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Resumo Os estuários são reconhecidos como um dos tipos de ecossistemas mais 
produtivos na Terra. A sua elevada produtividade primária é devida em larga 
medida à fixação fotossintética de carbono pelo fitoplâncton e microfitobentos, 
as comunidades de microalgas e cianobactérias que habitam a coluna de àgua 
e os sedimentos subtidais e intertidais, respetivamente. Em comparação com o 
fitoplâncton, o microfitobentos tem sido muito menos estudado relativamente 
aos processos fotofisiológicos que controlam a sua produtividade, bem como à 
sua contribuição para a produção primária global do estuário.  
Um destes processos é a fotoinibição, a diminuição da atividade fotossintética 
causada pela luz, considerada como um importante fator limitante da 
produtividade primária no ambiente estuarino. O impacto negativo da 
fotoinibição na fotossíntese depende do balanço entre a fotoinativação e a 
reparação do fotossistema II (PSII). Baseado num recente método de 
imagiologia multi-actínica de fluorescência da clorofila, este trabalho avaliou a 
fotoaclimatação e capacidade de fotoproteção contra a fotoinibição, medida pela 
redução da fotoinativação do PSII. A fotoinativação e reparação do PSII variou 
entre diferentes tipos de comunidades, indicando a existência de um balanço 
entre a fotoproteção baseada na motilidade celular e em mecanismos 
fisiológicos. Espécies epipélicas (móveis) mostraram uma menor capacidade 
fisiológica de prevenir danos, enquanto as formas epipsâmicas (imóveis) 
aparentaram ser menos suscetíveis à fotoinibição e mais dependentes de 
fotoproteção fisiológica. 
Este trabalho investigou ainda um aspeto pouco estudado, relacionado com a 
presença de quantidades substanciais de biomass de microalgas em 
sedimentos subsuperficias. Pela análise de sedimentos intertidais da Ria de 
Aveiro (Portugal), foi descoberto que as células enterradas conseguem 
recuperar rapidamente a sua atividade fotossintética quando expostas a 
condições da superfície. Foi também concluído que a biomassa subsuperficial 
(0.5-10 cm) potencialmente viável representa 2-3 vezes a biomassa presente 
nas camadas superficiais (0.0-0.5 cm). Estes resultados suportam a hipótese de 
que a biomassa subsuperficial desempenha um papel ecológico importante 
enquanto fonte de células fotossinteticamente competentes capazes de ‘re-
inocular’ a superfície, contribuindo para a elevada produtividade das áreas 
intertidais. 
A importância relativa da contribuição do fitoplâncton e do microfitobentos para 
a produtividade primária ao nível do ecossistema foi avaliada para a Ria de 
Aveiro, comparando a variabilidade espacio-temporal da biomass e 
produtividade de diferentes comunidades. Este estudo baseou-se na medição 
de taxas absolutas de transporte de electrões no PSII e a estimação de taxas 
de fixação de carbono. Por unidade de biomass, estas atingiram 68,0 e 19,1 mg 
C mg Chl a-1 d-1, para o fitoplâncton e o microfitobentos, respectivamente. Por 
unidade de área, a produtividade anual foi mais elevada no caso do 
microfitobentos, atingindo 105,2 g C m-2 yr-1, por oposição a 49,9 g C m-2 yr-1, 
para o fitoplâncton. Considerando a totalidade da área da Ria de Aveiro, os 
resultados salientam a importância das áreas intertidais enquanto sumidouros 
de carbono e reservatórios de “carbono azul”, e locais de elevada produtividade 
primária, contribuindo com mais de 60% do total anual de 12428,3 t C yr-1. 
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Abstract Estuaries are recognized amongst the most productive ecosystems on Earth. 
Their high primary productivity is largely due to the photosynthetic carbon fixation 
by phytoplankton and microphytobenthos, the communities of microalgae and 
cyanobacteria that inhabit the water column and subtidal or intertidal sediments, 
respectively. In comparison with the phytoplankton, the microphytobenthos has 
been much less studied regarding the photophysiological processes affecting 
primary productivity, and their relative role as contributors to estuarine-level 
production. 
One of these processes is photoinhibition, the high light-induced decrease in 
photosynthetic activity, considered a major limiting factor of growth and primary 
productivity in the variable and extreme estuarine environment. The detrimental 
impact of photoinhibition on photosynthesis depends on the balance between the 
photoinactivation and repair of photosystem II (PSII). By successfully adapting 
to microphytobenthos a recently-developed methodology based on multi-actinic 
imaging of chlorophyll fluorescence, this work evaluated their photoacclimation 
and photoprotective capacity, as measured by the reduction in PSII 
photoinactivation. PSII photoinactivation and repair was found to vary between 
different communities, pointing to a trade-off between cellular motility-based and 
physiological photoprotective mechanisms. Epipelic (motile) species showed a 
reduced physiological capacity for preventing photodamage, while epipsammic 
(non-motile) forms appeared less susceptible to photoinactivation and more 
dependent on physiological photoprotection. 
This work further investigated an overlooked aspect of microphytobenthos 
ecology, related to the presence of substantial amounts of microalgal biomass in 
subsurface sediments. By studying samples from intertidal areas of the Ria de 
Aveiro (Portugal), this work found that buried cells can quickly regain 
photosynthetic activity when exposed to surface conditions. Potential viable 
subsurface (0.5-10 cm) microalgal biomass was found to represent 2-3 times the 
amount of biomass present at the surface layers (0.0-0.5 cm). These results 
support the hypothesis that subsurface biomass may play an important 
ecological role as a source of photosynthetically competent cells capable of ‘re-
inoculating’ the surface, contributing to the high productivity of intertidal areas. 
The relative importance of phytoplankton and microphytobenthos as contributors 
to ecosystem-level primary productivity was evaluated in the Ria de Aveiro, by 
comparing the spatio-temporal variability of biomass and productivity of different 
communities. This study made use of a new type of fluorometer allowing the 
measurement of absolute rates of PSII electron transport rates and the 
estimation of carbon fixation rates. Biomass-specific productivity rates for 
phytoplankton and microphytobenthos were found to reach 68.0 and 19.1 mg C 
mg Chl a-1 d-1, respectively. Annual areal production rates were higher for the 
microphytobenthos, reaching 105.2 g C m-2 yr-1, as opposed to 49.9 g C m-2 yr-1 
for the phytoplankton. The annual rates upscaled for the whole Ria de Aveiro 
highlight the importance of the intertidal areas as significant carbon sinks and 
reservoirs of active ‘blue carbon’, and as main sites of primary productivity, found 
to contribute with more than 60% of the total ecosystem-level budget 12428.3 t 
C yr-1. 
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Estuaries as carbon sinks: productivity of phytoplankton and 
microphytobenthos 

Estuaries are recognized as one of the most productive ecosystems on the planet 

(Costanza et al., 1997; Underwood and Kromkamp, 1999), being estimated to contribute to 

up to 10% of world primary production (McLusky and Elliott, 2007). The high productivity of 

estuaries is based on the high photosynthetic activity of several stress tolerant groups of 

primary producers that include phytoplankton and microphytobenthos but also others, such 

as sea grasses, macroalgae, and if considering the salt marshes, halophyte plants. These 

microalgal communities display key ecological roles in the estuarine ecosystem, 

representing an essential food source for grazers (Middelburg et al., 2000), and mediating 

nutrient cycling (Hochard et al., 2010). The microphytobenthos is further involved in the 

control of oxygen and nutrient fluxes across the sediment–water interface (Eyre et al., 

2011), and in promoting sediment biostabilization, acting as bioengineers (Passarelli et al., 

2014). The high productivity of phytoplankton and microphytobenthos is based on high rates 

of carbon fixation, contributing to making the estuarine habitats major sinks of CO2 

(Falkowski and Raven, 1997; Middelburg et al., 2000). However, because of the large inputs 

of organic carbon originating from land, decomposition and remineralization may prevail 

over carbon fixation and estuaries may act as net respirers (Cloern et al., 2014). The 

balance between gross and net productivity is difficult to untangle, also because of 

methodological issues (Cloern et al., 2014; Underwood and Kromkamp, 1999). 

The phytoplankton and the microphytobenthos are the communities of phototrophic 

microalgae and cyanobacteria that inhabit the water column and the benthos, respectively. 

In estuaries, the phytoplankton is often dominated by eukaryotic single-cell microalgae. The 

most abundant groups are the Bacillariophyceae (diatoms) and Dinophyceae 

(dinoflagellates), although species of the Chlorophyceae, Haptophyceae Cryptophyceae, 

and Euglenophyceae, as well as prokaryotic Cyanobacteria, are also commonly present 

(Gameiro et al., 2007; Kromkamp et al., 1998; Underwood and Kromkamp, 1999; Vidal et 

al., 2017). The microphytobenthos colonize intertidal or shallow subtidal benthic habitats, 

and is particularly abundant in unvegetated, sedimentary habitats (MacIntyre et al., 1996; 

Underwood and Kromkamp, 1999). The microphytobenthos is typically dominated by 

diatoms, but members of the Cyanobacteria, Euglenophyceae, Chlorophyceae and 

Dinophyceae may also be found (Benoiston et al., 2017; MacIntyre et al., 1996; Underwood 

and Kromkamp, 1999). In contrast with the planktonic diatoms, that are mostly centric, 

benthic diatoms are almost exclusively pennate species, comprised of cells that typically 
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have a well-defined main axis and often bilateral symmetry (Round 1990). The species of 

diatoms of the microphytobenthos are classified into two groups, corresponding to two main 

life forms (Admiraal, 1984; Round, 1990; Taylor and Paterson, 1998): the epipelon, 

comprising biraphid motile species, that are dominant in fine muddy sediments, where they 

move freely between the sediment particles; and the epipsammon, comprising 

predominantly non-motile or partially motile species that colonize coarser, sandier 

sediments, where they tend to attach to the sediment particles. Epipelic and epipsammic 

species are taxonomically closely related and can occur sympatrically, but differ markedly 

in motility, ecology and preferred sedimentary habitat.  

The phytoplankton and the microphytobenthos are not mutually exclusive. Particularly 

in tidal estuaries, sediment resuspension and deposition events frequently cause the 

transport of cells from the sediment to the water column and vice-versa, and some species 

are commonly found in both habitats. These are as referred to as tycoplanktonic, an ill-

defined group that comprise both centric and pennate forms that can inhabit both the water 

column and the sediment (Barnett et al., 2015).  

The relative importance of phytoplankton and microphytobenthos as contributors to 

global, estuarine-level productivity has been a motive of interest for decades (Underwood 

and Kromkamp, 1999), but has been hampered by difficulties in the application of methods 

to the two types of communities yielding results that can be directly comparable. The 

measurement of the primary production of phytoplankton, based on 14C uptake, although 

not free from problems, has been standardized and used routinely in many estuaries 

(Cloern et al., 2014). In the case of microphytobenthos, the situation is more complex. 

Firstly, a variety of method has been used, including 14C fixation (e.g. Hartig et al., 1998), 

oxygen exchange (using benthic chambers; e.g. Brotas and Catarino, 1995) and oxygen 

production (using oxygen microelectrodes; Revsbech et al., 1983). Secondly, the very thin 

photic zone of the sediment poses significant problems not only in obtaining vertically 

resolved measurements, but also in the extrapolation of biomass-specific to area 

productivity rates (e.g. Laviale et al., 2016; Serôdio et al., 2001).  

Since the introduction of in vivo chlorophyll fluorometry, major efforts have been put 

in place to develop protocols to estimate rates of photosynthesis of phytoplankton (e.g. 

Kolber and Falkowski, 1993; Lawrenz et al., 2013; Morris et al., 2008; Silsbe et al., 2015). 

Because of the optically thin nature of sediment samples, the protocols used for dilute 

phytoplankton samples cannot be directly applied to the microphytobenthos. As such, the 

attempts of using chlorophyll fluorescence to estimate photosynthetic rates of sediment 

samples have been based on empirical indices and not, as for the phytoplankton, on the 
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measurement of absolute rates of PSII electron transport (Du and Chung, 2009; Serôdio, 

2003). More recently, a new type of fluorometer (Multi-Color PAM, Walz) has been 

introduced that allows the measurement of absolute rates of PSII electron transport rates 

(Schreiber et al., 2012). This new instrument, and associated protocols, open promising 

possibilities for the application of fluorescence-based estimates of primary productivity both 

in optically thin and, to some extent, in optically-thick samples (Klughammer and Schreiber, 

2015). 

Photoinhibition, photoprotection and productivity 

Photoinhibition consists in the light-induced decrease in photosynthetic activity. It 

results from the photoinactivation of the D1 protein of PSII (Kyle et al., 1984), and is an 

inevitable side effect of oxygenic photosynthesis, being ubiquitous across all photosynthetic 

taxa (Campbell et al., 2003; Falkowski et al., 2008). Under ecologically relevant conditions, 

photoinhibition (‘net photoinhibition’) results from the outcome of the balance between PSII 

photoinactivation and processes of PSII repair, having a negative impact on primary 

productivity. 

The mechanism of PSII photoinactivation in vivo has been explained by two main 

hypotheses: i) the ‘Mn-cluster' paradigm, stating that photoinhibition originates from the 

direct excitation and inactivation of the Mn4CaO5 cluster of the PSII Oxygen Evolving 

Complex; ii) the ‘photosynthetic pigment’ paradigm, stating that PSII photoinactivation is 

due to the absorption of excess light through the photosynthetic antenna, and consequent 

accumulation of reactive oxygen species (ROS) (Tyystjärvi, 2013; Zavafer et al., 2015). 

From extensive experimentation, a ‘hybrid’ paradigm has recently emerged, acknowledging 

that both processes can occur concurrently (Murphy et al., 2017; Oguchi et al., 2011; 

Tyystjärvi, 2013; Zavafer et al., 2015). On the other hand, PSII repair is a complex process 

that involves multiple steps, including the proteolytic degradation of the D1 protein by FtsH 

and Deg proteases, the ribosomal synthesis of the precursor to the D1 and its insertion into 

the thylakoid membrane, the maturation of the D1 protein and the assembly of the oxygen-

evolving machinery (Takahashi and Murata, 2008; Tyystjärvi, 2013). There is currently the 

growing belief that the light stress acts predominantly by inhibiting repair and not by 

promoting inactivation (Murata et al., 2012; Nishiyama et al., 2006). This new paradigm of 

photoinhibition is still under debate, calling for more detailed experimental evidence, namely 

regarding the including the impact of environmental stressor factors (Murata et al., 2007). 
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Under natural conditions, the detrimental impact of photoinhibition on photosynthetic 

performance and productivity depends on the balance between PSII photoinactivation and 

repair but also on the effectiveness of several photoprotective mechanisms that limit the 

extent of light-induced damages (Takahashi and Badger, 2011). These photoprotective 

processes can be of two main types (Raven, 2011): processes that restrict the rate of 

photons incident on the photosynthetic apparatus, that include chloroplast light avoidance 

movements (e.g. in centric planktonic diatoms; Furukawa et al., 1998) and whole cell 

phototactic responses within steep light gradients (e.g. in pennate benthic diatoms; Laviale 

et al., 2016), and processes that limit the photodamage caused by absorbed photons, such 

as those based on the dissipation of absorbed light energy, the main being the non-

photochemical quenching (NPQ) of chlorophyll fluorescence and associated xanthophyll 

cycle (Müller, 2001; Ruban, 2016). 

Photoinhibition can have substantial metabolic costs for the cell and be a major 

limiting factor of growth and primary productivity and downstream ecological consequences 

(Adams et al., 2013; Murchie and Niyogi, 2011; Raven, 2011). This is because PSII 

photoinactivation lowers the number of functional PSII, affecting the production of ATP and 

NADPH, and decreasing carbon fixation rates. On the other hand, PSII repair is a relatively 

slow process that relies on the removal and replacement of protein subunits, an 

energetically expensive process, critically dependent on ATP (Murata et al., 2012; Nath et 

al., 2013). Also the operation of photoprotective mechanisms have a negative impact on 

photosynthetic efficiency, growth and productivity. Downregulation by dissipation of 

absorbed energy by NPQ lowers photosynthetic rates to levels below their potential 

maximum and consumes additional cellular resources (Raven, 2011).  

Photoprotection and photoinhibition have been studied in much more detail for 

phytoplankton, although in many cases data originates from isolated species grown in 

culture, than for microphytobenthos (Campbell and Tyystjärvi, 2012). Possible reasons 

include the historically larger interest on phytoplankton, but also the challenging 

methodological issues of the study of sedimentary biofilms, especially when dominated by 

motile cells. For the microphytobenthos, the functioning of photoprotection mechanisms 

have been reasonably studied (e.g. Laviale et al., 2015; Serôdio et al., 2005), but the 

photoinactivation versus repair balance has only been addressed marginally (Cartaxana et 

al., 2013; Serôdio et al., 2012). 
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General objectives and thesis outline 

Considering the current gaps in knowledge regarding microphytobenthos photophysiology 

and productivity, this work aimed to address the following general objectives:  

i) optimize the application to microphytobenthos of a recently-developed method for the 

characterization of the photoacclimation state of undisturbed samples, based on non-

sequential light-response curves of chlorophyll fluorescence indices (‘single-pulse light 

curves’, SPLC); 

ii) evaluate the inherent photoprotective capacity of microphytobenthos communities, 

as measured by the reduction in photoinactivation of photosystem II (PSII) caused by 

light stress; 

iii) assess the role of subsurface microalgal biomass as a potential source of 

photosynthetically active cells for microphytobenthos biofilms at the surface; 

iv) estimate areal and ecosystem-level primary productivity of phytoplankton and 

intertidal microphytobenthos in a tidal estuarine system, the Ria de Aveiro (Portugal), 

based on synoptic in situ measurements of absolute rates of electron transport rate of 

photosystem II, using a novel type of PAM fluorometer.  

These general objectives were pursued in the following four chapters, each corresponding 

to an article published (or in preparation, in the case of chapter 5) in peer-reviews scientific 

journals. 

Chapter 2 addresses the establishment of a novel methodological approach, based on non-

sequential light response curves of chlorophyll fluorescence indices (‘single-pulse light 

curves’), to improve photophysiological studies on microphytobenthos, and the 

characterization of photoacclimation state of undisturbed sedimentary biofilm samples. 

Chapter 3 evaluates the photoprotective capacity against photoinhibition of 

microphytobenthos communities inhabiting contrasting sedimentary habitats and relying on 

distinct light responses: epipelic communities, using motility (vertical migration) to regulate 

light exposure, and epipsammic communities, relying solely on physiological 

photoprotective mechanisms. The capacity for photoprotective was quantified in terms of 

the reduction in PSII photoinactivation conferred by the inherent physiological mechanisms 

in operation. 

Chapter 4 addresses an overlooked aspect of microphytobenthos ecology, key for 

understanding their role as a carbon sink, namely the importance of subsurface microalgal 
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biomass as a potential source of photosynthetically active cells for surface biofilms. This 

was approached by investigating if buried cells can regain photosynthetic activity following 

resurfacing, evaluating the role of vertical migration in facilitating the resurfacing processes, 

and estimating the fraction of microalgal present below the surface, in different intertidal 

sediment types of the Ria de Aveiro, a tidal estuary located in central Portugal. 

Chapter 5 describes a synoptic study carried out in the Ria de Aveiro, aiming to characterize 

comparatively the spatio-temporal variability of the biomass, photosynthetic activity and 

productivity of phytoplankton and microphytobenthos, and the obtention of an integrated 

budget of carbon fixation by planktonic and benthic microalgal communities. 
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Abstract 

Research on microphytobenthos photosynthesis has increasingly relied on Pulse 

Amplitude Modulation (PAM) fluorometry, often through the generation of light response 

curves of the relative electron transport of PSII (rETR), generated through the sequential 

exposure to a range of actinic irradiances. However, fast, vertical phototactic responses by 

the motile diatoms that dominate these biofilms occur during the generation of sequential 

light curves. Light-induced vertical migration is known to confound the characterization of 

the inherent physiological response of the cells forming the biofilm. The alternative 

approach of shortening the duration of the light curve protocol prevents the reaching of a 

physiological steady state and results in light curves heavily dependent on initial light 

conditions. This study tested the application to microphytobenthos of a recently introduced 

method allowing for the fast generation of non-sequential light curves, based on steady-

state and temporally independent measurements (‘single-pulse light curves’, SPLC). This 

method was compared to the commonly used sequential protocols regarding its ability to (i) 

measure a steady-state light response, (ii) minimize the effects of vertical migration and (iii) 

minimize the effects of photoacclimation state induced by initial conditions. The results 

indicate that the SPLC method can be optimized by applying one light exposure period of 

just 60 s prior to the generation of the light curve, resulting in a clearly advantageous 

alternative to the sequential protocols. It effectively allows characterizing the steady-state 

light response of microphytobenthos samples while avoiding the effects of light-induced 

vertical migration and of the initial light conditions on light curve parameters. 
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Introduction 

Since its introduction to the study of microphytobenthos (MPB), Pulse Amplitude 

Modulated fluorometry (PAM; Schreiber et al., 1986) has become an ubiquitous method for 

assessing the photosynthetic performance of these diatom-dominated microbial biofilms 

(e.g., Kromkamp et al. 1998; Serôdio et al. 2008; Perkins et al. 2010; Laviale et al. 2015). 

Besides its exceptional potentialities for the in-depth study of photosynthetic processes in 

photoautotrophs in general, this technique provides a number of specific advantages for 

studies on MPB: (i) it allows for fast and non-invasive measurements, especially relevant to 

avoid disrupting the sediment-water/air interface, and (ii) to quantitatively monitor changes 

in the surface biomass of the biofilm associated to vertical migration by motile diatoms 

(‘productive biomass’; Kelly et al., 2001; Serôdio et al., 2001; Jesus et al., 2006), opening 

the possibility to calculate biomass-weighted fluorescence proxies for MPB photosynthetic 

rates (Barranguet and Kromkamp, 2000; Serôdio et al., 2007). 

One of the main uses of PAM fluorometry is to characterize the photosynthetic 

response to light, through the generation of light-response curves of various chlorophyll 

fluorescence indices, such as the effective quantum yield of PSII (ΔF/Fm'), the relative 

electron transport rate (rETR) or the non-photochemical quenching index (NPQ). In most 

cases, light-response curves of fluorescence measured on MPB are based on the 

sequential exposure of the same sample to a range of actinic irradiances (Serôdio et al. 

2005; Waring et al. 2007; Chevalier et al. 2010; Lefebvre et al. 2011; Ubertini et al. 2015). 

However, because the photosynthetic activity of a sample depends not only on the 

irradiance to which is it exposed at the moment of measurement but also on the recent light 

history, sequential light-response curves are bound to be affected by the lack of 

independency between measurements (Perkins et al. 2006; Herlory et al. 2007; Ihnken et 

al. 2010). This problem is aggravated in the case of MPB, because the motile diatoms that 

dominate these biofilms respond phototactically to changes in irradiance (Serôdio et al. 

2006a; Mclachlan et al. 2009; Ezequiel et al. 2015; Cohn et al. 2015), which may induce 

substantial vertical migration during the construction of the light curve (Perkins et al. 2006; 

Jesus et al. 2006b; Herlory et al. 2007). Light-induced vertical migration is expected to 

cause changes in fluorescence parameters and indices affecting the apparent light 

response independently of the physiological state of the microalgae that form the biofilm. 

This is due to changes in species composition (Perkins et al. 2001) in the photic zone, and 

in the vertical distribution of cells and the resulting relative contribution of sub-surface 

fluorescence (Forster and Kromkamp 2004; Serôdio 2004). 
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To minimize the undesired confounding effects of vertical migration, the light response 

of MPB biofilms has been characterized by light-response curves based on Rapid Light 

Curve (RLC) protocols. RLCs are generated by applying short periods (10-30 s) of exposure 

to each irradiance level (Schreiber et al. 1997; White and Critchley 1999) that, as opposed 

to conventional light-response curves (often termed ‘steady-state light curves’, or SSLC), 

do not allow for the sample to reach a steady state (Serôdio et al. 2005; Herlory et al. 2007; 

Lefebvre et al. 2011). RLCs are thus heavily dependent on initial conditions (light exposure 

and photoacclimation state at the beginning of the curve) as well as light history during the 

generation of the curve (Perkins et al. 2006; Serôdio et al. 2006b; Ihnken et al. 2010). In 

recent years, a number of studies have compared the different protocols used to generate 

light-response curves in MPB biofilms, the general conclusion being that RLCs cannot be 

used as unambiguous proxies for steady-state light curves (Perkins et al. 2006; Serôdio et 

al. 2006b; Herlory et al. 2007; Lefebvre et al. 2011), although they may provide valuable 

information on short-term photoacclimation, not possible to obtain otherwise (Cruz and 

Serôdio 2008). 

Recently, a new method was introduced that allows for the generation of non-

sequential light-response curves of chlorophyll fluorescence based on steady-state and 

temporally independent measurements (‘single-pulse light curves’, SPLC; Serôdio et al. 

2013). The method is based on the projection of a set of spatially-separated beams of actinic 

light of different intensities (‘light mask’) on a group of replicated samples and on the 

simultaneous detection of the fluorescence response to the various actinic light levels using 

a chlorophyll fluorescence imaging system. This approach appears particularly promising 

for the case of MPB, as it allows to dramatically reduce the time required for completing a 

full light-response curve (to the time required for a single measurement), minimizing both 

the induction of vertical phototactic migration, and the issues associated to non-steady-state 

measurements of RLC protocols. In this study, we tested the application of this method to 

generate light-response curves on undisturbed MPB samples, by determining the optimal 

protocol conditions for samples dominated by motile microalgae, and comparing it with the 

commonly used protocols of sequential light-response curves.  
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Material and procedures  

Rationale of experiments 

The ideal protocol for generating light-response curves of fluorescence in MPB 

samples should observe the following criteria: (i) allow to describe the steady-state light 

response of the studied samples, (ii) yield results not significantly affected by vertical 

migration occurring during the generation of the light curves, and (iii) provide measurements 

independent from short-term photoacclimation state induced by initial light conditions. This 

study tested the verification of these conditions by the method based on SPLCs. In a first 

set of experiments, the time necessary to reach a physiological steady state was 

determined using a diatom motility inhibitor to prevent the confounding effects of vertical 

migration. In a second step, the extent of light-induced vertical migration occurring for the 

period of light exposure required to reach a steady state, determined in the previous 

experiments, was evaluated. A third set of experiments compared the effects of different 

initial light conditions on the light-response curves generated by SPLCs and by the 

conventional sequential protocols used to generate SSLCs or RLCs. 

Before these tests were performed, a preliminary experiment was carried out to 

determine the light levels to be used to generate the light-response curves. This experiment 

also served to illustrate one of the most valuable aspects of the new method, which is the 

possibility to freely define the light values used to generate the light curves, including their 

number and distribution along the light range, as well as the number of replicates for each 

level. 

Sampling and sample preparation 

Sediment samples were collected during low tide on an intertidal mudflat near Vista 

Alegre (40°35'14.1"N 8°41'15.8"W), Ria de Aveiro, Portugal. The sediment was composed 

of fine particles (97% < 63 µm) and known to support microalgal biofilms dominated by 

motile diatoms throughout the year (Serôdio et al. 2006b; Frankenbach et al. 2014). The 

top 1 cm was collected using a spatula and transported to the laboratory where it was sieved 

(1 mm mesh) and thoroughly mixed. The homogenized sediment was deposited into plastic 

trays to form a layer of 3-4 cm thick slurry, and was covered by natural seawater and at a 

constant temperature (17 ºC). The experiments were carried out on the day following 

sampling, during periods coinciding with the low tide in the sampling site. Before the start 

of the low tide period, the overlying water was carefully removed, and the superficial (ca. 

0.5 cm) layer of sediment was collected using a spatula. After being thoroughly mixed, the 
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sediment was transferred to 24-well plates (Tissue Culture Plate, Sarstedt, Nümbrecht, 

Germany) filling the wells completely (ca. 3 mL), thus creating 24 true replicates. To promote 

the upward migration of microalgae and the formation of the biofilm, the plates were placed 

in a growth chamber (Biotronette, LAB-LINE Instruments, India) where they were exposed 

to light provided by fluorescence lamps (120 µmol quanta m-2 s-1 ; FL40SS w/37, Sanyo, 

Osaka, Japan). 

Experimental setup 

The setup consisted of a Pulse Amplitude Modulation (PAM) imaging chlorophyll 

fluorometer and a digital projector, used as a source of actinic light, as described in Serôdio 

et al. (2013) and Laviale et al. (2016). The imaging chlorophyll fluorometer (Open FluorCAM 

800-O/1010, Photon Systems Instruments; Brno, Czech Republic) comprised four 13 × 13 

cm LED panels emitting red light (emission peak at 621 nm, 40 nm bandwidth), two 

providing modulated measuring light (< 0.1 µmol quanta m-2 s-1), and the other two providing 

saturating pulses (> 7000 µmol quanta m-2 s-1, 0.8 s), and a 2/3” CCD camera (CCD381) 

with a F1.2 (2.8-6 mm) objective. Chlorophyll fluorescence images (512 × 512 pixels, 695-

780 nm spectral range) were captured and processed using the FluorCam7 software 

(Photon Systems Instruments, PSI).  

A LCD digital projector (EB-X14; Seiko Epson, Suwa, Japan) comprising a mercury 

arc lamp providing a light output of 3,000 lumens, was used as an actinic light source. The 

projector was positioned in a way that the projected light incident on the center of the area 

monitored by the CCD camera. Projector settings were set to provide the widest range of 

light intensities at the sample level. The projector was used to project a 'light mask', i.e. a 

set of 24 circular spatially separated areas of actinic light (AAL), arranged in a 4 × 6 matrix. 

The light masks were designed so that the 24 AALs matched and covered the whole surface 

(16 mm diameter) of the 24 samples in the well plate. 

This setup was also used to measure fast changes in microalgal biomass present at 

the surface of the sediment samples, based on a physiology-independent spectral 

reflectance index, as described by Laviale et al. (2016). Surface biomass was measured by 

acquiring images of diffusive reflectance in the red and infrared regions of all samples 

contained in the well plate. The red and infrared reflectance images were captured by 

illuminating the samples with four halogen lamps (50 W, Auchan JD 230V/GU 10), providing 

a light intensity of 250 µmol quanta m-2 s-1 and a light spectrum with a strong emission in 

the red and infrared regions, by sequentially use one red (FF01-676/29-25; Semrock, 

Rochester, NY, USA; transmission peak at 676 nm, 29-nm bandwidth) and one infrared 
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(FF01-747/33-25, Semrock; transmission peak at 747 nm; 33-nm bandwidth) bandpass 

filters. The filters were positioned between the camera lenses and the CCD and were 

switched using a computer-controlled filter wheel. The switching of the filters and the 

capture of the red and infrared images was carried out in less than 30 s using the FluorCam7 

software (PSI), by running a user-defined protocol. 

Actinic light mask design and control 

The light masks were designed in Microsoft PowerPoint, using a code written in 

Microsoft Visual Basic defining the number, position, size, shape, light intensity and 

spectrum (R:G:B ratios; see below) of each AAL (Serôdio et al. 2013). The light level of the 

various areas of actinic light (AAL) composing the light mask were measured and controlled 

through a custom-made multi-sensor platform. This consisted of 24 flat light sensors (log-

scale analog sensors, model GA1A12S202, Sharp, Osaka, Japan) mounted on a perfboard 

so that their positions matched the ones of the samples in the 24-well plate. The light 

sensors were placed at same height as the samples in relation to the camera and the 

projector. The plate was painted mate black to minimize light scattering. The spectral 

sensitivity of the sensors allowed for measurements in the PAR range (sensitivity >10% in 

the 400-700 nm range; peaking at 555 nm). The light sensors were connected to a 

microcontroller (Arduino UNO R3; www.arduino.cc) using a multiplexer shield (MuxShield 

II, Mayhew Labs, Greenville, SC, USA). The multiplexer shield allowed reading the 24 

sensors simultaneously through just one analog pin of the microcontroller. The sensors 

were calibrated individually against a recently-calibrated PAR sensor (LS-C, connected to 

a ULM-500 reading unit; Walz, Effeltrich, Germany). Each sensor was calibrated using its 

readings when placed in its position in the plate, to account for the distance from the 

projector and the angle of incident light, for a light intensity range from 5 to 1600 µmol 

quanta m-2 s-1. The linear correlation between the sensor readings and the PAR sensor 

measurements was in all cases very high (r2 > 0.999). A set of macros written in MS Visual 

Basic allowed setting the target PAR values for each AAL and read the incident levels in all 

AALs in real time in a MS Excel file. This information was then sent to MS PowerPoint in 

order to change the projected light intensity accordingly. This process was based on a 

relationship previously established between MS PowerPoint RGB code and projected PAR 

levels (R:G:B ratio maintained constant; Serôdio et al. 2013). The procedure was repeated 

iteratively until the incident levels matched the desired values, which typically was achieved 

in a small number of iterations. The MS Visual Basic code was adapted from the source 

code of the Arduino Excel Commander (http://sites.google.com/site/robertovalgolio/sistemi-
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programmi/arduino-excel-commander). The use of this multi-sensor platform allowed the 

designing of light masks much more time-efficient, because all 24 AAL could be set and 

measured simultaneously, taking into account any eventual light spillover between adjacent 

AALs.  

Image analysis 

Chlorophyll fluorescence and red/infrared data were extracted by defining Areas of 

Interest (AOIs) for each well, using the FluorCam7 software. The AOIs were centered on 

the AALs but to avoid border effects the size of AOIs were defined as smaller than the actual 

surface of the sample (ca. 450 pixels). For each fluorescence measurement (saturating 

pulse, see below), the kinetics of the fluorescence signal of each AOI was analyzed 

individually to exclude possible flickering events caused by the projector light. 

Chlorophyll fluorescence measurement 

Chlorophyll fluorescence indices were measured by applying a single saturating pulse 

and determining the fluorescence parameters Fo and Fm (for dark-adapted samples) or Fs 

and Fm' (for samples exposed to actinic light) for each AOI. Fluorescence parameters were 

measured by averaging all pixel values of each AOI and by averaging the fluorescence 

intensity during the 2 s immediately before the saturating pulse (determining Fo or Fs), and 

during 0.6 s during the application of the saturating pulse (determining Fm or Fm'; total 

duration of 800 ms). For each AOI, the maximum and the effective PSII quantum yield were 

calculated as Fv/Fm = (Fm-Fo)/Fm and ΔF/Fm' = (Fm'-Fs)/Fm', respectively. Fluorescence 

measurements on light-acclimated samples were used to calculate the relative electron 

transport rate (rETR) index, given by: 

𝑟𝐸𝑇𝑅 = 𝐸
𝐹′𝑚−𝐹𝑠

𝐹′𝑚
= 𝐸 ∆𝐹/𝐹′𝑚       (1) 

Surface biomass measurement 

Surface biomass was measured by computing the index NDVI (Normalized Difference 

Reflectance Index; Rouse et al. 1973), based on red and infrared reflectance images: 

𝑁𝐷𝑉𝐼 =  
𝑅𝑟−𝑅𝑖𝑟

𝑅𝑖𝑟+𝑅𝑟
       (2) 

where Rr and Rir represent the red and infrared reflectance, respectively (Laviale et al. 

2016). For each sample, NDVI was calculated by averaging all pixels of each AOI. Rr and 

Rir were calculated from the normalization to the reflectance of a reference 18% grey 
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standard (Kaavie GC-1 A4 Size Grey Card), measured for the same AOIs. Images were 

also captured in the dark and were subtracted from images of both the sample and the grey 

reference to account for the dark current noise. 

Light-response curves of fluorescence 

Sequential light-response curves (SSLC and RLC) were generated by applying a light 

mask consisting of AALs (n = 3) with the same irradiance level. The light curve was 

generated by incrementally increasing the light intensity applying the following PAR values 

in all AALs: 87, 178, 282, 410, 587, 858, 1126, 1406 µmol quanta m-2 s-1. This set of 

irradiance values was defined from the results of the preliminary experiment on the 

optimization of the distribution of eight E levels along the full range of applicable irradiance 

(see below). rETR light curves were generated by applying a saturating pulse and 

determining Fs and Fm' after exposing the samples to each actinic light intensity for 30 s or 

60 s, in the case of the sequential RLCs or SSLCs, respectively. Single Pulse Light Curves 

(SPLC) were generated by applying a single saturating pulse yielding rETR measurements 

for all 24 samples simultaneously, after applying a light mask consisting of 3 × 8 light levels 

(same PAR levels as indicated above) for a pre-determined period of exposure (Fig. 1). For 

the preliminary experiment designed to determine the light levels to use (see below), a light 

mask consisting of 24 light levels, equally spaced along the range of PAR levels (0 to 1300 

µmol quanta m-2 s-1), was applied. 

rETR vs E curves were described by fitting the model of Eilers and Peeters (1988), 

and by estimating the parameters α (the initial slope of the curve), rETRm (maximum rETR) 

and Ek (the light-saturation parameter): 

𝑟𝐸𝑇𝑅(𝐸) =
𝐸

𝑎𝐸2+𝑏𝐸+𝑐
      (3) 

where 

∝=
1

𝑐
    ,   𝑟𝐸𝑇𝑅𝑚 =

1

𝑏+√𝑎𝑐
    and   𝐸𝑘 =

𝑐

𝑏+√𝑎𝑐
    (4) 

All models where fitted using Microsoft Excel Solver. Model parameters were 

estimated iteratively by minimizing a least-square function, forward differencing, and the 

default quasi-Newton search method. 
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Determination of actinic light level 

Most commercially-available PAM fluorometers allow to apply only a small number of 

actinic light intensities, selected from a fixed, pre-defined set of values (‘PAR list’, e.g., Heinz 

Walz, 2009). The method here tested, based on a digitally-controlled actinic light source, 

opens the possibility to freely define the light values, both in terms of number and intensity, 

used for generating light curves. Therefore, a preliminary test was carried out in order to 

select the E levels to use for generating SPLCs and sequential light-response curves (SSLC 

and RLC) in the following experiments of the study. This is of importance because the 

number and distribution of the E levels along the range of physiological response affect the 

values of the model parameters used to describe the light curves (Henley 1993; MacIntyre 

et al. 2002; Jones et al. 2014). Firstly, a light mask consisting of 24 AAL of light levels 

equally spaced along the range of applicable light intensities (0 to 1400 µmol quanta m-2 s-

1) was applied to a set of replicated samples to generate a quasi-continuous set of rETR 

measurements. This enabled to characterize in detail the shape of the light-response curve, 

which was used to design a light mask consisting of 3 × 8 light levels, considered as a good 

compromise between detailing the light response and replication. Additionally, the use of 

eight light levels allowed to better compare the results of the presented method and of 

standard protocols, as it is the number of light levels used in many studies (e.g., White and 

Critchley 1999; Ralph and Gademann 2005; Serôdio et al. 2005; Perkins et al. 2007; Morris 

et al. 2008; Mouget et al. 2008; Lefebvre et al. 2011). 

The 3 × 8 light mask was designed by determining eight irradiance values such that 

the corresponding rETR values were equally spaced along the light curve, optimizing the 

description of the light response both when changes in rETR with E are steeper (light-limited 

region of the curve) or occur at slower rates (light-saturated region of the curve). The eight 

light levels were determined by minimizing the linear distance between their corresponding 

rETR values, as predicted from the light curve parameters of the Eilers and Peeters (1988) 

model fitted to the quasi-continuous light curve, using MS Solver. The resulting light levels 

(87 – 1400 µmol quanta m-2 s-1; shown above) were used for all light curves tested in this 

study, both sequential (SSLC and RLC) and of the SPLC type. 
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Figure 1. Illustration of the measurement of single-pulse light-response curves (SPLC) of chlorophyll 
fluorescence on MPB samples. A. Light mask comprising eight areas of actinic light (AAL), and three replicates 
for each light level (‘3 × 8’ light mask), designed to fit a well plate containing 24 replicated MPB samples. 
Numbers indicate the irradiance levels (µmol quanta m-2 s-1) applied in each group of three AALs. B. Effective 
quantum yield of PSII, ∆F/Fm' (false color scale), as measured for each AAL by applying a single saturating 
pulse after exposure to the actinic light mask for 120. Numbers indicate the average ∆F/Fm' values determined 
for each sample, used for calculating the rETR values plotted in Fig. 2. 

 

Exposure time for reaching steady state 

In order to determine the minimum duration of light exposure, necessary to reach a 

physiological steady state in light curve parameters, sediment samples were treated with 

the diatom motility inhibitor Latrunculin A (Lat A) to prevent the confounding effects of light-

induced vertical migration on the fluorescence response to light. The solution of Lat A (10 

µM) was prepared according to Cartaxana and Serôdio (2008). The reaching of a 

physiological steady state was determined by measuring one SPLC (using the 3 × 8 light 

mask) at different times (10, 30, 60, 90, 120, 150 and 180 s) following the start of exposure 

to the actinic light mask. Samples were previously dark acclimated for 2 min. Light curve 

parameters were estimated for each measuring occasion and their evolution during light 

exposure was used to determine, for each parameter, the earliest moment that yielded 

values not statistically different from steady state. Steady-state values were defined as the 

average value of the measurements that, after a certain time of light exposure, showed no 



 

 

 

Light curves on Microphytobenthos                                                                            |    Chapter 2 

27 

significant differences from each other. The experiment was also run with samples not 

treated with Lat A (control), to evaluate the effects of vertical migration. 

Light-induced vertical migration 

In order to assess the extent of light-induced vertical migration occurring during the 

period of light exposure required to reach a physiological steady state (determined in the 

previous experiment), the change in microalgal surface biomass during light exposure was 

monitored using reflectance-based, physiological-independent biomass index NDVI. 

Samples were acclimated to darkness and exposed to different light levels as described for 

the previous experiment. NDVI was measured at 10, 30, 60, 90 and 120 s after the start of 

light exposure.  

Dependence on initial light conditions 

To compare the different protocols regarding the influence of initial conditions on the 

light-response curves, light curves generated using the SPLC method and the conventional 

sequential protocols used to generate SSLCs or RLCs, were compared on samples 

acclimated to two contrasting ambient light intensities. Replicated samples were exposed 

to 50 (low light, LL) and 1000 (high light, HL) µmol quanta m-2 s-1 for 15 minutes, in order to 

induce different photoacclimation states at the start of the measuring of the light-response 

curves. SPLCs were measured at 10, 30 and 60 s of light mask exposure while sequential 

RLCs and SSLCs were generated by applying 30 s and 60 s light steps, respectively.  

Statistical analysis 

Measurements under different treatments were compared by applying Student’s t- 

test or one-way ANOVA. Assumptions of normality and homoscedasticity were verified prior 

to analysis using the Shapiro–Wilk test and Levene’s test, respectively. In case of violation 

of assumptions, data were log transformed. Measurements made on the same samples at 

different occasions were compared by using repeated measurements ANOVA. When the 

sphericity assumption was not verified, the Greenhouse & Geiser correction was applied. 

All statistical analyses were carried out using Statistica 10 (StatSoft Inc., Tulsa, OK, USA). 
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Assessment 

Light curve design: determination of actinic light levels 

The light-response curves based on eight light levels and three replicates (using the 

3 × 8 light mask; Fig. 1) were very similar to the quasi-continuous response curves obtained 

by measuring 24 rETR values for evenly distributed E values. The two curves were virtually 

identical for irradiances up to ca. 1000 µmol quanta m-2 s-1 (Fig. 2). Above this light level, 

the curves started to diverge, with the quasi-continuous curve showing a tendency for a 

decrease under the highest irradiances. However, no statistical differences were found 

between the light curve parameters of the two light response curves, either regarding the 

light-limited or light-saturated regions of the curve (repeated measurements ANOVA, F1,3 = 

2.246, P = 0.231 and F1,3 = 0.028, P = 0.877 for α and rETRm, respectively).  

 

 

Figure 2. Single-pulse light-response curves of rETR as measured on microphytobenthos samples after 120 s 
of actinic light mask exposure. Comparison of typical quasi-continuous light curve (generated by a light mask 
with 24 different light levels) and one light curve based on eight light levels (generated by using a 3 × 8 light 
mask). Lines represent the fit of the Eilers and Peeters (1988) model (Eq. 4). Vertical bars: one standard error. 

 

Exposure time for reaching steady state 

Following an initial period of light induction during which light curve parameters varied 

markedly, a gradual stabilization lead to a steady state which was maintained during the 

rest of the experiment. During light exposure, the parameter α decreased from 0.77 µmol 

quanta-1 m2 s (10 s of light exposure) until it became not significantly different from the 

steady-state value (0.62 µmol quanta-1 m2 s), 120 s upon the start of light exposure 

(repeated measurements ANOVA, Tukey HSD, MSE = 0.001, P = 0.015) (Fig. 3A). 
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Figure 3. Variation over time of rETR light curve parameters α, rETRm and Ek upon exposure to actinic light of 
microphytobenthos samples treated with diatom motility inhibitor Lat A as compared to untreated (control) 
samples. Lines represent a 3-point moving average of each parameter. 
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Steady-state values were defined as the average value of the measurements after 120 s 

(α) or 90 s (ETRm and Ek) of light exposure. The parameters rETRm and Ek showed an initial 

decrease from starting value of 228 and 299 µmol quanta m-2 s-1, respectively, rapidly 

followed by a more gradual increase until reaching steady-state values of 245 to 372 µmol 

quanta m-2 s-1, respectively. Regarding rETRm (Fig. 3B), no significant changes were 

detected over the whole period of the experiment (repeated measurements ANOVA, Tukey 

HSD, MSE = 402.950, P > 0.697). Parameter Ek reached values not significantly different 

from the steady state after 90 s of light exposure (repeated measurements ANOVA, Tukey 

HSD, MSE = 712.93, P = 0.012; Fig. 3C). Variations over time of all light curve parameters 

were more pronounced in the non-immobilized samples, confirming the importance of 

vertical migration as a confounding factor for the characterization of the sample 

photophysiology using fluorescence light-response curves. 

Light-induced vertical migration 

The migratory response to light exposure was found to be very fast, starting virtually 

immediately after light exposure (Fig. 4). Even an exposure period as short as 60 s induced 

a significant decrease in surface biomass (t-test, t = -2.98, df = 14, P < 0.01), for irradiances 

as low as 87 µmol quanta m-2 s-1 (Fig. 4). The change in surface biomass increased with 

the light level and the time of exposure. However, the changes induced by the tested light 

intensities and exposure periods were relatively small, with the maximum decrease, 

observed for the extreme conditions of 1400 µmol quanta m-2 s-1 during 120 s, reaching only 

22%.  

 

 

Figure 4. Short-term light-induced changes in microalgal surface biomass under different irradiance levels, as 
measured by the microalgal biomass reflectance index NDVI (Eq. 3). 

  

Irradiance, E [µmol quanta m-2 s-1] 
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Dependence on initial light conditions 

Figure 5 summarizes the results of the comparison of the different experimental 

protocols regarding the effects of initial photoacclimation state on the light curve 

parameters. Sequential RLCs based on 30 s light steps were strongly affected by the light 

conditions applied to the samples prior to the start the curve. 

 

Figure 5. Effects of initial light conditions (LL and HL: 50 and 1000 µmol quanta m-2 s-1, respectively) on the 
parameters of rETR light-response curves α, rETRm and Ek as measured using different experimental protocols: 

RLC (10 s light step), SSLC (60 s light step) and SPLC generated after 10, 30 and 60 s of light mask exposure. 
Mean values of three independent measurements. Vertical bars: one standard error. 
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Both parameters α and rETRm were significantly different between samples 

acclimated to LL and to HL conditions (t-test; α: t = 9.116, df = 4, P < 0.001, rETRm:  

t = 3.330, df = 4, P = 0.029), reaching significantly higher values for LL-acclimated samples 

(Fig. 5A,B). Because both α and rETRm decreased with initial light conditions, Ek, did not 

show significant differences between LL- and HL-acclimated samples (t-test; t = 0.122,  

df = 4, P = 0.909; Fig. 5C). In contrast, SSLCs were not affected by initial light conditions, 

as neither of the light parameters varied significantly between LL- and HL-acclimated 

samples (t-test; α: t = 1.072, df = 4, P = 0.344; rETRm: t = 0.389, df = 4, P = 0.717;  

Ek: t = 0.722, df = 4, P = 0.510; Fig. 5B). Regarding SPLCs, the results varied with the 

duration of the light exposure period. For 10 s of light mask exposure, significant differences 

were found regarding α and Ek (t-test; t = 6.284, df = 4, P = 0.003 and  

t = -4.451, df = 4, P = 0.010, respectively) but not for rETRm (t-test; t = -1.184, df = 4,  

P = 0.302). After 30 s of exposure, both α and rETRm did not significantly differ between LL- 

and HL-acclimated samples (t-test; t = 1.377, df = 4, P = 0.240 and t = 1.234, df = 4,  

P = 0.245, respectively), and only for Ek significant difference were found (t-test, t = 3.840, 

df = 4, P = 0.018). For a light exposure period of 60 s, the light curves showed no detectable 

dependency of the initial photoacclimation state, as no significant differences were found 

for any of the parameters (t-test; t < 0.638, df = 4, P > 0.600 in all cases). 

Discussion 

A protocol to generate light-response curves that successfully characterize the 

inherent physiological light response of MPB samples must rely on the tradeoff between the 

ability to describe the steady-state light response and minimize the main sources of error, 

identified as the effects on light curve parameters of vertical migration and of initial light 

acclimation conditions. The results of this study indicate that the non-sequential SPLC 

protocol represents an advantageous alternative over the conventionally used protocols, 

based on the sequential exposure of the same sample to various actinic light levels (SSLC 

and RLC). In essence, the method effectively allows to overcome the main shortcoming of 

sequential protocols: (i) it provides a close approximation to steady-state light curve 

parameters in a comparatively short period, which (ii) minimizes the effects of light-induced 

vertical migration during curve generation, and (iii) eliminates the dependency of short-term 

photoacclimation prevailing at the start of the measurements. 
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Approaching steady state while minimizing vertical migration 

The evaluation of the SPLC protocol in terms of providing a better tradeoff between 

estimating steady-state light curve parameters and avoiding the effects of vertical migration 

was based on the comparison of the kinetics of light curve induction and of downward 

migration during light activation. The results showed that vertical migration can be induced 

in timescales shorter than the time required to reach a full steady state in light curve 

parameters (60 s and 90 s, respectively). This is in agreement with the results of Laviale et 

al. (2016), who showed for similar samples, that downward vertical migration of benthic 

diatoms is activated rapidly upon exposure to intensities higher than 250 µmol quanta m-2 

s-1. The results of the present study further confirm that sequential SSLC and even RLC 

protocols are surely too long to avoid migratory responses capable of causing substantial 

changes in microalgal biomass and species composition in photic zone of the sediment. In 

practical terms, this overlapping between the periods required for reaching a full 

physiological steady state and the induction of vertical migration calls for a compromise 

between the two processes. In this context, the SPLC protocol appears as particularly 

advantageous as it is not based on sequential light exposure, that results in the application 

a long (and often increasing) light stimulus causing cumulative migratory effects. In fact, the 

presented results showed that an exposure of 60 s represents a satisfactory compromise 

between approaching the steady state and, while not avoiding completely the occurrence 

of vertical migration, minimize its effects on the estimation of light curve parameters. 

Considering the results depicted in Fig. 3, an exposure period of 60 s would underestimate 

the steady-state light curve parameters by only 6.2% and 6.7% (α; control and Lat A-treated 

samples, respectively) and 13.7% and 4.7% (ETRm; control and Lat A-treated samples, 

respectively). To be noted that these results were obtained by exposing the samples to 

actinic light (various levels of the light mask) after a period of dark acclimation. It may thus 

be expected that a period shorter than 60 s could be sufficient to reach a steady state if the 

samples were already light activated. Interestingly, an earlier study on light response curves 

of microphytobenthos biofilms of different origin concluded that a similar light exposure 

period (50 s) was required to reach a steady state (Herlory et al. 2007). 

Independency of initial conditions 

While the SPLC method was shown to effectively allow estimating steady-state light 

curve parameters with minimum interference from vertical migration, the question remained 

of how the new method deals with the effects of short-term photoacclimation to the light 
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conditions prior to the start of the curve. This is of importance if the method is to be 

applicable on samples exposed to variable light conditions, and their photophysiological 

state is to be assessed independently of the ambient light conditions. The comparison of 

the SPLC approach with commonly used protocols for sequential LC (RLCs of 10-30 s and 

SSLCs of 60 s light steps) confirmed that it is largely independent from initial light conditions. 

Because SSLC protocols are based on light steps long enough to allow the dissipation of 

initial short-term photoacclimation state, they allow reaching steady state conditions, and to 

reveal the inherent photoresponse of the samples (Perkins et al. 2006; Herlory et al. 2007; 

Cruz and Serôdio 2008; Ihnken et al. 2010; Lefebvre et al. 2011). However, even a relatively 

short light step of 60 s corresponds to a total period of several minutes of light exposure 

during the curve construction (8 min if a total 8 light steps), which is expected to cause very 

large migratory effects. 

On the other hand, RLCs were confirmed to be largely dependent on initial light 

conditions. Due to the short light steps, the short-term photoacclimation established prior to 

the start of the measurements is not attenuated and prevails during the generation of the 

curve. The influence of initial light conditions is expected to be especially evident during the 

first steps of the light curve, affecting more the parameter α than rETRm (Serôdio et al. 

2006b). RLCs may appear preferable because of their expected smaller dependency on 

vertical migration, but the results of this study indicate that migratory effects may still occur 

in a significant way. This is because a light step of 30 s corresponds to a total exposure to 

light of 4 min (if 8 light steps) during the generation of the curve, a period of time expected 

to result in a substantial migratory response (Laviale et al. 2016). 

It is important to note that the conditions tested in these experiments were 

conservative. The effects of initial light conditions on RLC parameters would likely be much 

larger if a light step shorter than 30 s had been used. In fact, most studies on benthic 

microalgae were based on RLCs use protocols use light steps of just 10 s (e.g., McMinn et 

al. 2005; Serôdio et al. 2005; 2008; Yun et al. 2010; Lefebvre et al. 2011; Du et al. 2012). 

Also, the differences between RLCs and SSLCs would likely be larger if the later had been 

carried out applying light steps longer than 60 s, as it is the case of works targeting SSLCs 

using 2 (Barranguet and Kromkamp 2000) or 3 min (Underwood et al. 2005). 
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Additional advantages 

Besides being a better approach for describing the steady-state photoresponse of 

MPB samples than the SSLC and RLC protocols, the SPLC method offers some additional 

advantages. First, in contrast with the often used sequential SSLC and RLC protocols, 

SPLCs yield truly independent measurements, because each fluorescence measurement 

originates from a single sample, exposed to only one light level. This has the immediate 

value of eliminating cumulative light effects, either on sample physiology or species 

composition in the photic zone. In this regard, SPLCs share the advantages of previously 

used non-sequential approaches (e.g. Perkins et al. 2006; Lavaud et al. 2007). A second 

important advantage regards the short time required to complete a light curve. Besides the 

obvious value of reducing the time required for completing light curves, the method allows 

to minimize the intrusiveness of the measurements, reducing the effects of light curve 

generation on the physiology and migratory state of the samples. In turn, this permits to 

obtain a better time resolution of the measurements, which is especially important in the 

context of fast changing environmental conditions, sample composition or physiological 

state, which is characteristic of the intertidal environment and of MPB samples. For 

example, it makes it easier to study various biofilm samples during the same low tide periods 

and further allows increasing the level of replication, reducing the error and improving the 

ability to detect effects. 

Another type of benefit of the SPLC approach concerns the flexibility offered in terms 

of ‘light curve design’, that is, the possibility of easily and freely adjusting the range and 

distribution of irradiance levels used for the construction of the light curves. This permits to 

optimize the description of the light response by adjusting the number and distribution of 

light levels as a function of the expected change in rETR (or other fluorescence response), 

e.g., by concentrating data collection in the ranges of irradiances for which rETR is expected 

to vary more steeply. In this context, the use of an automatic, synoptic light measurement 

system as the one developed for this study is highly advantageous. The potential of this 

approach was exemplified in the experiment of Figure 2, in which case the various E levels 

were determined based on the linear distance between rETR values along the expected 

light curve. A further use of this approach could be to allocate more measurements in the 

high end of the light range, to compensate for the increased error in measuring rETR (larger 

error for measuring smaller values ΔF/Fm', aggravated by multiplying by larger E values). 
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Comments and recommendations 

This study was centered on the optimization of the measurement of light-response 

curves of rETR. Nevertheless, the method here described can be readily used for the 

generation of light curves of other fluorescence indices, as the index NPQ (Serôdio et al. 

2013). Light-response curves of NPQ are informative on processes associated to 

photoprotection and photoinhibition, and are often used complementarily to rETR vs E 

curves in the characterization of the photophysiology of the photosynthetic organisms 

(Serôdio and Lavaud 2011). While in principle experiments like those here presented could 

be carried out for optimizing NPQ vs E curves, it must be noted that the measurement of 

NPQ in MPB samples dominated by motile microalgae is problematic, because this index 

is strongly affected by vertical migration. The calculation of the NPQ index depends on the 

absolute values of Fm and Fm', measured at different points in time, which are directly 

affected by the rapid changes in microalgal surface biomass occurring during the generation 

of the curve (Cartaxana and Serôdio 2008).  

The method here presented can also be extended to integrate the collection of 

physiological-independent data on microalgal surface biomass, by measurements of 

spectral reflectance images (Laviale et al. 2016). Measurements of reflectance-based NDVI 

index can be carried out in combination with light-response curves of fluorescence, allowing 

to obtain an integrated response to light of the biofilm, both in terms of photophysiology and 

migratory behavior. 

The results presented in this study were based on homogenized sediment samples, 

to make it easier to compare the new method with the conventional sequential protocols. 

However, although this procedure may reduce the variability between replicated samples 

and favor the application of the method, it is not a requirement of the SPLC approach. 

SPLCs can be generated using a set of undisturbed (not homogenized) replicated sediment 

samples, in order to preserve the natural vertical structure and the natural microspatial 

patchiness of the biofilms. Alternatively, the light mask can be projected directly on a single 

continuous sediment surface without the need to disrupt the natural biofilm, as has been 

shown for plant leaves (Serôdio et al. 2013). The only restriction in the later approach is 

that the AALs have to be sufficiently separated from each other to avoid significant light 

spillover between adjacent ones. 

This work resulted in the recommendation of experimental settings (light levels, time 

of exposure) that optimize the generation of rETR vs E curves. However, these settings 

were determined for the MPB biofilms tested in this study alone and may not be the best for 
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other samples, as the optimum settings vary with biofilm characteristics such as its inherent 

light curve parameters and migratory ability. For example, biofilms dominated by mostly 

non-migratory epipsamic species may allow for longer exposure periods, yielding light 

curves that better describe the physiological steady state. The procedures here described 

can nevertheless be followed for optimizing the method to be applied to different types of 

biofilms. 
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Abstract 

Microphytobenthos (MPB) inhabiting intertidal flats of estuaries form highly productive 

diatom-dominated biofilms. The capacity to sustain such high photosynthetic activity under 

conditions prone to cause photoinhibition is thought to be enabled by efficient 

photoprotective mechanisms, the main ones being the xanthophyll cycle (XC) and vertical 

migration (VM). This study compared the photoprotective capacity of two MPB communities 

inhabiting contrasting sedimentary habitats and relying on distinct light responses: epipelic 

communities, colonizing muddy sediments and using motility (VM) to regulate light 

exposure; and epipsammic communities, inhabiting sandier sediments and relying solely 

on physiological photoprotection (XC). The efficiency of physiological photoprotection of the 

two communities was compared regarding Photosystem II (PSII) photoinactivation caused 

by light stress. Lincomycin was used to distinguish photoinactivation from counteracting 

repair. Rate constants of PSII photoinactivation (kPI) and repair (kREC) were determined on 

cell suspensions, based on the light and time dependence of maximum quantum yield of 

PSII, Fv/Fm, as measured using multi-actinic imaging fluorometry. The results show that 

motile species, in comparison to epipsammic ones, are inherently more susceptible to 

photoinactivation (higher kPI), less dependent on the XC for preventing photodamage 

(smaller increase of kPI induced by nigericin) and more efficient regarding repair capacity 

(higher kREC). The distinct strategies exhibited by epipelic and epipsammic communities to 

cope with light stress support the hypothesized trade-off between photoprotective motility 

and photophysiology. Motile forms have a diminished physiological capacity for preventing 

photodamage and compensate using VM and a better repair capacity. Non-motile 

epipsammic forms rely mostly on physiological mechanisms to optimize photoprotection 

capacity. 
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Introduction 

Photoprotection against photoinhibition has long been considered crucial for 

microphytobenthos (MPB) (Admiraal 1984, Kromkamp et al. 1998, Serôdio et al. 2001). 

These diatom-dominated communities inhabit intertidal and shallow subtidal sedimentary 

habitats of estuaries and coastal zones, characterized by highly dynamic and extreme 

abiotic conditions (Serôdio & Catarino 1999, Brotas et al. 2003, Chevalier et al. 2010). 

These include exposure to flucturating solar irradiance during prolonged periods (Perkins 

et al. 2001, Laviale et al. 2015), extreme (high or low) temperature and salinity (Guarini et 

al. 1997, Serôdio et al. 2008), and nutrient and carbon limitation (Cook & Røy 2006, Vieira 

et al. 2016). Each of these factors and, more so, their combined effects are prone to cause 

a decrease in photosynthetic activity due to the photoinactivation of Photosystem II (PSII). 

Nevertheless, MPB sustain dense biofilms with high photosynthetic activity, and MPB 

primary productivity is ranked among the highest in marine and estuarine ecosystems, 

matching or exceeding that of phytoplankton (Underwood & Kromkamp 1999). 

The high productivity of MPB under extreme conditions has been thought to be 

enabled by particularly effective photoprotective mechanisms, allowing them to safely 

optimize the balance between light exposure and dissipation of excess absorbed light 

energy (Serôdio et al. 2012). In this context, the motility of benthic diatoms has long been 

considered to have an important photoprotective value. According to the ‘behavioral 

photoprotection’ hypothesis, the ability to vertically migrate within the photic zone of the 

sediment, covering a large range of light conditions in a short time, could enable motile 

diatoms to regulate light exposure and optimize photosynthesis while avoiding 

photodamaging irradiances (Admiraal 1984, Underwood et al. 1999, Consalvey et al. 2004). 

The photoregulatory nature of vertical migration is supported by increasing experimental 

evidence: (1) diatom motility is regulated by light intensity (Cohn et al. 2004, 2015, Serôdio 

et al. 2006, McLachlan et al. 2009); (2) biofilms treated with a motility inhibitor show a 

marked decrease in photosynthetic activity (Perkins et al. 2010, Serôdio et al. 2012); (3) 

high light-induced negative phototaxis is associated with susceptibility to photodamage 

(Ezequiel et al. 2015); and (4) light-induced migration is fast, occurring on time scales 

comparable to the activation of physiological photoprotection mechanisms (Laviale et al. 

2016, Frankenbach & Serôdio 2017, Blommaert et al. 2018). 

Motility-based photoprotection could operate complementarily to the physiological 

processes common to other photoautotrophs, the most important of which is considered to 

be the thermal dissipation of excessive light energy through the xanthophyll cycle (XC). In 
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diatoms, the XC relies on the enzyme-mediated, reversible conversion of the PSII antenna 

pigment diadinoxanthin (DDx) into the energy-dissipation form diatoxanthin (DTx), which 

depends on the presence of a transthylakoidal proton gradient and on specific LHCx 

proteins (Blommaert et al. 2017, Lepetit et al. 2017). Compared to higher plants (Ruban et 

al. 2004), the XC of diatoms was found to operate in a particularly efficient way, especially 

in coastal and estuarine species (Lavaud 2007). The XC-related de-excitation of the 

antennae is often quantified by measuring the non-photochemical quenching (NPQ) of 

chlorophyll fluorescence (Müller et al. 2001, Ruban 2016). Because NPQ comprises several 

mechanisms of regulated energy dissipation in the PSII antenna, this fluorescence index 

has been widely used as a measure of photoprotective capacity of MPB (Jesus et al. 2006, 

Lavaud et al. 2007, Juneau et al. 2015). 

A corollary of the ‘behavioral photoprotection’ hypothesis is the existence of a trade-

off between motility-based and physiological photoprotective mechanisms: having the 

possibility to adjust light exposure behaviorally, motile species would rely less on 

physiological photoprotective processes, thus showing a decreased inherent 

photoprotective capacity (Serôdio et al. 2001, Barnett et al. 2015, Laviale et al. 2016). The 

replacement of the physiological photoprotection (at least partially) by motility is supported 

by the recent finding that high light-induced vertical migration is fast enough to allow the 

systematic avoidance of exposure to high light (Laviale et al. 2016, Frankenbach & Serôdio 

2017), thus avoiding the development of a large physiological photoprotective capacity 

(Lavaud et al. 2007, Serôdio & Lavaud 2011, Barnett et al. 2015, Blommaert et al. 2018). 

The relative importance of behavioral and physiological protection in MPB has been 

debated extensively in recent years (Serôdio et al. 2001, Van Leeuwe et al. 2008, Mouget 

et al. 2008, Pniewski et al. 2015, Barnett et al. 2015, Blommaert et al. 2017). This question 

has been often addressed by comparing 2 types of benthic diatom assemblages, 

taxonomically closely related and occurring virtually sympatrically (e.g. same tidal flat of the 

same estuary), but differing markedly regarding motility: the epipelon (EPL), formed by 

raphid motile species, dominant in fine sediments; and the epipsammon (EPM), composed 

predominantly of non-motile growth forms, common in coarser sediments, where they live 

in close association with sediment particles (Jesus et al. 2009, Cartaxana et al. 2011, 

Barnett et al. 2015, Juneau et al. 2015). The evidence gathered from the comparative study 

of EPL and EPM species appears to confirm the motility−physiology trade-off hypothesis, 

in the sense that motile forms tend to show a lower capacity for physiological 

photoprotection, either by having smaller cellular pools of energy-dissipating pigment DTx 

(Van Leeuwe et al. 2008, Jesus et al. 2009, Cartaxana et al. 2011, Pniewski et al. 2015) or 
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by attaining lower maximum NPQ levels than their non-motile equivalents (Barnett et al. 

2015, Blommaert et al. 2017, 2018, Pniewski et al. 2017). 

The study of the photoprotective role of vertical migration and NPQ, and the trade-off 

between motility and physiological processes, has been based almost exclusively on the 

assessment of ‘photoinhibition’, defined in terms of net photoinactivation, that is, the 

decrease in photosynthetic activity resulting from the balance between PSII 

photoinactivation and  photorepair, without distinguishing their counteracting effects (e.g. 

Serôdio et al. 2012, Laviale et al. 2015). However, the evaluation of the actual 

photoprotective capacity provided by a certain process (e.g. vertical migration) is better 

attained by quantifying its effect in terms of the induced decrease of the susceptibility to 

photodamage (Serôdio et al. 2017). This in turn requires the separate quantification of the 

operation of PSII photoinactivation and repair processes, which can be adequately achieved 

by measuring the rate constants of inactivation and repair (kPI and kREC, respectively) and 

their responses to irradiance level (kPI and kREC versus E curves) (Murata et al. 2012, 

Campbell & Tyystjärvi 2012, Miyata et al. 2012). 

This study addresses the comparative study of the inherent physiological 

photoprotection capacity of EPL and EPM diatom communities, directly testing the 

motility−physiology trade-off hypothesis based on actual PSII photoinactivation. The rate 

constant of photoinactivation, kPI, and its variation with irradiance level, were used as a 

measure of the efficiency of photoprotection processes, testing the hypothesis that EPL 

species (when not using vertical migration) show a lower physiological photoprotection 

capacity, being more susceptible to photoinactivation (higher kPI) than their EPM 

counterparts (lower kPI). The study further intended to (1) test if the hypothesized lower 

inherent photoprotective capacity of motile species is compensated by a higher capacity for 

repair, (2) evaluate the effective photoprotective impact of XC-associated NPQ, and (3) 

characterize the relationship between NPQ and kPI, evaluating the value of the NPQ index 

as a measure of photoprotection capacity. 

Photoinactivation and repair processes were quantified in combination with the 

assessment of photoacclimation state and potential physiological photoprotection capacity, 

as conventionally measured by NPQ, taking advantage of a recently developed 

experimental approach allowing the high-throughput and integrated characterization of light 

responses and kinetics of photosynthetic samples (multi-actinic imaging fluorometry; 

Serôdio et al. 2017). The method is based on the combined use of imaging chlorophyll 

fluorometry and the simultaneous exposure of replicated samples to multiple actinic light 

levels and periods of exposure, allowing the rapid measurement of the induction and 
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relaxation kinetics and of the light response of relative PSII electron transport rate (rETR; 

characterizing photoacclimation state) and NPQ (related to processes mediating 

photoprotection), and of the rate constants kPI and kREC. 

Materials and methods 

Sampling and sample preparation 

Sediment samples were collected on two intertidal flats of the Ria de Aveiro, a 

mesotidal estuary located off the west coast of Portugal. The sampling sites were selected 

for their different distinctive characteristics regarding sediment granulometry and diatom 

species composition. Site Vista Alegre (40° 37’ 12’’ N, 08° 44’ 54’’ W) is composed of fine 

muddy sediments (97% particles < 63 µm) and is expected to be dominated by EPL species, 

and will therefore be referred to as VA-EPL. Site Gafanha da Encarnação (40° 35’ 18’’ N,    

08° 41’ 06’’ W) is composed of sandy mud (45.3% particles between 63 and 125 µm and 

42.7% particles < 63 µm) and is expected to be dominated by EPM species, and will 

therefore be referred to as GE-EPM. The tidal height of the two sampling sites is similar (ca. 

2.3 m relative to hydrographic zero), with a mean duration of low tide (i.e. sediment 

exposure) of ca. 8 h 30 min (Serôdio et al. 2007). Sampling was carried out during August 

2016, on three consecutive days for each site, when low tide took place during the middle 

of the day. The top 1 cm layer of the sediment was collected using a spatula and then 

transported to the laboratory, where it was sieved (1 mm mesh) and thoroughly mixed. The 

sediment was transferred into plastic trays to form a layer of 3−4 cm thick slurry and was 

maintained overnight immersed in natural seawater collected at the sampling site. The 

following day, before the start of the low-tide period, the overlying water was carefully 

removed, and cells were collected using the ‘lens tissue’ technique (Eaton & Moss 1966). 

Two layers of lens tissue (Lens cleaning tissue 105, Whatman) were placed on the surface 

of the sediment exposed to low white light (halogen lamps, 50 µmol quanta m−2 s−1) to 

induce upward migration of motile cells. After ca. 2 h, the upper piece of lens tissue was 

removed and microalgae were resuspended in filtered natural seawater, producing the cell 

suspensions used in the experiments. 
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Photoacclimation state and photoprotection capacity 

The photoacclimation state and the potential photoprotection capacity of the samples 

was characterized by measuring light-response curves and induction kinetics of relative 

electron transport rate of PSII (rETR) and NPQ, respectively (see Notation). rETR was 

determined by measuring chlorophyll fluorescence parameters Fs and Fm’ on samples 

exposed to irradiance level E (Genty et al. 1989): 

𝑟𝐸𝑇𝑅 = 𝐸
𝐹′𝑚−𝐹𝑠

𝐹′𝑚
       (1) 

Because Fm’ values measured under low light in MPB samples may be higher than 

the Fm value measured after dark-adaptation, NPQ was calculated using the adapted NPQ 

index, based on the relative difference between the maximum fluorescence level measured 

during the construction of the light- response or induction curves, Fm’m, and the level 

measured upon exposure to light, Fm’ (Serôdio et al. 2008): 

𝑁𝑃𝑄 =
𝐹𝑚′𝑚−𝐹′𝑚

𝐹′𝑚
       (2) 

The light-response curves of rETR and NPQ were described by fitting the models of 

Eilers & Peeters (1988) and Serôdio & Lavaud (2011), respectively. rETR versus E curves 

were described by model parameters α (the initial slope of the curve), rETRm (maximum 

rETR) and Ek (the light-saturation parameter). NPQ versus E curves were described by 

model parameters NPQm (maximum NPQ), E50 (E corresponding to 50% of NPQm) and n 

(sigmoidicity parameter). Models were fitted and model parameters were estimated by 

iteratively minimizing a least-squares function, forward differencing, and the default quasi-

Newton search method, using a procedure written in MS Visual Basic and based on MS 

Excel Solver. 

Photoinactivation and repair 

The rate constants of PSII photoinactivation and repair, kPI and kREC, were measured 

in the dark following exposure to actinic light. Rates were calculated under the assumptions 

that (1) the pool of functional PSII can be estimated by the maximum PSII quantum yield, 

calculated as Fv/Fm = (Fm – Fo)/Fm, (2) PSII photoinactivation and repair occur concurrently 

and can be described as two opposite first-order reactions, and (3) at the beginning of light 



 

 

 

Photoinactivation and repair in microphytbenthos                                                       |    Chapter 3 

51 

exposure all PSII photosystems are functional (Kok 1956, Ni et al. 2017). In this case, the 

variation of net photoinactivation over time of exposure can be described by: 

𝐴(𝐸, 𝑇) =
𝑘𝑅𝐸𝐶(𝐸)+𝑘𝑃𝐼(𝐸)𝑒

−(𝑘𝑃𝐼(𝐸)+𝑘𝑅𝐸𝐶(𝐸))𝑇

𝑘𝑃𝐼(𝐸)+𝑘𝑅𝐸𝐶(𝐸)
       (3) 

where A is the fraction of functional PSII, measured by the ratio of the Fv/Fm(E,T) values 

measured after exposure to actinic light level E during a period T, and the initial, pre-stress 

Fv/Fm values (Campbell & Tyystjärvi 2012). Fv/Fm(E,T ) values were measured after 15 min 

of recovery in darkness. This time period has been used for MPB samples before, as it 

allows for the relaxation of the XC-associated NPQ (qE), while preventing the build-up of 

significant sustained NPQ during prolonged darkness (Serôdio et al. 2012). The rate 

constants kPI and kREC were quantified for each E level as described by Campbell & 

Tyystjärvi (2012). kPI was measured on samples treated with lincomycin (2 mM; lincomycin 

hydrochloride, Alfa Aesar; added in the dark 30 min before the start of the experiment), an 

inhibitor of the de novo synthesis of chloroplast-encoded proteins such as D1, by fitting the 

simplified form of Eq. (3) (setting kREC = 0) to the time series of A(E,T): 

𝐴(𝐸, 𝑇) = 𝑒−𝑘𝑃𝐼(𝐸)𝑇      (4) 

kREC was estimated by fitting Eq. (3) to the time series of A values measured in 

untreated samples and using the corresponding kPI(E) estimates.  

The relative quantum yield of photoinactivation, ɸPI, was determined from the slope of 

linear regression equation of kPI against irradiance level E (Hakala et al. 2005): 

ɸ𝑃𝐼 =
𝑘𝑃1(𝐸)

𝐸
       (5) 

Because ɸPI measures directly the susceptibility to inactivation per incident photon, 

by integrating the effects of all protective mechanisms in operation, it is used in this study 

as an indicator of the global effectiveness of photoprotection. 

In order to evaluate the contribution of XC-related NPQ, rate constants kPI and kREC (and 

their response to light: ɸPI and kREC versus E curve) were also measured in samples treated 

with nigericin (2.67 µM; nigericin sodium salt, Sigma-Aldrich), an uncoupler that relaxes the 

transthylakoidal ΔpH by antiporting H+ and K+, thus preventing the induction of the XC and 

related NPQ (Antal et al. 2011). On lincomycintreated samples, pH was adjusted to 7.9 ± 

0.1, using 1 M NaOH. Sodium bicarbonate (NaHCO3, 4 mM, Sigma-Aldrich) was added to 

all samples before each experiment. 
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Multi-actinic imaging of chlorophyll fluorescence 

All described fluorescence parameters and indices used to characterize the 

photoacclimation state, photoprotection capacity, photoinactivation and repair were 

measured in a single experiment, by applying the multi-actinic imaging fluorometry protocol 

described by Serôdio et al. (2017). This approach is based on the combined use of a digital 

light projector, as source of actinic light, and an imaging chlorophyll fluorescence system, 

allowing for the simultaneous measurement of the response of a large number of samples 

subjected to different combinations of light intensity (E) and exposure duration (T). Actinic 

light was provided by an LCD digital projector (EB-X14; Seiko Epson), comprising one 

mercury arc lamp providing a maximum light output of 3000 lm. A ‘light mask’ consisting of 

a set of 64 circular, spatially separated areas of actinic light (AAL), arranged in an 8 × 8 

matrix, was projected on a custom-made 3D-printed 64-well plate containing the samples 

(Serôdio et al. 2017), so that each AAL covered the whole surface of each sample. The 

light masks were designed in Microsoft PowerPoint, using a code written in Microsoft Visual 

Basic defining the number, position, size, shape, light intensity and spectrum (R:G:B ratios) 

of each individual AAL (Serôdio et al. 2013). The light spectrum was kept constant across 

light intensities by adjusting the RGB code for each intensity (Frankenbach & Serôdio 2017). 

Incident PAR irradiance was measured using a calibrated flat PAR sensor (mini quantum 

sensor LS-C and ULM-500 unit; Heinz Walz) at a distance from the light source that 

corresponded to the sample surface (bottom of the wells). The imaging fluorometer was a 

FluorCAM 800MF (Photon System Instruments, PSI), comprising a computer-operated 

control unit (SN- FC800-082, PSI) and a CCD camera (CCD381, PSI) with an f1.2 (2.8−6 

mm) objective (Eneo). Four 13 × 13 cm LED panels emitting red light (emission peak at 621 

nm, 40 nm bandwidth) provided modulated measuring light (< 0.1 µmol quanta m−2 s−1) and 

saturating pulses (> 7000 µmol quanta m−2 s−1, 0.8 s). 

The experiments consisted of 3 phases. An initial period of 30 min of dark acclimation 

allowed cells to settle in the 64-well plates (working sample volume of 200 µL), after which 

reference values of Fv/Fm were measured. This was followed by an induction phase of 

exposure to actinic light, during which light- response curves and induction kinetics were 

measured by applying saturating pulses every 3.75 min; the samples were arranged in a 

square 8 × 8 matrix, in which each row corresponded to one of 8 actinic light levels (37, 

135, 231, 352, 506, 692, 873 and 1120 µmol quanta m−2 s−1), and each column 

corresponded to one of 8 light exposure periods (T; 3.75 to 30 min). During the final recovery 

phase, samples were returned simultaneously to darkness and Fv/Fm was measured after 
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15 min to allow relaxation of XC- related NPQ. Because each experiment yielded only one 

estimate of kPI and kREC per E level, experiments were run three times on independent 

samples collected in each sampling date. 

Image analysis and determination of fluorescence parameters 

Images (512 × 512 pixels, 695−780 nm spectral range) of chlorophyll fluorescence 

parameters Fo, Fm (measured during dark-acclimation) or Fs and Fm’ (measured during 

induction), were captured and processed using the FluorCam7 software (Photon Systems 

Instruments). For each measurement, 64 ‘areas of interest’ (AOI) were designed as slightly 

smaller than the corresponding AAL, to avoid misinterpretation due to border effects, having 

on average 186 pixels (5.8 mm diameter). The fluorescence parameters were measured by 

averaging all pixel values in each AOI, and by averaging the fluorescence intensity during 

the 2 s immediately before the saturating pulse (Fo, Fs) and during 0.8 s (Fm, Fm’) exposure 

to the saturating pulse. Fluorescence images were captured at regular time intervals using 

an AutoHotKey script (www.autohotkey.com), written to automatically run the FluorCam7 

protocol used for applying saturating pulses. 

Chlorophyll a concentration 

Chlorophyll a concentration of the suspensions was determined according to 

Lorenzen (1967). A 2 mL volume of the cell suspension was centrifuged and suspended in 

cold 90% acetone. Extraction was carried out overnight at 4°C. Samples were centrifuged 

(10000 × g, 15 min), and the absorbance of the supernatant was measured 

spectrophotometrically (Spectronic Genesys 6 UV/VIS, Thermo Scientific) at 664 and 750 

nm before and after addition of 10% HCl. 

Taxonomic composition 

Sub-samples of the cell suspensions were fixed in 1% v/v in Lugol’s solution (5% 

Iodine, AppliChem) and viewed under a bright-field microscope for determination of the 

relative abundance of major taxonomic groups (diatoms, euglenophytes and 

cyanobacteria). Diatom identification was performed on sub-samples oxidized using 

concentrated nitric acid (1/4 v/v) and potassium permanganate. Permanent microscopy 

slides of the frustules were mounted using a high refractive index medium (Naphrax; 

Northern Biological Supplies). Composition of samples was determined by counting a 
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minimum of 300 cells or valves on three replicated sub-samples, using a counting chamber 

(Neubauer-improved, Marienfeld). Diatom identification was based on Round et al. (1990), 

Ribeiro (2010), and Coste & Rosebery (2011). 

Statistical analyses 

Measurements under different treatments or times were compared by applying 

Student’s t-test or one- way ANOVA. Assumptions of normality and homoscedasticity were 

verified prior to analysis using the Shapiro-Wilk test and Levene’s test, respectively. In case 

of violation of assumptions, data were log transformed. Regression equations (slope and 

intercept) were compared by applying analysis of covariance (ANCOVA). All statistical 

analyses were carried out using Statistica 10 (StatSoft). 

Results 

Sample taxonomic composition and chlorophyll content 

The biofilms collected at the muddy site (VA-EPL) almost exclusively comprised 

diatoms (relative abundance 99.5%), being dominated by EPL forms of the genera 

Stauroneis (31%), Navicula (24%) and Craticula (23%), followed by the less abundant 

genera Gyrosigma (5.7%), Nitzschia (3.6%), Amphora (2.2%), Paralibellus (1.1%), 

Anchanthes (0.8%), Gomphora (0.6%), Suriella (0.4%) and Diploneis (0.2%). The biofilms 

of the sandy mud site (GE-EPM) had a lower relative abundance of diatoms (82% of total 

cell counts), and a higher occurrence of euglenophytes (13%) and cyanobacteria (0.2%). 

The diatom community was more diverse and dominated by EPM species of the genera 

Navicula (30%), Amphora (18%), Achnanthes (17%) and Paralibellus (14%), followed by 

Gomphonema (6.2%) and Nitzschia (5.8%). Least abundant were Pinnularia (1.2%), 

Suriella (1.1%), Stauroneis (1.0%), Gomophycmbella (0.9%), Planothidium (0.8%), 

Cymbella (0.7%), Cylindrotheca (0.5%), Cocconeis (0.3%), Fallacia (0.1%), Plagiotropis 

(0.1%) and Ophera (0.1%). The chlorophyll a content of VA-EPL and GE-EPM suspensions 

used in the experiments averaged 8.4 ± 0.5 and 2.2 ± 0.6 µg mL−1, respectively. 
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Photoacclimation state and photoprotection capacity 

The cell suspensions collected from the two habitats responded differently to 

increasing light intensity (Fig. 1). The samples from VA-EPL, dominated by EPL diatoms, 

showed a marked decrease in Fm’ with increasing irradiance, down to less than 50% of the 

Fm’ value for the maximum applied irradiance (E = 1120 µmol quanta m−2 s−1) (Fig. 1A). For 

some samples, an increase of Fm’ under low light (E < 210 µmol quanta m−2 s−1) was 

noticeable, reaching values above Fm, denoting the dissipation of NPQ formed in the dark 

(data not shown). In contrast, Fs increased slightly under intermediate irradiances, reaching 

maximum values for E = 327 µmol quanta m−2 s−1, then decreasing to a minor extent (ca. 

15%) under higher light levels, an indication of little limitation of photochemistry under high 

irradiance (Fig. 1A). Both Fm’ and Fs remained relatively stable over time after 5−15 min of 

light exposure. 

 

 

Figure 1. Variation over time of light-response curves of fluorescence parameters Fs and Fm’ (normalized to Fo) 
for samples collected at VA-EPL (A) and GE-EPM (B) sampling sites. Light curves measured at 3.75, 15 and 
30 min after the start of light exposure. Data points are mean values of 9 replicated measurements. Error bars 
represent ± 1 standard error. 
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In contrast with the VA-EPL samples, the suspensions from the sandy mud site (GE-

EPM) showed a smaller decrease of Fm’ with increasing irradiance (only ca. 20%; Fig. 1B) 

during the first periods of light exposure, an indication of a more limited capacity for NPQ 

induction. Additionally, the light response of Fm’ changed markedly over time, with Fm’ 

values continuously decreasing after 7.5 min of light exposure (Fig. 1B). Fm’ always 

decreased monotonically with E and there were no observations of Fm’ > Fm, reflecting the 

absence of dark-induced NPQ. Also, in contrast with VA-EPL, Fs increased markedly and 

continuously with irradiance, reaching values up to 160% of Fo for E = 506 µmol quanta m−2 

s−1, after which point it remained relatively stable. The large increase of Fs with irradiance 

was gradually attenuated over time (from 167% of Fo at 3.75 min to only 115% of Fo after 

26.25 min of light exposure; Fig. 1B), denoting a limited sink capacity for electrons under 

high light. 

The samples from VA-EPL and GE-EPM also differed substantially regarding the 

light-response curves of rETR and NPQ (Fig. 2). In the case of VA-EPL, rETR versus E 

curves were characterized by higher rETRm values and by not showing saturation under the 

range of applied irradiances, resulting in relatively high values of α and rETRm at steady-

state and consequently high values of the photoacclimation parameter Ek (Ek = 416 µmol 

quanta m−2 s−1) (Fig. 2A). In contrast, light-response curves of rETR of GE-EPM samples 

showed a clear saturation, resulting in lower values of light curve parameters (Ek = 283 µmol 

quanta m−2 s−1) (Fig. 2B). In both cases, the rETR versus E curves did not change 

significantly during the exposure period and a steady state was reached within 30 min, 

although for the VA-EPL samples the rETR values varied more pronouncedly during the 

first 15 min of exposure (Fig. 2). 

Concerning NPQ, VA-EPL and GE-EPM samples differed regarding the maximum 

values reached and the variation of the NPQ light response over time. For VA-EPL 

suspensions, NPQ increased with irradiance almost linearly, not reaching saturation under 

the applied irradiance levels (Fig. 3A). However, the NPQ light-response curves did not 

change substantially after 15 min of light exposure (Fig. 3C), suggesting that NPQ induction 

was fast and reached a steady state during the first minutes of light exposure. At steady-

state, NPQ values measured under the highest E level reached around 1.2 while NPQm and 

E50 reached 2.7 and 1210 µmol quanta m−2 s−1, respectively. In contrast, GE-EPM samples 

reached lower maximum NPQ values (NPQ for the highest E < 0.6), although they continued 

to increase steadily during the whole period of light exposure, not showing signs of 

saturation. 
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Figure 2. Variation over time of light-response curves of relative electron transport rate at PSII (rETR) for 
samples collected at VA-EPL (A) and GE-EPM (B) sampling sites. Light curves measured at 3.75, 15 and 30 
min after the start of light exposure. Data points are mean values of 9 independent measurements. Error bars 
represent ± 1 standard error. Lines represent the model of Eilers & Peeters (1988) fitted to mean values at each 
time. Model parameters (α, rETRm and Ek) at the end of light exposure (30 min). 
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Figure 3. Variation over time of light-response curves of non-photochemical quenching (NPQ) for samples 
collected at VA-EPL (A) and GE-EPM (B) sampling sites. Light curves measured at 3.75, 15 and 30 min after 
the start of light exposure. Data points are mean values of 9 independent measurements. Error bars represent 
± 1 standard error. Lines represent the model of Serôdio & Lavaud (2011) fitted to mean values at each time. 
Model parameters (NPQm, n and E50) at the end of light exposure (30 min). 

Photoinactivation and repair 

Fig. 4 illustrates the results obtained when measuring rate constants of 

photoinactivation and repair for a range of irradiance levels. These results refer to a single 

set of experiments carried out in a single day for each sampling site but are representative 

of all results. A striking feature of these results is that, in the case of VA-EPL samples 

exposed to low and intermediate light levels, A values did not decrease over time as 

expected but showed a transient increase to values above 1 during the first 10−20 min. 

Such an increase in Fv/Fm is compatible with the dissipation of NPQ formed in the dark prior 

to light exposure, and made it impractical to fit Eq. (3) and estimate kREC for most of the light 
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levels applied (E < 704 µmol quanta m−2 s−1). In GE-EPM samples, A did not increase over 

time as for VA-EPL, but remained relatively constant for the lower light levels. As a result, 

Eq. (3) could only be fitted, and kREC estimated, for E > 349 µmol quanta m−2 s−1 (Fig. 4B). 

Under high light levels, A reached lower values for the VA-EPL samples (0.75−0.8, for E = 

1120 µmol quanta m−2 s−1) than for the GE-EPM samples (> 0.9 for the same E), indicating 

a larger, slowly reversible component of NPQ. 

On samples treated with lincomycin (L and L+N), A followed a well-defined negative 

exponential decay over time for most light levels, the rate of decay increasing with applied 

irradiance (Fig. 4, L, L+N). The same light- and time-response pattern was observed for VA-

EPL and GE-EPM samples, although the rates of decrease were, for comparable E levels, 

noticeably lower for GE-EPM. In the case of GE-EPM samples, the fit of Eq. (4) resulted in 

the estimation of kPI = 0 for several of the lowest light levels (E < 349 µmol quanta m−2 s−1) 

(Fig. 4B, L). Higher kPI values were measured for VA-EPL samples, reaching up to 3.01 ± 

0.15 × 10−4 s−1, while for GE-EPM, maximum values reached only 1.10 ± 0.18 × 10−4 s−1 

(average of all measurements). For both types of samples, the addition of nigericin caused 

an increase of the rate of decay of Fv/Fm.  For VA-EPL samples, the addition of nigericin 

resulted in the complete elimination of the transient increase of A, possibly associated with 

the NPQ formed in the dark that was observed in the controls and in lincomycin-treated 

samples (Fig. 4A, L+N). 

The availability of kPI estimates for a wide range of irradiances allowed us to 

quantitatively describe its light response and to estimate the relative quantum yield of 

photoinactivation, ϕPI. kPI was found to increase linearly with E for both sampling sites and 

applied inhibitors (lincomycin and lincomycin + nigericin), as highly significant linear 

regressions were found in all cases (p < 0.05) (Fig. 5). In the case of VA-EPL samples 

treated with lincomycin, the absence of kPI values for low light levels resulted in a positive 

x-intercept (y-intercept significantly different from zero; t-test, t = −4.30, df = 6, p = 0.007; 

Fig. 5). The slopes of the kPI versus E linear regressions for lincomycin-treated samples, 

direct estimates of ϕPI, were significantly higher for VA-EPL than for GE-EPM (ϕPI = 3.25 × 

10−7 and 1.27 × 10−7 m2 µmol quanta−1 for VA-EPL and GE- EPM, respectively; ANCOVA, 

F1,8 = 110.3, p < 0.001). The addition of nigericin caused an increase of ϕPI in both types of 

samples, but had a smaller effect in samples from VA-EPL than in those from GE-EPM 

(16.2% and 47.1%, respectively; Fig. 5). This increase was significant at the 5% significance 

level for both types of samples (ANCOVA, F1,11 = 8.5, p = 0.014 and F1,6 = 8.4, p = 0.027 

for VA-EPL and GE-EPM, respectively). 
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Figure 4. Example of the variation with time of exposure of the fraction of functional PSII (A) under different 
irradiance levels (numbers at the top), for controls (C), samples treated with lincomycin (L) and samples treated 
with lincomycin and nigericin (L+N). Results for samples collected at VA-EPL (A) and GE-EPM (B) (8 And 10 
August 2016, respectively). Lines represent fitted models (Eqs. 3 and 4 for controls and lincomycin-treated 
samples, respectively) and numbers are the estimated rate constants (kREC and kPI for controls and lincomycin-
treated samples, respectively).  
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Figure 5. Variation of the rate constants of photoinactivation (kPI) with irradiance (E), as measured on samples 
treated with lincomycin (L) and with lincomycin and nigericin (L+N), for samples collected at VA-EPL (A) and 
GE-EPM (B). Lines represent linear regression equations fitted to kPI values. Data points are mean values of 9 
replicated measurements. Error bars represent ±1 standard error. 

 

The relative importance of photoinactivation and repair processes can be assessed 

by comparing the rate constants and kPI and kREC. However, due to the lack of kREC 

measurements for most of the E levels, the two rate constants were compared based on 

the values measured under the highest irradiance level alone (E = 1120 µmol quanta m−2 

s−1) (Fig. 6). Repair rates were significantly higher for VA-EPL than for GE-EPM (17.1 and 

2.4 × 10−4 s −1, respectively; t-test, t = 5.36, df = 14, p < 0.001). More importantly, repair 

rates were considerably higher for VA-EPL than for GE-EPM when compared to the 
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corresponding kPI measurements, with the ratio kREC/kPI reaching 5.0 for VA-EPL but only 

1.9 for GE-EPM samples. 

 

 

 

Figure 6. Rate constants of photoinactivation (kPI) and repair (kREC) measured for the highest irradiance applied 
at each experiment (1120 µmol quanta m-2 s-1), for samples collected at VA-EPL and GE-EPM. Data points are 
mean values of 9 replicated measurements. Error bars represent ±1 standard error. 

 

Discussion 

Light response and induction kinetics of rETR and NPQ 

The study of the motility−physiology trade-off hypothesis has been mostly based on 

the comparison of photophysiological properties related to photoprotection capacity of EPL 

and EPM species or communities. The observation of higher NPQ values (from light-

response curves or light stress-recovery kinetics), larger XC pigment pools and de-

epoxidation ratios in natural EPM assemblages (Van Leeuwe et al. 2008, Jesus et al. 2009, 

Pniewski et al. 2015), and non-motile species (Barnett et al. 2015, Juneau et al. 2015, 

Blommaert et al. 2017, 2018) has been interpreted as denoting a higher physiological 

photoprotective capacity to compensate for the lack of motility. 

In what regards NPQ, the results of the present study seem to contradict this pattern. 

The EPL-dominated suspensions (VA-EPL) attained higher NPQ levels and greater rates 

of formation upon light exposure than the EPM-dominated suspensions (GE- EPM), which 

can be seen as an indication of a lower capacity of the non-motile cells to withstand the 

exposure to excess light. However, this apparent contradiction with the motility−physiology 
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trade-off can be explained by the relatively small light doses applied in this study (maximum 

irradiance and exposure times lower than in most other studies), which may have prevented 

the observation of the full development of NPQ and limit the comparison between the EPL- 

and EPM-dominated samples. In fact, the results suggest that longer exposures could allow 

a different overall conclusion because, while for the VA-EPL samples NPQ remained 

constant at all light levels after the quick initial induction, the NPQ of GE-EPM samples 

continued to increase during the entire period of light exposure, making it likely that higher 

NPQ levels would be reached if longer incubations were applied. 

Another explanation for the observed results is the possibility of latitudinal adaptation, 

as most of the cited studies were carried out at higher latitudes than the present study, and 

NPQ has been shown to be higher for MPB communities from higher latitudes (Laviale et 

al. 2015). However, the results of Jesus et al. (2009), showing higher XC pigment pool for 

EPM communities at lower latitudes, and of Pniewski et al. (2017, 2018), showing lower 

NPQ values for EPL communities at higher latitudes, do not support this hypothesis. 

It must be mentioned that higher NPQ levels for EPL communities in comparison with 

EPM ones have also been reported by Pniewski et al. (2017, 2018). However, these studies 

compared MPB communities from rather distant and different habitats, factors that may 

have contributed to the observed differences. 

These results are nevertheless ecophysiologically significant, informing on how the 

two types of communities deal with high light. EPL species seem capable of a fast activation 

of NPQ, presumably through the operation of the XC, but a limit in NPQ development, as 

its maximum is reached within only a few minutes. Thus, while the measured NPQ levels 

may be higher than for EPM samples (for the applied exposure times), EPL assemblages 

may in fact have a more limited protection capacity (Fig. 6). Motile cells might use NPQ to 

quickly respond to fast increases in irradiance, relying on vertical migration to adjust light 

exposure once the NPQ capacity is reached. In contrast, EPM species do not rely as much 

on a fast NPQ induction but are capable of maintaining a sustained increase of NPQ levels 

during long exposure periods. The continued increase of NPQ is consistent with the de novo 

synthesis of XC pigments, and in fact EPM species have also been shown to have a higher 

capacity for de novo synthesis than EPL species (Blommaert et al. 2017, 2018). This 

strategy is compatible with the idea that EPM cells, being limited in their capacity to regulate 

light exposure through vertical migration, rely on an enhanced photoprotective physiological 

processes to minimize the cumulative damaging effects of prolonged exposure to excess 

light. 
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EPL and EPM assemblages also differed regarding the light response and induction 

kinetics of rETR. The light-response curves measured in VA-EPL and GE- EPM 

suspensions were typical of samples photoacclimated to high and low light, respectively, 

with the former attaining higher α and rETRm, and resulting higher values of the 

photoacclimation parameter Ek. The high- and low-light photoacclimation responses were 

also noticeable when analyzing the light response of the fluorescence parameters Fs and 

Fm’, which indicated that VA-EPL samples were not as photochemically limited and had a 

larger electron, sink capacity under high irradiances than the EPM equivalents. These 

results may seem unexpected considering the sedimentary light environment of the two 

sites and the motility of respective dominant species (Serôdio et al. 2007): the higher light 

attenuation and the steeper light gradients of the muddy site VA-EPL could be expected to 

favor low-light-acclimated cells, especially if they are able to move away from high light; in 

contrast, the deeper penetration of light in the GE-EPM sediment and consequent exposure 

of cells with limited motility to higher light levels would favor the acclimation to high light. 

Nonetheless, high- and low-light acclimation of EPL and EPM natural assemblages or 

species, respectively, have been consistently reported (Cartaxana et al. 2011, Barnett et al. 

2015, Juneau et al. 2015, Pniewski et al. 2017, 2018) 

We hypothesize that the high-light acclimation pattern of EPL species results from the 

use of motility to search for relatively high light levels within the steep vertical light gradient 

of muddy sediments. While avoiding accumulation at the surface under very high light 

levels, a negative phototactic response demonstrated experimentally (Cohn et al. 2004, 

2015, Serôdio et al. 2006, Du et al. 2012, Laviale et al. 2016), motile cells could accumulate 

at sub-surficial layers, being exposed to relatively high light levels, maximizing the use of 

available light and optimizing photosynthetic carbon fixation and growth. Acclimation to high 

light allows higher light-saturated photosynthetic rates, supporting higher growth rates, and 

improves dissipating excitation pressure within PSII through photochemistry, being of clear 

photoprotective value (Niyogi 1999, Ralph et al. 1999, Gévaert et al. 2003). It also permits 

the generation of ATP, which is of importance to support the energy-expensive removal of 

D1 from photoinactivated PSII and subsequent PSII repair (Allakhverdiev et al. 2005, 

Campbell et al. 2013), found to be particularly efficient in EPL-dominated samples (see 

below). 

The clear differences between the two types of samples were observed despite the 

well-known selectivity of the ‘lens tissue’ sampling method for motile cells (Yang et al. 2010). 

The main potential consequence of this bias is the underrepresentation of non-motile EPM 
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species in the GE-EPM samples, which could have led to an underestimation of the real 

differences between the two types of communities. 

Susceptibility to photoinactivation 

The observed difference between the rate constants of photoinactivation, and their 

light response, of VA-EPL and GE-EPM samples indicates that epipelic and epipsammic 

assemblages differ significantly regarding their susceptibility to photoinactivation. Epipelic-

dominated samples showed, for comparable irradiances, consistently higher values of kPI, 

supporting that motile species are inherently (i.e. when impeded from migrating, as in a 

suspension) more susceptible to photoinactivation than non-motile ones. The linearity 

between kPI and E, indicative of a reciprocity between the damaging effects of light intensity 

and time of exposure (Tyystjärvi & Aro 1996, Kou et al. 2012), allows using the slope of the 

regression of kPI on E, ϕPI, as a measurement the actual susceptibility to inactivation per 

incident photon. ϕPI depends only on the applied light dose, and can thus be used to directly 

compare results of experiments based on different experimental conditions (light intensity 

and exposure duration). 

The finding of higher values of ϕPI for epipelic cells than for epipsammic ones supports 

the postulated existence of a trade-off between photoprotective motility and 

photophysiology. In comparison to nonmotile species, motile forms appear as having a 

diminished physiological capacity for minimizing photodamage, which under natural 

conditions (in the sedimentary microenvironment) could be compensated by migrating 

vertically across the photic zone of the sediment. Epipsammic species, on the other hand, 

not being able to behaviorally regulate light exposure and absorption, use physiological 

mechanisms providing an enhanced global photoprotection capacity. 

The ϕPI values measured in the present study are within the range of published values 

for natural diatom assemblages, which vary from 1.1 ×  10−7 µmol quanta−1 m2 for epipelic 

MPB (Cartaxana et al. 2013) to 3.8 × 10−7 µmol quanta−1 m2 for sea ice diatom-dominated 

samples (Petrou et al. 2010). The former value is the only measurement available for 

benthic diatoms, and was estimated from the published value of the relative decrease in D1 

protein content following light exposure, assuming a negative exponential decay with light 

dose. The fact that this value is lower than what was observed in the present study for 

epipelic samples, in spite of the fact that a larger light dose was applied (1500 µmol quanta−1 

m2, 60 min), may be explained by the larger error expected from a single endpoint, or by 

the fact that the published estimate was based on D1 protein content, known to be less 
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sensitive than fluorescence-based indicators, and that do not always correlate directly with 

Fv/Fm (Zsiros et al. 2006). 

Photoprotective role of NPQ 

The addition of nigericin caused an increase in ϕPI in both VA-EPL and GE-EPM 

samples. Nigericin is an uncoupler of thylakoid membranes that dissipates the 

transthylakoidal ΔpH and has long been used for assessing the role of photoprotective NPQ 

in plants (Park et al. 1996, Ware et al. 2015) and algae (Doege et al. 2000, Christa et al. 

2017), including diatoms (Ting & Owens 1993, Grouneva et al. 2008). An increase in overall 

PSII photoinactivation (as measured by ϕPI) resulting from the addition of nigericin is thus 

indicative of the operation of ΔpH related photoprotective components of NPQ (energy-

dependent quenching, qE; Müller et al. 2001, Ruban 2016) likely including the XC. The 

comparison of the extent of increase in ϕPI in EPL and EPM assemblages can therefore be 

used as a measure of the relative protective importance of NPQ/XC in the two sample types. 

The significant nigericin-induced increase in ϕPI that was observed for both VA-EPL 

and GE-EPM is an indication of an important photoprotective role of qE and the XC in both 

types of communities. However, the larger increase in ϕPI found for GE-EPM samples 

supports the idea that the XC displays a more important role in the EPM- than in the EPL-

dominated assemblages. This result further supports the motility−physiology trade-off 

hypothesis. Non-motile species, incapable of using vertical migration to regulate light 

exposure, appear to rely more on efficient inherent physiological photoprotection. In 

contrast, the smaller increase in PSII photoinactivation in nigericin-inhibited VA-EPL 

samples shows that the importance of physiological mechanisms is smaller for motile 

species, which likely rely more on light-induced motility to photoprotect against excess light. 

Interestingly, nigericin had the effect of eliminating the transient increase in Fv/Fm 

observed in VA-EPL samples (Fig. 4A), resulting in x-intercepts closer to zero (Fig. 5A). 

This result suggests that sustained NPQ formed in the dark may be related to the 

establishment and maintenance of a transthylakoidal ΔpH, as proposed for planktonic 

diatoms (Jakob et al. 2001, Dijkman & Kroon 2002, Bailleul et al. 2015). Because the 

sustained NPQ may also be caused by the permanence, of DTx molecules in the dark, 

regardless of the presence of a transthylakoidal ΔpH (Lavaud & Lepetit 2013, Giovagnetti 

& Ruban 2017), the observed effect of nigericin might be due to changes in the activities of 

XC enzymes DT epoxidase and DD de-epoxidase. 



 

 

 

Photoinactivation and repair in microphytbenthos                                                       |    Chapter 3 

67 

The photoprotective role of motility and XC, and their relative importance, has been 

addressed in multiple studies. However, none has related the motility or the XC to the 

effective reduction in PSII photodamage, by distinguishing PSII photoinactivation from 

repair. An exception is the study by Cartaxana et al. (2013) that, by applying lincomycin and 

an inhibitor of the DDx−DTx cycle (dithiothreitol; Olaizola et al. 1994) on epipelic diatoms 

exposed to a single combination of light intensity and exposure duration, observed a large 

decrease (ca. −80%) in D1 protein content, supporting a major role of the XC in preventing 

PSII photodamage. The results of the present study, based on the more robust indicator 

ϕPI, pointed to a much lesser importance of physiological processes (ϕPI increased by 16 

and 47% in EPL and EPM samples, respectively). The discrepancy between these results 

may be due to the different processes targeted by dithiothreitol and nigericin, but also to 

differences in photoacclimation state, associated with different growth conditions or 

differences in community composition, highlighting the need for further investigation of the 

variability of the responses to high light in natural MPB communities. 

Photoinactivation versus repair 

One advantage of the multi-actinic imaging protocol used in the present study is the 

possibility to measure paired light responses of rate constants kPI and kREC. However, 

specific aspects of the response of MPB samples under study limited the measurement of 

kREC only for the highest applied irradiances. The absence of a clear decrease of Fv/Fm 

values for a large range of the lowest irradiances made it impossible to fit Eqs. (3) & (4) and 

to estimate kPI and kREC. The reasons for this differed between EPL and EPM samples. For 

VA-EPL samples (both untreated and treated with lincomycin), Fv/Fm increased transiently 

under the lower irradiances, a feature attributable to the build-up of sustained NPQ prior to 

light exposure. In the case of GE-EPM samples, a light-induced decrease in Fv/Fm of 

untreated samples was undetectable in most cases, which can be interpreted as resulting 

from an efficient coping with light under moderate conditions. 

Nevertheless, the results regarding kPI and kREC for high light levels allowed for 

comparison of the relative importance of photoinactivation and repair processes, and point 

to different strategies of how EPL and EPM species respond to light stress. For both types 

of assemblages, the capacity of repair exceeds the suffered photodamage, even for the 

highest irradiance level tested. Yet, EPL forms appear to have the capacity for higher repair 

rates than EPM forms, the difference being especially relevant when considered in relation 

to the corresponding photoinactivation rates. EPL diatoms seem to rely more on repair than 



 

 

 

 

Chapter 3    |                                                      Photoinactivation and repair in microphytbenthos 

68 

on preventing photoinactivation. They are inherently more susceptible to photodamage 

(higher ɸPI), but this weaker photoprotective capacity is compensated for by a greater 

capacity for repair, a strategy also observed in dinoflagellates (Jeans et al. 2013) and 

coccolithophorids (Ragni et al. 2008). This may explain why, despite showing higher rates 

of PSII photoinactivation, VA-EPL samples cope better with high light, showing higher light-

saturated photosynthetic activity (rETRm). Light-response strategies based on the 

development of efficient repair mechanisms tend to be favored by acclimation to high light 

(Ragni et al. 2008, Jeans et al. 2013). Repair capacity is known to increase with growth 

irradiance by improving the capacity to increase the rate of D1 protein synthesis (Tyystjärvi 

2013). PSII repair is a costly process, and efficient use of high light levels, provided by high 

light acclimation, allows the generation of the necessary ATP and reductant power. Motile 

diatoms can make use of their motility to exploit the steep sedimentary light gradient and 

use the high light levels available near the surface in order to generate ATP and support 

the expensive D1 protein repair. 

On the contrary, EPM forms seem to favor the reduction of photoinactivation, based 

on efficient physiological photoprotection, and thus avoiding the need to develop and 

support costly repair mechanisms. The inability to move within the photic zone of the 

sediment and to select a particular light environment leads EPM-dominated samples to 

appear, comparatively, as low-light acclimated. The evaluation of the balance between 

susceptibility to photoinactivation versus repair capacity should also consider that diatoms, 

especially species with a limited capacity for photoprotective energy dissipation, seem to 

maintain a reservoir of inactive PSII as a means of favoring repair by providing additional 

substrate for PSII repair (Lavaud et al. 2016). 

These results highlight the importance of measuring rate constants of 

photoinactivation and repair, and their light response, on MPB. It allows for the proper 

evaluation of the relative importance of the two processes in determining the level net 

photoinactivation of these communities across the range of ecologically relevant levels of 

light intensity, which is of interest to characterize their tolerance limits for light stress. The 

integrated study of photoprotection, photoinactivation and repair is also of interest in the 

context of the increasing experimental evidence indicating that the light stress acts 

predominantly by inhibiting repair and not by promoting inactivation (Nishiyama et al. 2006). 

This shift in paradigm has led to a growing interest in the study of photorepair, now seen as 

a key determinant of the effective capacity of phototrophs to cope with light stress (Murata 

et al. 2012). 
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Photoprotective capacity: NPQ versus ɸPI 

NPQ has been widely used as a measure of photoprotection capacity against 

photodamage in plants (e.g. Ruban et al. 2004) and algae (e.g. Gévaert et al. 2003, Barnett 

et al. 2015). In the case of MPB, NPQ (or the associated XC activity) has also been 

commonly used to ascertain the capacity for photoprotection. It has been used to compare 

the photoprotection capacity of EPL and EPM communities (XC pigment pools; Van Leeuwe 

et al. 2008, Cartaxana et al. 2011) or species (NPQ light response and induction/relaxation 

kinetics; Barnett et al. 2015, Blommaert et al. 2017) or to compare the fast induction of 

physiological (NPQ induction) and behavioral (negative phototaxis) photoprotection (Laviale 

et al. 2016). An important result of the present study was the finding that NPQ is not related 

to the capacity to prevent photodamage. In fact, the susceptibility to PSII photoinactivation, 

as measured by ɸPI, varied markedly between EPL and EPM samples, but not as expected 

from the observed NPQ levels: VA-EPL samples reached higher NPQ levels, but were also 

the ones that suffered more photodamage; in contrast, GE- EPM samples were more 

resistant to PSII photoinactivation while reaching lower NPQ values. This contradiction 

between NPQ levels and actual photoinactivation suggests that NPQ may not be an 

accurate predictor of actual capacity to prevent photodamage, as it may not account for all 

photoprotective mechanisms at play, and its action may be complemented by other 

important protective processes, such as the PSII cyclic electron transfer (Lavaud 2007, 

Goss & Lepetit 2015), or by enhanced antioxidant activity (Nishiyama et al. 2006). Previous 

studies comparing NPQ with PSII photoinactivation have also concluded that NPQ offers a 

relatively low photoprotection, as little as 25% (e.g. Tyystjärvi 2013). 

These results call for the use of ɸPI (or kPI for high light levels) instead of NPQ as a 

more suitable indicator of photoprotective capacity. Furthermore, particularly in the case of 

MPB biofilms, the measurement and use of NPQ has long been recognized as problematic, 

due to the sustained quenching in the dark of Fm values lower than Fm’, and the confounding 

effects of light-induced vertical migration and light attenuation, and depth-integration of sub-

surface fluorescence emission (Forster & Kromkamp 2004, Serôdio 2004, Morelle et al. 

2018). In contrast, ϕPI quantifies the total photodamage actually occurring without the 

confounding effects of NPQ and repair, integrating the effects of all protective mechanisms 

in operation, and therefore appears to be a better predictor of the global effectiveness of 

photoprotection. Measuring ϕPI, however, is considerably more difficult than measuring 

NPQ. Hopefully, the further development of experimental approaches such as the one used 

in the present study may overcome the current experimental limitations. 
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Abstract 

Most studies on sediment-inhabiting microphytobenthos are based on the biomass 

present on the surface layers of intertidal flats. However, large amounts of microalgal 

biomass are known to exist below the surface. This study tested the role of subsurface 

microalgal biomass as a potential source of photosynthetically active cells for the biofilm on 

the surface. The resilience of buried cells was evaluated by exposing samples from various 

depths to surface conditions and investigating the recovery of photosynthetic activity. 

Additionally, vertical migration by subsurface epipelic diatoms was followed at sub-

millimeter scales to evaluate its role for transporting cells to the vicinity of the sediment 

surface. Finally the relative importance of subsurface microalgal biomass was assessed by 

estimating the proportion of subsurface:surface biomass for different types of sediments 

from the Ria de Aveiro. Vertical profiles of chlorophyll a, 10 cm-deep, were measured on 

samples from three intertidal sites, representative of the range of sediment characteristics 

found in this estuary. The ratio of total biomass to surface biomass (‘subsurface biomass 

fraction’) based on total biomass (0-10 cm depth interval; Csub,total) and on viable biomass 

(between the surface and the maximum depth with significant photosynthetic recovery; 

Csub,viable). The experiments showed that buried cells were able to recover photosynthetic 

activity within 1.5 to 3 hours of light exposure, with the rate of recovery being dependent on 

depth and type of sediment. Furthermore, subsurface vertical migration was found to enable 

motile cells to reach the surface from layers deeper than 1 mm within a low tide period. 

Overall, the results showed that surface biomass (0-0.5 cm) only accounted for one fifth to 

one third of the total biomass present between the surface and 10 cm, and that the amount 

of subsurface viable biomass reached 2-3 times the biomass present at the surface. 

Applying the estimates of Csub,total and Csub,viable to the whole intertidal area of the Ria de 

Aveiro, spatially-weighted averages for subsurface biomass fractions were found to reach 

3.8 and 2.1 respectively. 
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Introduction 

Microphytobenthos (MPB) comprises the communities of photoautotrophic eukaryotic 

algae and cyanobacteria living in intertidal and well-lit subtidal sediments (Underwood and 

Kromkamp, 1999). Diatoms, a highly diverse group that contributes about 20% to the global 

primary production and about 40% of the total marine primary productivity (Cahoon, 1999; 

Field, 1998; Sarthou et al., 2005; Tréguer et al., 2018) usually dominate these communities. 

Diatoms also serve as basis for many marine food webs (Armbrust, 2009), constitute a key 

carbon source for heterotrophs (Middelburg et al., 2000), and contribute to sediment 

stabilization through the production of extracellular polymeric substances (EPS) (Cahoon, 

1999). Not surprisingly, MPB has been the object of intense research, mostly centered on 

the seasonal dynamics of biomass and estimation of annual productivity budgets 

(Benyoucef et al., 2014; Brito et al., 2009; Du et al., 2010b; Koh et al., 2007; Moerdijk-

Poortvliet et al., 2018; Pinckney and Zingmark, 1993; Stanley and Howard, 2013).  

Most studies have focused on the microalgal biomass within the photic zone, where 

light penetrates enough to support photosynthetic activity and primary productivity (Herlory 

et al., 2004; Kelly et al., 2001; MacIntyre and Cullen, 1995; Serôdio et al., 2001). However, 

large amounts of microalgal biomass can be found well below the surface of the sediment 

(Brotas and Serôdio, 1995; De Jonge and Colijn, 1994; Fenchel and Straarup, 1971; 

Mundree et al., 2003; Steele and Baird, 1968). This is especially significant considering that 

the photic zone in sediments is very thin. It spans from the surface to a few millimeters in 

sandy sediments, to only fractions of a millimeter, in muddy sediments (Cartaxana et al., 

2011; Herlory et al., 2004; Kelly et al., 2001).  

MPB cells are continuously buried below the surface due to bioturbation and 

resuspension/deposition events caused by waves and currents during high tide (de Jonge 

and van Beusekom, 1995; Kingston, 1999; Plecha et al., 2014; Ubertini et al., 2015). 

Conversely, buried cells can return to the surface, being passively transported either during 

bioturbation and resuspension events, or due to the reworking or removal of upper layers 

of sediment by grazers like snails or fish (Almeida et al., 1993; Hagerthey et al., 2002), 

exposing cells in a newly created surface. While these processes occur in all types of 

sediments, in the case of muddy sediments the resurfacing of cells may be enhanced by 

vertical cell migration. In contrast with sandy sediments, where the diatom communities are 

mainly formed by non-motile lifeforms (epipsammic) living attached to the large sediment 

particles, in muddy sediments the MPB is dominated by raphid pennate diatoms (epipelic), 
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able to actively move between the fine sediment particles (Admiraal, 1984; Cahoon et al., 

1995). 

Although most studies have focused on the effect of vertical migration on the biomass 

present at the surface or in the photic zone (Easley et al., 2005; Round and Palmer, 1966; 

Serôdio et al., 2001), motile diatoms may undertake vertical migratory movements at 

sedimentary depths below the illuminated layers (Frankenbach et al., 2014; Pinckney et al., 

1994). However, subsurface vertical migration has been poorly studied and its potential 

importance for reaching newly-created surface layers is unknown. 

Subsurface biomass has been hypothesized to represent a source of 

photosynthetically competent cells capable of ‘re-inoculating’ the depleted surface, and thus 

allowing the attenuation of in the biomass the photic zone and biofilm productivity (Delgado 

et al., 1991; Easley et al., 2005). This requires that the buried diatoms survive prolonged 

periods in continuous darkness, and regain their photosynthetic activity quickly (faster than 

growth of remaining cells) following exposure to surface conditions. In order to contribute to 

this process, buried epipelic species need to retain their capability to migrate vertically to 

reach the photic zone. 

This study tested the importance of subsurface microalgal biomass as a potential 

source of photosynthetically active cells for surface MPB biofilms. This was pursued by 

addressing the following objectives in the described ways: 

(i) to investigate if buried cells can regain photosynthetic activity in a short time if 

exposed to surface conditions; to determine until which depth can cells recover their 

photosynthetic competence. These questions were addressed by following the recovery of 

photosynthetic activity of subsurface MPB samples, from various depths, following 

resurfacing and exposure to ambient light. 

(ii) in the case of epipelic MPB communities, to test if vertical migration occurring 

below the surface are capable of transporting cells to the vicinity of the sediment surface. 

This was studied by measuring vertical migration at sub-millimeter vertical scales, using a 

recently-developed method for obtaining thin sediment sections. 

(iii) to estimate how much microalgal biomass is present below the surface, relative 

to surface levels, and to determine if the proportion subsurface:surface biomass varies with 

sediment type. These questions were addressed by measuring vertical profiles of MPB 

biomass for various sediment types and quantifying the subsurface MPB biomass, 

distinguishing ‘total’ biomass (down to 10 cm deep) and ‘viable’ (down to the depth 

determined in (i)). 
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(iv) to estimate the amount of subsurface MPB biomass present at the ecosystem 

level. This was estimated considering the proportion of subsurface biomass for different 

types of sediments and associated MPB communities, and the spatial distribution of 

sediment types throughout the intertidal areas of one estuarine ecosystem, the Ria de 

Aveiro (Portugal). 

Material and methods 

Sampling sites 

The Ria de Aveiro is a mesotidal coastal lagoon on the northwest coast of Portugal 

(40º38'N - 08º45'W) (Tomás et al., 2014). Detailed characterization of physical, 

geomorphological, and ecological features of the Ria de Aveiro can be found in Bueno-

Pardo et al., (2018); Dias et al.,(2003, 1999); Tomás et al., (2014). Sampling was carried 

out on intertidal sites considered as representative of the overall variability in sediment type. 

MPB assemblages were collected in two channels of the lagoon: Gafanha da Encarnação 

(GE; in Canal de Mira, 40°35’18” N, 08°41’06” W), and Vista Alegre (VA; in Canal de Ílhavo, 

40°37’12” N, 08°44’54” W). The sampling sites differ in grain size, salinity (Tomás et al., 

2014; Vargas et al., 2017), and water retention time (Dias et al., 2003). Sediment 

granulometry ranged from sand (45.3% particles between 63 µm and 125 µm; 42.7% below 

63 µm) at GE, to fine mud (97% of the grains smaller the 63 µm) at VA (percentages of dry 

weight; Serôdio et al., 2007). The MPB communities of the two sites have distinct taxonomic 

composition and photophysiological characteristics (Frankenbach et al., 2018; Serôdio et 

al., 2007). To increase the spatial resolution of the estimation of the subsurface biomass at 

the ecosystem-level, a third sampling site was added. This site is located in the Canal de 

Ovar, in front of Torreira (TO; 40º35” N,8º,42” W) 

Recovery of photosynthetic activity 

On three consecutive days in July 2016, 12 sediment cores were collected using 

2 cm-diameter, 20 cm-long acrylic corers during daytime low tide and taken to the 

laboratory. There, the cores were sectioned horizontally into 5 mm-thick sections. The 

sections started at depth 0, 5, 20 and 40 mm (VA) or 0, 20, 45 and 60 mm (GE) below the 

surface. In the case of GE samples, the depth intervals were adjusted to reach deeper 

layers because in sandy sediments resuspension and bioturbation are expected to cause 

sediment mixing down to greater depths. Each section was cut with a separate blade, 
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forming the base of a circular plastic ring 5-mm thick, avoiding cross contact and transfer of 

sediments between sections. Three replicated cores for each sampling site were used. 

Shortly after sectioning, the undisturbed samples were exposed to constant low white 

light (50 µmol quanta m-2 s-1), provided by a LCD digital projector (EMP-1715; Epson, Suwa, 

Japan) for six hours, simulating the exposure to surface conditions following resurfacing. 

This light intensity is high enough to induce photosynthetic activity and promote upward 

migration of MPB, but low enough to avoid damaging light stress (Serôdio et al. 2006, 

Laviale et al. 2016). During this period, the photosynthetic activity of the cells in the newly 

exposed sediment surfaces was monitored by measuring ΦPSII, the effective quantum yield 

of photosystem II (PSII), every 30 min. At the end of this period, the samples were used to 

quantify the Chl a and water content, as well as for determination of taxonomic composition 

(see below). ΦPSII was measured using a Pulse Amplitude Modulated (PAM) fluorometer 

(WATER-EDDF-Universal PAM, Gademann Instruments; (Serôdio, 2004), using a 6 mm-

diameter optical fiber to deliver measuring light and saturating pulses (peaking at 450 nm) 

and to capture the emitted fluorescence. ΦPSII was determined by measuring steady state 

(Fs) and maximum (Fmʹ) fluorescence levels (ΦPSII = (Fmʹ - Fs)/Fmʹ) (Genty et al. 1989). Three 

independent saturating pulses were applied to each sample by positioning the optical fiber 

at different non-overlapping areas (1 mm from the surface, 45°). The average ΦPSII for each 

sample and time point was used in subsequent calculations. The variation of ΦPSII over time 

during light exposure was described by a rate constant of ΦPSII recovery, kt (min-1), 

estimated by fitting the following model: 

 

𝛷𝑃𝑆𝐼𝐼(𝑡) = 𝛷𝑃𝑆𝐼𝐼(𝑠𝑠) +  [𝛷𝑃𝑆𝐼𝐼(𝑡0) − 𝛷𝑃𝑆𝐼𝐼(𝑠𝑠)]𝑒−𝑘𝑡𝑡    (1) 

where ΦPSII(t0) and ΦPSII(ss) are the PSII effective quantum yields at the beginning of the 

exposure (t0) and after reaching a steady state. 

In order to verify the source of the observed fluorescence signal at each depth, three 

additional cores were sliced and exposed to comparable light conditions (intensity and 

duration) using a second LCD digital projector (EB-X14; Seiko, Japan). The cells were 

harvested at the end of the experiment by carefully scraping off the uppermost surface layer. 

Samples were then fixed in Lugol’s solution (concentrated, 5% Iodine, AppliChem GmbH, 

Germany) and stored at 4 °C. The abundance of the major photoautotroph taxonomic 

groups was examined using a Nageotte counting chamber (Marienfeld-Superior, Germany). 

Observed cells were grouped into three categories; diatoms, cyanobacteria, and 
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euglenoids. Cells that were not possible to identify were grouped as ‘others’ to avoid 

overestimation of abundance for other groups. 

Subsurface vertical migration 

To test the capacity of cells displaced to layers below the surface to migrate vertically, 

homogenized slurries were used to simulate a disturbance event such as bioturbation or 

resuspension/deposition. During low tide, sediment was collected from the top 1 cm using 

a spatula and deposited in a tray overnight in the laboratory. The following day, at the time 

coinciding with the beginning of low tide exposure in the field, the samples were thoroughly 

mixed using a spatula, and the homogenized slurries were poured into  

24-wellplates as described in Frankenbach and Serôdio (2017). Immediately after the 

sample preparation, a first sampling was carried out by collecting surface samples of 

different thickness (of 0.1, 0.25, 0.5 and 1.0 mm-thick) using the cryo-sampling technique 

“crème brûlée” (Laviale et al., 2015). This procedure was repeated during the subjective 

low tide period, once at the time of the low peak tide in the field, and 90 min before and 90 

min after that time. The sediment samples were immediately transferred into pre-weighted 

Eppendorf-caps and shock frozen in liquid N2, and microalgal biomass was later quantified 

by measuring Chl a content. The changes in biomass at each depth interval allowed to 

follow the variation of biomass over time and along vertical profiles, with sub-millimeter 

resolution. Biomass present in each depth interval below the surface (0.1-0.25, 0.25-0.5 

and 0.5-1.0 mm) was estimated by subtracting the Chl a content of a sample of a certain 

thickness from the Chl a content of the sample of thickness immediately higher. Three 

replicates were obtained for each time and depth interval. This experiment was carried out 

exclusively for samples from VA, as the communities from GE are dominated by 

epipsammic forms, and therefore not expected to show significant motility. 

Vertical distribution of subsurface biomass 

Vertical profiles of Chl a were measured in samples collected from the three sampling 

sites described above. Sediment cores (36 mm diameter, 20 cm long) were collected during 

low tide. The cores were sectioned into 5 mm-thick sections in the uppermost 20 mm, and 

20 mm-thick from 20 mm down to 100 mm below the surface. Chl a depth profiles were 

quantitatively described by fitting a simple negative exponential model, based on the one 

proposed by Brotas and Serôdio (1995). The model used in the present study contains a 
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new parameter, Cd, representing the minimum background level approached by the Chl a 

content as depth increases: 

𝐶(𝑧) = 𝐶0𝑒−𝑘𝑐𝑧 + 𝐶𝑑      (2) 

where C(z) and C0 are the Chl a content at any depth z and at the surface (z = 0), 

respectively, and kC represents the rate constant of Chl a decay with depth. When fitting the 

model, the median depth of each sediment section was used as z. The model was used to 

calculate, for each type of sediment, the ratio of total biomass (including surface and 

subsurface) to surface biomass: 

𝐶𝑠𝑢𝑏,𝑡𝑜𝑡𝑎𝑙 =
∫ 𝐶(𝑧)𝑑𝑧

𝑧𝑡
0

∫ 𝐶(𝑧)𝑑𝑧
𝑧𝑠

0

        (3) 

where zt is the maximum depth where Chl a was found (considered here as 10 cm) and zs 

is the depth defining the ‘surface’ layers (here considered 5 mm). This ratio, the ‘subsurface 

biomass fraction’ (Csub) allows to estimate the total, depth-integrated MPB biomass from 

surface biomass measurements (see below). Csub was also calculated based on the ‘viable’ 

biomass, defined as the depth-integrated Chl a content present between the surface and 

the maximum depth at which significant recovery was observed following exposure to 

surface conditions: 

𝐶𝑠𝑢𝑏,𝑣𝑖𝑎𝑏𝑙𝑒 =
∫ 𝐶(𝑧)𝑑𝑧

𝑧𝑣
0

∫ 𝐶(𝑧)𝑑𝑧
𝑧𝑠

0

        (4) 

where zv is the maximum depth where potentially viable cells are present. zv was determined 

from the results of the experiments on photosynthetic resilience (see above).  

Ecosystem-level subsurface biomass fraction 

The fraction of MPB subsurface biomass was estimated for the whole intertidal area 

of the Ria de Aveiro, considering the relationship between Csub values and sediment type 

(granulometry) observed for the sampling sites and the distribution of granulometry 

throughout the intertidal areas of the estuary. Information on the grain size of the sediments 

of the Ria de Aveiro was obtained from Costa et al. (2018) and Plecha et al. (2014). The 

available data is the form of a D35 matrix, values that correspond to the size of particles 

where 35% of all particles have a lower diameter than the announced value. For the three 

sampling sites, the D35 values were 2.9 × 10-4 m (VA), 3.3 × 10-4 m (TO) and 6 × 10-5 m 
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(GE), respectively, meaning that sediments from GE have comparably larger particles 

(sandy) and VA the finest (muddy). The geographic information system software ArcGIS 

(ERSI, USA) was used to create a map of the lagoon under different tidal conditions, based 

on Google Earth´s satellite imagery. Multiple images of different tidal cover situations were 

used to map the intertidal and subtidal areas of the estuary. For each intertidal area polygon 

constructed, the correspondent Csub values were defined according with D35 data matrix. 

The software calculated the areas automatically, after the correct georeferencing.  

Chlorophyll a quantification 

The samples used for testing recovery of PSII functionality and vertical migration were 

extracted in 2 mL cold acetone (90%). For Chl a vertical profiles samples, the water content 

of three replicated cores was determined for each depth on additional replicates and the 

average value was used to calculate the volume of acetone (100%) to be added to achieve 

a final concentration of 90%. Chl a content is given as weight of Chl a per dry weight of 

sediment. The dry weight was determined by drying the samples at 120 ºC for 24 h. In all 

cases, Chl a extraction was made in the dark, 4 ºC for 24 h. Chl a concentration was 

calculated according to Lorenzen (1967). Extracts were centrifuged (10 min, 18000 g, 4 °C). 

The absorbance of the supernatant was measured at 664 and 

750 nm before and after acidification (10 µL, 1 N HCl), using a spectrophotometer (Thermo 

Spectronic, Rochester, NY, USA). 

Statistical analysis 

The ΦPSII values measured at different depths and at the surface were compared by 

applying a two-tailed Student´s t-test.  

Results 

Recovery of photosynthetic activity 

The exposure of buried cells to surface conditions resulted in significant and relatively 

fast recovery of ΦPSII in both types of sediments. However, the ΦPSII recovery capacity varied 

markedly with depth and sediment type. In both types of samples, the initial values of ΦPSII 

decreased with depth. In VA samples, ΦPSII(t0) decreased from 0.68 ± 0.03 at the surface 

to 0.46 ± 0.06 and 0.38 ± 0.02 at the depths of 2.0 and 4.0 cm, respectively (Fig.1a). During 
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light exposure, cells present at the surface showed only a slight increase in ΦPSII, which 

stabilized at around 0.71 ± 0.02 within the first hour. On samples from deeper layers, light 

exposure caused substantial increases in ΦPSII, up to 64% (4.0 cm deep, after 3 h) (Fig 1a). 

After 6 h of light exposure, ΦPSII increased by about 0.4% (0.69 ± 0.007 surface), 8% (0.68 

± 0.021 0.5 cm) and 42% (0.65 ± 0.235; 2.0 cm), 56% (0.59 ± 0.026; 4 cm). For all depths, 

the steady state values of ΦPSII were significantly lower than the ones at the surface (t-test, 

P < 0.001). Plotting the same data as a function of depth highlights how most of the recovery 

of ΦPSII happened within the first 3 hours (Fig. 1b). 

 

Figure 1. Recovery of PSII effective quantum yield (ΦPSII) of samples collected at VA following exposure to 
surface conditions, for different depths. (A) Variation of ΦPSII over time for four different depths. Lines represent 
the fitting of Eq. (1) to data collected for each depth. (B) ΦPSII plotted against depths for three time points. 

Average of three independent measurements. Error bars indicate one standard error. 

 

In contrast with VA samples, ΦPSII(t0) of GE samples was generally lower, although 

the variation with depth was less pronounced. Furthermore, the recovery of photosynthetic 

activity was essentially limited to the top 2.0 cm. Starting from values of  

ΦPSII = 0.540 ± 0.028, surface samples showed a small increase to 0.620 ± 0.001, reaching 

a steady state within the first hour of light exposure. At 2.0 cm, ΦPSII increased 66%, from 

0.20 ± 0.05 to 0.43 ± 0.019 in the first 90 min of light exposure, after which no further 

changes were observed (Fig. 2a). This was comparable to the increase of ΦPSII observed 

for VA at 4.0 cm after 3 h of light exposure. Samples from deeper layers  

(4.5 and 6.0 cm) showed only a very small recovery of ΦPSII from about 0.22 ± 0.01 to  

0.26 ± 0.02 and 0.22 ± 0.03 to 0.26 ± 0.04 respectively, after 6 h of light exposure. Vertical 

profiles of ΦPSII highlight how recovery was limited to the top layers, mostly to the layers 2.0 

cm deep (Fig. 2b).  
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Figure 2. Recovery of PSII effective quantum yield (ΦPSII) of samples collected at GE following exposure to 
surface conditions, for different depths. (A) Variation of ΦPSII over time for four different depths. Lines represent 
the fitting of Eq. (1) to data collected for each depth. (B) ΦPSII plotted against depths for three time points. 
Average of three independent measurements. Error bars indicate one standard error. 

 

The different recovery capacity of VA and GE samples is confirmed by the rate 

constant of ΦPSII, kt, and its variation with depth (Fig. 3). While for GE, kt reaches high values 

(> 1.25 min-1 for surface and depth 2.0 cm) and decreases considerably with depth, for VA 

samples kt remained below 1.0 min-1, and varied much less with increasing depth. 

 

Figure 3. Variation with depth of the rate constant of ΦPSII recovery (kt) for samples collected at VA and GE. 

 
 

The relative distribution of the main taxonomic groups with depth is shown in Fig. 4. 

Both VA and GE samples showed a clear dominance of diatoms at all depths, with the 

minimum diatom abundance being observed for GE samples at 6.0-6.5 cm with  
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72 ± 4.28%. Cyanobacteria were present in almost all samples (the exception GE samples, 

at 6.0 cm) and euglenoids were observed only in VA samples. 

 

Figure 4. Variation with depth of the relative abundance of three main taxonomical groups (diatoms, 
cyanobacteria and euglenoids) in sampling sites VA (A) and GE (B). Cells categorized as ‘other’ were in most 
cases unidentified. 
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Subsurface vertical migration 

Fig. 5 shows the results of two independent experiments following the variation of 

sub-millimeter vertical profiles of Chl a concentration during a low tide period. In both cases, 

a clear surface accumulation of microalgal biomass was observed in all sampled depths, 

but mainly above 0.4 mm. On some occasions, a subsurface maximum was observed, 

denoting the upward movement of cells toward the surface. Although the experiments 

started from homogenized slurries, already in the first sampling occasion some cell 

accumulation towards the surface was observed, indicating that vertical migration towards 

the surface started immediately after the homogenization of the sediment. Maximum Chl a 

concentrations (308.9 and 275.7 µg mm-3) were reached at the time coinciding with the time 

of low tide in the field, which was 3 h after the start of the experiment. Thereafter, a 

downward bulk movement appeared to have started, corresponding to the downward 

migration anticipating the incoming tide in the field. In both experiments, the total Chl a in 

the uppermost 1 mm increased over time, denoting the accumulation of cells originating 

from deeper layers due to vertical migration occurring below the surface (Fig. 5). 

 

Figure 5. Variation of sub-millimeter scale Chl a vertical profiles over the time course of a diurnal low tide 

exposure. Panels A and B refer to two independent experiments. Average of three independent samples. 
 

The two experiments differed such that in the latter (Fig. 5B), the total Chl a reached 

a maximum and started to decrease before the end of the measuring period, while in the 

former (Fig. 5A) it continued to increase throughout the whole sampling period (Fig. 6).  
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Figure 6. Depth-integrated Chl a content over the time course of a diurnal low tide exposure, during two 
independent experiments (from data shown in Fig. 5). Arrow indicates the low tide peak at the corresponding 
sampling side. 

 

Vertical distribution of MPB biomass 

Sediment cores sampled in VA showed the highest Chl a content at the surface, 

averaging 28.4 ± 1.93 µg Chl a g-1, which gradually decreased with depth to a minimum of 

4.0 ± 0.96 µg Chl a g-1 at 10 cm (Fig. 7a). The lowest surface Chl a content was measured 

in GE samples, reaching only 5.5 ± 1.58 µg Chl a g-1, and decreasing to a minimum of 0.90 

± 0.31µg Chl a g-1 at the depth of 10 cm (Fig. 7c). Sediment cores sampled in TO showed 

intermediate values, reaching 15.85 ± 2.22 µg Chl a g-1 at the surface and minimum values 

of 4.57 ± 1.58 µg Chl a g-1 at 10 cm (Fig. 7b). In all cases, the decrease with depth followed 

a negative exponential-like pattern, which enabled a very good fit of Eq. (2) (r2 > 0.96 in all 

cases) and estimation of parameters C0, kC, and Cd for each type of sediment (Fig. 7). The 

values of kC were similar in VA and GE samples (1.11 and  

1.26 cm-1, respectively), despite the large difference in Chl a content of the two profiles (Fig. 

7). The TO samples showed an intermediate Chl a content and a much lower rate of 

decrease (kC = 0.53 cm-1), indicating a more vertically homogeneous profile. In all cases, 

the profiles tend to a non-null constant Chl a content level (Cd).  
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Figure 7. Depth profiles of Chl a content in the three sampling sites VA (A), TO (B) and GE (C). Line represents 
the fitting of Eq. (2). The estimated values of the parameters of Eq. (2) C0, kC, and Cd are shown. Average Chl 
a concentration of nine sediment cores. Error bars indicate one standard error. 
 

Using the estimates of the parameters C0, kC, and Cd for each site, the subsurface 

fraction Csub,total was calculated by applying Eq. (3), resulting in the following values: 4.95 

(VA), 5.17 (TO) and 2.96 (GE). These values indicate that the surface MPB biomass (0-5 

mm depth range) only accounts for around one fifth to one third of the total MPB biomass 

present in the sediment (considered down to 10 cm). The subsurface fraction for potentially 

viable biomass was calculated by applying Eq. (4), and, considering the values for zv of 3.0 

cm (VA) and 2.0 cm (TO, GE), resulted in the following values: 3.14 (VA), 2.30 (TO) and 

1.92 (GE). These results indicate that the proportion of subsurface MPB biomass capable 

of regaining photosynthetic activity after surfacing reaches roughly 2-3 times the biomass 

present in the top 5 mm. 

Ecosystem-level subsurface biomass fraction 

Making use of the known distribution of sediment granulometry and of the Csub values 

for the sampled sediments, maps of the spatial distribution of the fraction of total and viable 

subsurface MPB biomass were produced (Fig. 8). These maps allowed classifying the 

intertidal areas according to the relative amount of subsurface MPB biomass. By calculating 

the total area of each type of sediment and corresponding Csub values, spatially-weighted 
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averages for subsurface biomass fraction for the entire Ria de Aveiro was estimated: 3.78 

for Csub,total and 2.14 for Csub,viable. 

 

Figure 8. Classification of the intertidal areas Ria de Aveiro regarding the ratios of total biomass and of total 
viable biomass to surface biomass (Csub,total and Csub,viable, respectively). Values of Csub,total and Csub,viable 

determined for each intertidal habitat were applied to the total intertidal area. Numbers identify the main 
channels: Mira Channel (1) Ílhavo Channel (2), São Jacinto Channel (3), Espinheiro Channel (4). 
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Discussion 

Photosynthetic resilience 

This study showed that buried MPB cells can regain PSII functionality shortly after 

being exposed to surface conditions, although it varied between the two sediment types. 

These results expand the findings of Wasmund (1989) on subtidal MPB, which 

demonstrated that buried microalgae are able to fix CO2 after exposure to light in one 

sediment sample. The present study includes, however, photosynthetic recovery kinetics in 

muddy and sandy sediments inhabiting MPB. Samples from muddy sediments (VA) showed 

that the capacity to recover was extended to deeper layers than those of the sandy site GE. 

The capacity to recover was related to the initial physiological status at each depth, as initial 

ΦPSII levels decreased with depth. Cell viability was seen to decrease with depth in both 

sampling sites, and cells found in deeper layers can be thought to have spent longer periods 

away from the surface. The idea that cells from GE spend more time buried may contradict 

what is expected from the fact that muddy sediments are typically more cohesive than 

sandier ones. However, it distinct lifeforsm (no motile, epipsammic in sandy, vs motile 

eipipelic froms in dominated in muddy sediments) might be part of the explanation. 

Furthermore, surface biomass in VA was higher than in GE, thus may have been less prone 

to resurface buried cells by vertical mixing (Delgado et al., 1991). However, the higher kC 

values observed for GE samples, representing a steeper vertical variation in Chl a, is 

indicative of a lower degree of vertical mixing. When exposed to photosynthesis-promoting 

conditions, buried MPB cells recovered PSII activity in a relatively short period (3 h), but 

only to a fraction of the ΦPSII values observed at the surface. It may be hypothesized that 

the recovery of the photosynthetic activity occurs in a two-step process: the described fast 

induction leading to intermediate, depth-dependent ΦPSII levels, being followed by a longer 

acclimation process leading to the full recovery of ΦPSII to values comparable to those at 

the surface. 

Viable cells were found at depths considerably larger (cm-scale) than the depth of the 

photic zone or its vicinity (sub-millimeter scale). Together with the ability to regain PSII 

functionality within 3h, demonstrates its ecological relevant. This buried fraction of MPB 

biomass allows to act as a reservoir for replacing cells at the surface which may be suddenly 

removed by resuspension or grazing. This could attenuate fluctuations in the productive 

biomass formed by microalgal cells present in the photic zone. This in turn may contribute 

to increase the resilience of MPB communities in face of external perturbations, and to 
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reinforce the role of MPB as source of cells for phytoplankton (Barnett et al., 2015; Guarini 

et al., 2004; Lewis et al., 1999). 

This functional resilience requires that benthic diatoms (i) can survive for long periods 

in darkness and in anoxia and (ii) maintain the capacity to promptly resume photosynthetic 

activity. There is solid experimental evidence that some diatoms can survive long periods 

of darkness (Antia and Cheng, 1970; Itakura et al., 1997; Murphy and Cowles, 1997; Peters 

and Thomas, 1996; Reeves et al., 2011; Smayda and Mitchell-Innes, 1974). Already in the 

1970s (Antia and Cheng, 1970) it was found that Phaeodactylum tricornutum was able to 

survive up to six months in the dark, with a few individuals surviving up to 17 months. 

Subsequent studies have confirmed that planktonic centric diatoms species were also 

capable of withstanding long dark periods. Thalassiosira antarctica, T. tunida and Proboscis 

inermis were shown to survive from four to nine months in the dark, maintaining high levels 

of photosynthesis during the first three months (Peters and Thomas, 1996). 

Survival in darkness or while buried is supported by the formation of morphological 

unchanged resting cells (Jewson et al., 2006; McQuoid and Hobson, 1996), or sporulation 

(Sugie and Kuma, 2008). The latter was shown by both laboratory (Durbin, 1978; Jochem, 

1999; Lewis et al., 1999) and field studies, using diatoms from deep sea (Cahoon et al., 

1995; Wasmund, 1989), Antarctic sediments (Wulff, 2008), or the alteration of the gene 

expression level of the LHCx family as described by Nymark et al., (2013). Diatoms thus 

have the capacity to live heterotrophically, enabling survival based on organic energy 

sources (Kamp et al., 2011; Lewin, 1953; McMinn and Martin, 2013; Schaub et al., 2017; 

Tuchman et al., 2006). Facultative heterotrophy of diatoms is a long-known mechanism 

enabling survival in the absence of light (Lewin, 1953). Although it seems more common 

among pennate, benthic forms (Lewin and Hellebust, 1970; Rivkin and Putt, 1987), it was 

shown to also occur in centric diatoms (Kamp et al., 2013; White, 1974). Peters, (1996) 

suggested a re-utilization of organics derived from senescent members of the population, 

which is a plausible scenario in the case of buried MPB populations.  

The reactivation of photosynthetic activity of diatoms after prolonged dark periods has 

also been shown to occur in a variety of conditions and for different species. The pennate 

species P. tricornutum and several other diatom species are able to resume growth in light 

after 24 to 68 weeks in the dark (Antia and Cheng, 1970), and ice diatoms are able to 

resume photosynthetic activity after 64 days in darkness (Wulff et al., 2008). The fast 

recovery of photosynthetic activity seems to be based on the ability of diatoms to maintain 

a functional photosynthetic apparatus during dark periods (Nymark et al., 2013), supported 

by a very slow degradation of photosynthetic pigments during long periods of darkness and 
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anoxia (Jewson et al., 2006; Kamp et al., 2013; Larson and Sundbäck, 2012; Wasmund, 

1989).  

The significance of buried MPB regaining its photosynthetic activity presented in this 

study nevertheless is limited in two main ways: first, they do not provide any indication on 

how long the cells had been buried before being exposed to light and air. This makes it 

difficult to compare the results with ones performed under controlled laboratory conditions 

(e.g. known time of darkness), or to relate the rates of vertical decrease of Chl a with 

temporal processes. A second limitation regards the fact that the techniques used cannot 

determine the fraction of buried cells that remain viable, as chlorophyll fluorescence indices 

like ΦPSII are largely independent of the absolute number of photosynthetic cells. Therefore, 

it will only detect signals emitted from functional cells, even if present in small numbers 

(Franklin et al., 2009). 

Subsurface vertical migration 

Vertical migration by benthic pennate diatoms in tidal sediments has been extensively 

studied (Coelho et al., 2011; Consalvey et al., 2004; Easley et al., 2005; Herlory et al., 2004; 

Janssen et al., 1999; Round, 1979; Underwood et al., 2005). The migratory behavior of 

pennate diatoms is partially controlled by endogenous rhythms, responsible for triggering 

movement in the absence of external stimuli (Coelho et al., 2011; Frankenbach et al., 2014). 

Most studies have been centered on the effects of vertical migration on surface MPB 

biomass as a main factor controlling the photosynthetic biomass in the photic zone, and 

thus the instantaneous rates of carbon fixation (Serôdio et al., 2001). In comparison, only a 

few studies have addressed the occurrence of vertical migration below the photic zone and 

the changes in mm-scale Chl a vertical profiles over time (Du et al., 2010b; Kingston, 1999; 

Pinckney et al., 1994). 

The present work introduced the quantification of Chl a profiles with sub-millimeter 

vertical resolution to monitor fluxes of microalgal biomass between the photic zone and 

subsurface layers. This technique demonstrated that subsurface vertical migration can 

contribute to ‘reinoculate’ the photic zone. This is of great importance after a significant 

disturbance (bioturbation, resuspension/deposition) causing the removal of cells from the 

surface layers. As an increase over time of depth-integrated biomass in the 0-1.0 mm depth 

interval was observed (Fig. 5), migration seems to occur at layers deeper than those 

sampled. Therefore, it is possible that  support that cells buried down to several millimeters 

below the surface may reach the photic zone not only passively, as via 
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resuspension/deposition, but as well actively, due to vertical migration. Although light 

incident at the sediment surface may had stimulated the upward migration of diatoms 

present in the illuminated layers, endogenous behavior likely played a role as well, because 

cells at depths of 1.0 mm may already be in the dark due to the strong light attenuation in 

such fine sediments.  

Earlier studies have measured vertical speeds of diatom migration between 0.17 and 

0.28 µm s-1 in natural sediment (Consalvey et al., 2004). Considering that upward migration 

may start more than four hours before the low tide and light exposure (Coelho et al., 2011; 

Frankenbach et al., 2014), motile diatoms could cover a vertical distance of about 3.2 mm 

along one low tide event.  

Vertical distribution of subsurface biomass 

Significant amounts of microalgal Chl a can be found at depths of several centimeters 

below the sediment surface (De Jonge and Colijn, 1994; Du et al., 2010a; Kingston, 1999; 

Sun et al., 1991). Most of these works quantified continuous cm-scale vertical profiles of 

Chl a of MPB, from the surface to depths often greater than those tested in the present 

study (10 cm) (Steele and Baird, 1968). The simple first-order exponential model of Eq. (2) 

captured the main features of the vertical distribution of Chl a in all studied sediments (De 

Jonge and Colijn, 1994; Delgado et al., 1991; Du et al., 2010b; Sun et al., 1991; Weiqiu et 

al., 2013). The fitting of the model to experimental data was found to be significantly 

improved by adding a term for background biomass. This does not exclude however that 

this basal level (ranging from 0.88 to 4.72 µg Chl a g-1) may not remain constant with depth 

and may tend to zero in deeper vertical profiles.  

The estimated depth-integrated biomass decreased with increasing grain size 

(highest in VA and lowest in GE, intermediate values for TO), confirming earlier studies 

where Chl a profiles were compared between muddy and sandy sediments and where MPB 

biomass was consistently found to be higher in the former than the latter (Brotas and 

Serodio, 1995; Jack J. Middelburg et al., 2000). The fitting of Eq. (2), and particularly the 

estimation of the decay rate kC, allows comparing the various sites regarding the shape of 

the vertical Chl a profile. Based on the estimates of the decay rate kC and of background 

biomass, Cd, two different patterns emerged. Despite showing very different absolute values 

at the surface, samples from VA and GE showed similar vertical decay rates (1.11 and 1.26 

cm-1, respectively), while the value estimated for TO was substantially lower (kC = 0.52 cm-

1). It is evident by comparing the ratio of surface biomass to Cd of VA and TO that sediments 
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from TO appear to conceal more biomass below the surface. While surface biomass in VA 

was about twice as high as in TO, Cd values were similar (4.46 to 4.42 µg g-1 for VA and 

TO, respectively). The steepness of Chl a gradients is expected to decrease with mixing 

and increase with Chl a degradation (Middelburg et al., 2000; Sun et al., 1991). As such, 

the steeper profile observed in VA and GE may be due to lower mixing or higher pigment 

degradation. The observed differences may also be explained by different impacts of 

resuspension, as previously shown (Middelburg et al., 2000; Sun et al., 1991). Considering 

the data available for the Ria de Aveiro on sediment granulometry (Plecha et al., 2014), 

bathymetry (Dias et al., 2003; Vargas et al., 2017), and water velocity (Lopes and Dias, 

2015), the results match the prediction that sediments in GE are mixed up more thoroughly 

than in VA.  

Application of Eq. (2) also evaluated the fraction of subsurface Chl a, to our knowledge 

not done in previous studies which characterized cm-scale vertical profiles of Chl a in 

estuarine or marine sediments (Du and Chung, 2009; Weiqiu et al., 2013). The proportion 

of MPB biomass below the surface layers was found to reach substantial values, as 

indicated by the large Csub,total values that were estimated, which ranged from close to 3 

(GE) to values around 5 (VA and TO). These values may, however, be considered 

conservative estimates, since they are based on relatively short vertical profiles (0-6 cm 

deep, when Chl a has been reported to be found at deeper layers), and because ‘surface’ 

biomass was considered the top 5 mm depth interval, a depth range clearly much larger 

than the actual photic zone, which even for the sandy site should not exceed 1-2 mm. 

Based on the results of this study, the MPB can be categorized into three functional 

layers, i) a ‘canopy’, formed by the cells at the uppermost layers, which are 

photosynthetically active, and therefore actively contributing to primary production, ii) a ‘cell 

reserve’, formed by cells capable to quickly replace the ones in the surface layer through 

vertical migration, within minutes to a few hours, and iii) a large repository of cells serving 

as a ‘backup’ but also acting as a carbon sink.  

Ecosystem-level subsurface biomass and ‘blue carbon’ budgets 

The proportion of total:subsurface MPB biomass (here quantified as Csub,total) may be 

used to estimate the amount of potentially productive subsurface biomass from available 

surface values. Traditionally, MPB ‘surface’ biomass has been measured by sampling the 

top layers of sediment, in the range 2-10 mm (Du and Chung, 2009; Kelly et al., 2001), 

when studies target to measure the biomass implicated in primary productivity (Laviale et 



 

 

 

Resilience and estimates of subsurface microphytobenthos                                      |    Chapter 4 

101 

al., 2015; MacIntyre and Cullen, 1995; Serôdio et al., 2001; Taylor and Paterson, 1998). 

More recently, optical methods such as remote sensing, based on reflectance 

measurements or solar-induced fluorescence became an extensively used method to 

estimate Chl a concentrations and create km-scale maps of MPB biomass and annual rates 

of primary production (Benyoucef et al., 2014; Bouman et al., 2017; Combe et al., 2005; 

Daggers et al., 2018; Huete et al., 2015; Kazemipour et al., 2012; Ryu et al., 2014; van der 

Wal et al., 2010). Thus, ‘observable’ MPB biomass is limited to the top surficial layers of 

sediment, missing an important fraction of standing stock of MPB biomass. Upscaling of 

local estimates of the fraction of Chl a present below the surface to the whole intertidal area 

of the Ria de Aveiro confirmed the relevance of the subsurface MPB biomass at the 

ecosystem level. In what can be a conservative estimate, the spatially-weighted average of 

Csub,total reached 3.78, indicating that more than 3/4 of the MPB biomass in the top 10 cm is 

sub-superficial. Considering only the potentially resilient biomass, the subsurface fraction is 

still substantial, with spatially-weighted Csub,viable reaching a value above 2. 

The quantification of MPB subsurface biomass is relevant in the context of the 

ongoing discussion on the importance of unvegetated estuarine intertidal areas as 

contributors of ecosystem-level ‘blue carbon’ budgets (Oakes and Eyre, 2014; Oreska et 

al., 2018). Although the estimates in the present study were based on Chl a and not directly 

on carbon content, being therefore more closely related to the content in particulate organic 

carbon, the produced results clearly support the idea that ‘naked sediments’ colonized by 

MPB are major contributors to ecosystem-level blue carbon. As more than half of the 

intertidal area of the Ria de Aveiro are unvegetated sediments, the present results support 

several recent studies raising awareness for the role of these areas as major sites of blue 

carbon location (Oakes and Eyre, 2014; Oreska et al., 2018). As recognized by Wolanski 

et al. (2009), unvegetated estuarine areas have received much less attention than 

vegetated areas (seagrass beds, saltmarshes, mangroves). However, recent studies using 

13C in situ labeling experiments showed that most sediment organic carbon is derived by 

MPB in both vegetated and unvegetated costal habitats, and therefore contributed to the 

overall sediment organic contribution (Oakes and Eyre, 2014; Oreska et al., 2018). 

Furthermore, the findings of this study also show that, not only is there a significant amount 

of microalgal-associated carbon that is ‘captured and hold’ (configuring the ‘blue carbon’ 

paradigm), but that this biomass stored in the sediments is (at least partially) 

photosynthetically functional, being readily mobilizable to carry out additional carbon 

fixation. The results of this study show that the large amounts of MPB biomass in sub-photic 

layers are likely an important contributor to productive biomass, replenishing surface levels 
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and attenuating effects of local disturbances, and function not merely as primary producers 

but also as a major carbon sink. 
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Abstract 

Tidal estuaries and shallow coastal zones are regarded as highly important 

ecosystems, mostly due to their high primary productivity and associated role as carbon 

sinks. In these ecosystems, primary productivity is mainly due to the photosynthetic carbon 

fixation by phytoplankton and microphytobenthos. Most studies have assessed the 

productivity of the two communities separately, and productivity rates for the same estuary 

that can be directly comparable are still relatively scarce. The present study aimed to 

characterize the spatio-temporal variability of primary productivity of phytoplankton and 

microphytobenthos in a tidal estuarine system, the Ria de Aveiro (Portugal), and to estimate 

the ecosystem-level budget for photosynthetic carbon fixation. Photosynthetic productivity 

rates of phytoplankton and intertidal microphytobenthos were determined based on 

synoptic in situ measurements of absolute rates of electron transport rate of photosystem 

II, using PAM fluorometry. Measurements of chlorophyll fluorescence indices were 

accompanied by measurements of salinity, temperature, water turbidity, solar irradiance, 

and planktonic and benthic microalgal biomass. Measurements were carried out hourly, 

along four spring-neap tidal cycles distributed along one year, on three contrasting sites of 

the estuary, allowing to cover a wide range of spatial and temporal scales of variability. Both 

phytoplankton and microphytobenthos were found to vary seasonally and along the spring-

neap tidal cycle, regarding biomass, photophysiology and productivity. The most 

pronounced trends in the spatio-temporal variability of the photophysiology and productivity 

of two communities included: (i) maximum biomass and productivity were reached later for 

microphytobenthos (summer-autumn) than for phytoplankton (spring-summer); (ii) 

absorption cross-section of PSII was generally higher for phytoplankton; (iii) the two groups 

showed a similar photoacclimation state, but there was a tendency for the 

microphytobenthos to appear as high light-acclimated when compared to phytoplankton. 

Biomass-specific productivity was on average much higher for phytoplankton then for 

microphytobenthos, averaging 68.0 and 19.1 mg C mg Chl a-1 d-1, respectively. However, 

because of the larger amounts of photosynthetic biomass contributing to benthic production, 

the areal, depth-integrated production rates of microphytobenthos were generally higher 
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than the ones of phytoplankton, averaging 264.5 and 140.0 mg C m-2 d-1, respectively. On 

an annual basis, phytoplankton productivity averaged 49.9 g C m-2 yr-1 while the productivity 

of microphytobenthos averaged 105.2 g C m-2 yr-1. When upscaling for the whole estuary, 

annual primary production rates of the phytoplankton and the microphytobenthos reached 

4894.3 and 7534.0 t C yr-1, respectively, representing 60.6% and 39.4% of the combined 

total of 12428.3 t C yr-1 determined for the Ria de Aveiro. 

Introduction 

Estuaries and coastal zones support a number of key ecosystem services, while being 

under direct threat from heavy human use (Barbier et al., 2011). The importance attributed 

to these areas is largely justified by their high rates of primary productivity, ranking among 

the highest in both aquatic and terrestrial ecosystems (McLusky and Elliott, 2007). In tidal 

estuaries and shallow coastal zones, primary productivity is mostly due to the 

photosynthetic carbon fixation by phytoplankton and microphytobenthos (Underwood and 

Kromkamp, 1999). Although estuarine primary productivity is often considered to be mainly 

due to phytoplankton photosynthetic activity, the contribution of microphytobenthos can be 

significant in tidal systems, having been estimated to represent up to 50% of ecosystem-

level carbon fixation (Underwood and Kromkamp, 1999) This is because in tidal systems 

the productivity of phytoplankton is limited by the high turbidity of the water column, caused 

by strong tidal currents and resulting sediment resuspension and, on the other hand, 

because of the large intertidal areas formed during low tide, that harbor dense and highly 

productive microphytobenthos communities (Van Colen et al., 2014). 

The assessment of the primary productivity of estuarine areas is crucial to evaluate 

their role as carbon sinks, a question particularly relevant in the current context of increasing 

of atmospheric carbon levels due to anthropogenic action. However, the primary 

productivity of phytoplankton and microphytobenthos communities have been generally 

studied separately and only a relatively small number of studies have attempted to provide 

directly comparable estimates of carbon fixation rates of the two groups in the same estuary 

(Underwood & Kromkamp,1999; Tagliarolo and Scharler 2018, Caffrey et al 2014). This is 

probably due to differences in the methodologies used to quantify photosynthetic activity 

and carbon fixation in the water column and in the sediment. The difficulties in obtaining 

comparable estimates for phytoplankton and microphytobenthos have been long 

recognized (Underwood and Kromkamp, 1999) and are based on the drastic differences in 

the vertical scale of the photic zone in the water column (meters) and the sediment 
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(micrometers). This has hampered not only the evaluation of the relative importance of both 

communities but also the estimation of integrated pelagic-benthic production budgets.  

This work aimed to assess the integrated pelagic-benthic productivity in a tidal 

estuarine system, the Ria de Aveiro (Portugal). Photosynthetic rates were estimated based 

on measurements of in vivo chlorophyll fluorescence indices, combining the functional 

absorption cross section and the electron transport rate of photosystem II (PSII). This 

enabled the calculation of absolute rates of electron transport rate, which are closely 

correlated with rates of photosynthetic carbon fixation (Migné et al., 2007; Kromkamp et al., 

1998; Schreiber et al., 2012, Morelle et al. 2018b). Measurements were carried out on 

phytoplankton and microphytobenthos samples in parallel, on different sites of the estuary, 

selected to cover a wide range of conditions (canals and tidal flats), including water depth, 

tidal height and grain size, and covering the main scales of temporal variability in the 

estuarine environment (hourly, fortnight and seasonal). This approach allowed for the 

detailed characterization and comparison of the spatio-temporal variability of benthic and 

pelagic photosynthetic activity, ultimately supporting the estimation of an ecosystem-level 

budget of photosynthetic carbon fixation for the whole estuary.  

Material and Methods 

Study area, sampling and sample processing 

The study was carried out in the Ria de Aveiro a coastal lagoon located in the 

northwest coast of Portugal (40′38′N, 08′45′W). Detailed characterization of physical, 

geomorphological, and ecological features of the Ria de Aveiro can be found elsewhere 

(Bueno-Pardo et al., 2018; Dias et al., 1999, 2003; Tomás et al., 2014). The Ria de Aveiro 

comprises into four main channels (S. Jacinto, Mira, Ílhavo and Espinheiro), receiving fresh 

water from four rivers (Vouga, Antuã, Boco and Fontão). It connects to the Atlantic Ocean 

by a single artificial inlet, allowing water circulation patterns typical of a tidal estuary (Vaz 

and Dias, 2008).  

Three sampling sites were selected, based on their contrasting characteristics, 

namely location (channels, distance to the ocean), hydrodynamics, salinity and sediment 

granulometry (Fig. 1): Gafanha da Encarnação, located in the Mira channel and closest to 

the mouth of the estuary, characterized by sandy sediments (GE; 40°35′18″ N, 08°41′06″ 

W); Vista Alegre, located in the Canal de Ílhavo, characterized by fine muddy sediments 

(VA; 40°37′12″ N, 08°44′54″ W); Torreira, in the S. Jacinto channel, characterized by 
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coarser muddy sand (TO; 40.758403 N, 8.676949 W). The three sampling sites are 

described in more detail in (Frankenbach et al., 2019). At each sampling site, samples of 

intertidal sediment and of overlying water were collected to allow measurements on 

microphytobenthos and phytoplankton, respectively.  

Sampling was carried along four spring-neap tidal cycles, distributed over the period 

between July 2013 and June 2014, to assess seasonal variability (summer: 16-18 and 23-

25 July 2013; autumn: 29-31 October and 4-6 November 2013; winter: 12-13 and 18-20 

February 2014; spring: 27-29 May and 3-5 June 2014). For each neap or spring tidal period, 

sampling was carried out on the three sites on consecutive days, one for each site. During 

each sampling day, samples were collected hourly, from sunrise to sunset, and all 

measurements were carried out in situ (see below) immediately following collection. 

Sediment samples were collected only during daytime low tide exposure. Water samples 

were collected from surface water, from the shoreline (GE, TO) or from an overlying bridge 

(VA) using a bucket and transferred into 1.5 L bottles.  

Water samples were used for measurements of chlorophyll a fluorescence, carried 

out immediately after collection (see below). Sediment samples were collected using 

Plexiglas corers (3.6 cm internal diameter) and used immediately for chlorophyll a 

fluorescence measurement.  

Afterwards, cores were subsampled for quantification of chlorophyll a, as an indicator 

of surface biomass (see below) by cryo-sampling using mini contact cores (“crème brûlée” 

technique; (Laviale et al., 2015)). Different sample depths were collected for each sampling 

site, to match the expected depth of the photic zone on each type of sediment (0.25, 0.5 

and 2.0 mm for VA, GE and TO respectively). Sub-samples were flash frozen immediately 

after collection and kept in liquid nitrogen until further analysis in the laboratory.  

Microphytobenthos cell suspensions where collected from the sediment surface using 

the lens tissue technique, (Eaton and Moss, 1966). Two layers of lens tissue (Lens cleaning 

tissue 105, Whatman) were placed on the surface of the sediment for one hour and the 

upper piece was collected and resuspended in tubes with 10 ml of filtered seawater. 

Chlorophyll a fluorescence was measurements immediately after preparation of the 

suspensions (1.25 mL). 
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Figure 1. Ria de Aveiro, Portugal. The different habitats are highlighted in green, for intertidal areas, blue for 
subtidal areas, and grey for other. Sampling sites are marked with a black dot: Vista Alegre (VA), Gafanha da 
Encarnação (GE), and Torreira (TO). 
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Physical parameters 

Photosynthetic active radiation (µmol quanta m-2 s-1) was measured hourly, at the time 

of sample collection, using a Quantum Meter with a separate sensor (Model MQ-200, 

Apogee Instruments, Logan, Utah, USA). Sediment temperature was measured using an 

infrared thermometer (ScanTemp 410, Tematec GmbH, Hennef, Germany). Water 

temperature, salinity and turbidity (NTU) were measured using a multi-parameter Sonde 

YSi 6600 (YSI incorporated, Yellow Springs, Ohio, USA). The sonde measured salinity in a 

range from 0 to 70 ppt (+/- 0.1 ppt), temperature from -5 to 50 ºC (+/- 0.15º) and turbidity 

from 0 to 1000 NTU (+/- 0.3 NTU), being suitable to survey water properties in shallow turbid 

systems like the Ria de Aveiro. 

Biomass 

Phytoplankton and microphytobenthos biomass were quantified through chlorophyll a 

concentration. Water samples (1 L, one replicate per sampling point) were filtered in 

cellulose nitrate filters (0.8 µm pore size, 47 mm Ø) and immediately frozen at -80ºC until 

pigment extraction. Sediment samples (three replicates per sampling point), collected with 

mini contact cores, were freeze-dried during 48h, prior to the extraction. Suspensions of 

benthic cells, collected via the lens tissue technique (three replicates per sampling point), 

were stored in a -80ºC freezer until pigment extraction. Prior to the extraction, cell 

suspensions were centrifuged, and the supernatant discarded. Chlorophyll a content was 

quantified spectrophotometrically following Lorenzen (1967). In the case of sediments, the 

adaptations proposed by Plante-Cuny (1974) were used. Pigments from all samples were 

extracted in centrifuge tubes (15 ml falcons), with 90% aqueous acetone. Samples were 

homogenized in a vortex, to ensure a good mixing between the sample (filters, sediments 

or pellets, depending on the sample type) and the extraction solvent. Extraction was done 

in the dark, at 4 ºC, for 24 hours. Samples were centrifuged at (3000 g, 10 min, 4 ºC) and 

the absorptance of the supernatant was read in a spectrophotometer (Thermo Fisher 

Scientific, Waltham, USA) at 664 and 750 nm, with acetone 90% used as a blank. 

Acidification was done by adding 12 µl of HCl 1M. Chlorophyll a content was calculated 

following Lorenzen (1967) and expressed per volume as mg m-3 (phytoplankton) or per area 

mg m-2 (microphytobenthos). 
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Chlorophyll a fluorescence 

Chlorophyll a fluorescence was measured using a Multi-Color PAM fluorometer, 

controlled by the PamWin V3.12w software (Heinz Walz GmbH, Effeltrich, Germany). Blue 

light (440 nm) was used for the measuring and actinic light, as well as for the saturation 

pulses. In the MCP-D detector unit, a RG 665 long pass filter (> 650 nm, 3 mm RG665, 

Schott) was used. Fluorescence of cell suspensions (phytoplankton and 

microphytobenthos) was measured in a 10 × 10 mm quartz cuvette using the ED-101US/MD 

optical unit, coupled to a magnetic stirrer (PHYTO-MS Miniature Magnetic Stirrer, Walz). 

Fluorescence of undisturbed microphytobenthos samples was measured using the MCP-

BK Optical Unit for Leaf Measurements (Walz). The fluorometer was zeroed using filtered 

seawater as a blank (cells suspensions) or by pointing the MCP-BK Optical Unit to empty 

space (undisturbed microphytobenthos samples). Measurements were carried out by 

running a user-defined Script-file, comprising the following steps: 30 s darkness, 

measurement of the absorption cross section of PSII (σII; see below), 30 s of darkness, 

rapid light curves (RLC; see below), 60 s of actinic light (intensity matching the solar 

irradiance at the moment of sample collection), measurement of the effective quantum yield 

(ΔF/Fm; see below). During the periods of darkness, far-red illumination (725 nm) was 

applied, to induce the fully re-oxidation of the PQ-pool. The first measurement of the RLC 

was taken as a proxy for the maximum quantum yield of PSII, Fv/Fm. Samples were 

magnetically stirred between measurements. At each measuring occasion, measurements 

were carried out on three independent replicates.  

Absorption cross section of PS II 

The absorption cross section of PS II, σII [nm2], was measured from the O–I1 rise 

kinetics, the initial rise of fluorescence yield, corresponding to the kinetics of Quinone (QA)-

reduction, in the presence of an oxidized Plastoquinone (PQ)-pool (Schreiber et al., 2012). 

The O–I1 rise kinetics was measured under strong multi turnover (MT) saturation pulse, 

(SP) light (440 nm), using the pre-programmed Sigma 1000_MT.FTM fast trigger file. σII 

was calculated by running the special fitting routine O-I1 Fit (PamWin V3.12w software, 

Walz), based on the reversible radical pair model of PS II (Schreiber et al., 2012). 

  



 

 

 

Chapter 5    |                                                         Spatio-temporal varabilty of primary production 

122 

Effective quantum yield and relative electron transport rate of PSII 

The effective quantum yield (ΔF/Fmʹ) and the relative electron transport rate of PSII 

(rETR) were calculated from the fluorescence parameters Fs and Fm’ (steady-state and 

maximum fluorescence of a light adapted sample, respectively) and the incident PAR 

irradiance E (measured in situ or applied as actinic light by the fluorometer), by (Genty et 

al., 1989): 

∆𝐹

𝐹𝑚
′ =

𝐹𝑚
′ −𝐹𝑠

𝐹𝑚
′        (1) 

and 

𝑟𝐸𝑇𝑅 = 𝐸
𝐹𝑚

′ −𝐹𝑠

𝐹𝑚
′       (2) 

Light-response curves of rETR 

Rapid light-response curves (RLCs) were generated by sequentially applying 12 

incremental lights steps E (between 0 and 2179 µmol quanta m-2 s-1), with each light step 

taking 10 s. At the end of each 10 s light exposure period, a saturating pulse was applied, 

Fs and Fm’ were measured and rETR was calculated. RLCs were characterised by 

estimating the initial slope (α), maximum rETR (rETRm) and the photoacclimation parameter 

Ek, by fitting the model of Eilers and Peters (1988). 

Absolute ETR and carbon fixation rates 

Absolute rates of electron transport of PSII were estimated following the rationale 

described by (Schreiber et al., 2012), based on the determination of the rate of quantum 

absorption per PSII (electrons PSII-1 s-1):  

𝐸𝑇𝑅 = 𝜎𝐼𝐼 𝐿 𝐸 
∆𝐹/𝐹𝑚

′

𝐹𝑣/𝐹𝑚
     (3) 

where L is the Avogadro’s constant (0.6022 mol-1). Carbon fixation rates PB [biomass-

specific photosynthetic hourly rates; mg C mg Chl a-1 h-1] were estimated from (i) hourly 

rates of O2 evolution [mmol O2 mg Chl a-1 s-1], estimated by (Schreiber et al., 2012): 

𝑟𝑂2 =
𝐸𝑇𝑅

𝑃𝑆𝑈 𝑛𝑒(𝑂2) 𝑀(𝐶ℎ𝑙)
     (4) 
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where PSU is number of chlorophyll a molecules per photosynthetic unit, ne(O2) is the 

number of electrons required for evolution of 1 molecule of O2 and M(Chl) is the molar mass 

of chlorophyll a (893.49 g mol-1); and (ii) from the ratio of oxygen produced to carbon fixed 

(photosynthetic quotient, PQ; mol C:mol O2): 

𝑃𝐵 =
𝑟𝑂2 

𝑃𝑄
𝑀(𝐶)3600     (5) 

where M(C) is the molar mass or carbon (12.01 g mol-1) and 3600 is the conversion factor 

for hourly rates. PSU and ne(O2) were assumed to be equal to 600 Chl PSII-1 and  

5 e- O2
-1, respectively, based on the experimental data compiled by (Suggett et al., 2010). 

PQ was assumed to be 1.1 mol C:mol O2 (Kromkamp et al., 2008). All these parameters 

were assumed to remain constant across sampling sites and dates of sampling. Daily 

carbon fixation rates were calculated by summing the hourly rates for each daytime period. 

Areal rates of carbon fixation 

Areal rates of carbon fixation were estimated by integrating over depth the biomass-

specific photosynthetic rates calculated by Eq. (5), using the method described by 

MacIntyre et al., (1996b). For each depth z below the surface of the water (phytoplankton) 

or the sediment (microphytobenthos): (i) the downwelling irradiance E(z) was calculated 

from light the attenuation coefficient kw or ks (for the water column or the sediment, 

respectively; see below) assuming an exponential decrease; (ii) the biomass-specific 

photosynthetic rate PB(z) was calculated from the light-response curve (PB vs E) measured 

for the corresponding sampling time and site, using E(z) as an input; light-response curves 

of PB were calculated by applying Eqs. 3-5 to the rETR vs E curves (RLC). PB(z) was 

calculated for depth intervals Δz of 10-6 mm (sediment) or 10-6 m (water column) and depth-

integrated rate P [mg C m-2 h-1] was calculated summing over all depth intervals and 

multiplying by the chlorophyll a concentration, C [mg Chl a m-3]: 

𝑃 = ∑ 𝑃𝐵(𝑧) ∆𝑧𝑧  𝐶      (6) 

For the microphytobenthos, PB(z) was calculated based on the light curves measured 

on cells collected in lens tissues, integrated numerically over depth using the attenuation 

coefficient measured for each type of sediment. Chlorophyll a concentration [mg Chl a m-3] 

was calculated considering the volume sampled the contact core used for each sampling 

site. For the phytoplankton, PB(z) was depth integrated from the surface until the maximum 

depth of the water column at each sampling moment.  
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Light attenuation coefficients 

Spectral scalar irradiance profiles of PAR (400-700 nm) in sediments from the three 

sampling sites were measured with a custom-made scalar field radiance probe connected 

to a spectrophotometer (USB 2000+, Ocean Optics, Duiven, Netherlands), and recorded 

using the spectral acquisition software Spectra Suite (Ocean Optics). The custom-made 

sensor consisted of a light diffusing sphere with a diameter of 90 µm was attached to the 

coated tip of a tapered optical fiber (Rickelt et al., 2016). The sensor was mounted on a 

motorized micromanipulator and positioned on the sediment surface in a 45° angle to 

minimize self-shading. To account for the insertion angle, the sensor was moved 

downwards in 141.4 µm steps to record spectral irradiance profiles in vertical depths of 100 

µm increments. Spectral data were normalized to the incident downwelling spectral 

irradiance, which was recorded on a black non-reflective surface at the same position 

relative to light source and sediment surface. The light attenuation coefficients (ks, mm-1) 

were determined by the slope of the linear decay of the natural logarithm transformed 

percentage of incident light intensity as a function of depth, down to a maximum depth of 

0.8 mm (Kühl, 2005). Measurements were replicated on three different samples per 

sampling site. 

For the water column, the light extinction coefficient, kw (m-1), was estimated from 

measurements of turbidity (TURB, NTU), assuming to be proportional to the concentration 

of cohesive sediments (Css, mg L-1), using the following relationships (Vaz et al., 2019): 

Css = 3.42 TURB + 3.0      (7) 

and 

kw = 0.036 Css + 1.24      (8) 
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Figure 2. Schematic describing the modelling workflow followed in this study. Biomass-specific productivity rates 
(PB, mg C mg Chl a-1 h-1) were calculated from irradiance (E) and fluorescence-based parameters (Fv/Fm, ΔF/Fm’, 
σII). Productivity per unit area was calculated by depth-integrating PB using light-response curves of PB, 
chlorophyll a content, and light attenuation. Depth-integration was carried out differently for phytoplankton and 
microphytobenthos, using light attenuation coefficient for the water column (kw) and the sediment (ks), 
respectively. Parameters in green were measured in this study. Parameters in blue were taken from published 
sources. Numbers represent the equations describing each step. 

Estimation of ecosystem-level annual primary productivity 

A preliminary estimate of the annual primary productivity of the Ria de Aveiro was 

calculated by multiplying the daily rates P, measured in each season and tidal cycle (spring 

vs neap), by the number of days of each season (1/4 of the whole year, 91 days) 
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corresponding to spring tides or to neap tides (45 days). Daily rates were calculated by 

adding the hourly rates determined for each day of sampling. Upscale for the entire estuary 

was done by considering the total area of the estuary (phytoplankton) and the area 

corresponding to intertidal flats (microphytobenthos). The former was estimated from the 

mean value between the area covered by water during mean high tide and during mean low 

tide (89.2 and 64.9 km2, respectively; (Lopes et al., 2013). The areas corresponding to each 

type of sediment type were the ones determined in (Frankenbach et al., 2019): 34, 16 and 

5 km2 for TO, GE and VA, respectively. The area corresponded to the phytoplankton was 

estimated to reach 100 km2, by adding the subtidal and the total intertidal areas calculated 

by (Frankenbach et al., 2019). The modelling approach used to estimate the area rates of 

carbon fixation by phytoplankton and microphytobenthos is summarized in the schematic 

of Figure 2.  

Statistical analysis 

Measurements made on different sampling sites and times were compared by 

applying an ANOVA. Assumptions of normality and homoscedasticity were verified prior to 

analysis using the Shapiro-Wilk test and Levene’s test, respectively. In case of violation of 

assumptions, data were log transformed. All statistical analyses were carried out using 

Statistica 10 (StatSoft). 

Results 

Hourly variability in physical conditions, photophysiology, and biomass-specific 

productivity 

Figs. 3-5 show the typical hourly variability in physical and photophysiological 

parameters in the three sampling sites during the course of two days, on neap and spring 

tides, during July 2013. A marked hourly variability in abiotic factors was observed in both 

the water column and intertidal sediments. In the sampling sites of the Ria de Aveiro, low 

tide tended to occur at mid-day during spring tides, and early in the morning and in late 

afternoon during neap tides. This caused a strong fortnight pattern of variability in physical 

conditions, particularly in the intertidal areas. The solar irradiance received varied between 

maximum values during spring tides to minimum values during neap tides, when direct 

exposure to light was restricted to two short periods, during early morning and late 

afternoon.  
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Figure 3. Hourly variation of abiotic (A-D) and photophysiological (E-J) parameters along one day in Torreira 
(TO) during neap (A, C, E, G, I) and spring tide (B, D, F, H, J) in July 2013. Blue areas represent high tide; 
vertical bars demonstrate the beginning/end of the high tide. Mean values of three replicates. Error bars 
represent one standard error.  
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Figure 4. Hourly variation of abiotic (A-D) and photophysiological (E-J) parameters along one day in Gafanha 
de Encarnação (GE) during neap (A, C, E, G, I) and spring tide (B, D, F, H, J) in July 2013. Blue areas represent 
high tide; vertical bars demonstrate the beginning/end of the high tide. Mean values of three replicates. Error 
bars represent one standard error.  
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Figure 5. Hourly variation of abiotic (A-D) and photophysiological (E-J) parameters along one day in Vista Alegre 
(VA) during neap (A, C, E, G, I) and spring tide (B, D, F, H, J) in July 2013. Blue areas represent high tide; 
vertical bars demonstrate the beginning/end of the high tide. Mean values of three replicates. Error bars 
represent one standard error. 
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Water column turbidity varied markedly during the tidal cycle, typically reaching higher 

values during low tide (Figures 3-5, A,B) and showing short periods of very high values 

close to ebb (Figures 3 A, B) or flood (Figure 4 B). This oscillation in water turbidity is 

expected to affect considerably the fraction of incident solar irradiance that is available for 

phytoplankton and for the microphytobenthos. 

Water temperature was often more constant during high tide (deeper water column), 

typically increasing during low tide periods, especially when occurring at mid-day (neap 

tides; Figure 3 D; 4 C-D; 5 D). At the site closest to the mouth of the estuary (GE), a sharp 

inversion of water temperature could be observed at the middle of the low tide period, 

associated with an equally marked change in salinity, denoting a sudden replacement of 

water masses at the sampling site, from freshwater-dominated (higher temperature, low 

salinity) to oceanic (lower temperature, high salinity) (Figure 4 D). Aside from the incident 

sunlight, the tides had a measurable impact on the water temperature, as the incoming 

oceanic seawater during high tide was often substantially cooler than the water already 

inside the estuary. Sediment temperature exhibited the same general pattern as in the water 

column, with higher values during low tide, when sediment was exposed (Figure 3-5 C, D), 

and especially during spring tides, when low tide occurred at mid-day (Figures 3-5, D). The 

sediment was generally warmer than the water column, often reaching values above 26 ºC 

(Figures 3 D).  

Salinity of the water column was usually lower during low tides at GE and VA, when 

the influence of freshwater was greatest, and higher in high tide, reaching values typical of 

seawater (around 35). This pattern of variation was more marked in site GE, the one closest 

the estuary mouth (e.g. Figures 4 C, D). On another site (TO), water salinity remained 

virtually constant due to reduced inflow of fresh water in that canal (Figures 3 C,D).  

Phytoplankton biomass, as measured by chlorophyll a concentration in the water 

column, showed a large hourly variability, particularly in sites TO and GE during spring tides 

(Figures 3 E, F; 4F). Maximum values tended to occur the low tide periods (Figures 2-4, F). 

Variations from about 1.5 to 7.7 mg Chl a m-3 in 4 h were observed in site TO (Figure 3 F). 

On Site VA, the farthest from the estuary mouth, hourly variations were much smaller 

(Figures 5 E, F). In contrast with the phytoplankton, the chlorophyll a content of the sediment 

didn’t show consistent patterns of variation, although in some instances a clear increase 

during the low tide period could be observed (Figure 4 F).  

The effective quantum yield of PSII, ΔF/Fm’, also varied markedly along the day, both 

for phytoplankton in general and for microphytobenthos during neap tide. For 

phytoplankton, the same overall pattern was observed, with values varying from 0.5-0.6 
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during early morning or late afternoon, and around 0.1, under the highest solar irradiances. 

The pattern was observed in all days, with ΔF/Fm’ mainly responding (inversely) to PAR, 

irrespectively of tidal stage. During neap tides, an almost symmetrical pattern was found, 

with the decrease of ΔF/Fm’ observed during the morning recovering completely during the 

afternoon (Figures 3-5, G). On spring tide days, the recovery of ΔF/Fm’ seemed incomplete 

(Figures 3-5, H), likely associated to the shallower water column during the middle of the 

day, allowing the exposure to higher light levels, higher temperature and lower salinity, 

possibly causing more slowly-reversible photodamage. For microphytobenthos, ΔF/Fm’ 

values were generally similar to those of phytoplankton, following the same overall trend of 

varying inversely with incident solar irradiance (Figures 3-5 G, H).  

The data on the absorption cross section of PS II, σII, was characterized by a large 

variability between replicates, especially for phytoplankton during neap tides (e.g. Figures 

3-5 G). Both for phytoplankton and microphytobenthos, σII varied similarly to ΔF/Fm’, largely 

responding inversely to solar irradiance (e.g. Figure 3 G). However, σII seemed to be more 

affected by tidal stage, as in some days it did not decrease under high solar irradiance if 

under high tide (Figure 4 G). In the case of microphytobenthos, σII values were consistently 

lower than for phytoplankton, which was possibly associated to the shorter periods of light 

exposure to which benthic populations are exposed (ca. 4 h). Clear trends of hourly variation 

were not very evident, yet a tendency to vary inversely with solar irradiance could be 

identified (e.g. Figures 3-5 H).  

Short-term photoacclimation status, as measured by RLC parameters α and rETRm, 

varied hourly both for phytoplankton and microphytobenthos. On most days, rETRm varied 

more and showed a better-defined pattern of variation, increasing towards the middle of the 

day, and reaching minimum values at beginning and end of the day (Figures 4, 5 I-J). For 

phytoplankton, light-limited photosynthesis (denoted by α) remained relatively constant 

along the day, on most days (e.g. Figures 3 J; 4 I; 5 J), but occasionally showed erratic, 

short-term variations (Figure 3 J). The values of α and rETRm of microphytobenthos were 

similar to those measured in the water column, but rETR varied following less defined 

trends, and more variable in absolute terms: similar (Figure 3 I), significantly lower (Figure 

4 I) or significantly higher (Figure 4 J) than the phytoplankton.  
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Spatio-temporal variability: fortnight and seasonal time scales 

As expected, maximum intensities and daily light doses of solar irradiance varied 

markedly with season, with maximum values being measured in July and in May/June 

(Figure 6 A-C). However, an appreciable variation was measured regarding incident solar 

irradiance between spring and neap tides, due to variation in cloud cover during the 

sampling days (Figure 6 A-C). Considering the high turbidity of the water column, the total 

daily doses received at the intertidal sites depended substantially on the timing of the low 

tide period (Figure 6 A-C). Also, due  the delay in tidal propagation inside the estuary, 

causing the timing of low tide to vary between the sampling sites, a systematic variation in 

daily solar light dose received in the three sites was observed. Water turbidity was relative 

constant across sampling sites and seasons, being affected mainly by the tide, but a 

tendency for higher values during autumn and winter was observed. Occasional peaks in 

turbidity were measured, causing a large data dispersion (e.g. TO July; Figure 6 A). 

Water and sediment temperature showed a clear seasonal variation in all sampling 

sites, with maximum average values occurring in July (23.3 ± 1.83 ºC for water in TO, and 

28.3 ± 0.96 ºC in sediments at VA) and minimum values (10.3 ± 0.63, for water TO and 12.3 

± 0.58 for sediments in GE) being observed in February. A virtually identical seasonal 

pattern was found for all sampling sites (Figure 6 D-F). The seasonal variation in water 

temperature was closely followed by equally large changes in water salinity, for all sampling 

sites. Highest average salinities (35.0 ± 0.52) were observed in July, and minimum values 

(2.0 ± 2.47) in February in VA, directly resulting from the seasonal variation in freshwater 

input (Figure 6 D-F), as this sampling site is located farthest from the mouth of the estuary 

(Figure 6 F). 

Both the biomass of phytoplankton and microphytobenthos (as expressed per unit 

area) varied significantly with seasons (ANOVA, F3,817 = 319.54; P < 0.001; and F3,317 = 

13.54; P < 0.001, respectively; Figure 5 G-I). However, the two communities differed 

regarding when the maximum biomass was reached, its variation with spring-neap tidal 

cycle, and its spatial distribution. In the case of phytoplankton, maximum average values 

were observed in spring and summer, and the lowest in winter (Figure 6 G-I). In contrast, 

microphytobenthos biomass reached maximum values later in the year, in summer and 

autumn. The biomass of phytoplankton was significantly higher in spring than in neap tides 

(ANOVA, F1,817 = 25.14; P< 0.001), showing higher values during spring tides. The same 

trend was observed for the microphytobenthos, but the differences between spring and 

neap tides were not significant (ANOVA, F1,317 = 1.47; P = 0.226). 
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Figure 6. Seasonal variation of abiotic (A-F) and photophysiological (G-X) parameters in sampling sites Torreira 
(TO; A, D, G, J, M, P, S, V), Gafanha da Encarnação (GE; B, E, H, K, N, Q, T, W) and Vista Alegre (VA; C, F, 
I, L, O, R, U, X). PP in blue and MPB yellow.  Spring tide (full circles) and Neap tide (empty circles). Mean values 
of three replicates. Error bars represent one standard error.  
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Both phytoplankton and microphytobenthos biomass varied significantly between 

sampling sites (ANOVA, F2,817 = 25.14; P< 0.001, and F2,317 = 45.07; P < 0.001, 

respectively), and in both cases the highest values were measured in site TO. In the case 

of the phytoplankton, the remaining two sites did not differ significantly (Tukey HSD, P > 

0.05). Regarding the microphytobenthos, all sampling sites differed from each other (Tukey 

HSD, P < 0.001 for all pairwise comparisons), the lowest biomass values being found for 

site VA (Figure 6 G-I). 

Phytoplankton and microphytobenthos also differed regarding the spatio-temporal 

variability of photophysiological parameters ΔF/Fm’ and σII. In the case of the phytoplankton, 

both ΔF/Fm’ and σII varied significantly with seasons (ANOVA, F3,820 = 230.74; P < 0.001 

and F3,705 = 43.63; P < 0.001, respectively; Figure 6 J-O), the maximum values being 

measured in summer and the minimum in winter (Figure 6 K-L). Also in the case of the 

microphytobenthos ΔF/Fm’ and σII varied significantly with seasons (F3,335 = 48.02; P < 0.001 

and F3,335 = 27.44; P < 0.001, respectively). However, maximum values were observed for 

autumn (ΔF/Fm’) or summer (σII), while minimum values were measured in spring (for both 

parameters) (Figure 6 M-O). 

For phytoplankton, ΔF/Fm’ varied significantly between spring and neap tides (higher 

values for spring tides) (ANOVA, F1,820 = 67.01; P < 0.001), while σII did not show significant 

differences (ANOVA, F1,705 = 1.78; P > 0.1). The opposite pattern was observed for the 

microphytobenthos, with σII varying between spring and neap tides (ANOVA, F1,335 = 10.65; 

P < 0.01), and ΔF/Fm’ increasing significantly from neap to spring tides (ANOVA, F1,335 = 

15.414; P < 0.001). In terms of spatial variation, phytoplankton showed a significant 

variation in ΔF/Fm’ between sampling sites (ANOVA, F2,820 = 28.04; P < 0.001), with 

maximum values occurring at TO and minimum ones at VA, while no differences among 

sites were found regarding σII (ANOVA, F2,705 = 2.29; P > 0.1). In the case of the 

microphytobenthos, ΔF/Fm’ also varied significantly between sampling sites (ANOVA, F2,335 

= 6.61; P < 0.01), with maximum values being observed for site VA and minimum for site 

GE. σII varied significantly between sites (ANOVA, F2,335 = 22.46; P < 0.001), but showed 

the opposite pattern, with maximum values occurring at site GE and minimum ones at VA 

(Figure 6 M-O). Still regarding the parameters ΔF/Fm’ and σII, the phytoplankton and the 

microphytobenthos differed not only concerning their spatio-temporal variability, but also in 

terms of their absolute values. While ΔF/Fm’ showed comparable values (0.43 ± 0.16 and 

0.47 ± 0.09 for phytoplankton and microphytobenthos (ANOVA, F1,44 = 1.13; P > 0.1), 

respectively; σII was significantly higher in the case of the phytoplankton (1.80 ± 1.19 and 

1.19 ± 0.03 for phytoplankton and microphytobenthos, respectively; ANOVA, F1,44 = 25.25, 
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P < 0.001). Regarding the photoacclimation state, phytoplankton samples showed a 

significant seasonal variability in both light-limited (α) and light-saturated (rETRm) 

photosynthetic activity (ANOVA, F3,751 = 456.82; P < 0.001 and F3,749 = 307.2; P < 0.001, 

respectively), with maximum value occurring in spring and minimum values observed in 

winter (Figure 6 P-R). The two parameters were also significantly higher in spring than in 

neap tides (ANOVA, F1,751 = 71.44; P < 0.001 and F1,749 = 74.80; P < 0.001, respectively). 

Spatially, differences were found only regarding α (ANOVA, F2,751 = 41.37; P < 0.001), with 

maximum values being reached at site TO and minimum ones at site VA (Figure 6 P,R). 

Regarding the microphytobenthos, also both α and rETRm varied significantly among 

seasons (ANOVA, F3,335 = 7.661; P < 0.001 and F3,334 = 46.44; P < 0.001, respectively), but 

with maximum values observed in autumn and minimum ones in winter (Figure 6 S-U). As 

observed for the phytoplankton, both parameters showed significantly higher values during 

spring tides than during neap tides (ANOVA, F1,335 = 5.44; P < 0.05 and F1,334 = 81.94; P < 

0.001, for α and rETRm respectively). Both α and rETRm varied significantly between 

sampling sites (ANOVA, F2,335 = 8.654; P < 0.001 and F2,334 = 3.45; P < 0.05 *, respectively), 

in both cases reaching higher values at site VA and minimum values at site GE (Figure 6 

T,U).  

This large spatio-temporal variability in α and rETRm was reflected in substantial 

variations in the photoacclimation parameter Ek (data not shown). For both phytoplankton 

and microphytobenthos, Ek varied significantly over seasons (ANOVA, F3,754 = 4.3; P < 0.01 

and F3,334 = 39.91; P < 0.001, respectively), reaching maximum values in spring and autumn 

(phytoplankton) or spring (microphytobenthos). For both types of samples, Ek was 

significantly higher on spring than on neap tides (ANOVA, F1,754 = 4.6; P < 0.05 and F1,334 = 

79.10; P < 0.001, for phytoplankton and microphytobenthos, respectively). Phytoplankton 

Ek varied significantly between sampling sites (ANOVA, F2,754 = 11.6;  

P < 0.001), the highest values occurring at site VA and the minimum at site TO. In contrast, 

no significant differences were found between sampling sites for microphytobenthos  

(F1,334 = 0.77; P = 0.466).  

Overall, the photoacclimation state of phytoplankton and microphytobenthos was very 

similar, with Ek values averaging 490.8 ± 211.7 and 491.5 ± 175.7 µmol quanta  

m-2 s-1, respectively. However, with the exception of the winter sampling period, Ek was 

higher for the microphytobenthos (ranging from 490.7 ± 197.5 in summer to 561.9 ± 124.9 

µmol quanta m-2 s-1 in spring), than for the phytoplankton (ranging from 408.5 ± 28.5 in 

summer to 473.6 ± 107.7 µmol quanta m-2 s-1 in spring).   
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Biomass-specific productivity  

Despite the differences observed in physical conditions in the water column and the 

intertidal sediments, and the photophysiological and photoacclimation state of 

phytoplankton and microphytobenthos, the spatio-temporal patterns of variability of daily 

biomass-specific rates, PB, of the two communities resulted relatively similar (Figure 6 V-

X). For both phytoplankton and microphytobenthos, the daily rates of carbon fixation varied 

significantly with season (ANOVA, F3,719 = 58.56; P < 0.001 and F3,315 = 17.40;  

P < 0.001, respectively) and phase of the spring-neap tidal cycle (ANOVA, F1,719 = 4.83;  

P < 0.05 and F1,315 = 5.19; P < 0.05, respectively). With the exception of autumn, maximum 

values were observed for summer and spring, during spring tides, and minimum values for 

winter and neap tides. No significant differences were found between sampling sites. 

However, the absolute values of PB were on average much higher for the phytoplankton 

then for the microphytobenthos, averaging 68.0 ± 26.1 and 19.1 ± 10.3 mg C mg Chla-1 d-1, 

respectively. 

Light attenuation coefficients 

The vertical light profiles measured in the sediment samples from the three sampling 

sites revealed an exponential attenuation of downwelling irradiance, enabling a very good 

fit of an exponential model (Figure 7). The attenuation coefficient k ranged from 3.9 ± 0.8 

mm-1 (TO) to 9.0 ± 0.8 mm-1 (VA), GE reaching the intermediate value of 6.1 ± 0.6 mm-1. 

  

Figure 7. Vertical profile of spectrally-averaged irradiance (percentage of incident irradiance) in intertidal 
sediments of the three sampling sites Vista Alegre (VA), Gafanha da Encarnação (GE) and Torreira (TO). 
Number are the downwelling light attenuation coefficients (Ks) for each type of sediment. Mean values of three 
replicates. Error bars represent one standard error.  
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Areal production rates 

Despite the fact that the hourly rates of biomass-specific production were higher for 

phytoplankton then for microphytobenthos, the depth-integrated areal rates revealed an 

opposite tendency. Due to the large differences in the biomass involved in photosynthesis, 

the depth-integrated hourly production rates of the microphytobenthos were often much 

higher that the corresponding rates of the phytoplankton (Figure 8 A-D). This difference was 

particularly large when the periods of low tide occurred at the middle of the day (e.g. Figure 

8 B-D). The higher productivity of microphytobenthos was also verified when comparing the 

daily rates, despite the shorter periods of light exposure, considered for their calculation 

(264.5 ± 228.8 and 140.4 ± 154.8 mg C m-2 d-1, respectively; Figure 9 A-C). Maximum daily 

rates of carbon fixation ranged from 8.1 (winter, NT, GE) to 505.0 (summer, ST, TO) mg C 

m-2 d-1 for the phytoplankton, and from 25.6 (winter, ST, GE) to 909.0 (summer, ST, BE) mg 

C m-2 d-1, for the microphytobenthos. 

 

Figure 8. Hourly rates of biomass-specific primary production of phytoplankton (PP) and microphytobenthos 
(MPB) along two days in July 2013, on tides (A, C, E) and spring tides (B, D, F), at the three sampling sites, 
Torreira (TO; A, B), Gafanha da Encarnação (GE; C, D) and Vista Alegre (VA; E, F).  
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The marked seasonal and fortnight variability present in the biomass and 

photosynthetic performance was reflected on a significant variation in daily rates of areal 

production between seasons and spring-neap tide conditions (Figure 8; 9), of both 

phytoplankton (F3,309 = 75.26; P < 0.001 and F1,309 = 11.19; P < 0.001, comparing between 

seasons and spring-neap tides, respectively) and microphytobenthos (F1,106 = 12.87; P < 

0.001 and F1,106 = 9.90; P < 0.01, comparing between seasons and spring-neap tides, 

respectively). In both cases, maximum values were attained in spring and summer, and on 

spring tides; minimum values occurred on winter and neap tides. Significant differences 

were also present regarding the spatial distribution. For the phytoplankton, large variations 

were found (F2,309 = 7.66; P < 0.001), showing maximum daily production for site TO and 

lower but comparable rates for sites GE an VA. For the microphytobenthos, significant 

variations between sampling sites were also observed (F2,106 = 12.31; P < 0.001), again with 

maximum values observed for site TO and minimal for VA.  

 

Figure 9. Seasonal variation of daily rates of primary production of phytoplankton (PP) and microphytobenthos 
(MPB) during spring (S) and neap (N) tide in sampling sites Torreira (A), Gafanha da Encarnação (B) andVista 
Alegre (C).  
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Upscaling to ecosystem-level productivity 

The data used to upscale the areal primary production rates to ecosystem-level values 

are summarized in Table 1. Per unit area, microphytobenthos productivity reached higher 

values than for the phytoplankton, with exception of the site VA (for which the values were 

practically identical). Phytoplankton rates averaged 48.9 g C m-2 yr-1, ranging from 44.7 to 

51.8 g C m-2 yr-1 (for sites VA and GE, respectively). Microphytobenthos productivity rates 

averaged 105.2 g C m-2 yr-1, ranging between 43.4 to 164.4 g C m-2 yr-1 (for sites VA and 

TO, respectively). This tendency was reinforced when upscaling for the whole estuary, 

despite the larger area accounted for the phytoplankton: the primary production carried out 

by microphytobenthos and by phytoplankton were found to attain 7534.0 and 4894.3 and t 

C yr-1, representing 60.6% and 39.4% of the total global rate of primary production of the 

two communities in the Ria de Aveiro, that reached 12428.3 t C yr-1.  

 

Table 1. Summary of the data used for the upscaling of local areal primary production rates (g C m-2 yr-1) to 
ecosystem-level carbon fixation budget (t C yr-1). Percentages refer to the proportion of primary production of 
phytoplankton or microphytobenthos relatively to the total.  

 

 Site 
Area 
(km2) 

Areal production 
(g C m-2 yr-1) 

Total production 
(t C yr-1) 

Phytoplankton TO 33.3 50.31 1676.9 
 GE 33.3 51.76 1725.3 
 VA 33.3 44.76 1492.1 

 
Total 
 

100.0 
 

 
4894.3 
(39.4%) 

Microphytobenthos TO 34.0 164.40 5589.6 
 GE 16.0 107.97 1727.6 
 VA 5.0 43.36 216.78 

 
Total 
 

55.0 
 

 
7534.0 
(60.6%) 

   Total 12428.3 
 

Discussion 

Abiotic factors 

The sampling program carried out in this study allowed to cover and register a large 

variability in hourly, fortnight and seasonal time scales in all physical parameters measured 

for three studied sampling sites. Seasonal variability was pronounced for both the water 

column and the intertidal habitats, namely regarding water temperature, salinity and 

turbidity. In both habitats, a strong fortnight variability was superimposed on the seasonal 

cycle. In the intertidal habitat, stronger and faster changes were observed during tidal ebb 
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and flood, associated to sudden changes between immersion and exposure to sunlight and 

wind. For the intertidal communities, the experienced environmental variability is known to 

be characterized by a wider range of conditions than those observed only during low tide 

periods, due to the contrast between conditions during submersion under high tide (not 

monitored in this study) and air light exposure during low tide (de Jonge and van Beusekom, 

1995; Koh et al., 2007; Pratt et al., 2014). These patterns of temporal variability were 

essentially the same in all sampling sites, despite the different time delay of the tidal 

propagation within the estuary, from sites GE to VA. The observed patterns of spatial and 

temporal environmental variability are typical of tidal estuaries, strongly dominated by the 

tidal rhythm (Brito et al., 2009; Kwon et al., 2012; Serôdio and Catarino, 1999). This strong 

periodicity of physical parameters propagated into a large variability in phytoplankton and 

microphytobenthos biomass and photosynthetic activity, ultimately determining their spatial-

temporal patterns of productivity.  

Biomass 

The concurrent and high temporal resolution sampling of water column and intertidal 

sediments carried out in this work allowed for a direct comparison of the spatio-temporal 

variability of the biomass of phytoplankton and microphytobenthos, as well as their 

photophysiology, photosynthetic performance, and productivity.  

In what regards biomass, the direct comparison of absolute values for 

microphytobenthos and phytoplankton is compromised by well-known difficulties, related to 

the calculation of values using comparable units. Ecologically-relevant estimates, 

expressed as areal units [e.g. mg Chl a m-2] are very dependent on the criteria used for the 

vertical integration of volumetric measurements (Flemming, 2000; Serôdio et al. 2001; 

Laviale et al., 2015).  

The spatio-temporal variation of phytoplankton and microphytobenthos biomass 

coincided in several aspects, namely a large variation over seasons and spring-neap tidal 

cycles, and a large variation over sampling sites, with TO showing the highest values. This 

overall tendency for the two communities to co-vary spatio-temporally, especially regarding 

longer (seasonal) time scales, is likely tied to their common control by major abiotic factors, 

like irradiance and temperature (de Jonge et al., 2012; Haro et al., 2019; Liu et al., 2018) 

varying markedly over seasons.  

Both phytoplankton and microphytobenthos biomass varied seasonally, but maximum 

values were observed later for the microphytobenthos (summer-autumn) than for the 
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phytoplankton (spring, summer). The earlier peaking of the phytoplankton biomass may be 

due to the more pronounced seasonal variation in favorable conditions for growth in the 

water column than in the benthos. The high nutrient availability in the water column due to 

upwelling events, or due to terrestrial runoff and fresh water inflow by the end of winter, 

commonly observed in estuaries and coastal areas (Vajravelu et al., 2018; Vidal et al., 2017) 

together with the start of favorable light and temperature conditions in spring, may have 

caused phytoplankton to respond more promptly in terms of growth and accumulation of 

biomass. The sharp decrease in autumn, also typically observed for estuarine 

phytoplankton (Pennock and Sharp, 1985; Tian et al., 2009; Vidal et al., 2017), is likely 

associated to exhaustion of nutrients due to intense uptake during spring and summer. On 

the other hand, seasonal changes in growth conditions for the microphytobenthos might not 

be as relevant as for the water column, especially in what regards nutrients, commonly 

assumed to be not limiting in this habitat all year round (Davis and Mcintire, 1983; Brotas et 

al. 1995). Together with the continuation of favorable light and temperature conditions until 

autumn months, this may explain the prolonging of high biomass levels into later in the year. 

The occurrence of a significant fortnight variability in phytoplankton biomass, with maxima 

during spring tides, may be associated to the fact that during these periods, the shallower 

water column of low tide coincides with the maximum solar irradiance, allowing a more 

efficient illumination of the phytoplankton populations (Madariaga, 2002; Mallin and Paerl, 

2012; Pennock and Sharp, 1985). Also, the faster water current of spring tides are expected 

to increase the resuspension of sediment and benthic cells, which may have contributed to 

the higher chlorophyll a content and nutrients in the water column (Delgado et al., 1991a). 

Naturally, differences in weather conditions between the sampling days may confound the 

detection of periodic variability associated to the spring-neap tidal cycle (Dring and Luning, 

1994; Serôdio et al., 2008). For the microphytobenthos, a tendency for higher value for 

spring tides was also observed, most likely associated to the fact that the periods of low tide 

and light exposure during the middle of the day. Moreover, higher concentration of 

suspended sediment concentration seems to promote higher Chl a concentrations (de 

Jonge and van Beusekom, 1995; Pratt et al., 2014). However, the resulting fortnight 

variability in growth conditions was not sufficiently important to cause a detectable variation 

in the accumulation of biomass. 

Spatially, the coincidence of higher amounts of both planktonic and benthic biomass 

may be related to higher rates of resuspension associated to stronger tidal currents it the 

TO sampling site (Brito et al., 2009; de Jonge and van Beusekom, 1995; Delgado et al., 

1991b), that would cause a larger transfer of microalgal biomass from the benthos to the 
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water column. The reasons for the higher abundance of benthic biomass at this site are 

uncertain, but maybe related to a larger nutrient availability, caused by the combination of 

finer sediment granulometry, favoring organic matter remineralization, and of agricultural 

run-off, originated in the farm fields bordering the canals of the estuary. 

Photophysiology and photoacclimation state 

The photophysiological parameters ΔF/Fm’ and σII are mostly controlled by changes 

in incident irradiance (Andersson et al., 2018; Grégoire et al., 2015; Houliez et al., 2013; 

Madariaga, 2002; Schreiber et al., 2012) and therefore showed large and rapid (minutes to 

hours) variations during daytime periods. However, both ΔF/Fm’ and σII also showed 

consistent patterns of variation along the year, denoting longer changes in the 

photophysiological and photoacclimation state of phytoplankton and microphytobenthos. 

ΔF/Fm’ largely followed the trends observed for the biomass of phytoplankton and 

microphytobenthos, regarding seasonality (peaking in summer and in autumn, 

respectively), the variation along the spring-neap tidal cycle (higher during spring tides in 

the case of the phytoplankton; not varying significantly in the case of the 

microphytobenthos) and spatial distribution (higher values at site TO, both communities). 

The similarity between the spatio-temporal variation of ΔF/Fm’ and biomass suggests that 

the accumulation of biomass is directly related with better conditions enabling a high 

photosynthetic performance. The higher ΔF/Fm’ values for the phytoplankton observed 

during spring tides may be associated to the increased availability of nutrients caused by 

the higher resuspension rates typical of the faster tidal currents occurring during spring 

tides. The lack of significant variations in ΔF/Fm’ of the microphytobenthos may result from 

the fact that, in the sedimentary environment, photosynthesis is more limited by light 

conditions than nutrient availability, which, being present in non-limiting levels, may support 

a good photophysiological condition along the spring-neap tidal cycle.  

Regarding σII, there was a general tendency to follow the patterns of spatial and 

temporal variation of ΔF/Fm’ and biomass, namely concerning seasonal and fortnight time 

scales for phytoplankton. In other cases, the two parameters diverged from each other, 

indicating the independent short-term regulation of the processes controlling ΔF/Fm’ and σII. 

A marked difference between the photophysiology of the phytoplankton and the 

microphytobenthos was revealed by the consistently higher values of σII measured for the 

phytoplankton. Higher values of σII are indicative of larger PSII antenna sizes, capable of 

higher light absorption efficiency, beneficial in low light environments and typical of low-light 



 

 

 

143 

Spatio-temporal varabilty of primary production                                                          |    Chapter 5 

acclimated organisms (Schreiber et al., 2012). Higher σII values may be advantageous for 

the planktonic microalgae living in turbid waters of the Ria de Aveiro estuary, where the 

experienced light regime calls for the optimization of light absorption. The lower σII values 

measured in the microphytobenthos samples are, on the other hand, symptomatic of a 

smaller PSII antenna, consistent with a high light environment, as the one at the sediment 

surface when directly exposed to sunlight during low tide.  

The results on photoacclimation state obtained from RLCs repeat, in general terms, 

the overall patterns of spatio-temporal variability in biomass, ΔF/Fm’ and (to a lesser extent) 

σII, with α and rETRm reaching maximum values during spring/summer (phytoplankton) and 

autumn (microphytobenthos), during spring tides (both communities). The marked seasonal 

photoacclimation in photophysiological parameters ΔF/Fm’ and σII described above was 

confirmed by comparable large changes in the photoacclimation parameter Ek, for both 

phytoplankton and microphytobenthos. The highest Ek values observed during summer and 

the lowest values observed during winter denote a variation from a high light-acclimation to 

a low-light acclimation state following the change in light conditions between the two 

contrasting seasons. Although not as clear as for σII, the differences observed between Ek 

measured in phytoplankton and in microphytobenthos samples, showing a tendency for 

higher values in the later, supports that the benthic communities appear as high-light 

acclimated, when compared to their planktonic counterparts. Microphytobenthos showed 

moreover a fortnightly pattern regarding its photoacclimation state, showing higher values 

for ΔF/Fm’ α and rETRm during spring tides when compared to neap tides. A consequence 

more likely due to the higher light dose received during spring tides rather than an effect of 

tidal height (Haro et al., 2019). The high light acclimation of estuarine intertidal 

microphytobenthos has been referred before, supported by relatively high values of Ek 

(Serodio et al. 2005, Frankenbach et al. 2018). It has been explained by the exposure to 

high solar irradiance levels during low tide periods, and, especially in the case of 

assemblages dominated by motile diatoms (epipelic), by the use of vertical migration as a 

form of control of light exposure within the photic zone of the sediment (Consalvey et al., 

2004; Haro et al., 2019; Serôdio et al., 2001). Curiously, the microphytobenthos did not 

show a significant variation in the photoacclimation state between sampling sites, as 

opposed to what was previously reported for the sites VA and GE (Frankenbach et al 2018). 

This discrepancy cannot be explained yet, but might be due to differences in taxonomical 

composition.  
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Biomass-specific, areal and ecosystem-level productivity 

In this study, the daily biomass-specific rates of productivity, PB, were derived from 

the photophysiological parameters related to light usage efficiency (ΔF/Fm’ and σII), 

integrated over daylight hours. As such, the patterns of spatio-temporal variation of PB 

largely followed the ones observed for those parameters. Probably due to the larger values 

of σII measured in the water column, the production rates of the phytoplankton resulted 

substantially higher than those of the microphytobenthos, for all sampling occasions and 

sites. The incorporation of photosynthetic biomass and the vertical light attenuation in the 

water and in the sediment in the calculation of daily areal productivity rates did not alter the 

overall patterns of spatio-temporal distribution. However, it resulted in the inversion of the 

relative importance of phytoplankton and microphytobenthos. As expressed by units of 

area, benthic carbon fixation rates were on average 1.9 times higher than those in the water 

column. Despite the fact that the productivity rates determined in this study were based on 

chlorophyll fluorescence measurements, they fitted well within the range published values, 

based on the direct quantification of carbon fixation or oxygen evolution, for both estuarine 

phytoplankton and microphytobenthos (Table 2).  

Regarding the phytoplankton, the average annual rate of 48.9 g C m-2 yr-1 appears as 

relatively low considering the median value of 252 g C m-2 yr-1 reported by the exhaustive 

meta-analysis study of Cloern et al. (2014). According to the classification of Nixon (1995), 

the studied sites from the Ria de Aveiro could be classified as oligotrophic. On the other 

hand, the average annual rate of 105.3 g C m-2 yr-1 determined for the microphytobenthos, 

is remarkably close to the value of 100 g C m-2 yr-1, taken as the typical value for primary 

production rate on estuarine intertidal flats (Underwood and Kromkamp, 1999; Daggers et 

al., 2018).  

The relative contribution of the phytoplankton and the microphytobenthos to the 

ecosystem-level productivity has been discussed for decades (Underwood and Kromkamp, 

1999), and some studies have reported that benthic productivity may reach over 50% of 

total estuarine carbon fixation (Cadée and Hegeman, 1974; Joint, 1978). The results of the 

present study showed that, despite an area twice as large accounted for the phytoplankton 

than for the microphytobenthos, the primary production carried out by the 

microphytobenthos may reach more than 60% of the 12 kt C yr-1 annual rate estimated for 

the whole Ria de Aveiro. This estimate is amongst the highest reported in the literature and 

similar to the value of 63.5% obtained by Joint (1978).  

 



 

 

 

145 

Spatio-temporal varabilty of primary production                                                          |    Chapter 5 

Table 2. Daily and annual primary productivity rates of phytoplankton and microphytobenthos as measured in 
this study and in published studies. Average values unless stated otherwise. a maximum daily values. b range 
of complied values. 
 

 Areal production Reference 

Phytoplankton Daily 
(mg C m-2 d-1) 

134.1 This study 
 0.23-1.18 Morelle et al. 2018a 
 0.69 Cloern et al. 2014 
 2-778 Gameiro et al. 2011 
 1.2-4.8 Kromkamp et al. 2008 

 
Annual 
(g C m-2 yr-1) 

48.9 This study 

  252 Cloern et al. 2014 
  140-700 Underwood & Kromkamp 1999 
  77-92 Gameiro et al. 2011 
  64.8 Morelle et al. 2018 

Microphytobenthos Daily                      
(mg C m-2 d-1) 259.8 This study 

  1-2888b MacIntyre et al. 1996 
  50-200 Daggers et al 2018 
  5-1900 Underwood & Kromkamp 1999 
  427 Serôdio & Catarino 2000 

 
Annual 
(g C m-2 yr-1) 

105.2 This study 

  142 Savelli et al. 2018 
  47-178 Brotas et al. 1995 
  156 Serôdio & Catarino 2000 
  60-300 Underwood & Kromkamp 1999 

     

Assumptions and limitations of chlorophyll fluorescence-based productivity 

estimates 

With the aim of obtaining an integrated characterization of the spatio-temporal 

variability of the photosynthetic activity and productivity of benthic and planktonic microalgal 

communities, this study employed a synoptic sampling plan to measure the activity of 

microphytobenthos and phytoplankton under in situ conditions, on the same sites, same 

days, and with the same high temporal resolution. Key for the parallel comparison of the 

two communities was the use of the same chlorophyll fluorescence-based technique for 

planktonic and benthic samples.  

A novelty of this study was the estimation, for the first time, of production rates of 

microphytobenthos based on measurements of absolute rates of PSII electron transport 

(ETR). Previous studies have used chlorophyll fluorescence to estimate productivity rates 

of microphytobenthos, but they were based on determinations of relative ETR, integrated 

on empirically-derived indices (Barranguet 2000, Serôdio et al., 2007). For the 

phytoplankton, the use absolute ETR-based indices for the estimation of productivity rates 
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has been addressed extensively for a long time, mostly based on ‘pump-and-probe’ (e.g. 

Kolber and Falkowski, 1993; Sakshaug et al., 1997) or ‘fast repetition rate fluorometry’ 

(FRRF) (e.g. Houliez et al., 2014) protocols. The protocol used in the present study, 

developed only recently, and specifically for the MC-PAM, and has been used only a few 

times, and only for phytoplankton (Morelle et al., 2018a; Morelle and Claquin, 2018). While 

being also based on single-turnover pulses (Kromkamp et al., 2008; Schreiber et al., 2012), 

this protocol is somewhat different from the pump-and-probe or FRRF approaches. 

Although no direct comparison has been carried out between two types of protocols, the 

results of this study in what regards the absorption cross section, σII, a parameter crucial 

for the determination of absolute ETR values, are comparable and well within the range of 

values obtained with other instruments.  

This study is also novel because absolute ETR-based productivity estimates were 

applied to both phytoplankton and microphytobenthos. This approach presents several well-

known significant operational advantages as compared to traditional methods based on the 

direct determination based on carbon fixation or oxygen evolution. In the context of the 

present study, it allowed for direct comparison of the two groups regarding the 

characterization of photoacclimation state, quantification of photosynthetic activity, and 

estimation of primary productivity. This approach followed in this study is, however, based 

on several important assumptions. These apply to both phytoplankton and 

microphytobenthos, and can be categorized as follows:  

a) Conversion of fluorescence indices to biomass-specific carbon fixation rates. The 

method associated to the MC-PAM requires the a priori assumption of the values of PSU, 

ne(O2) and PQ (Eqs. 4,5) (Schreiber et al., 2012). A compilation of experimental data 

compiled by Suggett et al. (2010) shows that ne(O2), the number of electrons required for 

evolution of 1 molecule of O2, varies from below 1 to above 11 e- O2
-1. However, the values 

measured for diatoms, dinoflagellates and haptophytes, the dominant groups in the 

phytoplankton and microphytobenthos of the Ria de Aveiro (Frankenbach et al., 2018; Vidal 

et al., 2017) vary between 3 and 6 e- O2
-1. In this study, ne(O2) was assumed to reach 5 e- 

O2
-1, a value similar to those used by other authors (Kromkamp et al., 2008; Morelle et al., 

2018 Schreiber et al., 2012). The photosynthetic quotient, PQ, was assumed be 1.1 mol C 

mol O2
-1, a value commonly accepted, including in studies on estuarine phytoplankton 

(Kromkamp et al., 2008). PSU, the number of chlorophyll a molecules per photosynthetic 

unit, is the most variable parameters required to calculate PB from fluorescence 

measurements, having a large direct impact on the final carbon fixation rates. For 

eukaryotes, the values assumed for PSU have varied from 500 (Lawrenz et al., 2013, 
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Schreiber et al 2011) and 1000 Chl PSII-1 (Morelle and Claquin, 2018; Schreiber et al., 

2012). For diatoms, dinoflagellates and haptophytes, PSU varies between ca. 300 and 700 

Chl PSII-1, averaging around 620 Chl PSII-1 (Suggett et al., 2010). In the present study, PSU 

was assumed to be 600 Chl PSII-1, a value considered representative of the main groups 

that dominate the phytoplankton and the microphytobenthos in the Ria de Aveiro. In the 

absence of more detailed data, the same value was assumed for both groups although it is 

conceivable that it may differ between phytoplankton and the microphytobenthos, not only 

due to different taxonomic composition as to differences in photoacclimation state. All things 

considered, it seems unlikely that a depart from these assumptions would significantly affect 

the main conclusions of this study. Even considering the widest range of variation of ne(O2), 

PQ and PSU, the large difference between the areal and ecosystem-based productivity of 

phytoplankton and microphytobenthos would still hold.  

b) Depth-integration of biomass-specific carbon fixation rates to areal productivity. An 

implicit assumption of the approach used in this study was to consider, for both the 

phytoplankton and the microphytobenthos, that the photosynthetic activity was constant 

over depth. That is, that the responses measured for samples collected at a single depth 

(water column) or at the surface (sediment) represent the ones in the remaining regions of 

the photic zone. For the phytoplankton, this assumption seems realistic, due to the 

homogeneity of the water column in the shallow and highly turbulent regions of the estuary. 

In the case of the microphytobenthos, this approach may be more problematic, especially 

due to the fact that the measurements were carried out on cells in suspension, under 

conditions not representative of the vertically heterogenous physico-chemical environment 

of the sediment (MacIntyre et al., 1996; Serôdio, 2003).  

c) Upscaling of areal to ecosystem-level productivity. Critical for a realistic evaluation 

of the planktonic and benthic productivity at the estuary-level, both in absolute as in relative 

terms, is the correct accounting of the area of subtidal and intertidal habitats, associated to 

phytoplankton and microphytobenthos productivity, respectively. Also important is to 

consider the time of day, and its variation along the spring-neap tidal cycle, when low or 

high tides occur, which determine the light incident on exposed tidal flats and the light 

penetration in the water column. In this study, due to the lack of detailed information, 

estuarine-level production was calculated from spatially and temporal-averaged productivity 

rates. The error associated to this approach is hard to quantify and can only be assessed 

with a much more extensive sampling program. Another assumption of this study was to 

consider that no benthic productivity occurred during immersion in high tide. However, this 
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common assumption seems justified by the high turbidity of the water column and vertical 

migratory behavior of benthic diatoms (Daggers et al., 2018; Serodio and Catarino, 2000).  
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A main achievement of this study was the establishment of novel methodological 

approaches for the study of the photophysiology and productivity of microphytobenthos. On 

one hand, the validation and optimization of imaging fluorometry based on multi-actinic 

illumination to be applied to microphytobenthos samples paved the way to study their 

photophysiology with unprecedented detail (Chapters 2, 3). Their application to two different 

natural microphytobenthic communities of the Ria de Aveiro allowed a deeper 

understanding of the relative importance of photoprotective mechanism against 

photoinhibition, through the comparative assessment of their effective impact in preventing 

PSII photoinactivation (Chapter 3). On the other hand, the application of novel chlorophyll 

fluorescence protocols allowed to measure the absolute rates of PSII electron transport and 

enabled the estimation of primary production rates. This approach resulted in a comparative 

evaluation of the phytoplankton and microphytobenthos productivity of in a same estuary, 

the Ria de Aveiro, along the same spatial and temporal scales (Chapter 5).  

The study of microphytobenthos photophysiology is often based on the 

characterization of light-response curves of PSII relative electron transport rate (rETR), 

measured using Pulse Amplitude Modulation (PAM) fluorometry (e.g. Kromkamp et al., 

1998; Laviale et al., 2015; Perkins et al., 2010; Serôdio et al., 2008). The traditional 

approach of generating light response based on sequential protocols (Chevalier et al., 2010; 

Lefebvre et al., 2011; Serôdio et al., 2005; Ubertini et al., 2015; Waring et al., 2007) has 

major drawbacks, namely the lack of independency between measurements (Herlory et al., 

2007; Ihnken et al., 2010; Jesus et al., 2006; Perkins et al., 2006), and, in the case of 

microphytobenthic biofilms, the confounding influence of vertical migration (Herlory et al., 

2007; Jesus et al., 2006; Perkins et al. 2006). Light-induced vertical movements of motile 

diatoms during the construction of the light curve unavoidably affect the characterization of 

the inherent physiological response of the cells forming the biofilm. This work (Chapter 2) 

showed that these limitations may be overcome by the adaptation of a recently-proposed 

method, based on the generation of non-sequential light-response curves using multi-actinic 

light sources (‘single-pulse light curves’, SPLC; Serôdio et al., 2013). The method was 

optimized for the study of microphytobenthos biofilms, in order to allow to measure steady-

state light responses, while minimizing the effects of vertical migration.  

This approach was shown to be an advantageous alternative in relation to 

conventionally used protocols and is particularly promising for the case of biofilms 

dominated by motile species. It is foreseen that it may be used to study with unprecedented 

resolution the light-response of benthic microalgal communities, for example detecting 
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short-term changes in their photoacclimation state under the rapidly changeable abiotic 

conditions typical of the intertidal environment.  

Photoinhibition has been considered a major potential limiting factor of 

microphytobenthos productivity (Admiraal, 1984; Kromkamp et al., 1998b; Serôdio et al., 

2001). The high photosynthetic rates often observed in spite of the harsh conditions of the 

intertidal habitat have been attributed to the operation of particularly effective 

photoprotective mechanisms: photo-regulated vertical migration, allowing motile cells to 

safely optimize the balance between light exposure and dissipation of excess absorbed light 

energy (the ‘behavioral photoprotection’ hypothesis), and energy-dissipation mechanism, 

collectively named as non-photochemical quenching (NPQ) (Admiraal, 1984; Consalvey et 

al., 2004; Laviale et al., 2015; Serôdio et al., 2012; Underwood and Kromkamp, 1999). The 

relative importance of behavioral and physiological protection has attracted considerable 

interest in recent years (Barnett et al., 2015; Blommaert et al., 2017; Mouget et al., 2008; 

Pniewski et al., 2015; Serôdio et al., 2001; Van Leeuwe et al., 2008). However, the 

evaluation of the photoprotective role of vertical migration and NPQ has been based on 

indirect evidence, namely on the magnitude of NPQ or net photoinactivation, and not on the 

actual effects in terms of induced decrease of the susceptibility to photodamage.  

The recently-developed multi-actinic approach of Serôdio et al. (2017) allowed to 

measure rates of PSII photoinactivation and repair, by assessing the efficiency of 

physiological photoprotection in terms of photosystem II (PSII) photoinactivation caused by 

light stress. The results reported in Chapter 3 brought new light to the understanding of the 

interplay between photoprotection and photoinhibitory stress. The comparison of the 

inherent physiological photoprotection capacity of epipelic (dominated by motile species) 

and epipsammic (dominated by non-motile species) diatom communities, point to a trade-

off between motility-based and physiological photoprotective mechanisms, a corollary of the 

‘behavioral photoprotection’ hypothesis (Juneau et al., 2015; Laviale et al., 2016; Serôdio 

et al., 2001): epipelic species, having the possibility to adjust light exposure behaviorally, 

have a reduced physiological capacity for preventing photodamage and are more 

susceptible to photoinactivation; non-motile forms are less susceptible to photoinactivation, 

and more dependent on physiological mechanisms to optimize their photoprotection 

capacity. 

Due to its high-throughput capacity, the approach used in this study opens the way to 

the measurement of PSII photoinactivation and repair and may easily be applied to 

systematically test the ‘new paradigm’ hypothesis in different photoautotrophs. In the case 

of microphytobenthos, a natural follow-up of this work would be the study of the 
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photoinactivation versus repair balance in populations from habitats of contrasting light 

regimes (e.g. different tidal height) and taxonomic composition.  

The existence of substantial amounts of chlorophyll a buried in sediment layers below 

the surface is well known (Brotas and Serodio, 1995; De Jonge and Colijn, 1994; Fenchel 

and Straarup, 1971; Mundree et al., 2003; Steele and Baird, 1968). This subsurface 

biomass has been hypothesized to play an important ecological role in intertidal estuarine 

areas, as a source of photosynthetically competent cells capable of ‘re-inoculating’ the 

surface and contributing to the maintenance of high levels of productivity (Delgado et al., 

1991; Easley et al., 2005). However, the importance of this subsurface stock of microalgae, 

as well as their potential viability, has attracted limited attention (Wasmund, 1989). 

The study described in Chapter 4 allowed to quantitatively evaluate the relative 

importance of subsurface microalgal biomass, for different sediments of the Ria de Aveiro. 

It was found that surface biomass (0.0-0.5 cm) only accounted for one fifth to one third of 

the total biomass present below the surface (0.5-10 cm), and that the amount of subsurface 

viable biomass reached 2-3 times the biomass present at the surface layers. The study also 

confirmed the role of subsurface microalgal biomass as a potential source of 

photosynthetically active cells for the biofilm on the surface. Buried cells were found to 

withstand prolonged periods in continuous darkness and to regain photosynthetic activity 

within a short period (1.5 to 3 hours, depending on sediment type) of exposure to surface 

conditions. 

The findings of this study call the attention for the importance of subsurface functional 

microalgal biomass, paving the way for similar approaches in other estuarine ecosystems. 

An interesting aspect that deserves a more in-depth analysis is the detailed taxonomic 

characterization of the subsurface microalgal populations, and of the viability variability 

amongst species or higher taxonomic groups. A natural follow up of this study would be the 

direct quantification of vertical distribution of sediment carbon content, which here was only 

inferred from chlorophyll a content.  

The phytoplankton and the microphytobenthos have been considered as the main 

groups of primary producers in the estuarine environment (Cloern et al., 2014; Underwood 

and Kromkamp, 1999). Likely, due to methodological difficulties, most studies on estuarine 

primary productivity have focused only on one of these groups, resulting in the fact that 

directly comparable carbon fixation budgets are still relatively scarce. By taking advantage 

of a novel chlorophyll fluorescence-based method, the study of Chapter 5 allowed the 

detailed characterization of the spatio-temporal variability of the primary productivity of 

phytoplankton and microphytobenthos in the tidal estuarine system of the Ria de Aveiro. 
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Being based on synoptic high temporal resolution measurements, this study further enabled 

to estimate directly comparable rates of primary productivity for the two groups. While 

biomass-specific productivity rates were found to reach higher levels for the phytoplankton 

than for the microphytobenthos (averaging 68.0 and 19.1 mg C mg Chl a-1 d-1, respectively), 

areal production rates were generally higher for the microphytobenthos, with annual rates 

reaching 105.2 g C m-2 yr-1, as opposed to 49.9 g C m-2 yr-1 for the phytoplankton. When 

upscaling for the whole estuarine area of the Ria de Aveiro, the results reinforce the 

importance of the intertidal areas, found to contribute with more than 60% of the total 

ecosystem-level budget 12428.3 t C yr-1.  

Together with the results of Chapter 4, these results reinforce the importance of the 

intertidal areas as the main sites or primary production, acting as significant carbon sinks 

and reservoirs of active ‘blue carbon’. In terms of primary productivity, the importance of the 

intertidal areas is likely higher than the estimated in this study, as other communities of 

primary producers, such as seagrass and macroalgae, will also contribute to annual carbon 

fixation budgets.  

The fluorescence protocol used in this study for the estimation of primary productivity 

was introduced with the MC-PAM in 2012 and has only been used a few times for this 

purpose (Morelle and Claquin, 2018). The results here shown, especially considering that 

they cover a wide range of spatial and temporal scales of in situ variability, indicate that this 

method represents a valid approach for the study of primary productivity of microalgae 

communities. Considering the operational advantages of fluorescence-based methods, this 

approach may in the future be used for a more rapid and comprehensive characterization 

of the primary productivity of phytoplankton and microphytobenthos in other aquatic 

ecosystems. The full validation of this approach would benefit from the systematic 

comparison with other methods, either fluorescence-based methods that were established 

longer ago (e.g. FRRF), or methods relying on the direct measurement of carbon uptake. 
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