GROUPS OF TYPE (p, p) ACTING ON

 p-SOLUBLE GROUPS byANDREW RAE

I

$$
\begin{aligned}
& 306 \\
& 1 / 39
\end{aligned}
$$

by

Andrew Rae

In this paper we continue with the work of (1) and (2), considering now an operator group A of type (p, p) acting on a p- soluble group G. The aim is to show that if the p length of G is large enough, fixed points appear for such an operator group on a P^{\prime} section; moreover this is non trivial in the sense that it is not centralized by e very Sylow p subgroup of G. We show that such fixed points must appear if the p length of $\mathrm{G} / \mathrm{O}_{\mathrm{p}}$ is at least 5 (if $\mathrm{p}=2$) or 7 (if $\mathrm{p}-2$). This improves on the bound for odd p given in (1) ; for $\mathrm{p}=2$ such fixed points do not seem to have been found before. Our result is almost certainly not the best possible; our method is based on a device due to Hartley (3) which probably gives a bound 2 k - 1 where k is the best possible.

The search for such fixed points was motivated by a conjecture of J.G. Thompson which states that if a p group A of given order p^{k}. is contained in only one Sylow p subgroup of the p-soluble group G then the p length of G should be bounded by a linear function of k. An exponential bound was found in (1) for p odd, and the linear bound $2 k+1$ for A cyclic and any p. We hope that this paper may suggest a way of getting a linear bound if A is elementary Abelian.

This paper may be regarded as of "Hall Higman type" (see (4)) ; we proceed by showing that if no fixed points of the required type appear in the top 4 (or 6 if $p=2$) p sections of the upper p series, then a free module for A must occur in the next one down(Theorem D below gives a linear version of this). In fact it seems likely that
such free modules must continue to appear at each successive stage, but we have not been able to establish this. We also give a number of results analogous to Hall-Higman's Theorem B for an operator group of of type (p, p) (see section one) .

The proof uses the same overall method as Shult in (5) where the case that A and G have coprime orders is solved; this case has subsequently been investigated for general A by T.R. Berger (6), (7), (8), but we have not been able to use any of his powerful methods. The main difference between the methods used here and those of (3) is that we have, essentially, to keep track of the whole of G and, unlike (5), we are not able to use induction on G to any significant extent. This, together with the calculations necessary to handle $\mathrm{p}=2$ and 3 , is responsible for the length of the paper.
$\underset{S}{S}$ 1. Statement of Results
Theorem A. Let A be elementary Abelian of order p^{2} and let A act on the p-soluble group G. Suppose the p length 1_{p} of $G / 0_{p}$ satisfies

$$
\begin{aligned}
& 1_{\mathrm{p}} \geq 5 \quad \text { if } \quad \mathrm{p} \geq 3 \\
& 1_{\mathrm{p}} \geq 7 \quad \text { if } \quad \mathrm{p}=2
\end{aligned}
$$

then A has a fixed point on some A invariant P^{\prime} section which is acted on fixed point freely by an A invariant p-subgroup of G.

We shall prove this by assuming that A has no such fixed points in the top few members of a p -series and then forcing their existence lower down. It will be convenient to refer to such fixed points as disallowed.

Note. It is not difficult to see that if A is a subgroup of G this Theorem forces A to be contained in at least two distinct Sylow p subgroups, provided the p length satisfies the stated inequality (see (2) "Lemma").

From now on, unless otherwise stated,
A will always denote an elementary Abelian group of order p^{2} acting on ap-soluble group G.

In addition, in Theorem B, D and Proposition E, F below we always assume that, writing

$$
0_{1}=0_{\mathrm{pp}} \quad ; \quad 0_{2}=0_{\mathrm{p}^{\prime} \mathrm{p} \mathrm{p}^{\prime} \mathrm{p}} ;
$$

\qquad
we have
(α) $[\mathrm{A}, \mathrm{G}] \quad \nsubseteq 0_{1 \mathrm{p}} \quad$ (G) ;
(ß) A has no fixed points on any disallowed p sections of G.

For all except Bi and $\mathrm{C} 1 \quad \mathrm{~V}$ will denote an irreducible module for AG over some finite field k. For all but E and F, V is faithful Our conclusion will always be the existence of a cyclic A module U, of dimension $\geq(p-1)^{2}$ - which we call "almost free" - or actually free.

This will be found as a submodule of V_{A}, except in the case of
2.
B_{1} and C_{1} where it will be in some A invariant Abelian p subgroup of G. (It is of crucial importance that this is in a subgroup not just in a p section of G). We summarize our results in the following table;

Theorem A follows from B1 and C1 for $\mathrm{p}^{1} 3 ;$ from $\mathrm{B}_{1} *$ if $\mathrm{p}=3$ and G is odd ; and from F if $p=3$. Proposition F is necessary because the almost free $G F(p)$ modules provided by E and B, while sufficing for $p \geq 5$, do not suffice for $p=3$, due to the simple
$[\mathrm{U}, \underbrace{\mathrm{A}, \mathrm{A}, \mathrm{A}}_{3}]=1 .($ see 2.21$)$
$=1$.

We now state these results in detail.

Theorem B. Suppose $\mathrm{p} \geq 5$ and
(0) $\mathrm{ch} \mathrm{k}=\mathrm{p}$,Vis a faithful and irreducible k AG module,
(1) $1_{p}(G)=2$.

Then V_{A} contains a cyclic submodule of dimension $\geq(\mathrm{p}-1)^{2}$.

Theorem B*. If, in addition to the hypotheses of B , the P^{\prime} radical of G has odd order, then V_{A}. contains a free A module.

Theorem G. Suppose $p=2$ and
(0) ch $\mathrm{k}=\mathrm{p}$; Vis a faithful and irreducible k AG module ;
(1) $1_{p}(G)=4$

Then V_{A}. contains a free A module.
Intermediate between B and C and A we have group theoretic
corollaries of B and C (in fact B1* holds for $\mathrm{p}=3$ as well) :
Theorem B1. Suppose $p \geq 5$ and $1 \mathrm{p}(\mathrm{G})=4 \cdot$

Then A has a cyclic module of dimension $\geq(p-1)^{2}$ on some A invariant Abelian p subgroup of G .

Theorem B1*. Suppose $\mathrm{p} \geq 3, \quad \mathrm{G}$ is odd and $1_{\mathrm{p}}(\mathrm{G})=4$; then A has a free module on some A invariant Abelian p subgroup of G .

Theorem C1. Let $\mathrm{p}=2$ and $1_{\mathrm{p}}(\mathrm{G})=6$.
Then A has a free module on some A invariant Abelian p subgroup of G.
The next result is of particular interest in the case $\mathrm{p}=3$
(Theorem B.. can only handle the case $|\mathrm{G}|$ odd) .
Theorem D. Suppose
(0) V is a faithful and irreducible k AG module and chk $\neq \mathrm{p}$.
(1) $1_{p}(G)=4$ if $p \geq 3$
$1_{p}(0)=6$ if $p=2$
Then A has a free module on V.

Theorems B - D will be proved by using a device to Hartley (3) to obtain a section of G having roughly half the p length of G, but rich in useful Abelian p sections, and then proving two rather technical module theoretic results (Propositions E and F below) about the case that the p length is 1 or 2 .

Proposition E. Let P be an A invariant S subgroup of G. Suppose
(0) V is an irreducible k. AG module where ch $\mathrm{k}=\mathrm{P} \cdot$
(1) $\quad 1_{p}(G)=1$.
(2) $[\mathrm{A}, \mathrm{G}]$ covers $\mathrm{G} / 0_{\mathrm{p}}{ }^{\prime} \mathrm{p}$ which is non trivial.
(3) Condition (β) . A has no fixed points on any disallowed P^{\prime} section.
(4.) P contains an Abelian $\mathrm{N}_{\mathrm{AG}}(\mathrm{P})$ invariant subgroup B not centralised by an $\mathrm{S}_{\mathrm{p}^{\prime}}$ subgroup of $\mathrm{N}_{\mathrm{G}}(\mathrm{P})$, and minimal with these properties.
(5) B_{V} is non trivial.

Then V_{A}. contains a cyclic module of dimension $\geq(\mathrm{p}-1)^{2}$; if $\mathrm{p}=2$ it contains a free module.

Proposition E*. If we add to hypothesis E4, that [$\mathrm{B}, 0 \mathrm{p}$ ' l_{v} is not a
2 group, then V_{A} contains a free module.
Proposition F. Suppose $\mathrm{p} \neq 2$ and that P is an A invariant S_{P} subgroup of G. Suppose
(0) $\quad \mathrm{V}$ is an irreducible κ AG module where ch $\kappa=\mathrm{P}$,
(1) $1_{p}(\mathrm{G})=2 ; \mathrm{G}=0_{\mathrm{p} \mathrm{p}^{\prime} \mathrm{p}^{\prime}}$; let $\mathrm{R}=0_{\mathrm{p} \mathrm{p}^{\prime}}$, etc.
(2) [A, G] covers $G / 0 \mathrm{p} \mathrm{p}^{\prime} \mathrm{pp}^{\prime}$; which is non trivial.
(3) Condition β (see E3).
(4) $\quad \mathrm{P} / \mathrm{R}_{\mathrm{o}}$ contains an Abel.ian $\mathrm{N}_{\mathrm{GA}}(\mathrm{P})$ Invariant subgroup $\mathrm{B} / \mathrm{R}_{\mathrm{o}}$ not centralized by an Sp^{\prime} of $\mathrm{N}_{\mathrm{G}}(\mathrm{p})$ and minima] with this property.
(5) R contains an Abeliar. AG invariant subgroup F not centralized by an $S_{p^{\prime}}$ subgroup of $\left[\mathrm{R}_{1}, \mathrm{~B}\right] . \mathrm{F}$ is minimal with this property.
(6) $\quad \mathrm{E}_{\mathrm{v}}$ is non trivial.

Then V_{A}. contains a free submochile.

The major difficulty in proving E and F is in handling the cases $\mathrm{o}=2$ or $\mathrm{p}=3 ; \mathrm{E}$ is essentially to deal with $\mathrm{p}=2$, while F gives us a free A submodule, which is required to prove A and D for $p=3$. Proposition E is also required to prove Theorems B and C; it might be possible to prove F for $p=2$ as well - thus making B, C and E unnecessary for the proof of Theorem A, but the proof of F is somewhat more involved than that of E , and B and C may have independant interest.

Notation

In addition to notation of (1), we use
$0_{1}=0_{p^{\prime} \mathrm{p}}, \quad 0_{2}=0_{\mathrm{p}^{\prime} \mathrm{pp}^{\prime} \mathrm{p}}, \quad$ etc. $\quad\left(0_{2}\right.$ will not be used for the

2 radical). $\quad 1_{\mathrm{p}}(\mathrm{G})$ is the p length of G .
$0_{t, p^{\prime}}$ is defined by $0_{t, p^{\prime}} / 0_{t}=0_{p^{\prime}} /\left(G / O_{t}.\right) \quad$ where $t=1, \quad 2$. .. as above.

Thus $0_{1, p^{\prime}} \quad=0_{p^{\prime} p p^{\prime}}, 0_{2 p^{\prime}} 0_{2, p^{\prime}}=0_{p^{\prime} p p^{\prime} p p^{\prime}} \quad$ and so on.
H^{G} denotes the normal closure. $\cap \mathrm{H}^{\mathrm{G}}$ the normal interior
of H under G . Thus

$$
\cap H^{\mathrm{G}}=\bigcap_{\mathrm{X} \in \mathrm{G}} \mathrm{H}^{\mathrm{X}}
$$

S 2. The main purpose of this section is to deduce Theorem A from Propositions E and F. For $\mathrm{p} \geq 5$ the arguments are straightforward; this case is covered in 2.3. The cases $\mathrm{p}=2$ and 3 give rise to some technical difficulty and have to be settled by different arguments. For the rest of this paper we will have two lines of argument, one, via Proposition E, dealing with all $\mathrm{p} \neq 3$, and the other, via Proposition F, with $p \neq 2$. It is possible that the latter could be extended to deal with $\mathrm{p}=2$ as well, but since this second method is already somewhat more complicated it seems worthwhile to use both. Both of these will deal with $\mathrm{p} \geq 5$ en passant, thus making 2.3 below redundant; however it is so much simpler that it is probably worth retaining.

We start with two elementary lemmas; these form, for $\mathrm{p} \neq 3$ the link between the almost free module U of B 1 and C 1 and the free modules and fixed points of A and D . The argument is thoroughly familiar (it forms the basis of (9) for example). Unfortunately it will not be any use if $\mathrm{p}=3$, unless we restrict the 2 - part of G.
2.11 Lemma. Let V be a cyclic module for $\mathrm{A}=\mathrm{E}_{\mathrm{p}} 2$ of dimension
$\geq(p-1)^{2}$ over GF(p).
Then provided $\mathrm{p} \geq 5$, the p fold commentator

$$
\mathrm{U}=\mathrm{V}(\mathrm{~A}-1)^{\mathrm{p}} \neq 0 .
$$

Proof. Since V is the image of a one generator free A module, it suffices to show that, if V is free, U has dimension

Let and be generators for A and 1 a generator for V . Then

$$
(1-\alpha)^{r}(1-\beta)^{s} \quad \mathrm{r}+\mathrm{s} \geq \mathrm{p} . \quad \mathrm{r}, \mathrm{~s} \leq \mathrm{p}-1
$$

are linearly independent elements of $U ;$ clearly there are $\geq \frac{p(p-1)}{2}$
such ; for $p \geq 5$ this is greater than $2 p-1$.
2.12 Lemma. Let G have an elementary Abelian A invariant subgroup B such that

$$
[\mathrm{B}, \underbrace{\mathrm{~A}, . . \mathrm{A}}_{\mathrm{P}}] \neq 1 .
$$

Then if V is a faithful irreducible κ AG module where ch $\kappa \neq \mathrm{p}$, it follows that V_{A} contains a free module.

Proof. We note first that we may take κ to be a splitting field for all subgroups of AG. For, if not, let k_{1} be a finite extension of κ which is such a splitting field and consider

$$
\mathrm{V}_{1}=\mathrm{V}^{\otimes} \kappa_{1}
$$

Let U be an irreducible κ_{1} AG constituent of this. Then since

$$
\left(\mathrm{V}_{1}\right)_{k A G} \stackrel{V}{=}\left|\kappa_{1}: \kappa\right| \mathrm{V},
$$

$U \kappa_{A G}$ is a multiple of V; thus U is faithful and we may apply our result to deduce that U_{A} contains a free module. But then it follows that V must. Now

$$
\mathrm{B}_{1}=[\mathrm{B}, \underbrace{\mathrm{~A} \ldots \mathrm{~A}}_{\mathrm{P}}] \neq 1 .
$$

Let V_{1} be an irreducible $A B$ constituent of V on which B_{1} acts non trivially ; we apply Clifford's theorem (Huppert (10) page 565) to B on V_{1}. Suppose W_{1} is a homogeneous component, that

$$
\begin{aligned}
\mathrm{L} & =\operatorname{ker} \mathrm{B} \text { on } \mathrm{W}_{1} \\
\mathrm{~A} & =\operatorname{stab}_{\mathrm{A}}\left(\mathrm{~B} \text { on } \mathrm{W}_{1}\right)
\end{aligned}
$$

and that A_{1} is non trivial. Then, since $B_{1} \triangleleft A B$ it is clear that

$$
\mathrm{B}_{1} \nsubseteq \quad \mathrm{~L} .
$$

On the other hand, since k is a splitting field for B, the stabilizer A_{1} centralises B / L and so also does

$$
\left[A_{1}, B\right] \leq \cap L^{A}=K \quad \text { say. }
$$

But now R / K is a cyclic module for A / A_{1} and so K must contain B_{1}. This contradiction shows that $A_{1} \neq 1$, so that A has a free module on V_{1} an required. It follows that V_{A} contains a free summand.
2.13 Corollary. If $p \neq 3$, Theorem D follows from $B 1$ and $C 1$.

Proof. Immediate from 2.11 and 2.12 .

We next deduce Theorem A, for $p \neq 3$, from B1 and C1. We need an elementary lemma which will be useful later.
2.21. Lemma. Let $G / 0_{p p}$. have an Abelian A invariant p subgroup B such that

$$
[\mathrm{B}, \underbrace{A \ldots \ldots \mathrm{~A}}_{p}] \neq 1 .
$$

Then A has a fixed point on some disallowed section of $0_{p p^{\prime}} / 0_{p}$.

Proof. Clearly we may assume that $0=1$. Let P be an A invariant p subproun such that $\mathrm{PO}_{\mathrm{p}^{\prime}} / p^{\prime}=\mathrm{B}$, and Q an AP invariant Sylow q subgroup (for a suitable prime q) on which

$$
\mathrm{P}_{1}=[\mathrm{P}, \underbrace{\mathrm{~A} \ldots . . \mathrm{A}}_{\mathrm{p}}]
$$

acts non trivially. Let V be an irreducible AP constituent of Q on which P_{1} acts non trivially; then by 2.12 we have a free module, and hence a fixed point for A on V. Since $V=\left[V, P_{1}\right]$ it is clear that this is disallowed.
2.22. If $\mathrm{p} \neq 3$, Theorem A follows from Theorems B 1 and C 1 .

Proof. Firstly it is clear that, on factoring out by a suitable term in the upner p series for $G / 0_{p}$, we may assume
$0_{p}(G)=1$ and $1_{p}(G)=\begin{array}{ll}5 \\ i & p \neq 2 \\ p=2\end{array}$.

Write $1-1_{\mathrm{p}}(0)$ and let. $0_{1-1, \mathrm{p}} / 0_{1-1}$ denote the P^{\prime} radical of $\mathrm{G} / 0_{1-1}$ (recall that $0=0_{p^{\prime} p}, 0_{2}=0_{p^{\prime} p^{\prime} p p}$ etc.). Then it is clear that we may assume

$$
\left[\mathrm{A}, 0_{1-1 \mathrm{p}^{\prime}}\right] \nsubseteq 0_{1-1}
$$

Now put

$$
\mathrm{G}_{1}=\left[\mathrm{A}, \mathrm{O}_{1-1, \mathrm{p}^{\prime}}\right] \mathrm{O}_{1-1}
$$

Applying $B 1(p \geq 5)$ or $C 1(p=2$.$) to G_{1} / 0_{1}$ we deduce the existence of the subgroup B required by 2.21. This lemma now completes the proof.

We include here a similar lemma which will be used later to handle the case $p=3$ (in fact $p \geq 3$).
2.23 Lemma. Let $G / 0_{p p^{\prime}}$ satisfy F1-5. Then, assuming Proposition F, there is a disallowed fixed point for A in $0_{p p^{\prime}} / 0_{p}$

Proof of 2.23.. Clearly we may take $0_{p}=1$.
Let P_{o} be an A invariant p subgroup of G such that $P_{o} 0 \mathrm{p}^{\prime} / 0_{\mathrm{p}^{\prime}}=\mathrm{F}$.

Let P be an A invariant S_{p} subgroup of G containing P, and L an AP invariant Sylow s subgroup (for suitable prime s) of $0_{p^{\prime}}$ on which P_{o} acta trivially. Let $N=N_{G}(L)$ and V be an $A N / L$ constituent of L on which P_{o} acts non trivially. Then, since N covers $G / 0_{P^{\prime}}$, A, N. V satisfy the hypotheses of Proposition F and 2.23 follows.

We now use Harley's method ((3) section ?) to handle the case $p \geq 5 . \quad$ This is a simple version of the first main line of argument.
2.31. Theorem B 1 follows from Theorem B.

Proof. Let

$$
\mathrm{R}=\mathrm{C}_{\mathrm{p}^{\prime} \mathrm{p} \mathrm{p}^{\prime} \mathrm{p}}(\mathrm{G})
$$

and P be an A invariant S_{p} subgroup of R; we shall use Hartley's method to find a suitable Abelian subgroup B of P acted on by $\mathrm{N}=\mathrm{N}_{\mathrm{G}}(\mathrm{P})$ - which covers G / R - and to apply Theorem B to the action of AN on B .

Let

$$
\begin{aligned}
\mathrm{X} & =0_{4}(\mathrm{G})[\mathrm{A}, \mathrm{G}] \\
\mathrm{N} & =\mathrm{N}_{\mathrm{x}}(\mathrm{P}) \\
\mathrm{F} & =0^{\mathrm{PP}^{\prime P P^{\prime \prime}} \mathrm{P}}(\mathbb{N}) \\
\mathrm{Y} & =0^{\mathrm{pp}^{\prime} \mathrm{ppp}^{\prime \mathrm{p}}}(\mathrm{X})_{\mathrm{R}} .
\end{aligned}
$$

Then Y / R is non trivial and covered by F . Let Q be an S_{p} subgroup of F ; then Q covers Y / R.

Finally, let

$$
\mathrm{T}=[\mathrm{Q}, \mathrm{P}] .
$$

We assert that T has a characteristic Abelian subgroup not centralized by Q .
Before proving this assertion we show that it suffices to prove 2.31. Let B be an AN invariant subgroup of T minimal subject to being Abelian and not centralized by Q . Then since $[\mathrm{B}, \mathrm{P}] \neq \mathrm{B}$ this is centralized by Q ; thus Q acts non trivially on $\mathrm{B} /[\mathrm{B}, \mathrm{P}]$, Moreover, AN acts on this section ; let V be an irreducible AN constituent of this, subject to non trivial action by Q. Let $G_{1}=N_{v}$. and apply Theorem B to $\mathrm{A}, \mathrm{G}_{1}, \mathrm{~V}$; the hypotheses of this are clear except perhaps that A might not be faithful. However if some non trivial subgroup of A centralizes G and V then Theorem B of (1) gives a fixed point for A on some disallowed p^{\prime} section of G_{1}.

Finally we prove the assertion. We note first that it suffices to prove that T does not have class two (see for example (10) Theorem 13.6 pare 352) Let

$$
\mathrm{P}_{1}=\mathrm{P} \cap 0_{\mathrm{p}^{\prime} \mathrm{p}}
$$

Then, since $\mathrm{Q} \nsubseteq \mathrm{R}, \quad \mathrm{T} \nless \mathrm{P}_{1}$. Thus, since $\mathrm{p} \geq 5$ Hall Higman's Theorem B shows that

$$
\left[\mathrm{P}_{1}, \mathrm{~T}, \mathrm{~T}, \mathrm{~T}\right] \neq 1 .
$$

Since $\left[\mathrm{P}_{1}, \mathrm{~T}\right] \leq \mathrm{T}$ this shows that T is not of class two as required.
2.32. Theorem $B\left(B^{*}\right)$ follows from Proposition $E\left(E^{*}\right)$.

Proof. Let $R=0_{p^{\prime} p p^{\prime} p}, X=R[A, G] \quad N=N_{x}(P)$ and $F=[N, A] P$. Then if Q is an $\mathrm{S}_{\mathrm{p}^{\prime}}$ subgroup of F, Q covers X / R; let

$$
\mathrm{T}=[\mathrm{Q}, \mathrm{P}] .
$$

Now exactly as in 2.31 we may show that T does not have class two, set

$$
\mathrm{G}_{1}=\mathrm{Q} \mathrm{~T} 0_{\mathrm{P}},
$$

and let V_{1} be an irreducible AG_{1} constituent of V on which $\left[\mathrm{B}, \mathrm{O}_{\mathrm{p}^{\prime}}\right.$] acts non trivially. Then A, G_{1}, V_{1} satisfies the hypotheses of $\mathrm{E}\left(\mathrm{E}^{*}\right.$ in the case that $\left|0_{\mathrm{p}^{\prime}}(\mathrm{G})\right|$ is odd) . For these are all clear except perhaps for E 2 . But $\mathrm{Q} \leq \mathrm{S}[\mathrm{Q}, \mathrm{A}]$ and covers the non trivial group X / R; thus E 2 holds. The proof of 2.32 is now clear.

For the rest of this section we are primarily concerned with the cases $\mathrm{p}=2$ and $\mathrm{p}=3$. The main difficulty is with repeating the argument of 2.31 for $p=2$; this is done, using three steps in the p series where two were used before, in two main stages ; The first and most technical is in 2.41 where we show that the subgroup T is not of class two provided T is, essentially, not contained in 0_{p}. We then have to handle what is really the easy case,that T is Abelian modulo 0_{p} by, essentially, using Theorem A in $G / 0_{p}$ to obtain a disallowed fixed point. This second stage is also necessary for the case $\mathrm{p}=3$; it is messy in detail but straightforward conceptually.

The first and most technical lemma is an extension of Lemma 3.1 of (1) to the case that A is non cyclic. We recall that $0_{1}=0_{p^{\prime} p}$; $0_{2}=0_{p^{\prime} p^{\prime} p^{\prime}}$, . etc.
2.41. Suppose that either
(a) $\mathrm{p}=2$ and $1_{\mathrm{p}}(\mathrm{G})=3=1$ or
(b) $\mathrm{p} \geq 3$ and $1_{\mathrm{p}}(\mathrm{G})=2=1$

Suppose $\mathrm{G} \neq 0_{1}(\mathrm{G})=\mathrm{R}$; that P is an S_{p} subgroup of G and Q a P^{\prime} subgroup of $N_{G}(P)$ covering G / R. Let $T=[P, Q]$. Then, provided

$$
T^{\prime} \nsubseteq 0_{1-1}(\mathrm{G})
$$

T is not of class two.
Proof. We deal with case (b) first as this is immediate from Hall Higman.
For, if $\mathrm{P}_{1}=\mathrm{P} \cap 0_{\mathrm{p}^{\prime} \mathrm{p}}$ then (see (1), Lemma 2.3 for example)

$$
\left[\mathrm{P}_{1}, T^{\prime}, T^{\prime}\right] \neq 1 .
$$

Since $\left[\mathrm{P}_{1}, T^{\prime}\right] \subseteq T^{\prime} \triangleleft \mathrm{P}$, the conclusion is clear.
Thus suppose (a) holds ; $\mathrm{p}=2,1=3$. We note first that, setting

$$
\mathrm{R}_{\mathrm{o}}=0 \mathrm{p}^{\prime} \mathrm{pp}^{\prime} \mathrm{pp}^{\prime}, \mathrm{R}_{1}=0_{\mathrm{p}^{\prime} \mathrm{pp}^{\prime} \mathrm{pp}^{\prime}}, \ldots \mathrm{R}_{3}=0_{\mathrm{p}^{\prime} \mathrm{p}}
$$

we may assume that
(0) $\left[T^{\prime}, \mathrm{R}_{0}\right]$ and $\left[T^{\prime}, \mathrm{R}_{2}\right]$ are both, modulo R_{1} and R_{3} respectively, non Abelian 3 groups. For if not,then 3.1 of (1) shows that T does not have class two as required. Now let M be an $S_{p^{\prime}}$ subgroup of G containing Q and let $\mathrm{M}_{\mathrm{o}}=\mathrm{M} \cap \mathrm{R}_{\mathrm{o}}$. Then if

$$
\widetilde{N}=\mathrm{N}_{\mathrm{G}}\left(\mathrm{M}_{\mathrm{o}}\right)
$$

we have that
(1) $L=\tilde{N} \cap P$ is an S_{p} subgroup of \tilde{N}. For, since $M_{0} P=R$ we have that $\tilde{\mathrm{N}} \cap \mathrm{R}=\mathrm{M}_{\mathrm{o}}(\tilde{\mathrm{N}} \cap \mathrm{P})$.
But now M covers $\tilde{\mathrm{N}} / \widetilde{\mathrm{N}} \cap \mathrm{R}$. Thus L is an S_{p} subgroup of $\tilde{\mathrm{N}}$. In particular (2) L covers $\mathrm{R} / \mathrm{R}_{\mathrm{o}}$.

Now let

$$
\check{\mathrm{T}}=[\mathrm{L}, \mathrm{Q}]
$$

Then since $\check{\mathrm{T}} \geq \mathrm{T}$ it suffices to show that T does not have class two ; also since both Q and L normalize M_{o} we have
(3) $\check{T} \quad$ normalizes M_{o}

Now $\check{\mathrm{T}}$ covers $\mathrm{T} \mathrm{R}_{\mathrm{o}} / \mathrm{R}_{\mathrm{o}}$ (by (2)) ; thus
(4) $\Gamma=\left[\widetilde{T}^{\prime}, \mathrm{R}_{\mathrm{o}}\right] \quad \mathrm{R}_{1} / \mathrm{R}_{1}$ is a non Abelian 3 group. 1

Now let M_{1} be a T^{\prime} invariant S_{3} subgroup of M_{o} (by (3)) and $\widetilde{M}=\left[\begin{array}{ll}M_{1} & \widetilde{T}^{\prime}\end{array}\right]$.

We have
(5) $\quad \tilde{M}$ covers Γ; in particular $\tilde{M}^{\prime} \nsubseteq R_{1}$.

The main step is to prove
(6) $\tilde{M} R_{3} / R_{3}$ is not of class two. This will show that T is not of class two. For then some T invariant Abelian subgroup B / R_{3} will not be centralized by $\widetilde{\mathrm{T}}^{\prime}$ and we may apply 3.1 of (1) to deduce that

$$
\left[\mathrm{R}_{3}, \quad \check{\mathrm{~T}}, \quad \widetilde{\mathrm{~T}}, \tilde{\mathrm{~T}}\right] \not \equiv \quad 1 \text { modulo } \mathrm{O}_{\mathrm{p}}
$$

Since $[\mathrm{P}, \check{\mathrm{T}}] \leq \mathrm{T}$ it is clear that T can not have class two.
We now come to the proof of (6). We wish to apply our usual argument, with M in place of T to an $S_{\{2,3\}}$ subgroup of

$$
\Delta=\mathrm{R}_{\mathrm{o}} / \mathrm{R}_{3}
$$

we must first ensure that this is sufficiently large, which follows from the abservation that
(7) $\Delta_{1}=[\Delta, ~ T] \quad$ is soluble. For certainly this is soluble modulo R_{2}; factoring out its 3-radical R_{2} is centralized by T^{\prime}. Thus

$$
\left(\Delta_{1} \cap \mathrm{R}_{2} / \mathrm{R}_{3}\right)
$$

is a 3 group and (7) is proved.

Now let $\widetilde{\Delta}$ be an $S_{\{2,3\}}$ subgroup of Δ_{1} containing \tilde{M} modulo R_{3}. Since Δ_{1} is soluble this is a Hall subgroup and, making the natural identifications,
(8) $\tilde{\mathrm{M}}^{\prime}$ is not contained in the 3-radlcal of $\widetilde{\Delta}$. For if it is then

$$
\tilde{\mathrm{M}}^{\prime} \subseteq 0_{\mathrm{p}},\left(\Delta=\mathrm{R}_{2} / \mathrm{R}_{3} .\right.
$$

But this contradicts (5) .
Now applying Hall Higman (see for example (1) Lemma 2.3) to the group $\widetilde{\Delta}$ we find that (6) holds. As we remarked above this completes the proof of 2.41 .

We now apply 2.41 to make deductions from E and F .
2.42. Suppose either
(a) $\mathrm{p}=2$ and $\mathrm{t}=3$ or
(b) $\mathrm{p} \geq 3$ and $\mathrm{t}=2 ; 0_{\mathrm{p}}(\mathrm{G})=1$: in either case
that $G=0_{t+1, p^{\prime}} \neq 0_{t+1}$ and that [A, G] covers $G / 0_{t+1}$.
Suppose further that $0_{\mathrm{t}+1} / 0_{\mathrm{t}, \mathrm{p}^{\prime}}$ has an AG invariant Abelian subgroup $B / 0_{t . \mathrm{n}^{\prime}}$ not centralized by any $\mathrm{S}_{\mathrm{p}^{\prime}}$ subgroup of G. Then, provided A
has no fixed points on any disallowed p^{\prime} section of G (condition β), and Propositions E and F hold, it follows that $\mathrm{p}=2$ and G has an elementary Abelian A invariant p subgroup which affords a free module for A , Proof. Replacing B by a subgroup if necessary we may assume that B is minimal: now let $R=0_{t, p^{\prime}}$ and P_{o} be an A invariant S_{p} subgroup of B. Next let $P=P_{o} \cap R$, and $N=N_{G} .(P)$. Let

$$
F=\left[N_{R}(P), \quad P_{o}\right]
$$

and Q be an $\mathrm{S}_{\mathrm{p}^{\prime}}$ subgroup of F . Then $\mathrm{T}=[\mathrm{P}, \mathrm{Q}]$ is not special. For
we note first that

$$
\mathrm{T}^{\prime} \nless 0_{\mathrm{t}-1}(\mathrm{G})=\mathrm{R}_{\mathrm{o}}
$$

To see this suppose $T^{\prime} \leq \mathrm{R}$; consider first case (a) $\mathrm{p}=2, \mathrm{t}=3$. Consider the action of AN on T / T^{\prime}; let V be a faithful irreducible AN constituent of $T / T \cap R_{o}$. We assert that A, N, V satisfies the hypotheses of Proposition E (after taking B_{1} minimal in B as required by E4). Thus A has a free module on V and by Lemma 2.21 we find a disallowed fixed point for A in $0_{t-1, p^{\prime}}$.

Case (b) $p \geq 3, t=2$. Here we arrive at the same conclusion, using F in place of E. We assert that G / O_{p}, satisfies the hypotheses of 2.23 ; equivalently $G / 0_{1, p^{\prime}}$, satisfies $F 1$ - 5. But, since N covers this quotient, it is clear that F1-4 hold and, taking F minimal in T subject to non trivial action by Q, that F5 holds as well. Now 2.23 ensures that A has a disallowed fixed point as asserted.

Thus we have that T is non Abelian modulo R_{o}, and we may apply 2.41 to FO_{t} to deduce that T is not of class two. Thus T has a characteristic Abelian subgroup D not centralized by Q (see for example (10) Theorem 111 13.6 page 352). Suppose now that $\mathrm{p} \geq 3$. We assert that AN $0_{p^{\prime}}$ satisfies the hypotheses of 2.23 ; equivalently (since $\left.0_{p}(G)=1\right)$ that N satisfies $F 1$ - 5 modulo $0_{p^{\prime}}$. Since N covers $G / 0_{1, p^{\prime}}$ it is clear that F1 - 4 hold ; finally, taking F \underline{C} D minimal subject to non trivial action by Q , that F 5 holds as well. Thus A has, by 2.23 a disallowed fixed point in 0_{p}, . Thus $p=2$.

Now take V an irreducible $G F(p) A N$ constituent of D^{+}on which Q acts non trivially ; then A, N, V satisfies the hypotheses of E and A has a free module on V as required. This completes the proof of 2.42 .
2.51 Theorem C1 follows from Proposition E.

Proof. Let P be an A invariant S subgroup of $\mathrm{G}, \mathrm{N}=\mathrm{N}_{\mathrm{G}}(\mathrm{P})$ and $F=[N, A] P$. Then let Q be an S_{p}. subgroup of F and

$$
\mathrm{T}=[\mathrm{P}, \mathrm{Q}] .
$$

We assert that T is not of class two modulo 0_{3}.
This follows from 2.41 provided

$$
T^{\prime} \nless 0_{5} .
$$

But if $T^{\prime} \leq 0_{5}$, then we consider $\mathrm{G}_{1}=\mathrm{G} / 0_{2}$; we assert that this satisfies the hypotheses of 2.42. But then 2.21 ensures that A has a disallowed fixed pointj thus $T^{\prime} \leq 0_{5}$ as required, and T is not of class two modulo 0_{3}. We now apply 2.41 again; this shows that A on FO_{3} satisfies the hypotheses of 2.42 . This completes the proof of 2.51 .

We do not give full details of the following.
2.52 Theorem B1* follows from E*.

Proof:. this follows from 2.41 and 2.42 - suitably amended to use E* in place of E - exactly as 2.51 does.
2.61. For $\mathrm{p} \geq 3$, Theorem A follows from Proposition F.

Proof. This follows from 2.41 and 2.42 exactly as 2.51 does.
2.62. For $\mathrm{p} \geq 3$ Theorem D follows from Proposition F .

Proofs, this follows using a suitably amended version of 2.42 , from
2.41 and 2 just as 2.51 does.

Finally we do not give full details of the proof of C as this is not needed.
2.71. Theorem C follows from Proposition E. We proceed as in 2.32 using Lemma 2.41 to ensure that T does not have class two.

S
S 3. In this section we tighten up the structure of the groups considered in Proposition E and F. We first show that in proving E we may take G to satisfy

Hypothesis IA is elementary abelian of order p^{2} and G is a
soluble group acted on by $A ; P$ is an A invariant Sylow pubgroup of G .
(0) $\quad \mathrm{V}$ is a faithful irreducible $\kappa \mathrm{AG}$ module where κ is a field of characteristic p .
(1) $\mathrm{G}=0_{\text {P }^{\prime} P P^{\prime}}(\mathrm{G})$ write $\quad \mathrm{R}_{1}=0 \mathrm{p}_{\mathrm{p}}, \quad \mathrm{R}_{2}=0_{\mathrm{p} \text { 'p }} . \quad$ p'p
(2) $\quad \mathrm{A}_{1}=\mathrm{C}_{\mathrm{A}}\left(\mathrm{G} / \mathrm{R}_{2}\right) \neq 1 ; \quad \mathrm{A}_{1} \neq \mathrm{A} \quad ;$
[A,G] covers $G / R_{2} ; G / R_{2}$ is a q group for some prime $q \neq p$.
(3) $\mathrm{E}=\left[\mathrm{R}_{1}, \mathrm{P}\right]$ is anr group for some prime $\mathrm{r} \neq \mathrm{p}$; A has no fixed points on any section of E not centralized by an S_{p}
(4) $\quad \mathrm{P}$ contains an abelian N_{AG} (P) invariant subgroup B not centralized by any Sylow q subgroup Q of $N_{G}(P) ; \quad B$ is minimal with these properties.
(5) P is minimal subject to satisfying both
(i) P contains B satisfying (4)
(ii) There exists a Sylow q subgroup Q of N_{G} (P) such that $A Q P$ is a group.
(6) R has a normal Sylow r subgroup R and if Q is a Sylow q subgroup of $N_{G}(P)$ then $G=Q P R ; Q$ is minimal such that $Q P R$ is A invariant and satisfies (2) and (4); $\mathrm{Q} / \phi(\mathrm{Q})$ is an irreducible A module, modulo P ; if $\mathrm{p}=2, \mathrm{Q}$ is cyclic.

Hypothesis I * In addition to Hypothesis I, r $\neq 2$.
Proposition 3. 1. In proving Proposition E we may assume that G satisfies Hypothesis I. In proving Proposition E^{*} we may assume I^{*}.

Proof. We show that if A, G, V satisfy the hypothesis of Proposition E, (E*) then there are sections $\mathrm{G}_{1}, \mathrm{~V}_{1}$ of G and V respectively such that A, G_{1}, V_{1} satisfies Hypothesis I (I*) . We prove this by induction on $|\mathrm{G}|$, assuming that $\mathrm{A}, \mathrm{G}, \mathrm{V}$ provides a counter example with least possible $|\mathrm{G}|$.

$$
\text { Write } \mathrm{R}_{1}=0_{\mathrm{p}^{\prime}}(\mathrm{G}) \quad, \quad \mathrm{R}_{2}=0_{\mathrm{p}^{\prime} \mathrm{p}} \quad(\mathrm{G}) .
$$

(1) G is faithful on V. For if not, consider $G^{*}=G_{v}$;
we show that A, G^{*}, V satisfies the conditions of Proposition $E\left(E^{*}\right)$, and so, by induction, $G^{*}=G$.

These are clear except for E4, 5 (4*, 5*) . Let $\mathrm{B}^{*}=\mathrm{B}_{\mathrm{v}}$, etc. We assert that, if Q is an S_{p}. subgroup of $\mathrm{N}_{\mathrm{G}}(\mathrm{P})$,
(i) $\left[B^{*}, Q\right] \neq 1$
(ii) B^{*} is minimal as required.

Let S be the kernel of G on V , and let $\mathrm{S}_{1}=\mathrm{S} \cap \mathrm{B}$. Then we are given that $S_{1}<B$. By the minimality of B, it is clear that S_{1} is centralized by Q , so that

$$
[\mathrm{Q}, \mathrm{~B}] \nsubseteq \mathrm{S}_{1} .
$$

Thus (i) holds. Now suppose $\mathrm{B}_{1} * \subseteq \mathrm{~B}^{*}$ satisfies $\mathrm{E}(4$.$) . Then consider$

$$
\mathrm{B}_{1} \cap \mathrm{BS}=\left(\mathrm{B}_{1} \cap \mathrm{~B}\right) \mathrm{S} .
$$

Then $B_{1} \cap B$ cannot be centralized by Q, and so, by the minimality of B is B itself.

Thus (ii) is proved. It is now clear that $\mathrm{E}_{4}, 5\left(4^{*}, 5^{*}\right)$ hold for A, G^{*}, V so that (1) is proved.
(2) G satisfies 1.2. Choose a prime q and an S_{q} subgroup Q of
N_{G} (P) such that
(i) A normalizes QP
(ii) $[\mathrm{Q}, \mathrm{B}] \neq 1$.

Let Q_{1} be an S_{q} subgroup of [Q, A] ; then by $\mathrm{E} 2, \mathrm{Q}_{1}$ satisfies (i) and (ii).
Let

$$
\mathrm{r}=\mathrm{Q}_{1} \mathrm{P} / \mathrm{C}_{\mathrm{Q} 1} \quad \text { (B) } \mathrm{P}
$$

Then Γ is generated by the centralizers of non trivial elements of $\mathrm{A}((1.1)$ Theorem 3.16, page 188), and so at least one of these,
C_{Γ}, (A) say, must fail to centralize A. Let

$$
\left.\mathrm{C}_{\Gamma}\left(\mathrm{A}_{1}\right)=\mathrm{Q}_{2} / \mathrm{C}_{\mathrm{Q} 1} \quad \text { (} \mathrm{B}\right) \quad \text { (modulo } \mathrm{P} \text {) }
$$

and Q_{3} be an S_{q} subgroup of $\left[Q_{2}, A\right]$. Finally let $G_{1}=A Q_{3} P R_{1}$ and $\mathrm{B}_{1} \subseteq \mathrm{~B} \mathrm{~B}$ be minimal subject to E 4 . Finally let V_{1} be an irreducible $A G_{1}$ constituent of V on which $\left[B_{1}, Q_{3}\right]$ acts non trivially. Then A, G_{1}, V_{1} satisfies conditions $E\left(E^{*}\right)$ and so by induction must be A, G, V. But it also satisfies 1.2. Thus (2.) is proved.
(3) G satisfies 1.5 . For if not choose $M \nsubseteq P$ satisfying 1.5 . Then M contains an abelian normal subgroup B_{1} satisfying $I .4$, and for some S_{q} subgroup Q_{1} of $N_{G}(M), \quad A Q_{1} M$ is a subgroup.

Let $\mathrm{G}_{1}=A Q_{1} \quad \mathrm{MR}_{1}$ and V_{1} be an irreducible AG_{1} constituent on which $\left[B_{1}, Q_{1}\right]$ acts non trivially. Then A, G_{1}, V_{1} satisfies conditions $\mathrm{E}\left(\mathrm{E}^{*}\right)$, and since $\left|\mathrm{G}_{7}\right|<|\mathrm{G}|$ we may apply induction. (4) G satisfies 1.3. Let R be an AP invariant S_{r} subgroup of R_{1}, for suitable r so that B acts non trivially on R (if E^{*} holds we take $r \neq 2$). Let $N=N_{G}(R)$ and Q be an S_{q} of $N_{N}(P)$. Finally let $G_{1}=$ QPR and V_{1} be an irreducible $A G_{1}$ constituent of V_{1} on which [B, RJ acts non trivially. Then A, G_{1}, V_{1} satisfies conditions $\mathrm{E}\left(\mathrm{E}^{*}\right)$ and also I.3.
(5) G satisfies 1.6. We already have in (4) above that $G=Q P R$;
now choose $Q_{1} \subseteq Q$ minimal such that $G_{1}=Q_{1} P R$ is A invariant and
satisfies 1.2 and 1.4. Then take V_{1} as an irreducible $A G_{1}$
constituent of V. Clearly $\mathrm{E}\left(\mathrm{E}^{*}\right)$ holds so that we may take $\mathrm{Q}_{1}=\mathrm{Q}, \mathrm{V}_{1}=\mathrm{V}$.
Now if $D=C_{Q} \quad(B)$ it is clear that Q / D affords an irreducible
A module (modulo P). Thus $\mathrm{D} \supseteq \phi(\mathrm{Q})$, and if

$$
\overline{\mathrm{Q}}=\overline{\mathrm{Q}}_{1} \oplus \overline{\mathrm{D}}
$$

where $\overline{\mathrm{Q}}_{1}$ is, modulo P , an A module, then unless $\mathrm{Q}_{1}=\mathrm{Q}, \quad \mathrm{Q}_{1}$ gives
a contradiction to the minimality of Q . Thus $\mathrm{D}=\mathrm{f}(\mathrm{Q})$. Finally, if $\mathrm{p}=2$ it is clear that Q is cyclic. Thus (5) is proved. We next tighten up Proposition F in a similar manner.

Hypothesis II. A, G, P as in preamble to I above; p\# 2 .
(0) as 1.0 except that ch $\kappa-\mathrm{s} \neq \mathrm{p}$.
(1) $\mathrm{G}=0_{\mathrm{pp}^{\prime} \mathrm{pp}^{\prime}} ; \mathrm{R}_{\mathrm{o}}=0_{\mathrm{p}} \quad, \quad \mathrm{R}_{1}=0_{\mathrm{pp}}{ }^{\prime} \quad, \quad, \quad \mathrm{R}_{2}=\cdots$.
(2) I. 2.
(3) - (6) I. 3 - 6 for G / R_{o}.
(7) R contains an abelian $A G$ invariant subgroup F such that F is not centralized by any S_{r} subgroup of $\left[R_{1}, B\right]$

F is minimal with this property.
Proposition 3.2. In proving Proposition F we may assume that Hypothesis II holds.

Proof. The proof is very similar to that of 3.1 ; we carry out only the first two steps in detail as these involve all the necessary modifications to the arguments of 3.1.

Proof of 3.2
(1) G is faithful on V. As before let B^{*} denote B_{v}, G^{*} denote G_{v} and so on. Then as in 3.1 we assert
(i) F^{*} is not centralized by any S_{p}, subgroup of $[\mathrm{R}, \mathrm{B}]$
(ii) $\quad\left[B^{*}, \mathrm{Q}\right] \nsubseteq \mathrm{O}_{\mathrm{p}}(\mathrm{G})$ for Q an S_{p}, subgroup of $\mathrm{N}_{\mathrm{G}}(\mathrm{P})$.
(iii) B^{*} is minimal in $\mathrm{G}^{*} / 0_{\mathrm{p}}\left(\mathrm{G}^{*}\right)$ as required by F 4 .

To see this we let S be the kernel of G on V . Let $\mathrm{F}_{1}=\mathrm{F} \cap \mathrm{S}$; then since F_{1} is properly contained in F it is centralized by an S_{p}, subgroup T of $\left[\mathrm{R}_{1}, \mathrm{~B}\right]$; clearly $\mathrm{F} / \mathrm{F}_{1}=\mathrm{F}^{*}$ cannot be centralized by T. Thus (i) holds. Now let $\widetilde{R} \supseteq \mathrm{~S}$ and

$$
0_{\mathrm{p}} \quad\left(\mathrm{G}^{*}\right)=\widetilde{\mathrm{R}} * .
$$

Suppose that

$$
\left[\mathrm{B}^{*}, \mathrm{Q}\right] \subseteq \widetilde{\mathrm{R}}^{*}
$$

Let

$$
\mathrm{B}_{2}=[\mathrm{B}, \mathrm{Q}] .
$$

Then

$$
\mathrm{B}_{2} \subseteq \widetilde{\mathrm{R}}
$$

and by the minimality of B we deduce that

$$
\mathrm{B} \subseteq \widetilde{\mathrm{R}} .
$$

Thus

$$
\left[\mathrm{B}, \mathrm{R}_{1}\right] \subseteq\left[\widetilde{\mathrm{R}}, \mathrm{R}_{1}\right] \subseteq \widetilde{\mathrm{R}} \cap \mathrm{R}_{1}
$$

But

$$
\widetilde{\mathrm{R}} \cap \mathrm{R}_{1} \subseteq \mathrm{R} \quad\left(\mathrm{R}_{1} \cap \mathrm{~S}\right)
$$

Thus

$$
\left[\mathrm{B}, \mathrm{R}_{1}\right] \subseteq\left(\mathrm{R}_{1} \cap \mathrm{~S}\right) \mathrm{R}_{\mathrm{o}} .
$$

But now any $S_{p^{\prime}}$ subgroup of $\left[B, R_{1}\right]$ is contained in S, which contradicts (i) . Thus we have proved (ii) .

Next suppose $\mathrm{B}_{3} * \subseteq \mathrm{~B}^{*}$ and has the required properties for $\mathrm{B}(\mathrm{F} 4)$.
Then, as before, consider

$$
B_{3} \cap B S=\left(B_{3} \cap B\right) S
$$

Now $B_{3} \cap B \subseteq B$ and is not centralized by an $S_{p^{\prime}}$ subgroup of $N_{G}(P)$ modulo R_{o}. But this means that $\mathrm{B}_{3} \cap \mathrm{~B}=\mathrm{B}$ so that $\mathrm{B}_{3}{ }^{*}=\mathrm{B}_{1}{ }^{*}$.

Finally let $\mathrm{F}_{1} \leq \mathrm{F}^{*}$ be minimal subject to F 5 ; then as in 3.1 we have demonstrated (1) .
(2) G satisfies II.2. Chose a prime q and an S_{q} subgroup Q of N_{G} (P) such that
(i) A normalizes QP
(ii) $[\mathrm{B}, \mathrm{Q}] \nsubseteq \quad \mathrm{R}_{\mathrm{o}}$.

Let Q_{1} be an S_{q} subgroup of $[\mathrm{Q}, \mathrm{A}]$ and $\mathrm{D}=C_{Q_{1}}\left(\mathrm{~B} / \mathrm{R}_{\mathrm{o}}\right)$. Consider

$$
\Gamma=\mathrm{Q}_{1} \mathrm{P} / \mathrm{DP}
$$

Then Γ is generated by the centralizers of non trivial elements of $\mathrm{A}((11)$ Theorem 3.16 page 188$)$ and so at least one of these, $\mathrm{C}_{\Gamma}\left(\mathrm{A}_{1}\right)$ say, must fail to centralize A .

Let

$$
\mathrm{C}_{\Gamma}(\mathrm{A})=\mathrm{Q}_{2} / \mathrm{D} \quad \text { modulo } \mathrm{P}
$$

and Q_{3} be an S_{q} subgroup of $\left[\mathrm{Q}_{2}, A\right]$.
Finally let

$$
\mathrm{G}_{1}=\mathrm{AQ}_{3} \mathrm{PR}_{1}
$$

and

$$
\mathrm{B}_{1} / \mathrm{R}_{\mathrm{o}} \subseteq \mathrm{~B} / \mathrm{R}_{\mathrm{o}}
$$

be minimal subject to F 4 . Then if

$$
\Delta=\mathrm{R}_{1} / \mathrm{C}_{\mathrm{R} 1} \text { (F) } \mathrm{R}_{\mathrm{o}}
$$

we have

$$
\mathrm{R}_{\mathrm{o}} \subseteq \mathrm{C}_{\mathrm{B}}(\Delta) \underset{\neq}{\subsetneq} \mathrm{B}
$$

and so $C_{B}(\Delta) / R_{0}$ is centralized by Q. Thus B_{1} does not centralize Δ. Now take F_{1} minimal in P subject to $F 5$ (with G_{1} and B_{1} in place of G and B). Finally let V_{1} be an irreducible $A G_{1}$ constituent of V on which F_{1} acts non trivially. Then as in 3.1 , we have proved (2).

Finally steps (3), (4) and (5) of 3.1 carry over in a similar manner; the crucial fact is that $C_{B}(\Delta) / R_{o}$ is centralized by Q, so that we may decrease P, B and Q without causing B to act trivially on Δ.
$\underset{S}{S}$ 4. A special case. In this section we carry out a simple version of some of the basic arguments and deal with a technical difficulty in the case that $\mathrm{p}=2$. Basically we show that, in proving the special case of Proposition E and F to which section three has reduced up. we may assume that $\mathrm{V}_{\mathrm{R} 1}$ is not homogeneous - or, for $\mathrm{p}=2$, somewhat more than this (see 4.3 below). For Proposition E, R_{1} is just 0_{p} and the argument is a straight forward version of Shult's (5) ; for F however, R_{1} is $0_{\mathrm{p} \mathrm{p}^{\prime}}$ and we have to introduce some new methods - which will be important in $\underset{\mathrm{S}}{\mathrm{S}} 5$.

A is, as always, elementary of order p^{2} and acts on the p soluble group G,
4.. 11. Let V be a faithful irreducible $A G$ module where G is an r group for some prime $\mathrm{r} \neq \mathrm{p}$ and $\mathrm{ch} \kappa=\mathrm{p}$.

Then V_{A} contain s a cyclic module of dimension at least $(p-1)^{2}$; if $\mathrm{p}=2, \mathrm{~V}_{\mathrm{A}}$ contains a free module.
4.11*. If $\neq 2$ then V_{A} contains a free module.

Proof. We note first that, as in 2.12 , we may assume that κ is a splitting field for subgroups of G.

We use induction on $|G|+\operatorname{dim} V$. Let A, G, V be a counter example with $|G|+\operatorname{dim} V$ as small as possible. Then, following Shult (5).
(1) V_{G} is homogeneous. For suppose

$$
\mathrm{V}_{\mathrm{G}}=\mathrm{W} 1 \oplus \quad . . \oplus \mathrm{W}_{\mathrm{t}}
$$

where the W_{1} are Wedderburn (homogeneous) components. Then if the stabilizer, I, of G on W_{1} is proper it must be $A_{1} G$ for some non trivial A_{1} (by Clifford's theorem). Thus, by Hall Higman

$$
\left[\mathrm{A}_{1}, \mathrm{G}\right]_{\mathrm{w} 1}=1 .
$$

But since A permutes the W. transitively we deduce that

$$
\left[\mathrm{A}_{1}, \mathrm{G}\right]=1,
$$

which is not the case since $A G$ has trivial p radical - since ch $k=p$.
(2) $[\mathrm{G}, \mathrm{A}]=\mathrm{G}$. For if not $\mathrm{C}_{\mathrm{G}}(\mathrm{A})$ covers $\mathrm{G} /[\mathrm{G}, \mathrm{A}]$ and if

$$
\mathrm{V}_{\mathrm{A}}[\mathrm{~A}, \mathrm{G}]=\mathrm{W}_{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{t}}
$$

the homogeneous components $\mathrm{W}_{1} . . \mathrm{W}_{\mathrm{t}}$ are permuted transitively by
C_{G} (A). By induction A is not faithful on

$$
[\mathrm{A}, \mathrm{G}] \mathrm{W}_{1} .
$$

But now if A is the kernel of A on this, we deduce that $\left[A_{1}, G\right] v=1$. But this is not the case since AG has trivial p radical.
(3) Let $\mathrm{M} \subset G$ be a maximal proper $A G$ invariant subgroup. Then V_{M} is homogeneous. For if not let I be the stabilizer of a component. Since V_{G} is homogeneous, we may assume that

$$
\mathrm{I}=\mathrm{AM}
$$

(For I covers AG/G; by Sylow's theorem it may be assumed to contain A ; since G / M is an irreducible A module, $I \cap G=M)$.

Since G is nilpotent, G / M is Abelian and so the kernel, A_{1} say, of A on G / M is non trivial. Since

$$
\mathrm{MC}_{\mathrm{G}}\left(\mathrm{~A}_{1}\right)=\mathrm{G}
$$

the components of M on V are permuted transitively by $\mathrm{C}_{\mathrm{G}}\left(\mathrm{A}_{1}\right)$. Thus, since A does not centralize G / M ((2) above), for some $x \in C_{R}\left(A_{1}\right)$ we have

$$
\mathrm{A} \cap \mathrm{I}^{\mathrm{x}}=\mathrm{A}
$$

By Hall Higman's Theorem B, and Clifford's Theorem we deduce that

$$
\left[\mathrm{A}_{1}{ }^{\mathrm{x}-1}, \mathrm{M}\right] \mathrm{W}_{1}=\mathbf{1} .
$$

Now, as in (1), it follows that

$$
\left[\mathrm{A}_{1}, \mathrm{G}\right]=1,
$$

a contradiction.
(4) For each AG invariant subgroup T of G, V_{T} is homogeneous. If T is Abelian it is cyclic and central in AG. This follows immediately from (3). for suppose V_{T} were not homogeneous ; let $I \geq A$ be the stabilizer and $I \cap G=I_{1}$. Then, since G is nilpctert, $I_{1} \quad i$ contained in some maximal AG invariant subgroup M of G, But since $V_{M} r$; is homogeneous, I_{1} covers G / M.
(5) Every characteristic Abelian subgroup of G is cyclic. Thus G is extraspecial $(r \neq 2)$ or, if $r=2$, it is the central product of extraspecial, dihedral, generalized quaternion and quasidihedral groups (see (10) page 357 Satz 13.10).

By induction G is the direct sum of two irreducible A modules. Let the kernels of these be A_{1} and A_{2}. Then

$$
\mathrm{G}=\left[\mathrm{G}, \mathrm{~A}_{1}\right]\left[\mathrm{G}, \mathrm{~A}_{2}\right]=\mathrm{G}_{1} \mathrm{G}_{2} \text { say }
$$

Now if $p=2$, each of G_{1} and G_{2} is Abelian - which contradicts (4) ; moreover, in general, since A centralizes G we have

$$
\mathrm{G}_{\mathrm{i}}=\mathrm{C}_{\mathrm{G}}(\mathrm{~A} .) \quad \mathrm{j} \neq \mathrm{i}
$$

The "three subgroups lemma" applied to A_{i}, G_{j}. and G for $i \neq j$ then shows that

$$
\left[\mathrm{G}_{\mathrm{i}}, \mathrm{G}_{\mathrm{j}}\right]=1
$$

Thus, since neither G. can be Abelian (4), AG is the central product of $A_{i} G_{i}$ and V is an "outer" tensor product

$$
\mathrm{V}=\mathrm{u}_{1} \oplus \kappa \mathrm{U}_{2}
$$

where each U_{i} is an irreducible $A_{i} G_{i}$ module.
By Hall Higman we have the required result (note that for 4.11^{*}, if $\mathrm{r} \neq 2$ we cannot have an "exceptional" case) .

We now come to the result needed for the proof of Proposition F .

We are essentially, looking at the $\mathrm{p}-P^{\prime}$ radical of a group G satisfying Hypothesis II.
4.12. Let V be a faithful irreducible k. AG module where
(i) ch哌. $=\mathrm{p}$;
(ii) $\mathrm{G}=0_{\mathrm{p}, \mathrm{r}}$ (G) ;
(iii) $0_{p}(G)=R_{o}$ contains an Abelian AG invariant subgroup F such that A acts faithfully on $G / R_{o} C_{G}(F)$;
(iv) V is homogeneous for G .

Then V_{A}. contains a free submodule.
Proof. As for 4.11 we note first that we may take κ to be a splitting field for subgroups of AG, and proceed by induction on $|G|+\operatorname{dim} V$, considering a counter example in which this is as small as possible.
(1) V_{Ro} is homogeneous. If not let $\mathrm{M} \supseteq \mathrm{R}$ be a maximal proper AG invariant subgroup and assume that V_{M} is not homogeneous. Since $G / R_{\text {o }}$ is nilpotent, G / M is Abelian and

$$
\mathrm{A}_{1}=\mathrm{C}_{\mathrm{A}}(\mathrm{G} / \mathrm{M})
$$

is non trivial. Now if we let

$$
\mathrm{D} / \mathrm{R}_{\mathrm{o}}=\mathrm{C}_{\mathrm{G} / \mathrm{Ro}}\left(\mathrm{~A}_{1}\right)
$$

we find that D supplements M. Let I be the stabilizer of M on a Wedderburn constituent W say ; as before we may take

$$
\mathrm{I}=\mathrm{AM} .
$$

Thus I is supplemented by D. For $x \in D \backslash M$
we have

$$
\mathrm{A} \cap \mathrm{I}^{\mathrm{x}}=\mathrm{A}_{1}
$$

Now considering $A_{1} M$ on $W_{1} x$, letting Q_{1} be an S_{r} subgroup of $\left[A_{1}, G\right]$, we find that

$$
\left[Q_{1}, F\right]_{w_{1} x}=1 .
$$

For, let $\mathrm{L}-\mathrm{Ker} \mathrm{F}$ on W_{1} and suppose $\left[\mathrm{Q}_{1}, \mathrm{~F}\right]$ is not contained in L^{x}.
Then

$$
\left[\mathrm{A}_{1}, \mathrm{~F}\right] \quad \nsubseteq \quad \mathrm{L}^{\mathrm{x}} .
$$

So by a well known argument, applying Clifford's theorem as in 2.12, we find a free module for A_{1} on $\mathrm{W}_{1} \mathrm{x}$ and, by Clifford again, one for A on $\left(W_{1} \mathrm{x}\right)_{\mathrm{A} 1} \mathrm{~A}$.

Now let Q be an S_{r} subgroup of G containing Q_{1}. Then Q_{1} is normal in Q and since Q covers G / M we find

$$
\left[\mathrm{Q}_{1}, \mathrm{~F}\right] \subseteq \underset{\mathrm{X} \in \mathrm{G} \backslash \mathrm{M}}{\cap} .
$$

Thus $\left[\mathrm{Q}_{1}, \mathrm{~F}\right]=1$. But now we have a contradiction to (iii).Thus
(1) is proved.
(2) $0^{\mathrm{P}}(\mathrm{G})=\mathrm{G} . \quad$ Let $\hat{\mathrm{G}}=0^{\mathrm{P}}(\mathrm{G}) \quad[\mathrm{G}, \mathrm{A}]$.

Then if $0^{P} \neq G$, it follows that $\hat{G} \neq G$.
Thus (2) will follow if we can show that $\mathrm{V}_{\hat{\mathrm{GA}}}$. is homogeneous. Suppose not, and let

$$
\mathrm{V}_{\hat{\mathrm{G} A}}=\mathrm{w}_{1} \oplus \ldots \oplus \mathrm{w}_{\mathrm{t}} .
$$

Then, by induction, for some non trivial subgroup A_{1} of A we have that, for any S_{r} subgroup Q_{1} of $\left[G, A_{1}\right.$]

$$
\left[\mathrm{Q}_{1}, \mathrm{~F}\right] \leq \mathrm{L}=\text { ker on } \mathrm{W}_{1}
$$

But now $\mathrm{C}_{\mathrm{Ro}} \quad\left(\mathrm{Q}_{1}\right)$ supplements $\hat{\mathrm{G}}$ and so must permute the homogeneous components transitively ; clearly this implies, as before, that $\left[\mathrm{Q}_{1}, \mathrm{~F}\right]=1$. But this contradicts (iii). Thus (2) is proved.

To complete the proof we show that V_{F} is homogeneous, a contradiction. To achieve this we consider M a maximal proper $A G$ invariant subgroup of R_{o} containing F. Suppose V_{M} is not homogeneous. Let I be the stabilizer in AG of a Wedderburn component W_{1}.

Then
(3) No conjugate of I contains A. For suppose I A. Consider first Case (i) A is faithful on R_{o} / M. Then by 4.11 applied to the action of AG on R / M, we obtain a cyclic A module, of dimension at least $(p-1)^{2}$, contained in $\left(R_{o} / M\right)^{+}$. Taking x as a generator of this we find that $\mathrm{C}_{\mathrm{A}}(\mathrm{x})=1$; now

$$
A \cap I^{x}=\left(A^{x-1} \cap^{I}\right)^{x} \leq\left(A R_{0} \cap I\right)^{x}=(A M)^{x}
$$

Thus

$$
\mathrm{A} \cap \mathrm{I}^{\mathrm{x}} \leq \mathrm{A} \cap \mathrm{~A}^{\mathrm{x}} \text { modulo } \mathrm{M}
$$

But since $C_{A}(x)=1$ we find that

$$
\mathrm{A} \cap \mathrm{I}^{\mathrm{x}}=1
$$

Thus we are done by Clifford's theorem.
Case (ii) The kernel A_{1} of A on R_{0} / M is non trivial. Let Q_{1} be an S_{r} subgroup of $\mathrm{I} \mathrm{A}_{1}$, G] contained in I. Then

$$
\mathrm{D}=\mathrm{C}_{\mathrm{R} 0} \quad\left(\mathrm{Q}_{1}\right)
$$

covers R_{o} / M. Now by (2) above A does not centralize R_{o} / M; thus we may take

$$
\mathrm{x} \in \mathrm{D} \backslash \mathrm{C}_{\mathrm{D}}(\mathrm{AH} / \mathrm{M})
$$

Then

$$
\mathrm{A} \cap \mathrm{I}^{\mathrm{x}}=\mathrm{A}_{1}
$$

and thus,

$$
\left[A_{1}, F\right]_{w_{1} x}=1
$$

But since the components are permuted by D , we may deduce that

$$
\left[\mathrm{Q}_{1}, \mathrm{~F}\right]=1 .
$$

This contradicts our hypothesis (iii). Thus (3) is proved.
We deduce that
(4) $\left|I^{x} \cap A\right|=p \quad$ for all x in G.

To complete the proof we must use more sophisticated versions of the two arguments given in (3) above. First we establish
(5) A is not faithful on $\mathrm{R}_{\mathrm{o}} / \mathrm{M}$. This is similar to (3) case (i)
above. Let $x \in R_{o}$ generate a cyclic A module of dimension at least $(\mathrm{p}-1)^{2}$ modulo M. Now, as before, if

$$
\mathrm{T}=\mathrm{AR}_{\mathrm{o}} \cap \mathrm{I}
$$

we have, for $\mathrm{y} \in \mathrm{G}$,

$$
\mathrm{I}^{\mathrm{y}} \cap \mathrm{~A}=\mathrm{T}^{\mathrm{y}} \cap \mathrm{~A} .
$$

Now let

$$
\begin{aligned}
\mathrm{T} \cap \mathrm{~A} & =<\alpha>; \\
\mathrm{T} \cap \mathrm{~A} & =<\beta>
\end{aligned}
$$

Since x cannot centralize α we have, working modulo M ,

$$
\begin{aligned}
\mathrm{A} & =<\alpha, \beta> \\
\mathrm{T} & \left.=<\alpha, \beta^{\mathrm{x}-1}\right\rangle
\end{aligned}
$$

Consider $\mathrm{T}^{\mathrm{x} 2} \cap \mathrm{~A}$; we may take this to be $\alpha \beta$; but now we have

$$
\alpha \beta \in<\alpha^{x 2} \quad, \beta^{\mathrm{x}}>.
$$

Thus
or

$$
\begin{array}{r}
\alpha \beta=\alpha^{\times 2} \quad \beta^{\mathrm{x}}, \\
{\left[\alpha, \mathrm{x}^{2}\right]=\left[\beta^{-1}, \mathrm{x}\right] .}
\end{array}
$$

It follows that

$$
[\mathrm{A},<\mathrm{x}>]
$$

has dimension at most $\mathrm{p}-1$, so that $<\mathrm{x}>$ has dimension at most p which is not the case.

Finally, let $\mathrm{A}_{1}=<\beta>$ be the kernel of A on $\mathrm{R}_{\mathrm{o}} / \mathrm{M}$; then taking Q_{1} as an S subgroup of [G, A] contained in I , the centralizer K of Q_{1} in R_{o} covers R_{o} / M.
case (i) $I \cap A=A_{1}$. Then clearly $I^{x} \cap A=A_{1}$ for all x in K_{2}, so that

$$
\left[\mathrm{Q}_{1}, \mathrm{~F}\right] w_{1} x=1 \quad \text { for } x \in \mathrm{~K} .
$$

But, since K centralizes Q_{1}, vis find, that $\left[Q_{1}, F\right] v=1$ which is not the case.

Case (ii) $\mathrm{I} \cap \mathrm{A}=\mathrm{A}_{2} \neq \mathrm{A}_{1}$, Let $\mathrm{A}_{2}=\langle\propto\rangle ; \mathrm{L}=\operatorname{ker} \mathrm{F}$ on W_{1}, and, if Q in an S_{r} subgroup of I containing Q_{1},

$$
\mathrm{D}=\mathrm{C}_{\mathrm{Q}}(\mathrm{~F} / \mathrm{L}) .
$$

Then

$$
\mathrm{D} \supseteq\left[\mathrm{~A}_{2}, \mathrm{Q}\right]
$$

Also, as in case (i), since K covers R_{o} / M, we have

$$
\bigcap_{X \in K} L^{X}=1 .
$$

Thus $\mathrm{D} \nexists \mathrm{Q}_{1}$; in fact D does not cover $[\mathrm{A}, \mathrm{Q}]$ modulo R_{o}. But, by (2)

$$
\left[\mathrm{A}_{2}, \mathrm{R}_{\mathrm{o}}\right] \nless \mathrm{M}
$$

Thus we may take $\mathrm{x} \hat{\mathrm{I}} \mathrm{K}$ not centralizing A_{2} modulo M ; then

$$
\mathrm{A} \cap \mathrm{I}^{\mathrm{x}}=\mathrm{A}_{3} \neq \mathrm{A}_{2} .
$$

We deduce that
or

$$
\begin{aligned}
& {\left[\mathrm{A}_{3}, \mathrm{Q}^{\mathrm{X}}\right] \leq D^{X}} \\
& {\left[\mathrm{~A}_{3}^{\mathrm{x}^{-1}}, \mathrm{Q}\right] \subseteq \mathrm{D} .}
\end{aligned}
$$

Since A_{3} and. A_{2} are distinct module R_{o}, we deduce that D contains Q_{1}. a. contradiction.

This completes the proof of 4.12 . It is now a simple matter to deduce an important corollary, E denotes the subgroup introduced in section three (Hynothesis I) or $\quad \mathrm{R}_{\mathrm{o}}\left[\mathrm{R}_{1}, \mathrm{~B}\right]$ (for II.)
4.2 Corollary, in proving Proposition E and F we may assume that A, G, V satisfy Hypothesis 1, II respectively and provided A acts faithfully on

$$
\Delta=E \quad \text { or } E / C_{E}(F) \quad R_{o}
$$

respectively, V_{R} is not homogeneous.
Finally we strengthen 4.2 in the case $\mathrm{p}=2$.
4.3 In proving Proposition E for $\mathrm{p}=2$ we may assume that if $\mathrm{A}, \mathrm{G}, \mathrm{V}$ satisfy Hypothesis I and $C_{A}(B)=1$, then $V_{B R}$ is not homogeneous. Proof. Suppose A, G, V satisfy Hypothesis I, that $C_{A}(B)=1$ and $\mathrm{p}=2$. Let V_{1} be an irreducible $A B R$ constituent of V . Then if V_{BR} is homogeneous we have that $\left(V_{1}\right)_{B R}$ is also, and is faithful for $B R$. Thus V_{1} is faithful for $A B R$. We first establish
0) $[\mathrm{B}, \mathrm{A}, \mathrm{A}]=1$. For if not, choose an irreducible AB constituent U of E on which $[B, A, A]$ acts non trivially. Let I be the stabilizer of B on a component of U ; as in $2.12, \mathrm{I}=\mathrm{B}$ and we have a fixed point for A in U, by Clifford. But this contradicts I.
(2) $\left(V_{1}\right) A[B, A]_{R}$ is not homogeneous. For let V_{2} be an $A[B, A] R$ constituent of V_{1}; then let

$$
(\mathrm{V} 2)_{\mathrm{AR}}=\mathrm{W}_{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{t}} .
$$

by 4.1, $\left[\mathrm{A}_{1}, \mathrm{R}\right] \leq \mathrm{L}=$ ker R on W_{1} for some non trivial subgroup A_{1} of A ; also

$$
\underset{\mathrm{y} \in[B, A]}{\cap} L^{y}=\text { ker } \mathrm{R} \text { on } \mathrm{V}_{2}
$$

But, by (1) above, [B, A] centralizes A.
Thus we have

$$
\left[\begin{array}{ll}
\mathrm{A}_{1} & \mathrm{R}
\end{array}\right] \mathrm{V}_{2}=1 .
$$

Now B acts faithfully on R since R contains $E=\left[R_{1}, B\right]$ and G has trivial p-radical.

Thus R is not faithful on V_{2} and (2) follows.
Next let $T \geq A[B, A]$ be maximal in $A B$, chosen so that $\left(V_{1}\right) T$ is not homogeneous.

Let $\mathrm{b} \in \mathrm{AB} \backslash \mathrm{T}$ be an involution $\left(\mathrm{b}^{2}=1\right)$

Then

$$
\left(\mathrm{V}_{1}\right)_{\mathrm{T}}-\mathrm{V}_{11} \oplus \mathrm{~V}_{11} \otimes \mathrm{~b} .
$$

Let

$$
\begin{aligned}
\mathrm{L} & =\operatorname{ker} \mathrm{E} \text { on } \mathrm{V}_{11} ; \\
\mathrm{S} & =\mathrm{C}_{\mathrm{T}}(\mathrm{E} / \mathrm{L})
\end{aligned}
$$

By 4.1,

$$
\mathrm{S} \cap \mathrm{~A} \neq 1 .
$$

Now since A has no fixed points on \bar{E}, we have

Let

$$
\mathrm{S} \cap \mathrm{~A}=\mathrm{A}_{1} \neq \mathrm{A} .
$$

$$
\mathrm{S}^{\mathrm{b}} \cap \mathrm{~A}=\mathrm{A}_{2}
$$

Then

$$
\mathrm{A}_{2} \neq \mathrm{A} .
$$

Now $S \wedge S^{b} \quad$ centralizes E and so

$$
\mathrm{S} \cap \mathrm{~S}^{\mathrm{b}} \leq \mathrm{k}=\mathrm{C}_{\mathrm{AB}} \text { (E). }
$$

Also, since $K A B$ and $K \cap B=1$, we have

$$
\mathrm{K} \leq \mathrm{C}_{\mathrm{AB}}(\mathrm{~B})=\mathrm{B},
$$

since $\mathrm{C}_{\mathrm{A}}(\mathrm{B})=1$. Thus $\mathrm{K}=1$, and

$$
\mathrm{S} \cap \mathrm{~S}^{\mathrm{b}}=1 .
$$

In particular, $A_{2} \neq A_{1} . \operatorname{Let} A_{1}=<\infty>, A_{2}=<\beta>$;
then

$$
\left.\mathrm{S} \geq<\alpha, \beta^{\mathrm{b}}\right\rangle
$$

Now since \propto centralizes $E / L, \beta$ can have no fixed points on

$$
\mathrm{E} / \mathrm{L} \varnothing(\mathrm{E})=\Gamma \quad ;
$$

sitnilarly \propto^{b} has none. Thus $\alpha^{b} \beta$ must centralize Γ, so that

$$
\alpha^{b} \beta \in S
$$

But $\alpha \beta^{b} \in S \quad ; \quad$ thus

$$
\propto \beta^{b} \in S \cap S^{b}
$$

But we have shown that $S \cap S^{b}=1$; since $\propto \beta^{b} \neq 1$ we have a contradiction. This completes the proof of 4.3.
$\mathrm{S}_{\mathrm{S}} 5$. Proof of Propositions E, E* and F. In this section we complete the proof of the special case of Propositions E, E* and F to which 3.1 and 3.2 have reduced us. Many of the methods have already appeared in section four; thus we follow Shalt' s approach, moving down the upper p - series of G showing that the restriction of V to successive terms of this series is homogeneous. Using the results of section four it is, loosely speaking, only necessary to come down as far as $0_{\mathrm{pp}}{ }^{\prime}=R_{1}$. It is perhaps worth pointing out that the proof of E for $\mathrm{p} \geq 5$ occupies only a small proportion of this section; it is mainly proving F and dealing with the case $\mathrm{p}=2$ where, as in 4.3 , a lot of detailed special pleading is required. Since the proof of E^{*} involves only trivial modifications to that of E - the only difference being that exceptional Hall Higman situations are excluded at a number of points - we shall leave these to the reader.

To avoid repetition we carry out the proofs of Propositions E and F simultaneously; we assume that A, G, V satisfies either Hypothesis I or II as the case may be. Several frequently used arguments involving the application of Clifford's Theorem have appeared in 4.1 ; we shall not always give full details of these.

We note first that, as in 2.12 , we may take κ to be a splitting field for subgroups of AG.

We recall that if Hypothesis I holds $\mathrm{E}=\left[\mathrm{R}_{1}, \mathrm{~B}\right]$; if
Hypothesis II holds let

$$
\mathrm{E}=\mathrm{R}_{\mathrm{o}}\left[\mathrm{R}_{1}, \mathrm{~B}\right]
$$

Then let

$$
\begin{aligned}
& \Delta=E \text { if I holds } \\
& \Delta=E / R_{o} C_{\mathrm{E}}(\mathrm{~F}) \text { if II holds } .
\end{aligned}
$$

(1) A acts faithfully on Δ. For, let U be a non trivial irreducible AG constituent of $\bar{\Delta}$; then B_{U} is Abelian and centralized by the kernel of A on U, but not by A. For if it were centralized by A then it would be centralized by Q; but the minimality of B ensures that no proper AG invariant quotient of B can be centralized by Q. Thus the argument of 2.12 shows that A / A_{1} has a free module on U, giving a disallowed fixed point for A .
(2) Let $\breve{G}=\mathrm{GA}_{1}$. Then V_{G} is homogeneous. For suppose not, let

$$
\mathrm{V}_{G}=\mathrm{W}_{1} \oplus \ldots
$$

be the Wedderburn decomposition. Then

$$
\mathrm{A}=\operatorname{Stab}_{\mathrm{A}}\left(\breve{\mathrm{G}} \text { on } \mathrm{W}_{1}\right)
$$

Now suppose first that Hypothesis I holds ; we deduce, by
Hall Higman, that

$$
\left[\mathrm{A}_{1}, \mathrm{R}_{1}\right]_{w_{1}}=1
$$

But since $\left[A, A_{1}\right]=1$ we deduce that A_{1} centralizes R_{1} and so Δ, a contradiction to d). Suppose then that II holds. Here we deduce that

$$
\left[\mathbf{A}_{1}, \quad \mathbf{F}\right] w_{1}=1
$$

and hence that A_{1} centralizes F; but then A_{1} centralizes Δ and we contradict (1) again.
(3) $\quad V_{G}$ is homogeneous. For if not the stabilizer in A must be A_{2}, distinct from $A_{1} .$. But then it is clear that A_{2} does not centralize R_{1}. (in the case of I) or F (in case II) so we may proceed as in (2),
(4) Let $\breve{\mathrm{R}}_{2}=\mathrm{R}_{2} \mathrm{~A}_{1}$. Then $V_{\widetilde{R}_{2}}$ is homogeneous. Let M be the unique maximal proper $A G$ invariant subgroup of \breve{G} containing \widetilde{R}_{2}. We show that V_{M} is homogeneous - from which (4) follows as in (3) of 4.11. Suppose that V_{M} is not homogeneous. Then let I be the stabilizer in AG of M on

A homogeneous constituent W_{1} say. Since, by (3), I covers AG/G we may assume (as in 4.12 (1)) that

$$
\mathrm{I}=\mathrm{AM}
$$

Thus

$$
\mathrm{A}_{1}=\mathrm{I}^{\mathrm{x}} \cap \mathrm{~A} \quad \text { for } \mathrm{x} \epsilon \quad \widetilde{\mathrm{G}} \backslash \mathrm{M} .
$$

Now let $\mathrm{L}=$ ker E on $\mathrm{W}_{1} ; \quad$ in case I we find

$$
L \supseteq 2\left[E, A_{1}{ }^{\mathrm{x}}\right] \quad \text { for } \mathrm{x} \in \widetilde{\mathrm{G}} \backslash \mathrm{M} ;
$$

while for case II ,

$$
L \supseteq\left[F, A_{1}{ }^{\mathrm{x}}\right] \quad \text { for } \mathrm{x} \in \widetilde{\mathrm{G}} \backslash \mathrm{M}
$$

We next deduce that if

$$
\mathrm{H}=\left\langle\mathrm{A}_{1}{ }^{\mathrm{x}} \quad \mid \mathrm{x} \in \mathrm{Q} \backslash \mathrm{M}\right\rangle
$$

then, writing $\widetilde{\mathrm{P}}=\mathrm{A}_{1} \mathrm{P}$,
(5) H has a $\widetilde{\mathrm{P}}$ invariant fixed set on some irreducible AG constituent U of $\bar{\Delta}$. Suppose first that Hypothesis I holds. Then, since

$$
\bigcap_{X \in \widetilde{G}} L^{X}=1
$$

we know that L does not cover $\overline{\mathrm{E}}=\bar{\Delta}$; (5) then follows immediately (note that L is \widetilde{P} invariant and contains [H, E]).

Now suppose Hypothesis II holds. Let $L \cap F=F_{1}$. Then

$$
\mathrm{F}_{1} \triangleleft \mathrm{EPA}
$$

and

$$
\mathrm{F}_{1} \neq \mathrm{F} ;
$$

consider the centralizer D of $\mathrm{F} / \mathrm{F}_{1}$ in E . We assert that this does not cover E / R_{o}. For if it did it would contain the characteristic subgroup generated by all p^{\prime} elements of E , which would then centralize F / F_{1}. But since R_{o} is ap group we would then have

$$
[\mathrm{F}, \mathrm{E}] \neq \mathrm{F} .
$$

36.

This clearly contradicts the minimality of F. But now

$$
\left[\mathrm{A}_{1}{ }^{\mathrm{x}}, \mathrm{E}\right] \leq \mathrm{D} \quad \text { for } \mathrm{x} \epsilon \widetilde{G} \backslash \mathrm{M} .
$$

Thus if

$$
\mathrm{L}_{1}=\mathrm{DR}_{\mathrm{o}}
$$

we have

$$
\begin{aligned}
& \mathrm{L}_{1} \supseteq \mathrm{C}_{\mathrm{E}}(\mathrm{~F}) \mathrm{R}_{\mathrm{o}} ; \\
& \mathrm{L}_{1} \nsupseteq \mathrm{E} .
\end{aligned}
$$

Thus L does not covert $\bar{\Delta}$ and we have, writing \bar{L}_{1} for L_{1} modulo $\phi(\Delta)$,

$$
[\mathrm{H}, \bar{\Delta}] \subseteq \mathrm{L}_{1} \neq \Delta
$$

Now $\mathrm{H} \leq \widetilde{\mathrm{P}}$ which is completely reducible on $\bar{\Delta}$; since L_{1} is $\widetilde{\mathrm{P}}$ invariant we have a $\widetilde{\mathrm{P}}$ invariant fixed set X for H in $\bar{\Delta}$. But now (5) follows.

The following lemma will allow us to deduce a contradiction to (5), thus proving (4).
5.1 Lemma. Let $G=P Q$ where P is the p-radical and Q is an S_{q} subgroup.

Suppose P has an AG invariant Abelian subgroup B , on which Q acts non trivially, and minimal with this property. Suppose

$$
\mathrm{A}_{1}=\text { ker } \mathrm{A} \text { on } \mathrm{G} / \mathrm{P}
$$

is non trivial, [$\mathrm{A}, \mathrm{Q}]$ covers G / P, and $\mathrm{A}_{1} \mathrm{G}$ has a unique maximal AG invariant subgroup containing $A_{1} P, M$ say . Let U be an irreducible AG module on which B acts non trivially. Then if

$$
\mathrm{H}=\left\langle\mathrm{A}_{1}{ }^{\mathrm{x}} \quad \mid \mathrm{x} \in \mathrm{Q} \backslash \mathrm{M}\right\rangle
$$

has a non trivial PA_{1} fixed set, it follows that A has a fixed point on U.

Proof. Write $\breve{\mathrm{G}}=\mathrm{GA}_{1}, \breve{\mathrm{P}}=\mathrm{PA}_{1}$. Then
(A) $U_{\breve{G}}$ is homogeneous. For if not let

$$
\mathrm{U}_{\breve{\mathrm{G}}}=\mathrm{U}_{1} \oplus \ldots
$$

Then since H is completely reducible on U we may assume that H has a fixed point on U. But then, since

$$
\mathrm{A} 1 \leq \mathrm{H}^{\mathrm{x}} \quad \text { for } \mathrm{x} \in \mathrm{Q} \backslash \mathrm{M}
$$

we find that A_{1} has a fixed point on U_{1}. Clearly it follows that
A has a fixed point on U.
(B) $U_{\widetilde{P}}$ is homogeneous. For consider

$$
\begin{aligned}
\mathrm{U}_{\mathrm{M}} & =\mathrm{U}_{1} \oplus \ldots \\
\mathrm{I} & =\operatorname{Stab}_{\mathrm{AG}}\left(\mathrm{M} \text { on } \mathrm{U}_{1}\right)
\end{aligned}
$$

Then if I AG we have, as in (4), that

$$
\begin{gathered}
\mathrm{I}=\mathrm{AM} ; \\
\mathrm{I}^{\mathrm{X}} \cap \mathrm{~A}=\mathrm{A}_{1} \quad \text { for } \mathrm{x} \epsilon \widetilde{\mathrm{G}} \backslash \mathrm{M} .
\end{gathered}
$$

Case (a). H has a fixed point, u say, on U_{1}
Choose

$$
\mathrm{x} \in \widetilde{\mathrm{G}} \backslash \mathrm{M}
$$

We assert that $\mathrm{u} x$ is a fixed point for $\mathrm{A} .$, and, if $\propto \epsilon \mathrm{A} \backslash \mathrm{A}_{1}$, that

$$
\mathrm{u} \otimes \mathrm{x}\left(1+\propto+\quad+\propto^{\mathrm{p}-1}\right)
$$

is a non trivial fixed point for A .
Case (b). $\left[H, U_{1}\right]=U_{1}$. Then H has a fixed point $u \ddot{A} x$ say on $U_{1} \otimes x$ for some $\mathrm{x} \epsilon \widetilde{\mathrm{G}} \backslash \mathrm{M}$. Then, choosing

$$
\mathrm{y} \in \widetilde{\mathrm{G}} \backslash \mathrm{M} \quad ; \quad \mathrm{y} \not \equiv \mathrm{x}
$$

(for $|\breve{\mathrm{G}} / \mathrm{M}| \neq 2$) we find that, if $\mathrm{A}_{1}=\langle\beta\rangle$,
$\mathrm{u} \otimes \mathrm{y} \beta=\mathrm{u} \otimes \mathrm{x} \beta^{\mathrm{y}-1} \mathrm{x} \mathrm{x}^{-1} \mathrm{y}=\mathrm{u} \otimes \mathrm{y}$
since $y^{-1} x \notin M$. Thus we may proceed as in (a) above.
It now follows that U_{P} is homogeneous as asserted. But now, since H has a \widetilde{P} invariant fixed set, H must in fact act trivially on U. But then, since

$$
\mathrm{A}_{1} \leq \mathrm{H}^{\mathrm{G}}
$$

we have that A_{1} acts trivially. But since [A, B] does not, we find a
fixed point for A as in (1) above. This completes the proof of 5.1. (6) $\mathrm{V}_{\mathrm{R} 2}$ is homogeneous. For let I be the stabilizer of a Wedderburn constituent. Then by (3) we may assume I contains A ; by (4) that I covers $\mathrm{AG} / \breve{R}_{2}$; thus $\mathrm{I}=\mathrm{G}$ as required.
(7) $\quad V_{R_{1}}$ is homogeneous provided either
(i) $\{\mathrm{p}, \mathrm{q}\} \neq\{2,3\} ; \quad$ or
(ii) $p=3$ and for every maximal AG invariant subgroup M of \breve{R}_{2} containing B we have V_{M} homogeneous. The proof of (7) will involve a substantial amount- of argument. We take M a maximal AG invariant subgroup of $\widetilde{\mathrm{R}}_{2}$ containing R_{1} and show that, under (i) or (ii), V_{M} is homogeneous. Assume then that (i) or (ii) holds but that V_{M} is inhomogeneous. Then by (6) above M is not R_{2}; let I be the stabilizer of M on a homogeneous component W_{1} say. By (4) above I covers $A G / R_{2}$ and so contains an S subgroup of G, and further

$$
\mathrm{I} \cap \widetilde{\mathrm{R}}_{2}=\mathrm{M} .
$$

The proof divides into three cases.

Case. (a). Some conjugate of I contains A. Here we may assume that I actually contains A. We note first that

$$
\mathrm{M} \neq \mathrm{B} .
$$

For if M contains B, since I contains an S subgroup of G we have a contradiction to 1.5 (the minimality of P) .

We deduce that $[B, Q]$ covers \widetilde{R}_{2} / M; moreover $B \cap M$ is $A G$ invariant and so must be centralized by Q (and hence also by $\mathrm{P}=[\mathrm{p}, \mathrm{Q}]$) . Thus

$$
[\mathrm{B}, \mathrm{Q}] \text { complements } \mathrm{M} \text { in } \breve{\mathrm{R}}_{2} \text {. }
$$

Now since $\mathrm{A} \leq \mathrm{I}$ we must have $\mathrm{A}_{1} \leq \mathrm{M}$; thus if

$$
\mathrm{X}=\left\{[\mathrm{B}, \mathrm{Q}] \backslash \mathrm{C}_{\mathrm{G}} \quad(\mathrm{AM} / \mathrm{M})\right\}
$$

we have

Let $\quad \mathrm{H}=\left\langle\mathrm{A}_{1}{ }^{\mathrm{x}} \mid \mathrm{x} \boldsymbol{\epsilon} \mathrm{X}\right\rangle$.
We shall prove that
(λ) $\mathrm{H} \supseteq \mathrm{A}_{1}$, [B, Q]
and, letting

$$
\begin{aligned}
\mathrm{L} & =\operatorname{ker} \mathrm{M} \text { on } \mathrm{W}_{1} \quad ; \\
\mathrm{L}_{\mathrm{o}} & =\mathrm{C}_{\mathrm{E}}(\mathrm{~F}) \mathrm{R}_{\mathrm{o}} \quad \text { (under Hyp. II) }: \\
\mathrm{L}_{1} & =\mathrm{L} \cap \mathrm{E} \quad \text { (under Hyp.I) } \\
=\mathrm{C}_{\mathrm{E}} & (\mathrm{~F} / \mathrm{F} \cap \mathrm{~L}) \mathrm{R}_{\mathrm{o}} / \mathrm{L}_{\mathrm{O}} \quad \text { (under Hyp.II) },
\end{aligned}
$$

that
(μ) $[\mathrm{H}, \Delta] \quad \subseteq \mathrm{L}_{1} \quad$ and $\quad \cap \mathrm{L}_{1}{ }^{[\mathrm{B}, \mathrm{Q}]}=1$
(where, as above, $\Delta=\mathrm{E}$ or $\mathrm{E} / \mathrm{L}_{\mathrm{o}}$ under I and II respectively).
These two statements show that A_{1} acts trivially on Δ, contradicting (1).
We first prove (λ). Since A does not centralize \widetilde{R}_{2} / M we know that X is non empty. Let

$$
1 \neq \mathrm{x} \in \mathrm{X} .
$$

Then if $y \epsilon[B, Q] \backslash X$ we have

$$
\mathrm{xy} \epsilon \mathrm{X} .
$$

Thus, since B is Abelian

$$
\beta^{\mathrm{xy}}=\beta[\beta, \mathrm{x}][\beta, \mathrm{y}]=\beta^{\mathrm{x}}[\beta, \mathrm{y}] \in \mathrm{H}, \text { and }\left\langle\beta>=\mathrm{A}_{1},\right.
$$

and hence

$$
[\beta, \mathrm{y}] \epsilon \mathrm{H} .
$$

Also

$$
\beta^{x 2}=\beta^{x}[\beta, \mathrm{x}] \quad \text { and, if } \mathrm{p} \neq 2
$$

we deduce that

$$
[\beta, \mathrm{x}] \epsilon \mathrm{H} .
$$

Alternatively, if $p=2$, since $q \neq 3$, we know that $|X|>2$ and we may pick $\mathrm{x}_{1} \in \mathrm{X}$ with $\mathrm{x}_{\mathrm{x}_{1}} \mathrm{X}$. Then

$$
\beta^{\mathrm{xx}_{1}}=\beta_{1}^{\mathrm{x}} \quad[\beta, \mathrm{x}] \quad \epsilon \quad \mathrm{H},
$$

and we again have $[\beta, \mathrm{x}] \epsilon \mathrm{H}$.
It now follows that $\beta \in \mathrm{H}$, and hence that $\beta^{y} \epsilon \mathrm{H}$ for all y $\epsilon \mathrm{B} \backslash \mathrm{X}$. We have thus proved (λ) .

We now prove (μ). Under Hypothesis I this is clear ; for by Hall Higman

$$
\left[\mathrm{A}_{1}{ }^{\mathrm{X}}, \mathrm{E}\right]_{w_{1}} \quad=1 \quad \text { for } \mathrm{x} \in \mathrm{X} .
$$

Thus

$$
\left[\mathrm{A}_{1}{ }^{\mathrm{x}}, \mathrm{E}\right] \subseteq \mathrm{L}=\mathrm{L}_{\mathbf{1}}
$$

and since $[\mathrm{B}, \mathrm{Q}]$ complements I ,

$$
\cap \mathrm{L}_{1}{ }^{[\mathrm{B}, \mathrm{Q}]}=1 .
$$

Now suppose Hypothesis II holds. Then we have

$$
\left[\mathrm{A}_{1}{ }^{\mathrm{x}}, \mathrm{~F}\right] \subseteq \mathrm{L} \quad \text { for } \mathrm{x} \epsilon \mathrm{x}
$$

Thus $[\mathrm{H}, \Delta] \leq \mathrm{L}_{1} \quad ; \quad$ it only remains to show that

$$
\cap \quad \mathrm{L}_{1} \quad[\mathrm{~B}, \mathrm{Q}]=1 .
$$

Let

$$
\tilde{\mathrm{L}}_{1} / \mathrm{L}_{\mathrm{o}}=\mathrm{L}_{1},
$$

and

$$
\begin{gathered}
\cap \widetilde{\mathrm{L}}_{1}[\mathrm{~B}, \mathrm{Q}]=\mathrm{T} ; \\
\mathrm{D}=\mathrm{C}_{\mathrm{T}}(\mathrm{~F} / \mathrm{F} \cap \mathrm{~L})
\end{gathered}
$$

Then $\mathrm{D} \triangleleft \mathrm{T}$ and D covers $\mathrm{T} / \mathrm{R}_{\mathrm{o}}$. Thus D contains the characteristic subgroup generated by all P^{\prime} elements of T ; it follows that

$$
\mathrm{D}_{1}=\cap \mathrm{D}^{[\mathrm{B}, \mathrm{Q}]}
$$

covers T / R_{o}. But D_{1} centralizes F. Thus $T \leq L_{o}$ and (μ) is proved. In the next case we complete the case that (i) holds.

Case (b). No conjugate of I contains A and either $\{\mathrm{p}, \mathrm{q}\} \neq\{2,3\}$ or $\mathrm{p}=3$ and AQ does not act as $\mathrm{SL}_{2}(3)$ on $\widetilde{\mathrm{R}}_{2} / \mathrm{M}$. We remark first that

$$
\mathrm{I} \nRightarrow \mathrm{~A}_{1} .
$$

For if $\mathrm{I} \supseteq \mathrm{A}_{1} \quad$ it follows that $\mathrm{A}_{1} \subseteq \mathrm{M}$, so that

$$
\mathrm{A}_{1}=\mathrm{I}^{\mathrm{x}} \cap \mathrm{~A} \quad \text { for } \mathrm{x} \epsilon \quad \widetilde{\mathrm{R}}_{2}
$$

But then, as in case (a) above, we find that A_{1} centralizes Δ, contradicting (1).

Thus

$$
\mathrm{I} \cap \mathrm{~A}=\mathrm{A}_{\mathrm{o}} \neq \mathrm{A}_{1}
$$

and

$$
\left|I \cap A^{x}\right| \quad=p \quad \text { for } x \in \quad \widetilde{R}_{2}
$$

We show that, provided $\{\mathrm{p}, \mathrm{q}\} \neq\{2,3\}$, this cannot happen; our method is to show that

$$
\left[\widetilde{\mathrm{R}}_{2}, \mathrm{~A}\right] \mathrm{M} / \mathrm{M}=\mathrm{A}_{1} \mathrm{M} / \mathrm{M} \quad(*)
$$

But this implies that the irreducible $G F(p) A Q$ module $\widetilde{R}_{2} / \mathrm{M}$ has dimension two (by Hall Higman, for example) which cannot happen unless
$\{\mathrm{p}, \mathrm{q}\}=\{2,3\}$ and AQ acts as Σ_{3} or SL_{2}

We must prove (*). First we note: that

$$
\mathrm{I} \cap \mathrm{~A}^{\mathrm{x}} \leq \mathrm{I} \cap \mathrm{AR}_{2}=\mathrm{A}_{\mathrm{o}} \mathrm{M}
$$

since $A_{0} M / M$ is a Sylow p subgroup of I / M contained in $A R_{2} / M$. Thus, modulo M ,

$$
\mathrm{A}_{\mathrm{o}}=\mathrm{I} \cap \mathrm{~A}^{\mathrm{x}} \quad \text { for } \mathrm{x} \in \widetilde{\mathrm{R}}_{2}
$$

Now let $\mathrm{A}_{\mathrm{o}}=<\infty>$ and take x in $\widetilde{\mathrm{R}}_{2}$

Then, for some \mathbf{j},
or

$$
\begin{aligned}
& \propto=\left(\propto \beta^{\mathrm{j}}\right)^{\mathrm{x}}=\propto^{\mathrm{x}} \beta^{\mathrm{j}} \quad(\text { modulo } \mathrm{M}) \\
& {[\propto, \mathrm{x}] \in \mathrm{A}_{1} \mathrm{M}}
\end{aligned}
$$

This proves (*) and so (7) is proved in case (b).

Note. Apart from a simple argument (see (11) below) we have now proved E and F for $\mathrm{p} \geq 5$.

To complete the proof of (7) we must deal with condition (ii).

Case (c). No conjugate of I contains $A ; p=3$, M does not contain B and AQ acts as $\mathrm{SL}_{2}(3)$ on $\widetilde{\mathrm{R}}_{2} / \mathrm{M}$ (in the natural way).

We note first that, as in case (b)
(A) $\quad \mathrm{A}_{1} \nsubseteq \mathrm{M} . \quad \mathrm{A}_{1}{ }^{\mathrm{Q}}$ covers $\mathrm{R}_{2} / \mathrm{M}$.

It follows that we may assume
(B) $I=A_{o} Q M$ for some $A_{o} \leq A, A_{o} \neq A_{1}$;

$$
\mathrm{I} / \mathrm{M} \cong \mathrm{SL}_{2}
$$

and $\widetilde{\mathrm{R}}_{2} / \mathrm{M}$ is the natural module for this.

As in case (a) we find
(C) $\left[\mathrm{A}_{\mathrm{o}}^{\mathrm{I}}, \Delta\right] \subseteq \mathrm{L}_{1} ; \cap \mathrm{L}_{1}^{\left\langle\mathrm{A}_{1}^{\mathrm{Q}}\right\rangle}=1$.

We will complete this case by a detailed analysis of the action of I on Δ; the key to this is
(D) $[\mathrm{M} \cap \mathrm{P}, \Delta]=1$. We show first that

$$
[\mathrm{M}, \mathrm{Q}] \cap \mathrm{P}=\mathrm{M} \cap \mathrm{P}
$$

Now $\mathrm{MB}=\mathrm{R}_{2}$; by the minimality of $\mathrm{B},[\mathrm{B}, \mathrm{Q}]$ complements M ; thus

$$
[\mathrm{M}, \mathrm{Q}][\mathrm{B}, \mathrm{Q}] \cap \mathrm{M}=[\mathrm{M}, \mathrm{Q}]
$$

But P is contained in [MB, Q] ; thus

$$
\mathrm{P} \cap \mathrm{M} \leq[\mathrm{M}, \mathrm{Q}]
$$

as required.
Thus, by (C) above, writing $\mathrm{M}=\mathrm{M} \cap \mathrm{P}$,

$$
\left[\mathrm{M}_{\mathrm{o}}, \Delta\right] \leq \mathrm{L}_{1}
$$

$$
\cap\left[\mathrm{M}_{\mathrm{o}}, \Delta\right]\left\langle\mathrm{A}_{1}^{\mathrm{Q}}\right\rangle=1
$$

But M_{o} is $A_{1}{ }^{Q}$ invariant ; thus (D) follows.

To complete the proof we consider an irreducible $A G$ subraodule U of $\bar{\Delta}$.

Clearly we have (by (C))
(E) $[\mathrm{U}, \mathrm{I}] \neq \mathrm{U} ;(\mathrm{AG})_{\mathrm{U}}$ is the split extension of B_{U} by St_{2} (3)
acting in the natural way.
Now consider the Wedderburn decomposition

$$
\mathrm{U}_{\mathrm{B}}=\mathrm{U} 1 \oplus \ldots \oplus \mathrm{U}_{\mathrm{t}} .
$$

Let K be the kernel of B on U_{1}. Without loss of generality A_{o} centralizes B / K so that A_{o} stabilizes B on U_{1}. In this case

$$
\mathrm{K}_{\mathrm{U} 1}=\left(\mathrm{A}_{1}\right) \mathrm{U}_{1}=1
$$

so that, since A has no fixed points on U_{1} we must have

$$
\left[\mathrm{A}_{0}, \mathrm{U}_{1}\right]=\mathrm{U}_{1} .
$$

But clearly this implies that

$$
\left[\mathrm{A}_{\circ} \mathrm{Q}, \mathrm{U}\right]=\mathrm{U}
$$

which contradicts (E) . This completes the proof of (7).
(8) If $\mathrm{p}=3, \mathrm{~V}_{\mathrm{R} 1}$ is homogeneous; if $\mathrm{p}=2, \mathrm{~V}_{\mathrm{R} 1 \mathrm{~B}}$ is homogeneous. Let M be a maximal AG invariant subgroup of R_{2} containing R_{1} and not equal to R_{2}; then in view of (7) it suffices to prove that if M contains B then V_{M} is homogeneous. Thus we assume that V_{M} is not homogeneous; let I be the stabilizer of a Wedderburn constituent W_{1}. Then, as in 7 case (a), 1.5 or II. 5 ensures that no conjugate of I contains A. Moreover, as before we have

$$
\mathrm{I} \cap \mathrm{~A}=\mathrm{A}_{1}
$$

so that

$$
\mathrm{A}_{1} \nsubseteq \mathrm{M}
$$

and $A_{1}{ }^{Q}$ covers $\widetilde{R}_{2} / \mathrm{M}$. we note also that, by (4), I may be chosen to contain Q.

Let

$$
\begin{aligned}
& \mathrm{B}_{2}=\left[\mathrm{B}, \mathrm{~A}_{1}\right]^{\mathrm{AQP}} \text { (modulo } \mathrm{R}_{\mathrm{O}} \text { in case II) } \\
& \Delta_{2}=\left[\Delta, \mathrm{B}_{2}\right] .
\end{aligned}
$$

We assert that, if $\mathrm{I} \cap \mathrm{A}=\mathrm{A}_{\mathrm{o}}$ then
(9) $\left[\mathrm{A}_{\mathrm{o}}{ }^{\mathrm{I}}, \Delta_{2}\right] \neq \Delta_{2}$. To see this we proceed as in 7 case (a). Let L
(B) A has fixed points on U . For $\left[A_{1}, B\right]_{U}$ is certainly non trivial. (C) $\mathrm{U}_{\breve{G}}$ is homogeneous. For if not let W_{1} be the first Wedderburn constituent; without loss of generality A_{1} has a fixed point on W_{1}, leading to a fixed point for A on U .
(D) $U_{R 2}$. is homogeneous. Let $M_{1} \supseteq \widetilde{R}_{2}$ be the maximal proper AG invariant subgroup of \widetilde{G}. We show that $U_{M 1}$. is homogeneous. Suppose this is not the case; let I_{1} be the stabilizer. Then we may take

$$
\mathrm{I}_{1}=\mathrm{A} \mathrm{M}_{1}
$$

and

$$
\mathrm{I}_{1}{ }^{\mathrm{x}} \cap \mathrm{~A}=\mathrm{A}_{1} \quad \text { for } \mathrm{x} \in \widetilde{\mathrm{G}} \backslash \mathrm{M}_{1}
$$

As before we deduce

$$
\left[\mathrm{A}_{1}{ }^{\mathrm{x}}, \mathrm{~B}\right] \subseteq \mathrm{s}=\operatorname{ker} \widetilde{\mathrm{R}}_{2} \text { on } \mathrm{W}_{1} \quad \text { for } \mathrm{x} \in \mathrm{Q} \backslash \mathrm{M}_{1}
$$

But now

$$
\cap S_{\mathrm{U}}{ }^{\mathrm{Q}}=1
$$

while

$$
\left[\mathrm{A}_{1}{ }^{\mathrm{x}}, \mathrm{~B}\right] \subseteq[\widetilde{\mathrm{P}}, \mathrm{~B}] \neq \mathrm{B}
$$

By the minimality of B , the commutator $[\widetilde{\mathrm{P}}, \mathrm{B}]$ is centralized by Q . Thus

$$
\left[\mathrm{A}_{1}, \mathrm{~B}\right]_{\mathrm{U}}=1
$$

which is not the case ; (D) now follows .
(E) U_{M} is homogeneous, where M is the maximal $A G$ invariant subgroup of \widetilde{R}_{2} considered in (8) above. Note that since A_{o} has an M invariant fixed subspace in U this implies that A acts trivially on U; this contradiction then completes the proof.

Now suppose that I_{1}, the stabilizer of M on a Wedderburn constituent W_{1} is proper. Then we may assume that I_{1} contains Q; but then I_{1} is the normalizer of Q modulo M and so must coincide with I. Thus

$$
\mathrm{I}=\mathrm{I}_{1} .
$$

Thus A has no fixed points on $\mathrm{W}_{1} ;$ suppose then that $\mathrm{W}_{1} \otimes \mathrm{x}$ is fixed elementwise by $A_{o} . A_{o}$ clearly stabilizes this component so that

$$
\mathrm{A}_{\mathrm{o}}=\mathrm{A} \cap \mathrm{I}^{\mathrm{X}} .
$$

be the kernel of E on W_{1}, and, under Hyp II, as in (1),

$$
\mathrm{L}_{\mathrm{o}}=\mathrm{C}_{\mathrm{E}}(\mathrm{~F}) \quad \mathrm{R}_{\mathrm{o}}
$$

Then put

$$
\begin{aligned}
\mathrm{L}_{1} & =\mathrm{L} \quad \text { (under Hyp. I) } \\
& =\mathrm{C}_{\mathrm{E}} \quad(\mathrm{~F} / \mathrm{F} \cap \mathrm{~L}) \mathrm{R}_{\mathrm{o}} / \mathrm{L}_{\mathrm{o}} \quad \text { (under Hyp II) }
\end{aligned}
$$

As before we have

$$
\left[\mathrm{A}_{\mathrm{o}}{ }^{\mathrm{I}}, \Delta\right] \subseteq \mathrm{L}_{1}
$$

Now since $A_{o}{ }^{I}$ contains Q we deduce

$$
[\mathrm{B}, \mathrm{Q}, \Delta] \subseteq \mathrm{L}_{1}
$$

As in 7 (a) (μ) we have $\left\langle\mathrm{A}_{1} \mathrm{Q}\right\rangle$

$$
\cap \mathrm{L}_{1} \quad=1
$$

Thus

$$
\left[\mathrm{B}, \mathrm{Q}, \mathrm{~A}_{1}\right] \quad \nsubseteq \quad \mathrm{C}_{\mathrm{B}}\left(\Delta / \mathrm{L}_{1}\right)
$$

We deduce that Δ_{2} is non trivial ; since it is AG invariant it cannot be contained in L_{1}. Thus

$$
\left[\mathrm{A}_{\mathrm{o}}{ }^{\mathrm{I}}, \Delta_{2}\right] \mathrm{L} \cap \Delta_{2} \neq \Delta_{2}
$$

and (9) is proved. In fact it is clear that we may take an irreducible AG constituent U of Δ_{2} such that

$$
\left[\mathrm{A}_{\mathrm{o}}{ }^{\mathrm{I}}, \mathrm{U}\right] \neq \mathrm{U}
$$

Lemma 5.2. In the above circumstances, A has a fixed point on U.

Proof
(A) A_{o} has an M invariant fixed subspace on U. This is clear since A_{o} is contained in an M invariant Sylow p subgroup of $A_{o}{ }^{I}$ (modulo the kernel of AG on U) - for

$$
M_{U} \cong(M \cap P)_{U} \times\left(R_{1} \cap Q\right)_{U}
$$

where $R_{1} \cap Q$ centralizes $A_{o}-$ and U is a $G F(r)$ module where $r \neq p$.

But now we get, by Clifford, a fixed point for A as required.
This completes the proof of (8). Putting together (7) and (8) and using the simple (11) below, we find that Proposition F is proved and that E is also unless $\mathrm{p}=2, \mathrm{q}=3$ and Hyp I holds.

From now on we assume that $\mathrm{p}=2, \mathrm{q}=3$ and Hypothesis I holds ; then, by I .6 , the S_{q} subgroup Q of $\mathrm{N}_{\mathrm{G}}(\mathrm{P})$ is cyclic; if M is a maximal AG invariant subgroup of \widetilde{R}_{2} distinct from \widetilde{R}_{2} then A / A_{1} is free on $\widetilde{R}_{2} / \mathrm{M}$.
(10) If C_{A} (B) $\neq 1$ then $V_{R 1}$ is homogeneous. In view of (7) and
(8) we may take M not containing B and assume that V_{M} is not homogeneous.

We note first that, clearly
(A) $\mathrm{A}_{1}=\mathrm{C}_{\mathrm{A}}$ (B).

We next deduce, as in 7 (a) that
(B) $\mathrm{A}_{1} \nsubseteq \mathrm{M} ; \mathrm{I}=\mathrm{A}_{\mathrm{o}} \mathrm{QM}$ for suitable $\mathrm{A}_{\mathrm{o}} \leq \mathrm{A}$ and Q an S_{q} subgroup of
$N_{G}(P)$. Since A / A_{1} is free on \widetilde{R}_{2} / M, complements to R_{2} in $A R_{2}$ modulo M)
are conjugate ; thus for some $A_{o} \leq A$, the normalizer N_{1} of Q contains A_{o} modulo M. But now we may assume, since I covers $\mathrm{AG} / \widetilde{R}_{2}$ that I contains N_{1}. It follows that $\mathrm{I}=\mathrm{A}_{\mathrm{o}} \mathrm{QM}$ as asserted. Now suppose A_{1} is contained in M. Then I contains A and for

$$
\mathrm{x} \in \mathrm{~B} \backslash \mathrm{C}_{\mathrm{B}}(\mathrm{AM} / \mathrm{M})
$$

we have

$$
\mathrm{A} \cap \mathrm{I}^{\mathrm{x}} \quad=\mathrm{A}_{1}
$$

Thus

$$
\left[\mathrm{A}_{1}^{\mathrm{x}-1}, \mathrm{R}_{1}\right]_{\mathrm{w} 1}=1 ;
$$

since A_{1} centralizes B it follows that A_{1} centralizes R_{1} contradicting item (1) .

Next we utilize the fact that $\mathrm{p}=2$ to deduce
(C) We may assume A_{o} normalizes Q .

This follows from a simple lemma.
5.3 Lemma. Suppose $\left|A_{o}\right|=2$ acts on $G=P Q$ where P is a normal 2 - subgroup and Q is a q group for some prime $q \neq 2$. Then A_{o} normalizes some S subgroup Q_{1} of G .

Proof. We use induction on $|G|$,
(1) P is elementary Abelian . For, if not let

$$
\mathrm{Z}=\Omega_{1} \quad(\mathrm{Z}(\mathrm{P}) \quad)
$$

and consider $G / 2$ By induction A_{o} normalizes Q_{1} for some S_{q} subgroup Q_{1}.
(2) P^{+}is an irreducible $\mathrm{A}_{\mathrm{o}} \mathrm{Q}$ module. This follows exactly as (1).
(3) A is free on P^{+}or trivial. In the first case all complements to P in $A P$ are conjugate, while $N(Q)$ complements P in $A G$; the result follows. In the second case Q is normal.

We now make a detailed analysis of the structure of P .
(D) B is central in $\widetilde{P} ; \widetilde{\mathrm{P}}=\mathrm{B} \widetilde{\mathrm{T}}$ where $\widetilde{T}=\mathrm{A}_{1} \mathrm{Q}$. For, since A_{O} normalizes Q, the normal closure \widetilde{T} is $A_{o} Q$ invariant and $A Q \widetilde{T}$ is a subgroup. Thus

$$
\widetilde{\mathrm{T}} \quad \mathrm{~B}=\widetilde{\mathrm{P}}
$$

by minimality of P (1.5). Since A_{1} centralizes B it is clear that \widetilde{T} does.

Thus (D) follows.
(E) Q centralizes M. For, since $I \cap A=A_{o}$, we have

$$
\left[\mathrm{A}_{\mathrm{o}}{ }^{\mathrm{I}}, \mathrm{R}_{1}\right] \subseteq \mathrm{L}=\operatorname{ker} \mathrm{R}_{1} \quad \text { on } \mathrm{W}_{1}
$$

Also, since B supplements I, the normal interior

$$
\cap\left\{\mathrm{A}_{\mathrm{o}}{ }^{\mathrm{I}}\right\}^{\mathrm{B}}
$$

centralizes R_{1}. But now $A_{o}{ }^{I}$ contains [M, Q] which, by (D) above is centralized by B. Thus [M, Q] must be trivial as asserted,
(F) $\widetilde{\mathrm{P}} \cong \mathrm{B} \times \mathrm{H}$; B has rank two. For, since B is central in P ,
$[\mathrm{B}, \mathrm{Q}]$ is $<\mathrm{A}, \mathrm{Q}>$ invariant and so, by minimality, is B . Similarly
$[B, Q]$ is irreducible and so has rank 2 (recall that $q=3$ and, by I.6, the group Q_{B} must have order 3). But now $\mathrm{B} \cap \mathrm{M}$ is trivial so that (F) is established.

To complete the proof we consider $U=\bar{E}$ as an AG module; we have that since

$$
\begin{aligned}
{\left[\mathrm{A}_{\mathrm{o}}{ }^{\mathrm{I}}, \mathrm{E}\right] } & \neq \mathrm{E} \\
{\left[\mathrm{~A}_{\mathrm{o}}{ }^{\mathrm{I}}, \mathrm{U}\right] } & \neq \mathrm{U} .
\end{aligned}
$$

Now consider the Wedderburn decomposition

$$
\mathrm{U}_{\mathrm{B}}=\mathrm{w}_{1} \oplus \mathrm{~W}_{2} \oplus \mathrm{~W}_{3}
$$

- since B acts fixed point freely on U we have three distinct irreducibles in B on U. Now $A_{o} Q$ acts on these ; since B^{+}is an irreducible Q module, Q cannot fix any component ; clearly A_{o} must fix one, say W_{1}, and if $\mathrm{Q}=\langle\tau\rangle$ we have

$$
\mathrm{W}_{2}=\mathrm{W}_{1} \tau ; \quad \mathrm{W}_{3}=\mathrm{W}_{1} \tau^{2}
$$

Thus

$$
\left(\mathrm{w}_{1}\right)_{\text {Ao }} \text { covers }(\mathrm{U} /[\mathrm{U}, \mathrm{Q}])_{\text {Ao }}
$$

so that A_{o} has fixed points on w_{1}. Let

$$
\mathrm{x}=C_{w 1}\left(\mathrm{~A}_{\mathrm{o}}\right)
$$

Then A_{1} must have no fixed points on X ; if $\left\langle\beta>=\mathrm{A}_{1}\right.$ then $\beta=-1$ on X . Now let

$$
\beta=\beta_{1} \gamma \quad 1 \neq \beta 1 \in \mathrm{~B}, \quad \gamma \in \mathrm{M} . .
$$

Now since A_{o} interchanges W_{2} and W_{3}, b can have no fixed points on $\mathrm{X} \tau$ or $\mathrm{X} \tau^{2}$; thus β^{τ} and $\beta \tau^{2}$ are -1 on X . Now

$$
\begin{aligned}
& \beta^{\tau}=\beta_{I}^{\tau} \gamma \\
& \beta^{\tau 2}=\beta_{I}^{\tau 2} \gamma \\
& \beta=\beta_{1} \gamma .
\end{aligned}
$$

Thus $\beta 1, \beta_{I}^{\tau 2}, \beta_{I}^{\tau}$ must all act in the same way on X . Clearly they must centralize it, in which case we find that B centralizes X, which
in not possible. This completes the proof of (10).
(11) Let $p \neq 2$ or $C_{A}(B) \neq 1$. Then V_{R} is homogeneous. For if not let T be the stabilizer of a component. We may assume that I contains AP and since

$$
\mathrm{AG}=\mathrm{N}(\mathrm{P}) \mathrm{R}
$$

we have

$$
\mathrm{I}=A Q_{1} \mathrm{PR}
$$

where $Q_{1}=I \wedge Q$ and covers G / R_{2}. By the minimality of Q we have that

$$
\mathrm{Q}_{1}=\mathrm{Q}
$$

Thus $\mathrm{I}=\mathrm{G}$ as required.
In exactly the same way we may prove
(12) Let $p=2$ and $G_{A}(B)=1$. Then $V_{B R}$ is homogeneous.

In view of (11) and (12), Proposition 4.3 and Corollary 4.2
complete the proof of Propositions E and F.

References

1. A.RAE. Sylow p-subgroups of finite p-soluble groups, J.London Math.Soc.(2) 7 (1973), 117-123.
2. B.HARTLEY and A.RAE. Finite p-groups acting on p-soluble groups. Bull.London Math.Soc, 5 (1973), 197-198.
3. B.HARTLEY. Sylow p-subgroups and local p-solubility. J.Algebra, 23 (1972), 347-369.
4. P.HALL and GRAHM HIGMAN. On the p-length of p-soluble groups and reduction theorems for Burnside's problem. Proc.London Math.Soc.(3)6(1956).
5. E.E.SHULT. On groups admitting fixed point free Abelian Operator Groups. Illinois J.Math.,9 (1965), 701-720.
6. T.R.BERGER. Class two p groups as fixed point free automorphism groups. Illinois J.Math. 14 (1970), 121-149.
7. T.R.BERGER. Odd p groups as fixed point free automorphism groups. Illinois J.Math. 15 (1971), 28-36.
8. T.R.BERGER. Theorems of Hall Higman Type 1-6; Fixed point free milpotent groups of automorphisms, etc. Unpublished (available Trinity College Conn.).
9. E.C.DADE. Carter subgroups and Fitting heights of finite soluble groups. Illinois J. Math. (13) 1969, 449-514.
10. B.HUPPERT. Endliche Gruppen I. Springer Verlag, Berlin, 1967.
11. D.GORENSTEIN. Finite Groups. Harper and Row 1968.
