3  ,  we know that    | X |   >   2  and  we 

may pick x1   ∊ X with  x x1   X .  Then 

β  x x
1

    =  β x1    [ β  , x]     ∊      H   , 
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and  we  again  have  [ β , x ]   ∊   H  . 

It  now  follows  that    β   ∊  H,   and  hence  that     β y ∊   H  for  all  y ∊  B \ X   . 

We  have  thus  proved  (λ)   . 

We  now  prove  (µ) .    Under  Hypothesis  I  this  is  clear  ;   for  by 

Hall  Higman 

[  A1
X,  E ]  =1 for  x  ∊  X    . 1w

 
Thus 

[A1
x  ,  E]     ⊆     L    =    L1

and  since   [B,  Q]  complements  I  , 

∩ L1  [ B, Q ] = 1   . 

Now  suppose  Hypothesis  II  holds.    Then  we  have 

                            [ A1 x  ,  F ]   ⊆   L                    for   x   ∊  x  

Thus [H, ∆ ]  ≤  L1      ;    it  only  remains  to  show  that 

∩    L1   [B ,Q ]  =  1 . 

Let 
L~

1 /Lo  =   L1 , 

   and       ∩  L~ 1 [B, Q ]  = T  ; 

D  =  CT (F/F ∩ L )     . 

Then  D ◁  T  and  D  covers  T/Ro   .  Thus  D  contains  the  characteristic 

subgroup   generated    by   all  ′  elements  of  T  ;    it   follows    that P

D1  =  ∩  D  [B , Q ]

covers  T/Ro   .    But  D1   centralizes  F  .    Thus  T ≤  Lo    and  (µ)  is  proved. 

In  the  next  case  we  complete  the  case  that  (i)  holds. 

Case   (b).    No  conjugate  of  I  contains  A  and  either { p,  q } ≠     { 2,  3 } 

or  p  =  3  and  AQ  does  not  act  as  SL2(3)  on  R~ 2/M  .   We  remark  first  that 

I  ≱  A1     . 
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For  if  I ⊇  A1    it  follows  that  A1  ⊆  M  ,   so  that 

A1      =    I X∩   A          for x  ∊   R~ 2       .

But  then,  as  in  case  (a)  above,  we  find  that  A1   centralizes  ∆  , 

contradicting  (1)   . 

Thus 

I ∩ A    =    Ao   ≠    A1

and 

| I ∩ Ax   |       =    p               for x ∊   R~ 2       .

We  show that,  provided   { p,  q }   ≠   {2,  3}   ,  this  cannot  happen;  our 

method  is  to  show  that 

     [  R~ 2  ,  A ]   M/M   =  A1  M/M        (*)     . 

But this  implies that  the  irreducible  GF(p)  AQ  module   R~ 2/M   has   dimension 

two  (by Hall Higman,  for  example)  which  cannot  happen unless 

{p,q }   =    {  2,  3 }     and  AQ  acts  as Σ3  or SL2    (3)   . 

       We  must   prove  (*).     First  we  note: that 

                                     I ∩ AX ≤   I ∩ AR2    =   AoM 

since  AoM/M is  a Sylow p  subgroup  of  I/M  contained  in AR2/M.    Thus, 

modulo  M, 

Ao      =    I ∩ AX                 for  x ∊ R~ 2       .

Now let    Ao     =   < ∝ >   and  take  x in R~ 2       . 

Then,  for  some  j  , 

∝  =  (∝ β j)x   = ∝x β j    (modulo  M) 

or [∝  ,   x ]   ∊ A1M    . 

This  proves  (*)  and  so  (7)  is  proved  in  case  (b)   . 

Note.    Apart  from a  simple  argument  (see  (11)  below)  we  have  now proved 

E  and  F  for p  ≥  5  . 

To   complete  the  proof of  ( 7 )  we   must  deal with  condition  (ii)  . 
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Case  (c).    No  conjugate  of  I  contains  A ;    p  =  3,  M does  not  contain  B 

and AQ  acts  as  SL2(3)  on R~ 2/M   (in  the  natural  way)  . 

We  note  first  that,  as  in  case  (b) 

(A) A1   ⊈ M  .    A1
Q  covers R2/M . 

It  follows  that  we  may assume 

(B) I  =  Ao QM for some Ao  ≤  A  ,    Ao    ≠    A1   ; 

                                                               I/M ≅  SL2  (3) 

and  R~ 2/M  is  the   natural   module  for this. 

As   in  case  (a)  we   find 

.1
Q

1A
1L;1L]Δ,I

o[A(C) =⊆ I  
 

We  will  complete  this  case  by a  detailed analysis  of the  action  of 

I  on   ∆ ;    the key to  this  is 

(D)  [ M ∩ P,    ∆ ]   =    1.    We  show  first that 

[M,  Q]  ∩  P    =   M∩P    . 

Now  MB  =  R2 ; by  the  minimality  of B ,  [B, Q ] complements M  ; thus 

[ M, Q] [ B, Q] ∩ M =  [M, Q] . 

But P  is  contained in [ MB,  Q]   ;    thus 

P ∩  M  ≤ [M, Q] 

as  required. 

Thus,  by  (C)  above,  writing M     =   M ∩ P  , 

[ MO, ∆ ]  ≤   L1   ; 

                   .1
Q

1A
Δ],oM[ =I  

But Mo    is  A1 Q     invariant  ;    thus  (D)  follows. 

To  complete  the  proof we  consider an irreducible  AG  subraodule U of   Δ  . 

Clearly we  have  (by  (C)  ) 



                                                                                                                                          43. 

(E)  [ U,  I ]   ≠    U  ;   (AG)U  is  the  split  extension  of BU by  St2  (3) 

acting  in  the  natural  way. 

Now  consider  the Wedderburn  decomposition 

UB    =    U1 ⊕ ...  ⊕ UB t    . 

Let K  be  the  kernel  of B  on U1  .    Without loss  of  generality Ao 

centralizes  B/K  SO  that  Ao    stabilizes  B  on U1    .    In this  case 

KU1  = (A1) U1 =  1 

so  that,  since  A has  no  fixed points  on U1   we  must have 

[A0 ,U1 ]   = U1 . 

But  clearly  this  implies  that 

[AO Q,  U ]   =    U 

which  contradicts  (E)  .    This  completes  the  proof  of  (7). 

(8) If p  =  3,  VR1    is  homogeneous;    if p  = 2,  VR1B  is  homogeneous.    Let 

M be  a maximal  AG invariant  subgroup  of R2  containing R1    and  not  equal 

to  R2  ;    then  in  view  of  (7)  it  suffices   to  prove   that  if  M  contains  B 

then VM is homogeneous.    Thus  we  assume  that VM is  not homogeneous;    let 

I   be   the   stabilizer  of a  Wedderburn   constituent   W1 .   Then,   as   in  7  case  (a), 

1.5  or   II.5   ensures   that   no   conjugate  of  I  contains  A.    Moreover,  as 

before  we  have 

I   ∩  A    =   A1 

so  that A1 ⊈ M 

and A1
Q     covers  R~ 2/M  . we  note  also   that,  by (4),  I  may be  chosen  to   contain  Q. 

Let  B2    =  [ B,  A1] AQP  (modulo  RO  in  case  II) 

                                ∆2   =   [ ∆,  B2]    . 

We  assert  that,  if  I ∩ A    =   Ao    then 
  

(9) [Ao I , ∆2   ]  ≠  ∆2    .    To  see  this  we  proceed  as  in 7  case   (a).    Let   L 
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(B) A    has  fixed  points  on  U  .     For [A1 ,  B]U  is  certainly  non  trivial. 

(C) 
G

U (   is  homogeneous.    For  if not  let W1   be  the  first Wedderburn 

constituent;    without  loss  of  generality  A1    has  a  fixed  point  on W1    , 

leading to  a  fixed point  for A on U. 

(D) UR2. is  homogeneous.  Let  M1 ⊇ R~ 2 be the maximal proper AG invariant 

subgroup of G .   We  show that  U~
M1.  is  homogeneous.  Suppose  this  is  not 

 
the  case;    let  I1  be  the  stabilizer.    Then  we  may  take 

I1 = A M1

and I1 X∩  A    =    A1 for  x ∈ G  \ M~
1      . 

As  before  we  deduce 

[ A1  x,  B]  ⊆  s    =    ker R~ 2   on W1                         for x  ∈  Q \ M1    . 

But now 

   ∩    SU
Q   

 =  1 

while 

[  A1 x,  B]   ⊆   [ P~ ,  B]   ≠     B    . 

P~ ,  B]  is  centralized  by  Q.    Thus By  the  minimality  of B,  the  commutator [

                                                [A1 ,  B]U    =   1 

which  is  not  the  case  ;  (D)  now  follows  . 

R~ 2(E)    UM is  homogeneous,  where  M is  the  maximal AG  invariant  subgroup  of  

considered  in  (8)  above.    Note  that  since  Ao    has  an  M  invariant  fixed 

subspace  in  U this  implies  that A   acts  trivially  on U  ;    this  contradiction 

then  completes  the  proof. 

Now  suppose that  I1,  the  stabilizer  of M on a Wedderburn  constituent W1

is  proper.   Then  we  may  assume  that  I1  contains  Q ;  but  then I1   is  the 

normalizer  of Q modulo  M and  so  must  coincide  with I .  Thus 

 I     =     I1     . 

Thus  A   has  no fixed points on W1    ;    suppose  then that W 1 ⊗ x is  fixed 

elementwise  by  Ao    .    Ao    clearly  stabilizes  this  component  so  that 

Ao    =   A ∩ IX   . 
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be   the  kernel  of  E on  W1 ,   and,  under  Hyp  II,   as  in  (1)   , 

Lo   =  CE (F)    Ro  . 

Then put 

L 1     =    L                (under Hyp.   I ) 

=   CE   (F/F∩L) Ro /Lo   (under  Hyp  II)     . 

As before we have 

[   Ao 
I  ,   ∆ ] ⊆   L1   .  

Now  since  Ao I      contains  Q  we  deduce 

[ B,  Q,  ∆ ]  ⊆   L1    . 
 

.1

Q
1A

L1 =I  

As  in 7  (a)  (µ)  we  have 

Thus 

[B,  Q,  A1 ]     ⊈     CB  ( ∆ / LB 1 )     . 

We  deduce  that  ∆2  is  non  trivial ;   since it is AG invariant  it cannot  be 

contained in L1    .    Thus 

[A o I , ∆2 ]   L ∩ ∆2  ≠ ∆2      

and  (9)  is  proved.    In  fact  it  is  clear  that  we  may  take  an irreducible 

AG  constituent  U  of ∆2  such  that 

[ Ao
I ,  U ]    ≠   U    . 

Lemma  5.2.      In  the  above  circumstances,  A has  a  fixed  point  on  U  . 

Proof

(A)    Ao   has  an M  invariant  fixed  subspace  on U.     This  is  clear  since  Ao  

is  contained  in an  M  invariant      Sylow  p  subgroup  of Ao I     (modulo  the 

kernel  of AG  on U)  -  for 

MU   ≅    (M ∩ P)U x (R1 ∩ Q)U

where  R1 ∩  Q  centralizes  Ao   -  and  U  is  a  GF(r)  module  where  r ≠  p  . 
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But  now we  get,  by Clifford,  a  fixed  point  for  A as  required. 

This  completes  the  proof of  (8).    Putting together  (7)  and  (8)  and 

using the  simple  (11)  below,  we  find that Proposition F is proved and 

that  E is also unless  p  =  2,  q  =  3  and  Hyp  I  holds. 

From now on we  assume  that p = 2,  q = 3  and Hypothesis  I  holds  ; 

then,  by  I.6,  the  Sq  subgroup Q  of NG  (P)  is  cyclic;  if M is  a maximal  AG  invariant 

subgroup of R~ 2 distinct from R~ 2 then A/A1   is free on R~ 2/M  . 

(10)    If CA  (B)    ≠    1  then VR1   is homogeneous.    In view of  (7)  and 

(8)  we  may take  M not  containing B and assume  that VM is  not homogeneous. 

We  note  first that,  clearly 

(A) A1    =   CA  (B)  . 

We  next deduce,  as  in 7  (a)  that 

(B) A1   ⊈  M ;   I  =  Ao QM for  suitable  Ao  ≤  A and Q an Sq  subgroup of 

NG   (P) .    Since A/A1   is  free  on R~ 2/M  ,  complements to R2  in A R2  modulo M) 

are  conjugate  ;    thus  for  some  Ao ≤   A , the  normalizer N1  of Q contains  Ao 

modulo M.    But now we may assume,  since  I  covers AG/ R~ 2  that I  contains N1 . 

It  follows  that I = Ao QM as asserted.     Now suppose A1    is  contained in M  . 

Then I  contains  A and  for 

x ∈   B \ CB  (AM/M) B

we  have 

A ∩ Ix      =   A1     .

Thus 
          [ A1

x-1
   ,    R1 ] W1      =   1   ;  

since  A1   centralizes B  it follows   that  A1   centralizes R1   contradicting 

item  (l)  . 

Next  we  utilize   the  fact  that   p  =  2  to  deduce 

(C)   We may  assume Ao   normalizes Q  . 

This  follows  from a  simple  lemma. 
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5.3  Lemma.     Suppose  | Ao  |    =    2  acts  on  G  =  PQ  where  P  is  a  normal 

2  -  subgroup  and  Q  is  a  q  group  for  some  prime  q  ≠ 2  .     Then  Ao

normalizes  some  S    subgroup  Q1  of  G  . 

Proof.    We  use  induction  on    | G |  , 

(1)    P  is  elementary Abelian  .    For,  if  not  let 

                                                   Z     =  Ω1   ( Z  (P)    ) 

and  consider  G/2    By  induction  Ao    normalizes  Q1    for  some  Sq

subgroup  Q1  . 

(2) P+    is  an  irreducible  Ao Q  module.    This  follows  exactly  as  (1)   . 

(3) A is  free  on P+    or  trivial.    In  the  first  case  all  complements 

to  P  in AP  are  conjugate,  while  N(Q)  complements  P  in  AG  ;   the  result 

follows.    In  the  second  case  Q  is  normal. 

We   now  make  a   detailed   analysis   of   the  structure  of  P  . 

(D)    B  is  central  in P~   ;   P~   =  B T~   where  T~   =  A1
 Q  .   For,   since  AO 

normalizes  Q,  the  normal  closure  T~   is  Ao  Q invariant   and  AQ T~  is  a subgroup. 

Thus 

                                            T~   B   =  P~  

by minimality  of P  (1.5).    Since  A1    centralizes  B  it  is  clear that  T~   does. 

Thus  (D)  follows. 

(E)    Q  centralizes    M.    For,  since  I ∩  A   =   Ao ,  we  have 

                                     [ Ao
I ,  R1 ]   ⊆   L    =    ker R1    on W1      . 

Also,   since  B  supplements  I,  the  normal  interior 

∩    {  Ao
I  } B        

centralizes  R1   .    But  now  Ao
 I      contains  [ M,  Q ] which,   by  (D)  above  is 

centralized  by  B.    Thus [M,  Q ] must  be  trivial  as  asserted, 

(F)    P~   ≅  B x  H  ;   B has  rank  two.    For,   since  B  is  central  in P , 

[B,  Q ]   is  < A,  Q >  invariant and  so,  by  minimality,   is  B.   Similarly 
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[B, Q ]  is  irreducible  and  so has rank 2 (recall that q = 3 and, by 

I.6,  the group QB must have order 3) . But  now B ∩ M is trivial  so B

that  (F)  is  established. 

To  complete  the  proof  we  consider  U =  E   as  an  AG  module;   we 

have  that  since 

[  Ao I , E ]   ≠   E    , 

[AO I ,  U ]   ≠   U   . 

Now  consider  the  Wedderburn  decomposition 

                                                           UB   =   wB 1 ⊕  W2 ⊕ W3

-  since  B  acts  fixed  point  freely  on  U  we  have  three  distinct  irreducibles 

in  B  on  U.  Now  Ao  Q  acts  on these  ;  since  B+  is  an  irreducible Q  module, 

Q  cannot  fix  any  component  ;    clearly  Ao  must  fix one,  say  W1   ,  and   if 

Q  =   < τ >     we  have 

W2  =  W1   τ   ;       W3    =    W1τ2    . 

Thus 

(w1) Ao      covers  ( U/ [U,Q] ) Ao  

so  that  Ao    has  fixed  points  on  w1   .    Let 

x    =     (A1wC o) 

Then  A1    must  have  no  fixed  points  on  X  ;     if    <β  >    =    A1   then β    =    -1 

on  X  .     Now  let 

β  =  β  1  ɤ       1 ≠   β  1 ∈  B ,     ɤ  ∈  M.. 

Now since  Ao   interchanges W2  and W3 ,  b   can  have  no  fixed  points  on 

 X τ or Xτ2    ;   thus  β τ   and  β τ2  are -1 on  X . Now 

                                                         β τ    =  β 
1
τ    ɤ    

                                                       β τ 2    =  β 
1
τ 2   ɤ      

                                                               β       =  β 1 ɤ  . 

Thus  β 1,   β1
τ2 , β1

τ  must  all  act  in  the  same  way  on  X  .    Clearly  they 

must  centralize  it,  in  which  case  we  find  that  B  centralizes  X,  which 



in  not  possible.    This  completes  the  proof of  (10)   . 

(11)     Let  p   ≠  2 or CA (B)  ≠ 1 .  Then VR  is  homogeneous.   For  if  not 

let  T  be  the  stabilizer  of   a   component.    We  may  assume  that  I  contains 

AP  and  since 

AG    =    N  (P)  R 

we  have 

I    =    AQ1  PR 

where  Q1    =  I ⋀ Q  and  covers  G/R2  .    By  the  minimality  of Q  we  have  that 

Q1    =    Q    . 

Thus  I  =  G as  required. 

In  exactly  the  same  way  we  may  prove 

(12) Let  p = 2 and GA (B)  =  1 .   Then  VBR  is  homogeneous. 

In view  of  (11)  and  (12)  ,   Proposition    4.3  and   Corollary  4.2 

complete  the  proof  of  Propositions  E  and F  . 

49. 
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