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Insuficiência cardíaca, Reprogramação direta, Cardiomiócitos, 

lncRNAs, Metabolismo 

 

 

As doenças cardíacas são uma das principais causas de 

mortalidade nos países desenvolvidos. A patologia associada é 

tipicamente caracterizada pela perda de cardiomiócitos que leva, 

eventualmente, à insuficiência cardíaca. Atualmente, existem muitas 

estratégias promissoras para a regeneração cardíaca. A reprogramação 

cardíaca direta tem se tornado conhecida como uma nova abordagem 

terapêutica para regeneração cardíaca depois de uma lesão. A 

reprogramação cardíaca direta é um processo simples e rápido, no 

entanto os seus mecanismos moleculares e de maturação celular 

continuam maioritariamente desconhecidos. 

A reprogramação cardíaca direta é uma abordagem terapêutica 

com grande potencial para se tornar uma das principais estratégias da 

medicina regenerativa no combate à insuficiência cardíaca, uma vez que 

os fibroblastos estão facilmente disponíveis no coração e dividem-se 

facilmente ao contrário dos cardiomiócitos. Os fibroblastos cardíacos 

são uma população alargada no coração que, após uma lesão, tornam-se 

em miofibroblastos ativos contribuindo para a fibrose. Atualmente, 

sabe-se que uma combinação específica de três fatores de transcrição, 

Mef2c, Gata4 e Tbx5 (MGT), é suficiente para reprogramar fibroblastos 

cardíacos de ratinho em cardiomiócitos induzidos. Por outro lado, 

quando fibroblastos humanos são infetados com MGT apresentam uma 

pequena percentagem de conversão.  

Com o retrovírus MGT transfectamos com sucesso: fibroblastos 

adultos de ratinho (MAFs), Feeders e Gm 03348 (fibroblastos humanos 

com 10 anos de idade). Através da análise de qPCR, avaliamos a 

expressão dos lncRNAs: Gm 15856, Mir22hg, Gm 027028 e Gm 28592. 

O nosso objetivo foi estudar quais os lncRNAs são os melhores 

candidatos para knockdown, e assim melhorar a eficiência da 

reprogramação cardíaca direta. Para além disso, estudamos como a 

manipulação de nutrientes nos meios de cultura pode influenciar a 

reprogramação cardíaca direta. Verificou-se que meios com níveis mais 

altos de glucose e glutamina apresentaram maiores taxas de 

sobrevivência e proliferação celular.
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Heart failure, Direct reprogramming, Cardiomyocytes, lncRNAs, 

Metabolism 

 

 

Heart disease is one of the leading causes of mortality in 

developed countries. The associated pathology is typically 

characterized by the loss of cardiomyocytes that leads, eventually, to 

heart failure. Presently, there are many promising strategies for 

cardiac regeneration. Direct cardiac reprogramming is becoming 

known as a novel therapeutic approach to regenerate injured hearts.  

Direct cardiac reprogramming is a simple and quick process however, 

the molecular mechanisms of cardiac reprogramming and 

cardiomyocyte-like cells functional maturation remain to be 

understood. 

Direct cardiac reprogramming has great potential to become 

one of the main strategies for regenerative medicine in heart failure 

since fibroblasts, contrary to cardiomyocytes which do not divide, are 

easily available in the heart, they are a large population of cells in the 

heart, which become activated and turn to myofibroblasts, 

contributing to fibrosis after cardiac injury. Currently it is known that 

a specific combination of three transcription factors, Mef2c, Gata4 

and Tbx5 (MGT), are enough to reprogram non-myocyte mouse heart 

cells into induced cardiomyocyte-like cells. Nevertheless, human 

fibroblasts when infected with MGT appeared to have a small 

percentage of conversion.  

With MGT retrovirus we successfully transfected: mouse adult 

fibroblasts (MAFs), Feeders and Gm 03348 (human fibroblasts with 10 

years old). Through qPCR analysis we evaluated the expression of 

lncRNAs: Gm 15856, Mir22hg, Gm 027028 and Gm 28592. Our goal 

was to understand which lncRNAs are the best candidates to 

knockdown in order no enhance direct cardiac reprogramming. In 

addition, we studied how nutrient manipulation in cell culture media 

can influence direct cardiac reprogramming. It was found that media 

with higher levels of glucose and glutamine had larger rates of cellular 

survival and proliferation. 
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1. Heart disease 

 

The World Health Organization (WHO) has been reporting every year that 

cardiovascular diseases are the leading causes of death in the world (Chang et al., 2019). 

Remarkably, aging and cardiovascular diseases lead to a progressive loss of cardiomyocytes, yet 

the adult mammalian heart has limited regenerative capacity (Klattenhoff et al., 2013). Heart 

attack or necrosis of the myocardium leads to the loss of cardiomyocytes. This loss has linked to 

an impaired heart function and hampered regenerative capability (Chang et al., 2019). When a 

large amount of cardiomyocytes are lost, the human heart is incapable to replace them due to its 

very low rate of turnover (Hudson and Porrello, 2013). The heart is not considered a post-

mitotic organ however, the turnover of cardiomyocytes in the adult heart is around 1% per year 

which is insufficient to replace the cardiomyocytes loss caused by myocardial infarction (MI) 

(Malandraki-Miller et al., 2018). 

There are multiple causes of heart failure, coronary artery disease is the most common 

one, and it can lead to MI. Presently there are available a large range of pharmaceutical drugs 

and surgical techniques to prevent further deterioration or restore function to the failing heart. 

Some of the most prominent treatments currently include beta-blockers, angiotensin converting 

enzyme or receptor inhibitors, surgical valve replacement/reconstruction and 

reperfusion/revascularisation, and all these strategies have contributed to a substantial decrease 

in patient mortality rates. However, for end-stage heart failure the only long-term option is heart 

transplantation which has considerable disadvantages as reduced availability of matched donor 

hearts and life-long immune-suppression (Hudson and Porrello, 2013). 

Subsequently after cardiac injury, cardiomyocytes undergo necrotic and apoptotic cell 

death and cardiac fibroblasts are activated to produce collagen and other extracellular matrix 

components, leading to fibrosis and harmed cardiac function. Following injury, the capacity for 

regeneration of adult mouse heart is limited however, the neonatal mouse heart can regenerate. 

The main goal of regenerative cardiovascular medicine is to repair injured hearts by replacing 

cardiomyocytes and diminishing fibrosis. Transplantation of cardiac stem cells or stem cell-

derived cardiomyocytes to improve cardiac function has clinical potential, however these 

techniques present low efficiency (Song et al., 2012). In addition, although embryonic stem 

cells have a clear cardiogenic potential, its efficiency in cardiac differentiation brings risk of 

tumour formation, and issues of cellular rejection (Ieda, J. Fu, et al., 2010; Hashimoto et al., 

2019). 

During the last years it has been explored direct reprogramming of resident cardiac 

fibroblasts (CFs) by cardiogenic transcription factors (TFs) into induced cardiac-like myocytes, 
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bypassing the pluripotent state. The human heart is composed of cardiomyocytes, vascular cells, 

and cardiac fibroblasts. Indeed, 50% of the cells in the heart are cardiac fibroblasts. Cardiac 

fibroblasts (CFs) are somatic cells completely differentiated that offer structure support, secrete 

signals, and contribute to scar formation after cardiac injury. Most population of endogenous 

CFs are a potential source of cardiomyocytes for regenerative therapy, in the case directly 

reprogram the resident fibroblasts into beating cardiomyocytes (Ieda, J. Fu, et al., 2010; 

Hashimoto et al., 2019). 

 

2. Noncoding RNAs in the heart  

 

Since the Human Genome Project (HGP) was concluded, it is known that about 20,000–

25,000 protein-coding genes exists in human species, however just about 2-3% of the 

transcriptome codes for proteins (Laks, 1982; Trembinski et al., 2020). HGP generated interest 

in the scientific community to investigate the functions of noncoding sequences, specifically 

lncRNAs (Laks, 1982). More than 98% of the genome is actively transcribed to produce 

thousands of noncoding RNAs (ncRNAs). Various classes of noncoding RNAs have been 

described over the years, including ribosomal RNAs, transfer RNAs, microRNAs, long non-

coding RNAs (lncRNAs), etc. (Figure 1) (Trembinski et al., 2020).  

 

 

Figure 1. Transmission of genetic information: primary transcripts give origin to protein coding mRNAs and 

noncoding RNAs. A small portion of mRNAs are translated into protein but, the majority are noncoding RNA 

molecules subdivided into: lncRNA, circular RNA, miRNA, transfer RNA, ribosomal RNA, small nuclear RNA, etc. 

Adapted from (Bär, Chatterjee and Thum, 2016). 



4 
 

MicroRNAs (miRNAs) are a class of small noncoding RNAs (~22 nucleotides) and 

more than 2,000 miRNAs have been found in human genome, several were conserved through 

evolution. miRNAs repress gene expression by degrading target mRNAs and/or inhibiting their 

translation every time that happens an imperfect base pairing with mRNAs in a sequence-

dependent manner. Also was discovered that miRNAs have an important role in the regulation 

of a broad range of biological activities and diseases (Laks, 1982).  

More recently researchers found that lncRNAs (~200 nucleotides) have several 

implications in a variety of biological processes. Investigating the role of miRNAs and 

lncRNAs in gene expression regulation during cardiovascular development and function will 

greatly facilitate the development of new therapeutics of treating cardiovascular disease (Laks, 

1982; Hobuß, Bär and Thum, 2019). Given the emerging regulatory potential of non-coding 

RNAs for controlling diverse cellular processes, these molecules may offer potential solutions 

in this pursuit of cardiac regeneration (Hudson and Porrello, 2013). 

The subclass of ncRNAs better studied is miRNAs, they have a crucial role in 

development and stress adaptation in the heart. miRNAs initiate biological pathways by 

targeting numerous mRNAs implicated in cell growth, differentiation, and apoptosis by 

suppressing the translation of central protein effectors. LncRNAs are characterized by a variety 

of molecular functions due to their ability to fold into complex structures and act as scaffolds 

for protein-protein interactions and/or chaperones that direct protein complexes to specific RNA 

or DNA sequences. Essential roles for some lncRNAs in heart development have been 

discovered over the last years (Matkovich et al., 2014). lncRNAs display multifaceted biological 

functions and interact with a range of other RNAs or proteins. Differing on their subcellular 

localization in the nucleus or cytoplasm, lncRNAs can interact with transcriptional and post-

transcriptional gene regulation, as well as mRNA translation, respectively (Hobuß, Bär and 

Thum, 2019). 

 

2.1. MiRNAs in the heart 

 

Total inhibition of miRNAs expression in the heart is the first step to understanding the 

function of miRNAs in cardiogenesis. For miRNA maturation is necessary a RNase III 

endoribonuclease named Dicer. In case of Dicer’s deletion there is an early embryonic lethality 

in mice due to dilated cardiomyopathy and heart failure. Many miRNAs have indispensable 

roles in cardiac development (Laks, 1982).  
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Deregulated cardiac growth is a characteristic feature of heart disease (Bischof and 

Krishnan, 2016). miR-1 is tissue-specifically expressed in the heart and skeletal muscle, and its 

genetic deletion compromises cardiogenesis and the expression of many cardiac contractile 

proteins (Laks, 1982). In addition, miR-1 is downregulated in heart disease, it is capable to 

induce the expression of genes necessary for deregulated cardiac growth through repression of 

calmodulin and myocyte enhancer factor 2 A (Mef2a) expression (Bischof and Krishnan, 2016). 

Another miRNA is miR-133, it is transcribed from the same bicistronic transcription 

unit as miR-1 and is also expressed specifically in cardiac and skeletal muscle. Inhibition of 

miR-133 in vitro and in vivo causes hypertrophic growth, whereas ectopic miR-133 expression 

showed to inhibit cardiac hypertrophy in vitro. Conversely, cardiac specific ectopic miR-133 

expression reduced cardiomyocyte apoptosis, attenuated fibrosis and helped with the 

maintenance of normal cardiac function (Bischof and Krishnan, 2016). 

Recently were identified about 40 miRNAs that greatly increased cell proliferation in 

neonatal mouse and rat cardiomyocytes. The miRNAs, miR-590 and miR-199a demonstrated to 

induce cardiomyocyte proliferation in vitro and in vivo. All these evidences together suggest 

that miRNAs have an important role in the regulation of cardiomyocytes proliferation and heart 

regeneration, suggesting their significant therapeutic potential to treat heart failure (Laks, 1982). 

Ischemia is an independent risk factor of cardiovascular incidents, which leads to MI 

and ischemia-reperfusion (I/R) injury. Numerous miRNAs have a role in the regulation of these 

pathologic processes, particularly cardiomyocyte apoptosis after MI and I/R injury. miR-92a is 

a member of the miR-17-92 cluster implicated in cardiomyocytes proliferation and survival. 

Studies reported that inhibition of miR-92a improved cardiac function and reduced 

cardiomyocyte apoptosis after MI in mice. On otherwise miR-320 is downregulated after I/R 

injury, it was demonstrated that miR-320 promotes cardiomyocyte apoptosis. Collectively, these 

studies reveal that miRNAs are key regulators of cardiomyocyte survival and cardiac 

remodelling in response to pathophysiological stresses (Laks, 1982). 

 

2.2.  LncRNAs in the heart 

 

Although thousands of lncRNAs were discovered in eukaryotes, many of them are 

species specific also, seem to be less conserved than protein-coding genes. Importantly, 

lncRNAs are differentially expressed in tissues, suggesting that they regulate lineage 

commitment (Klattenhoff et al., 2013; Bischof and Krishnan, 2016). Presently, more than 

100,000 lncRNAs have been described in humans and numerous lncRNAs have been identified 
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to play important roles in homeostasis and disease (Goldman and Poss, 2020; Trembinski et al., 

2020). 

Braveheart (Bvht) is a novel lncRNA, the first to be found in mice, which was 

discovered to be a critical regulator of cardiovascular commitment from embryonic stem cells 

(Laks, 1982). Bvht is cardiac-enriched approximately threefold compared with other tissues, but 

it is expressed in the heart is at similar levels in embryos and adults (Matkovich et al., 2014). It 

is necessary for activation of a core gene regulatory network that included key cardiac 

transcription factors (e.g., MesP1, Gata4, Hand1, Hand2, Nkx2.5, and Tbx5) and EMT genes 

(e.g., Snail1 and Twist). Further analysis revealed a significant overlap between the genes 

regulated by Bvht and MESP1, a master regulator of cardiovascular potential. Moreover, forced 

expression of MESP1 rescued the Bvht depletion phenotype, indicating that these two factors 

function in a similar genetic pathway. Bvht interacts with SUZ12, suggesting that this interaction 

may be critical for epigenetic regulation of network genes. Also, Bvht is crucial for maintenance 

of cardiac fate in ex vivo neonatal cardiomyocytes. Constitutive cardiac expression of Bvht 

indicates that it may have “housekeeping” roles in adult hearts in addition to its canonical role 

upstream of MESP1 to stimulate and preserve cardiomyocyte fate (Matkovich et al., 2014). The 

findings about Bvht suggest that lncRNAs play a role as molecular modulators that can regulate 

directly cell fate (Klattenhoff et al., 2013). 

Fendrr is another important lncRNA that has been identified as an essential regulator of 

heart and body wall development. Fendrr is expressed in the mouse lateral plate mesoderm, and 

the heart and body wall precursors are derived from it, also the knockout of Fendrr resulted in 

heart development malformations (Laks, 1982). 

A study of MALAT1 loss-of-function in a genetic model suggested that MALAT1 is not 

crucial for mouse prenatal and postnatal development. Moreover, it was proved that depletion of 

MALAT1 is not involved in global gene expression, splicing factor level and phosphorylation 

status, or alternative pre-mRNA splicing. Nevertheless, a few genes were deregulated in adult 

MALAT1 knockout mice, many neighboured MALAT1, indicating a potential cis-regulatory role 

of MALAT1 gene transcription. Interestingly, inhibition of MALAT1 in vivo by oligonucleotides 

decreased vascularization, indicating that MALAT1 can be interesting target to manipulate 

angiogenic processes (Devaux et al., 2015). This finding leads to suspect that probably 

MALAT1 plays a role in cardiovascular diseases. 

Over the last years others lncRNAs were linked to heart disease. ANRIL is a lncRNA 

identified as a risk factor for coronary disease. However still not clear how ANRIL functions, 

evidences suggest that it may have a role in the regulation of histone methylation. MIAT 
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(myocardial infarction-associated transcript) was identified as a determinant lncRNA associated 

with patients with MI, though how MIAT controls MI status continues unknown (Laks, 1982). 

Mechanistically, lncRNAs use various molecular regulatory mechanisms to control gene 

expression, one of the strategies are being antisense transcripts that directly bind mRNA or 

acting as chaperones that engage to macromolecular protein complexes at specific sequence 

specified locations in the genome. Also, lncRNAs are involved in chromatin remodelling that 

evokes long-term changes in transcriptional activity (Matkovich et al., 2014). 

 

3. Direct Reprogramming of Fibroblasts into Cardiomyocytes 

 

3.1. Defined factors 

 

A specific combination of three different TFs, Gata4, Mef2c, and Tbx5 (GMT) can 

create functional beating cardiomyocytes directly from mouse postnatal cardiac or dermal 

fibroblasts, assuming the fully reprogrammed induced cardiomyocytes (iCMs) a cardiomyocyte-

like gene expression profile. The three TFs interact with one another, activating cardiac gene 

expression, and promoting cardiomyocyte differentiation. Gata4 opens the chromatin structure 

in cardiac loci, thus allows the binding of Mef2c and Tbx5 to their specific target sites and 

leading to full activation of the cardiac program (Ieda, J. Fu, et al., 2010; Qian et al., 2012).  

The addition of Hand2 into GMT combination (GHMT) enhanced direct cardiac 

reprogramming. Notably, it was demonstrated direct reprogramming of resident cardiac 

fibroblasts in the heart to iCMs following cardiac injury by forced expression of GMT or 

GHMT in vivo (Song et al., 2012; Zhang et al., 2019). The overexpression of cardiac TFs GMT 

or GHMT direct reprogram fibroblasts into iCMs, without passing through a stem cell state (Liu 

et al., 2017; Muraoka et al., 2019). 

Direct cardiac reprogramming of fibroblasts to into iCMs has emerged as an attractive 

strategy. Since the first attempt based on retroviral delivery of the pivotal cardiac TFs GMT, 

alternative sets of reprogramming factors based on different TFs combinations, microRNAs, 

chemical compounds capable to inhibit specific signalling pathways, enzymes involved in 

epigenetic modifications, defined culture conditions, and small molecules (including TGFβ and 

Wnt inhibitors), were studied in order to promote cardiac reprogramming (Figure 1)  

(Hashimoto et al., 2019; Muraoka et al., 2019; Testa et al., 2020). 
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Figure 2. Optimization of TFs, culture conditions, and epigenetic factors to enhance the efficiency of direct cardiac 

reprogramming. Adapted from (Tani, 2018). 

 

Recently comparative gene expression analyses reported that iCMs induced in vitro 

exhibited more adult cardiomyocyte-like features, such as fatty-acids (FAs) oxidation and cell-

cycle exit, than exhibited by induced pluripotent stem cell (iPSC)-derived cardiomyocytes 

(CMs) (Muraoka et al., 2019). 

The silencing of fibroblast program is a prerequisite for direct cardiac reprogramming, 

however the molecular mechanism underlying this process continues not to be understood. 

Furthermore, improvements in reprogramming efficiency in mouse embryonic fibroblasts 

(MEFs) were demonstrated however, direct cardiac reprogramming from more differentiated 

fibroblasts, such as mouse postnatal and adult tail-tip fibroblasts, persists inefficient. For clinical 

relevance, it is desirable to generate iCMs efficiently from postnatal and adult fibroblasts; but, 

the barriers to cardiac reprogramming associated with aging remain undefined (Muraoka et al., 

2019). Even though fully  direct reprogramming into beating cardiomyocytes is not complete in 

vitro, gene transfer of GMT or GHMT into mouse hearts produced new cardiomyocytes from 

endogenous cardiac fibroblasts and enhanced cardiac function after MI (Wada, Muraoka, 

Inagawa, Yamakawa, Miyamoto and Sadahiro, 2013).  

Importantly, experiments in mice demonstrated that four miRNAs (miR-1, miR-133a, 

miR-208a, and miR-499) named miR combo, could direct reprogram fibroblasts into 

cardiomyocyte-like cells. Moreover miR-133a appears to enhance cardiac reprogramming 

mediated by Gata4, Mef2c, and Tbx5 through direct repression of Snail1 which ends up 

silencing the fibroblasts signature (Dal-Pra et al., 2017; Zhang et al., 2019). 

The identification and modulation of target molecules engaged in lineage conversion 

still a major challenge. Through screening for epigenetic regulators with a significant role in 

iCM generation was discovered that reprogramming efficiency of GMT was substantially 



9 
 

improved by the knockdown of the essential component of the polycomb repressive complex 1 

(PRC1), Bmi1. The silencing of Bmi1 by shRNAs suppressed the activity of Gata4 during the 

reprogramming process substituting the need of exogenous Gata4 during the process. 

Importantly, the positive effect provoked by Bmi1 knockdown was confirmed at early stage 

after viral transduction (Testa et al., 2020). 

Several approaches have been implemented to improve cardiac reprogramming 

efficiency thus, a precise comparison of the reprogramming efficiency between the different 

protocols should be performed. Another strategy documented reprogram fibroblasts into 

cardiomyocytes has been the partial reprogramming of the cells into cardiac progenitor cells, 

bypassing a pluripotent state. Forced expression of a combination of five genes encoding early 

cardiac factors Mesp1, Gata4, Tbx5, Nkx2-5, and Baf60c reprogrammed murine fibroblasts into 

an expandable multipotent cardiac progenitor cell population. These induced cardiac progenitor-

like cells were transplanted into murine hearts after MI, and enhanced cellular survival 

(Hashimoto, Olson and Bassel-Duby, 2018). 

Despite successful lineage conversion of mouse fibroblasts into a range of relevant cell 

types, only neuronal direct reprogramming has been shown in human cells. Because human 

cells are more resistant to the reprogramming process, it is reasonable to speculate that 

additional regulatory events are required to propel human cells toward alternative cell fates (J. 

Fu et al., 2013; Nam et al., 2013). 

GHMT factors alone for direct cardiac reprogramming of human fibroblasts were 

ineffective in activating cardiac gene expression. Two muscle-specific miRNAs, miR-1 and 

miR-133, further improved myocardial conversion of human fibroblasts and eliminated the 

requirement of Mef2c. It was demonstrated that miR-1 and miR-133 are regulated by Mef2c, 

which likely contributes to their ability to replace this transcription factor in the reprogramming 

mixture (Nam et al., 2013; Wada, Muraoka, Inagawa, Yamakawa, Miyamoto, Sadahiro, et al., 

2013). 

Also studies have shown that expression of a combination of the transcription factors 

protein c-ETS2 (ETS2) and MESP1 converted human dermal fibroblasts into cardiac progenitors 

that expressed early cardiac markers such as ISL1 and Nkx2-5, which are not found with direct 

reprogramming of mouse fibroblasts. Remarkably, for direct cardiac reprogramming of human 

cells, GMT or GHMT reprogramming cocktails need additional factors such as myocardin, 

MESP1, oestrogen-related receptor-γ (ESRRγ), and zinc-finger protein ZFPM2, or even miR-1 

and/or miR-133, to successfully induce the conversion of human fibroblasts towards a cardiac 

fate (Ghiroldi et al., 2017; Hashimoto, Olson and Bassel-Duby, 2018). 
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Direct cardiac reprogramming in human cells is substantially challenging compared to 

mouse cells, given the low reprogramming efficiency and the longer time needed for human 

cells to exhibit cardiomyocyte features. The difficulty in reprogramming human cells could be 

attributed to the difference in the epigenetic landscape between mouse and human fibroblasts, 

suggesting additional epigenetic barriers for reprogramming human cells. Another feature to 

consider is that humans have a longer developmental time than mice, which may contribute to 

the species differences in cell reprogramming. Intriguingly, in spite of the requirement of 

different factors for direct cardiac reprogramming between species, crucial endogenous 

signalling pathways such as the TGFβ1 and WNT signalling pathways contribute similarly to 

cardiac reprogramming in mice and human cells (Hashimoto, Olson and Bassel-Duby, 2018). 

Taken together, cardiac reprogramming may offer a potential platform to develop therapeutic 

strategies for heart diseases and drug screening (Zhang et al., 2019). 

 

3.2. Stoichiometry of the factors 

 

As mentioned before, direct cardiac reprogramming uses forced overexpression of 

specific TFs. On the first studies it was used the standard Gata4, Mef2c and Tbx5 cocktail 

utilizing retroviral delivery of the three factors packaged as separate viruses. In order to 

reprogram, starting cells have to take up each three individual viruses, this leads to low cell fate 

conversion rate since only a small percentage of cells receive all three TFs. Stochastically, only 

a minor fraction of cells receive the ideal ratio and dose of the three TFs for cell reprogramming 

(Vaseghi, Liu and Qian, 2017). 

Cardiac remodelling through generation of iCM from fibroblasts holds a great promise 

however, its efficiency is still very challenging. Fibroblasts appears to have a low 

reprogramming rate to iCMs suggesting the existence of major rate-limiting barrier(s) requiring 

a balanced expression of Gata4, Mef2c, and Tbx5 to promote effective and complete 

reprogramming. Currently, iCM generation requires transducing fibroblasts with pooled viruses 

encoding the three individual reprogramming factors. Studies were made with different ratios of 

Gata4, Mef2c, and Tbx5 expression through the use of a polycistronic vector that encoded 

Gata4, Mef2c, and Tbx5 in a single transgene (Wang et al., 2014; Hashimoto, Olson and Bassel-

Duby, 2018). 

Different sets of polycistronic constructs containing Gata4, Mef2c, and Tbx5 in all 

possible mRNA splicing orders were tested. Each splicing order of Gata4, Mef2c, and Tbx5 

gave rise to distinct ratios of Gata4, Mef2c, and Tbx5 protein expression and consequently 

substantially different reprogramming efficiencies. The difference in protein stoichiometry of 
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Gata4, Mef2c, and Tbx5 alone is sufficient to confer a considerably different effect on cardiac 

reprogramming outcomes (Wang et al., 2014).  

At the molecular level, the more optimal Gata4, Mef2c, and Tbx5 stoichiometry is 

defined by higher protein expression level of Mef2c and lower levels of Gata4 and Tbx5   

(MGT) (Figure 3) (Wang, Liu, Yin, Zhou, et al., 2015). This stoichiometry is correlated with 

higher expression of mature cardiac myocyte markers. Currently it is known that the 

stoichiometry of  Gata4, Mef2c, and Tbx5 influences both efficiency and quality of iCM 

induction (Wang et al., 2014; Vaseghi, Liu and Qian, 2017).  

 

Figure 3. Complete set of polycistronic vectors that result in different Gata4, Mef2c, and Tbx5 (G, M, T) protein 

levels. A) Diagram of the 6 polycistronic vectors with G, M, T in different splicing orders; B) Western blot analysis 

of cardiac fibroblasts expressing each of the 6 different polycistronic vectors; C) Quantification of G, M, T protein 

expression levels. Adapted from (Wang, Liu, Yin, Asfour, et al., 2015). 

 

A study comparing GHMT reprogramming ability with GMT demonstrated similar 

sarcomere protein induction efficiency however, GHMT increased drastically the number of 

fibroblasts adopting contractile structures and functions. It was concluded that GHMT would 

further enhance the cardiomyocyte reprogramming process (Zhang, Zhang and Nam, 2019). 

Additionally, a study in vivo demonstrated reprogramming efficiency in mouse model 

using the polycistronic MGT vector compared to reprogramming with separate Gata4, Mef2c 

and Tbx5 viruses (Ma et al., 2015).  
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3.3. Long non-coding RNAs as targets to regenerative therapeutics  

 

As mentioned before, over the latest years  several lncRNA loci have been identified as 

critical components of the gene regulatory network that controls cardiovascular development 

(Ritter et al., 2019).  

In addiction some lncRNAs were suggested to have important roles in development of 

the heart and also in heart failure. Nevertheless, these early findings have uncertain 

interpretation about how lncRNAs are regulated in different cardiac developmental and disease 

states and whether regulated lncRNAs differ between these states (Matkovich et al., 2014). 

Many times, cardiovascular diseases are a consequence of aging. In the heart, aging has 

been characterized by an increase in stiffness, fibrosis and cardiomyocyte apoptosis and 

consequently increased heart failure. A few strategies have been suggested to be potential 

therapy to counteract cardiac disfunction caused by aging. For instance, inhibition of miR-34a 

directly regulates PNUTS, and consequently reduces cardiomyocyte apoptosis and fibrosis after 

acute MI. However, the role of PNUTS and its relation with aging is not documented yet 

(Trembinski et al., 2020). 

Another lncRNA that was identified and demonstrated to be involved with the aging of 

the heart is Sarrah (SCOT1-antisense RNA regulated during aging in the heart). Apparently, 

Sarrah when silenced induces apoptosis and delays cardiac contractile force development in 

human engineered heart tissue. Mechanistically, Sarrah creates a DNA-DNA-RNA triplex with 

promoters of cardiac survival genes to recruit Cysteine Rich Protein 2 (CRIP2) and activate 

gene expression. One of these target genes conferring the antiapoptotic function is nuclear factor 

erythroid 2-related factor (NRF2) (Trembinski et al., 2020).  

 

4. Epigenetics Barriers of Reprogramming 

 

During direct reprogramming, cardiac fibroblasts must overcome epigenetic barriers to 

become cardiomyocytes. To achieve efficient reprogramming, the TFs must be able to engage 

genes that are developmentally silenced and repress the expression of the genes responsible for 

the starting cell population (Tani, 2018).  

For direct cardiac reprogramming it is necessary the activation of the cardiogenic 

transcriptional program in concert with the repression of the fibroblastic transcriptional 

program. Epigenetic modifications have a huge impact in cell fate decision during embryonic 
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development and cell differentiation by modulating chromatin accessibility and transcriptional 

activity. Trimethylation of the lysine 27 of histone H3 (H3K27me3) is a hallmark of 

transcriptional repression (Wang et al., 2016). This repression is the resulted of the activity of 

methyltransferases Ezh1 and Ezh2 which associate with Eed and SUZ12 to form the polycomb 

Repressive Complex 2 (PRC2). The regulation of H3K27 methylation is essential for cardiac 

development and homeostasis. The conditional knockout of the enzyme Ezh2 in cardiac 

progenitors and cardiomyocytes leads to lethal congenital heart defects. Also, the loss of Ezh2 

in cardiomyocytes of the anterior heart field results in hypertrophy. To conclude, global gene 

analysis of conditional Ezh2 mutants shown that Ezh2 promoted the cardiogenic transcriptional 

program (Dal-Pra et al., 2017).  

During embryonic stem cell differentiation to cardiomyocytes, cardiac gene 

determinants progressively lose H3K27me3. Also, GMT-induced cardiomyocytes appear to 

have low levels of H3K27me3 at the promoter of cardiac markers. The elimination of 

H3K27me3 is achieved by the activity of the demethylases Kdm6A and Kdm6B. The knockout 

of Kdm6A in female mice induces severe congenital heart defects. Similarly, cardiovascular 

differentiation of embryonic stem cell is compromised when Kdm6A and Kdm6B are absent, 

supporting the idea that regulation of H3K27 methylation is essential for cardiac fate. Curiously, 

PRC2 and H3K27 methylation also play an important role during somatic reprogramming to 

pluripotency, but their role during direct reprogramming to cardiomyocyte is unknown (Dal-Pra 

et al., 2017; Testa et al., 2020). 

As mentioned before, direct cardiac reprogramming of fibroblasts can be induced by 

miR-combo by modulating the epigenetic landscape. miR combo has the capacity to repress the 

enzyme Ezh2, whereas it upregulates the Kdm6A and Kdm6B expression. Therefore, 

H3K27me3 levels are decreased in miR-combo transfected fibroblasts, which leads to a global 

depression of transcription in these cells (Dal-Pra et al., 2017). 

 

5. In vivo direct cardiac reprogramming  

 

Evidences suggested that it is possible to direct cardiac reprogram in vivo through an 

injection of GMT-encoding retrovirus into the mouse heart reprogramming this way 

endogenous nonmyocytes (largely activated fibroblasts) into functional CMs after coronary 

artery ligation. The iCMs completely reprogrammed, demonstrating synchronous contractions 

with endogenous CMs and other iCMs. GMT induction in vivo can decrease scar size and 

increase cardiac function. The addiction of Hand2 to GMT leads to a greater reprogramming 

result both in vivo and also in vitro as mentioned before (J. D. Fu et al., 2013). It was also 
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studied the administration of miR combo into the ischemic myocardium, 10% of the 

cardiomyocytes in the infarct border zone were from a fibroblast origin two months after MI, 

decreasing fibrosis (Dal-Pra et al., 2017). Therefore, numerous factors might reinforce the 

molecular network and reprogram cardiac fibroblasts into iCMs in vivo, including 

environmental cues and/or mechanical forces that enhance reprogramming (J. Fu et al., 2013).  

After infection with GMT virus vectors in vivo, about 5% of the mice fibroblasts 

expresses α-MHC-GFP and cardiac Troponin T (cTnT) after one week. Additionally, local viral 

infection of GMT encoding retrovirus into mouse heart following coronary ligation leads to 

approximately 10% of α-Actinin+ iCMs from cardiac fibroblasts in the infarcted region. 

Unfortunately, presently mouse direct cardiac reprogramming in vivo is still quite inefficient. In 

order to address this difficulty, studies suggested that the addition of other transcription factors 

(e.g. MESP1, MyoD, Baf60c and Hand2), combination of miRNAs (e.g. miR-1, miR-133, miR-

208, and miR-499) and chemical inhibitors (e.g. SB431542, and XAV939) along with GMT 

transduction improve cardiac reprogramming (Qian et al., 2012; Chang et al., 2019). 

Although infection with GMT virus vectors in vivo has only been tested in the left 

ventricle, it is most likely translatable to the right ventricle as GMT has induced cardiomyocyte 

reprogramming in mouse fibroblasts of diverse origin including left ventricular neonatal and 

adult cardiac, dermal and tail tip fibroblasts (Di Salvo, 2015). 

GMT injection with the addition of Hand2 can convert cardiac fibroblasts into iCMs up 

to about 28% after three weeks in mouse MI models. However, it is important to mention that 

the safety issues associated with the use of lentivirus and retrovirus namely genomic 

integrations are a barrier for human potential application of this in vivo therapeutic. Thus, it 

started to be studied non-viral reprogramming systems to allow the clinical application of in 

vivo cardiac reprogramming in patients. In recent decades, cationic gold nanoparticles (AuNPs) 

have emerged as a favourable platform for gene and drug delivery due to their easy preparation, 

large surface area, simplicity of surface functionalization, and inertness (Chang et al., 2019). 

AuNPs could be a possibility to in vivo human direct cardiac reprogramming. 

 

6. Cardiac metabolism  

 

The mammalian heart has to contract constantly thus, the need for an optimal energy 

fuel is huge. Mitochondria is the organelle that coordinates the energy transduction function and 

it is responsible to produce more than 95% of ATP (Doenst, Nguyen and Abel, 2013) utilized 
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by the heart. Additionally, mitochondria regulates intracellular calcium homeostasis, signalling 

and apoptosis (Kolwicz, Purohit and Tian, 2013). 

The effects of metabolism on growth, proliferation, and survival pathways have been 

documented over the last years. Even though a large fraction of the metabolic fluxes in the heart 

is devoted to oxidative metabolism for ATP synthesis, substrate metabolism has significant 

impact on multiple aspects of cardiac biology (Kolwicz, Purohit and Tian, 2013). 

The heart has a low capacity for energy storage, consequently it has different metabolic 

networks to ATP production. The heart is capable of utilizing all classes of energy substrates as 

glucose, pyruvate, triglycerides, glycogen, lactate, ketone bodies, FAs and amino acids for ATP 

production in the mitochondria (Kolwicz, Purohit and Tian, 2013; Malandraki-Miller et al., 

2018).  

ATP can be produced in the cytosol via glycolysis, the end-product of glycolysis is 

pyruvate, which can be further reduced into lactate. In case of carbohydrate deficiency, 

gluconeogenesis of pyruvate, reoxygenation of lactate or glycerol metabolism, can be utilized as 

sources of glucose synthesis. Otherwise, pyruvate can enter the mitochondria in the form of 

acetyl-coenzyme A (acetyl-coA) and be oxidized in the Krebs cycle (TCA cycle), in a process 

called oxidative phosphorylation. The reducing equivalents of this chained reaction act as 

hydrogen carriers: nicotinamide adenine dinucleotide hydrogen (NADH) and flavin adenine 

dinucleotide hydrogen (FADH2) and move into the electron transport chain. There the coupled 

transfer of electrons and H+ generates an electrochemical proton gradient that leads to the 

production of ATP (Figure 4) (Malandraki-Miller et al., 2018). 
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Figure 4. Cell metabolic pathways for energy production. Adapted from (Malandraki-Miller et al., 2018). 

 

Substrates as lactate, ketone bodies and amino acids, can go into mitochondria directly 

for oxidation. Metabolism of ketone bodies yields acetyl-CoA while amino acid catabolism 

yields keto-acids are metabolized to go through the TCA cycle. The contribution of ketone 

bodies and amino acids to overall cardiac oxidative metabolism is minimal due to the low 

availability of these substrates in normal physiological conditions (Kolwicz, Purohit and Tian, 

2013). 

Nearly 70% to 90% of cardiac ATP is produced by the oxidation of FAs. The remaining 

10% to 30% comes from the oxidation of glucose and lactate, as well as small amounts of 

ketone bodies and certain amino acids (Doenst, Nguyen and Abel, 2013). 

Cardiomyocytes are the cell type with the highest mitochondria content, it occupies one 

third of the cell volume. Mitochondria in healthy hearts are largely fuelled by fatty acyl-CoA 

and pyruvate, which are the primary metabolites of FAs and carbohydrates, respectively 

(Kolwicz, Purohit and Tian, 2013). ATP can as well be produced by the degradation of lipids 

(including triglycerides) into FAs, which are metabolized in the mitochondria via beta-oxidation 
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(Figure 4), which transforms Fatty acyl-CoA to acetyl-CoA for flux into the TCA cycle and 

ATP synthesis (Kolwicz, Purohit and Tian, 2013; Malandraki-Miller et al., 2018). 

As already mentioned, more than 95% of ATP production comes from oxidative 

phosphorylation and in the healthy heart 50–80% of the energy is produced via beta-oxidation, 

under aerobic conditions. Oxidative phosphorylation yields 36 ATP/glucose molecule, being 

more efficient than glycolysis which only yields 2 ATP/glucose. Due to lipids reduced state, 

they are more oxygen-demanding than glucose, but also they have higher yield of ATP/carbon 

(Malandraki-Miller et al., 2018). 

The rest 5% of ATP comes from glycolysis and to a lesser extent from the TCA cycle. 

The heart consumes about 60-70% of its generated ATP to fuel contraction and the remaining 

30-40% for various ion pumps, especially the Ca2+-ATPase in the sarcoplasmic reticulum 

(Doenst, Nguyen and Abel, 2013).  

The heart has an incredible ability of adaptation to changes in its physiological state by 

selecting the most efficient substrate, depending on its environment conditions. Hypoxia is one 

of the examples of cardiac metabolism adaptation. It is a upregulation of the hypoxia inducible 

factor (HIF) that increases glycolysis and suppress mitochondrial oxidative metabolism, in low 

oxygen conditions due to the fact that FAs require more oxygen than glucose to generate ATP 

(Malandraki-Miller et al., 2018).  

There is a network of interrelated signalling pathways that control the flux of glucose 

and FAs metabolism to allow the heart to switch substrates rapidly. This was for the first time 

described by Randle in 1963 as the glucose-fatty acid cycle, however the complexity of this 

network is yet to be fully explored (Malandraki-Miller et al., 2018). In sum, it is known that 

FAs are the predominant substrate utilized in the adult myocardium. Importantly, the cardiac 

metabolic network is highly flexible in using other substrates when they are highly available in 

the heart (Kolwicz, Purohit and Tian, 2013). 

 

6.1.  Metabolism switch between postnatal cardiomyocytes to adult cardiomyocytes  

 

Mammalian cardiomyocytes undergo extensive metabolic remodelling after birth in 

order to adapt to high-energy demands of the postnatal life. In mice, neonatal cardiomyocytes 

use glycolysis as their major source of ATP later, during the neonatal period, rodent 

cardiomyocytes suffer a metabolic switch and adult cardiomyocytes produce their energy via 

mitochondrial oxidative phosphorylation, a more efficient process than glycolysis (Vivien, 

Hudson and Porrello, 2016). The mouse heart loses the ability to regenerate after seven days of 
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birth, it is intriguing to think that the metabolic shift would have a role in suppressing the ability 

to repair (Martik, 2020). The fetal heart’s environment is low in oxygen and FAs, thus fetal 

cardiomyocytes are highly dependent on glycolysis for ATP production. During development, 

the heart suffers a major metabolic alteration; the main physiological changes during the 

transition to the postnatal stage are the enhanced workload, and the demand for growth, that 

cannot be supported by glucose and lactate metabolisms (Malandraki-Miller et al., 2018).  

Through mitochondrial oxidative phosphorylation, electron leak produces reactive 

oxygen species (ROS). Increased production of ROS in postnatal cardiomyocytes leads to 

cardiomyocyte cell-cycle arrest through the activation of DNA damage response pathway. 

Cardiomyocyte cell-cycle arrest are dependent of the FAs oxidation however, it is important to 

mention that FAs utilization is directly linked with ROS increase. Importantly, cardiomyocytes 

from highly regenerative species such as zebrafish have a preference for glycolysis (Vivien, 

Hudson and Porrello, 2016; Fukuda et al., 2019). Therefore, the “fetal switch” to oxidative 

metabolism of glucose and FAs has been associated to the loss of the regenerative capacity 

(Malandraki-Miller et al., 2018). Recently, it was demonstrated that the HIF1 signalling 

localisation pattern controls the embryonic switch toward oxidative metabolism, disruption of 

which influences cardiac maturation (Menendez-Montes et al., 2016). Furthermore, postnatal 

cardiomyocytes also revealed a shift in the energetic substrate utilization from pyruvate to FAs 

that are energetically more favourable (Cardoso et al., 2020). 

Adult heart can not regenerate lost or damaged myocardium although it does have a 

limited myocyte turnover. This cell capacity turnover is insufficient for restoration of contractile 

dysfunction. However, the neonatal mammalian heart is capable of substantial regeneration 

following injury, but its regenerative capacity is lost by postnatal day 7, which corresponds with 

cardiomyocyte binucleation and cell-cycle arrest. As a result, numerous pathways that regulate 

cardiomyocyte cell-cycle arrest postnatally have been identified. Even though many postnatal 

regulators of cardiomyocyte cell-cycle arrest have been already studied, the upstream signals 

that cause permanent cell-cycle arrest of most cardiomyocytes continue unidentified. The brief 

window of regenerative response following injury of the mammalian neonatal heart is mediated 

by proliferation of pre-existing cardiomyocytes (Cardoso et al., 2020). 

The constant use of FAs and its oxidation provokes a FAs utilization dependency by 

inhibiting glucose oxidation via the TCA cycle, in which acetyl-coA produced from fatty-acid 

oxidation inhibits the mitochondrial enzyme pyruvate dehydrogenase (PDH). The regulation of 

cardiac PDH activity is made by various isoforms of pyruvate dehydrogenase kinases (PDK1, 

PDK2 and PDK4) and phosphatases (PDP1 and PDP2), with phosphorylation resulting in 

enzyme inhibition. PDK4 is mainly responsible for inhibiting PDH when FAs are present and 
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enhance the heart commitment on fatty-acid oxidation for energy production. Mitochondria 

produce an elevated rate of H2O2 using FAs compared with pyruvate usage as a respiratory 

substrate (Cardoso et al., 2020). 

Current studies are focusing to clarify whether modulating substrate utilization would 

affect DNA damage and promote cell-cycle re-entry in cardiomyocytes. Diet manipulation with 

FAs deficiency results in a prolongation of the postnatal window of cardiomyocyte proliferation 

however, it is associated with a marked hepatomegaly and steatosis as a result of amplified FAs 

synthesis. Cessation of cardiomyocyte proliferation coincided with enhanced FAs synthesis by 

the liver. In sum, impaired dietary supply of FAs can delay, but not prevent, postnatal 

cardiomyocyte cell-cycle arrest due to a compensatory increase in hepatic fatty-acid 

biosynthesis (Cardoso et al., 2020).  

Studies of PDK4 knock-out were used to understand the role of inhibiting FAs 

utilization by cardiomyocyte mitochondria on cell cycle progression. PDK4 deletion in adult 

cardiomyocytes results in a marked shift in myocardial substrate utilization decreasing FAs and 

enhancing glucose-derived pyruvate utilization resulting in a significant decrease in DNA 

damage and marked increase in cardiomyocyte mitosis and cytokinesis. There is a possibility 

that PDK4 exerts effects not solely dependent on interaction with the PDH complex. Evidence 

indicates that PDK4 binds to and stabilizes the cAMP-response element-binding (CREB) 

protein, resulting in mTORC1 activation. In addition, the activation of PDH through 

administration of dichloroacetate or loss of PDK4 expression in mice improves glucose 

utilization and is cardioprotective with regards to infarct size and contractile dysfunction 

following I/R injury (Cardoso et al., 2020). 

 

6.2. Influence of metabolism on heart regeneration 

 

Zebrafish are able to regenerate its heart after injury: heart muscle cells close to the 

wound divide to generate new cells that gradually replace the scar tissue and restore its normal 

function (Vivien, Hudson and Porrello, 2016; Honkoop et al., 2019). This repair process has a 

lot in common with the heart developmental process in zebrafish embryos. In the human heart, 

cardiac injury leads to scarring and ultimately heart failure, thus the understanding of the links 

between heart development and regeneration in zebrafish could help with the improvement of 

heart regeneration efficiency in humans (Martik, 2020). In this section, it is explored the role of 

metabolism in cardiac regeneration, particularly how metabolism can possibly enhance direct 

cardiac reprogramming efficiency.  
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Heart regeneration in zebrafish is incredibly effective and relies on the proliferation of 

pre-existing cardiomyocytes. But not only cardiomyocytes contribute to regeneration, the 

process also involves other cell types such as epicardial and endocardial cells respond to the 

heart injury by the upregulation of injury-induced genes. Additionally, the injured heart is 

infiltrated by immune cells and fibroblasts. All these processes after the heart injury complicate 

the detection of cardiomyocyte specific gene responses. However, research by the use of single 

cell transcriptomics overcame these limitations and allowed to identify and characterize the 

different cardiomyocyte populations in the regenerating zebrafish heart. Additionally, it was 

found that increased mitochondrial oxidative phosphorylation (OXPHOS) activity promotes 

cardiomyocyte maturation and reduces the proliferative capacity of cardiomyocytes. This 

correlates well with the loss of regenerative capacity of the murine heart in the first week after 

birth at which time the metabolism in cardiomyocytes changes from predominantly glycolysis 

to mitochondrial OXPHOS (Honkoop et al., 2019). 

Research with iPSC-CM shown its structural and functional integration in healthy host 

cardiac tissue in vivo. However, even after the initiation of cardiac beating in these cells, they 

did not have the metabolic features of mature cardiomyocytes. Despite the mitochondrial 

remodelling and upregulation of oxidative metabolism, newly differentiated iPSC-CM in culture 

shown to preserve predominantly glycolytic metabolism (Malandraki-Miller et al., 2018). Based 

on this data came to us the assumption that metabolism has an important role in cell-arrest cycle 

and in cellular maturation and possibly in regenerative therapies. 

Progenitor cells in the developing of mice embryo as well as iPSC depend on glycolysis 

to preserve its proliferation capacity. It was discovered that glycolytic enzymes such as PKM2 

and PFKFB4 can also directly interact with cell cycle regulators to boost proliferation. 

Concluding, the exact role for glycolysis in driving the cellular reprogramming during heart 

regeneration requires to be further investigated using genetic loss- and gain-of-function 

experiments combined with metabolomics (Honkoop et al., 2019).  

Overall, still not fully understand why the injured heart shifts to glycolysis in order to 

proliferate. It is important to understand if there is because proliferation is a high-energy 

demanding process, or it is glycolysis necessary for other critical processes during the heart 

regeneration process (Martik, 2020). 
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Cardiac reprogramming has been a technique highly explored over the last years. 

Several TFs combinations were tried in both mice and human fibroblasts in order to 

differentiate these cells in iCMs. It was shown that MGT retroviruses were the most efficient 

viruses with better rate of cells conversion after the transduction process in mice. With all of 

these findings in consideration, one of the main objectives of the experimental work of this 

dissertation was to transdifferentiate mice and human fibroblasts to iCMs through the use of 

MGT retrovirus. 

After that, the biggest innovation of our experimental approach was the understanding 

of how lncRNAs, specifically its silencing, influence direct cardiac reprogramming and if 

lncRNAs knockdowns can possibly enhance reprogramming efficiency. 

On the other hand, as also mentioned during this chapter, zebrafish heart uses always 

glucose to energy production, and it is capable to regenerate after injury. Additionally, postnatal 

mammal hearts also have the capacity to regenerate and have proliferative capacity until the 

cell-cycle arrest that overlaps the switch between glucoses to FAs as the main source to ATP 

production. Based on this data we decided, through media nutrient manipulation, to study the 

influence of cellular metabolism in direct cardiac reprogramming. 
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1. Cell Culture 

 

Five cell lines were used during the experiments: Feeders, MAFs, Gm 03348 (10 years 

old human fibroblasts), HL-1 and Wi-38. All cell lines were previously used at Institute of 

Biomedicine of University of Aveiro. MAFs and Feeders were obtained from C57Bl6 mice. 

MAFs were prepared form adult (10–30-weeks old) and old (70–100-weeks old) fibroblasts 

obtained from mouse ears as previosly described (Li et al., 2007). Feeders were prepared from 

embryonic fibroblasts primary cultures (MEFs) with Mitomycin-C from Streptomyces 

caespitosus (Sigma-Aldrich) or γ-irradiation, those MEFs were prepared from total mouse 

embryos as previously described (Palmero and Serrano, 2001). HL-1 are a cardiac muscle cell 

line from mice (Sigma- Aldrich) and were cultured with Claycomb medium (Sigma- Aldrich), 

supplemented with 10% fetal bovine serum (FBS), 1mM of L-glutamine and 1% 

penicillin/streptomycin (100 U/mL:100 μg/mL) at 37ºC with 5% CO2. Wi-38 is a human cell 

line composed of fibroblasts derived from lung tissue of a 3-month-gestation aborted female 

fetus (Sigma- Aldrich), and were cultured in Dulbecco′s Modified Eagle′s Medium (DMEM) 

 41966 (Thermo Fisher Scientific), supplemented with 10% FBS and 1% 

penicillin/streptomycin (100 U/mL:100 μg/mL), at 37ºC with 5% CO2. Both cell lines were 

platted in gelatine coated plates. 

The experiments with the remaining three cells lines (Feeders, MAFs and Gm 03348) 

were used in culture media DMEM 41966 (Thermo Fisher Scientific), supplemented with 10% 

FBS and 1% penicillin/streptomycin (100 U/mL:100 μg/mL), at 37ºC with 5% CO2. However, 

other growth media were used in cell culture named: All high, No FBS, No Glutamine and Low 

Glucose. Table 1 shows media composition, of all of them was used DMEM 11880 (Thermo 

Fisher Scientific). 

Table 1. Different growth media used in cell culture. 

All high No FBS No Glutamine Low Glucose 

-DMEM 11880; 

-1% 

Penicillin/Streptomycin 

(100 U/mL:100 

μg/mL); 

-15% of FBS; 

-Glutamine at 4mM 

(from 400mM stock); 

-Glucose at a 4.5 g/L 

(from 20 g/L stock). 

-DMEM 11880; 

-1% 

Penicillin/Streptomycin 

(100 U/mL:100 

μg/mL); 

-Glutamine at 4mM 

(from 400mM stock); 

-Glucose at a 4.5 g/L 

(from 20 g/L stock). 

-DMEM 11880; 

-1% 

Penicillin/Streptomycin 

(100 U/mL:100 

μg/mL); 

-15% of FBS; 

-Glucose at a 4,5 g/L 

(from 20 g/L stock). 

-DMEM 11880; 

-1% 

Penicillin/Streptomycin 

(100 U/mL:100 

μg/mL); 

-15% of FBS; 

-Glutamine at 4mM 

(from 400mM stock); 
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2. Retroviral infection 

 

At day 1 the factors were transfected using Lipofectamine RNAiMAX Transfection 

Reagent (Thermo Fisher Scientific). For each transfection it was mixed 30 µl of lipofectamine 

in 576 µl Opti-MEM™ I Reduced Serum Medium (Thermo Fisher Scientific), then were 

incubated 5 minutes at room temperature (RT) (Iacovides et al., 2016). 

In 4 separate tubes, 4 µg of each of pMXsMGT and pBabeGFP vectors were mixed 

with 4 µg pCL-Ampho (packaging plasmid). Next, Lipofectamine/Opti-MEM the was mixed 

with the plasmid mix and, next incubated at room temperature (RT) for 45min. In the meantime, 

4.5x106 HEK-293T cells in each 10 cm plate (1 for each factor) were platted. At the end of 

45min the pMXs retroviral vectors and retroviral packaging vectors were added to the HEK-

293T cells to generate viruses with 3x106 IFU/ml (Kitamura et al., 2003; J. D. Fu et al., 2013; 

Iacovides et al., 2016).  

At day 2 HEK-293T cells medium was replaced by fresh growth medium and 3x105 

fibroblasts were platted in each 10 cm gelatine-coated plates. After this process during days 3 

and 4 during mornings and afternoons, 4 viral infections were made. For that supernatants were 

collected from HEK-293T cells and re-feeded. The supernatants were filtered with 0.45 µm 

filters to remove debris and cells. Next it was added polybrene at a dilution of 1:1000 to the 

final volume of viral supernatants making the cocktails needed (equal volume of each factor). 

After the viral supernatants were added on each fibroblast’s plates drop by drop. At day 5, after 

all viral infections, the growth medium was changed to DMEM 41966 + 10% of FBS for about 

5 days, then GFP expression was evaluated on Fluorescence-activated cell sorting (FACS) 

(Takahashi and Yamanaka, 2006; Iacovides et al., 2016). The viruses yielded a transduction 

efficiency indicated by the GFP retroviral infection (J. D. Fu et al., 2013). During all process 

cells were incubated at 37ºC with 5% CO2. 

 

3. RNA isolation 

 

Total RNA was isolated from cells using TRIzol™ Reagent (Invitrogen) according to 

the manufacturer’s instructions. Briefly, cells medium was removed and after it was added 

TRIzol™ Reagent directly to the culture dish to lyse the cells. Then, the lysates were pipetted 

up and down several times to homogenize. Next, the lysates were centrifuged and after 

transferred the clear supernatant to new tubes. Following, there was a period of incubation to 

allow complete dissociation of the nucleoprotein complexes. Next it was added chloroform, mix 
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was incubated and centrifuged. The aqueous phase of the mixtures was transferred to new 1.5ml 

tubes.  

To precipitate the RNA isopropanol was added to the aqueous phase and incubated. 

After incubation it was centrifuged, total RNA was precipitated in a white gel-like pellet at the 

bottom of the tube. The supernatant was discarded with a micropipettor. 

Next step RNA was washed by resuspending the pellet with 75% ethanol. The samples 

were vortexed briefly and then centrifuged. Lastly, it was discarded the supernatant with a 

micropipette and the RNA pellet was dried at RT for 10 minutes. 

To solubilize the RNA, the pellet was resuspended in RNase-free water by pipetting up 

and down. After it was incubated in a heat block at 55ºC for 15 minutes and kept at -20ºC until 

further use. 

RNA concentration was quantified using a NanoDrop™ Spectophotometer and the 

absorbance was measure at 260 nm and 280 nm. RNA concentration was calculated using the 

formula: 

A260 × dilution × 40 = µg RNA/mL    Equation 1 

Lastly was calculated the A260/A280 ratio. All RNAs extracted from different cell lines 

had a A260/A280 ratio ≈ 2 which is considered pure RNA.  

 

4. Reverse Transcriptase (RT) reaction for cDNA synthesis 

 

The RNAs extracted were reverse-transcribed into cDNA using the SuperScript™ II 

Reverse Transcriptase (Invitrogen) (Chang et al., 2019).  

The manufacturer protocols was followed briefly, it was added random primers, RNA 

quantity necessary for the final concentration of 1 ng/µl, dNTPs and sterile and distilled water. 

Next the mixture was heated to 65°C and then quick chill on ice. Following it was 

collected the contents of the tube by brief centrifugation and added: 5X First-Strand Buffer, 0.1 

M DTT and RNaseOUT™ (40 units/μL). 

The contents were mixed on the tube gently and after incubated at 25ºC. Next it was 

added SuperScript™ II RT and mixed by pipetting gently up and down. The tubes were 

incubated at 25°C, next were incubate at 42°C and lastly to inactivate the reaction, the tubes 

were heated at 70°C. 
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5. Quantitative PCR (qPCR) 

 

qPCR was performed on an Applied Biosystems 7500 Real-Time PCR System using 

SYBR Green PCR Master Mix (Thermo Fisher Scientific). The final volume of each reaction 

was 15 µl: 7.5 µl of SYBR Green PCR Master Mix, 0.4 µl of each pair of primers (forward and 

reverse at 10 µM), 5 µl of cDNA and 1.7 µl of H2O. Quantifications were made applying the 

∆∆Ct method (Ct of nuclear DNA gene – Ct of mitochondrial DNA gene), followed 2^(∆∆Ct). 

The mRNA levels were normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

mRNA and actin alpha cardiac muscle (ACTC1) mRNA (J. D. Fu et al., 2013; Patel et al., 

2018). All primer sequences are listed below on Table 2: 

Table 2. Amplified genes and primers used for qPCR. 

Primers Sequence (F- Forward primer; R- Reverse primer) 

ACTC1 F: TGCCCCCGGCTGCTC 

R: GTTCTGTAGGCGTGCTAGGG 

GAPDH F: TTCACCACCATGGAGAAGGC 

R: CCCTTTTGGCTCCACCCT 

Gata4 F: TGTGCCAACTGCCAGACTAC 

R: TGGGCTTCCGTTTTCTGGTT 

Mef2c F: GAGCCGGACAAACTCAGACA 

R: TCAAAGCTGGGAGGTGGAAC 

Tbx5 F: CTTCTATCGCTCGGGCTACC 

R: GCTATAGGAGGGCATGCTGG 

Gm28592 F: GCGAGTGAAGAGGCTGGT 

R: TCAAGCTGAAGGAATTGCAC 

Phlda1 F: TCATCACAGTTGCAGGAAGC 

R: GGAGGTGGCCTACATTCAGA 

Mir22hg F: GAAGAACTGTTGCCCTCTGC 

R: ACTGTCTTGTGCCTGCCTCT 

Gm27028 F: GCATCCTGCAGCCTTCTTAC 

R: AACAGCCTTCTCCCAGCTTT 

Gm15856 F: AAATACCCCTGGGGAGAATG 

R: GGAGAGTGGGGAGATGAACA 

Bvht F: TGGGCCTAAGGAAAGCCG 

R: ATCTCCGTTGGATTTGGAGGG 

 



28 
 

6. Cell Proliferation / Cytotoxicity Assay 

 

Initially Gm 03348 cells grow in adherent monolayer in 6-well plaques with the four 

media previously described. After 12 days of culture, it was removed the culture growth 

medium and cells were washed with PBS (1x). TrypleTM Express (Gibco, 12605-028) was 

added and cells were incubated 5 minutes followed by inactivation with complete medium. 

After obtaining cell suspension, the cell density was determined by trypan blue exclusion 

method.  

Gm 03348 cells were then inoculated on a 96‑well plate at a density of 3000 cells/well 

and 5000 cells/well (n=6 well/each). To study the optimal culture condition for these cells, the 

four different culture media already mentioned were tested: Low glucose, All high, No FBS and 

No glutamine. Following 5 days of platting, the proliferation of Gm 03348 cells in each culture 

condition were examined after four hours of incubation (37ºC under 5% CO2) with the Cell 

Counting Kit-8 (CCK-8) (Dojindo, Europe) recorded at an absorbance of 450 nm using a 

Microplate reader (Tecan 200). 

 

7. Intracellular staining and fluorescence-activated cell sorting (FACS)  

 

To prepare the cells to flow cytometry, cells were trypsinized and the pellet was 

resuspended in 200 µl of PBS (1x), then cells were fixed adding 200 µl of paraformaldehyde 

(PFA) (8%) for 15 minutes on ice. Following it was centrifuged 3000 x g for 5 minutes.  

 The first wash was made with the stain buffer: PBS (1x) + 0.2% Bovine serum albumin 

(BSA) following centrifugation of 3000 x g for 5 minutes. Next step was permeabilization, it 

was used 0.05% tween 20 + 0.5% Dimethylsulfoxide DNA(DMSO) followed by a spin equal to 

the ones before (Patel et al., 2018). 

 For blocking it was used PBS (1x) + 0.5% BSA and then incubated at RT for 10 

minutes, in the end of this step it was added mouse monoclonal anti-tropomyosin antibody 

(Sigma) at a dilution of 1:100. For 1 hour in rotation. Following incubation cells were washed 

following the exact process of the first wash.  

 Next cells pellet was resuspended in 300 µl of PBS (1x) + 0.5% BSA and added the 

secondary antibody, in the case Alexa Fluor 488 Dye (Thermo Fisher Scientific) at a dilution of 

1:600 for, 30 minutes at RT. After cells were washed one last time being this wash equal to the 

previously washes. Last step of the process was to resuspend the pellet in 200 µl PBS (1x) + 
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0.2% BSA following acquisition in a Accuri™ C6 Flow Cytometer (BD Biosciences) and 

subsequent analysis. Using the FlowJo software (Nam et al., 2013). 

8. Statistical Analysis 

 

The results are presented as mean values and their standard deviations (mean ± SD) for 

each experimental group. Differences between samples comparing with the control conditions 

were estimated by T student test to evaluate samples i.e. parametric analysis. A P value < 0.05 

was considered statistically significant. Error bars indicate standard deviation (Sperandei, 2014; 

Vaseghi et al., 2016). Statistical analysis was performed using Microsoft Excel software. 
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1. Gene expression in MGT transfected cardiac cells  

 

1.1. MGT mRNA expression  

 

In vitro cardiac differentiation recapitulates the embryonic development of the heart in 

vivo which is a progressive process. Therefore, the elaborate regulation of cardiac differentiation 

involves stepwise integration of transcription factors and signalling pathways (Li et al., 2019).  

Gata4 plays an important role in general cardiac development both in human and mice, 

its genetic knockout causing embryonic lethality due to a block of cardiogenesis (Chen et al., 

2012).  

Mef2c is essential for cardiovascular development, its activity is modulated by post-

translational modifications in response to cytoplasmic signals including calcium (Hao et al., 

2011). Moreover, Mef2c knockout mice are embryonically lethal due to prominent heart defects 

and importantly also demonstrate a vascular phenotype characterized by a failure of 

organization of endothelial cells (Sturtzel et al., 2014; Laszlo et al., 2015). 

During the embryonic stage of cell proliferation, the cardiac cells express the first 

molecular markers of cardiac development, including Tbx5. This TF has an important role in 

heart development, mutations in Tbx5 display many cardiac abnormalities. Tbx5 is 

indispensable to control embryonic cardiac cell proliferation and cell number by regulating the 

length of the embryonic cardiac cell cycle (Goetz, Brown and Conlon, 2006). 

qPCR was performed using two different housekeeping genes in order to guarantee 

authenticity to the results, i.e. to verify if mRNA expression of the different TFs and lncRNAs 

had the same tendency using different normalizations.  

First it was maintained in culture two murine cellular lines, Feeders and MAFs, 

following fibroblasts retroviral transduction protocol. After 3 days of the retroviral transduction 

process the cells were observed through the microscope and, it was visible GFP+ in the control 

cells (Figure 5).  
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a)         b)    

   

Figure 5. Feeders [a)] and MAFs [b)] expressing GFP+, used as positive control for the transduction process, 

observed under the phase-contrast imaging 3 days after the retroviral infections. Scale bars represent 300 µm in both 

a) and b). The magnification used was 10x in both a) and b). 

 

Next RNA was isolated and retrotranscribed into cDNA and MGT expression was 

analysed by qPCR. TFs mRNA expression in MAFs infected with MGT were compared with 

GFP infected MAFs and with Feeders infected with MGT, the results can be seen in Figure 6.  
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Figure 6. MGT expression in MAFs infected with GFP, MAFs infected with MGT and Feeders infected with MGT 

using the GAPDH as housekeeping gene. The calculation was made based in GAPDH expression. Data refers to n=2 

from 1 independent experiment. 

 

Figure 6 represents the expression of the three TFs responsible for direct cardiac 

reprogramming. Gata4 expression was increased in MAFs infected with MGT compared with 

MAFs infected with GFP. Feeders infected with MGT also showed a higher mRNA expression 

comparing with MAFs infected with GFP. Mef2c followed the exact same tendency that Gata4. 

Tbx5 was mostly expressed in MAFs infected with GFP comparing with MAFs and Feeders 

infected with MGT.  

The process was repeated using ACTC1 as housekeeping gene. Figure 13 (annex 1) 

represents the expression of the three TFs responsible for direct cardiac reprogramming. 

Comparing Gata4 expression between MAFs infected with GFP and MAFs infected with MGT, 

it is observed an increased expression of this cardiac TF in MAFs infected with MGT. In 
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addition, Mef2c also showed a clear expression difference among cells infected with GFP and 

MGT, being its expression larger in MAFs infected with MGT. Tbx5 was the TF with dissimilar 

results in MAFs infected with MGT relatively with MAFs infected with GFP. MAFs infected 

with GFP presented higher expression for this TF. These results can be possibly justified by the 

fact that the chosen pairs of primers were not the most efficient. In conclusion, ACTC1 results 

are in accordance with the GAPDH results.  

 

1.2. lncRNAs expression  

 

 lncRNAs have been demonstrated to modulate biological processes, in particular the 

regulation of gene expression networks. Several lncRNAs were identified as being expressed in 

the heart, however there is a long way to assess the potential of modulating lncRNAs for cardiac 

regeneration. The inhibition of lncRNAs has been performed using for example antisense 

oligonucleotides. Knockdown using antisense oligonucleotides may be a very promising  

strategy for therapeutic applications targeting nuclear-localised lncRNAs, as they are effective 

in reducing expression levels via RNAse H  to mediate destruction of the lncRNA (Hudson and 

Porrello, 2013). 

The mRNA expression of some lncRNAs was evaluated using qPCR. lncRNAs 

candidates were chosen based in preliminary data from RNAseq results of the day 1 and day 7 

in mice neonatal cardiomyocytes kindly provided by our collaborator Christian Bär from 

Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, 

Germany. The lncRNAs selected were: Mir22hg, Gm15856, Gm27028 and Gm28592. The 

intention of this analysis was to understand the best lncRNA candidates to knockdown and how 

the lncRNAs knockdown could influence the efficiency of direct cardiac reprogramming of 

fibroblast in cardiomyocytes.  

Additionally, it was studied Phlda 1 expression to guarantee the veracity of Gm28592 

analysis since Gm28592 is an antisense lncRNA to Phlda1 gene. Bvht was used as a positive 

control given the fact that this lncRNA is strongly expressed in the heart (see chapter one). The 

expression of lncRNAs in MAFs infected with MGT and MAFs infected with GFP can be seen 

at Figure 7. 
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Figure 7. lncRNAs expression in MAFs infected with MGT comparing with MAFs infected with GFP using ACTC1 

as housekeeping gene. Data refers to n=2 from 1 independent experiment. Data are presented as mean ± SD. 

Statistical significance was determined by two-tailed Student t-test. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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 Of all lncRNAs Gm15856 was the one with the most significant expression in MAFs 

infected with MGT. Mir22hg were the second lncRNA candidate that showed significant 

expression in MGT infected cells. Relatively to Gm27028, this lncRNA also presented 

increased expression in MAFs infected with MGT comparing with MAFs infected with GFP. 

Gm28592 had lower expression comparing with the expression of other lncRNAs, the difference 

between MAFs infected with GFP and MAFs infected with MGT was minor. In the end, all 

lncRNAs had a higher expression in cells infected with MGT as it was expected. 

The same selected lncRNAs were analysed in comparison to GAPDH expression and 

also using Feeders infected with MGT to understand how aging affects the reprograming and 

mRNA expression of these lncRNAs. The results are presented at Figure 14 (annex 2). 

Gm15856 had considerable expression in MAFs infected with MGT and next in Feeders 

infected with MGT comparing with MAFs infected with GFP. Mir22hg demonstrated higher 

expression in MGT infected cells however, its larger expression was observed in Feeders. Also, 

the Mir22hg mRNA expression between MAFs infected with GFP and MAFs infected with 

MGT was very small. Gm28592 had lower expression in MAFs (both infected with GFP and 

MGT) comparing with Feeders infected with MGT. Phlda 1 and Bvht mRNA expression was 

significant higher in MAFs infected with MGT comparing with MAFs infected with GFP. In 

conclusion, the GAPDH results are in accordance with previous ones with ACTC1 which brings 

authenticity to the analysis.  

  

2. Flow cytometry assays of Gm 03348  

 

2.1. Monitoring transfection efficiency by GFP expression 

 

First it was maintained in culture Gm 03348 cells following our fibroblasts retroviral 

transduction protocol. After three days of the retroviral transduction process, GFP+ were 

observed under the microscope (Figure 8).  
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a)         b)    

  

Figure 8. Gm 03348 cells expressing GFP+, used as positive control for the transduction process, observed under the 

phase-contrast imaging 3 days after the retroviral infections. Scale bars represent 300 µm in a) and in 150 µm b). The 

magnification used was 10x in a) and 20x in b). 

 

Flow cytometry has been used for the analysis of surface and intracellular proteins of 

entire non-muscle tissues or organs. Flow cytometry analysis has the ability to simultaneously 

detect several proteins of interest using samples labelled with numerous antibodies. In addition, 

flow cytometry analysis is less time consuming and even more sensitive than other methods, 

such as western blotting and gel electrophoresis for example (Jackaman et al., 2007). Figure 9 

shows the results obtained in the control group and in the cells infected with GFP as a readout 

for the viral infection efficiency. 

 

a)                            b)        c) 

 

 

Figure 9. FACS were ran in Accuri™ C6 Flow Cytometer (BD Biosciences) and analysed using Flow Jo Software. 

Displaying the 1.33% of GFP positive cells in the live-singlet population; a) Gm 03348 cells not infected (negative 

control); b) and c) Gm 03348 cells infected with GFP (positive controls); with n=2 each. 

 

GFP+ 
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 It is observed that Gm 03348 cells have an autofluorescence of 1.33%. At Figure 9 in b) 

and c) GFP had 12.2% and 12.0% respectively of successfully viral transfection, concluding 

that, the transfection rate in Gm 03348 cells were on average 10.77% [((12.2+12.0)/2)-1.33]. 

 

2.2. HL-1 and Wi-38 comparison  

 

Tropomyosin is one of the proteins that regulates cardiac physiology. Additionally, it 

plays a key role in controlling calcium regulated sarcomeric contraction through its interactions 

with actin and the troponin complex. Tropomyosin regulates the rates of cardiac contraction and 

relaxation, along with conferring differences in myofilament calcium sensitivity and sarcomere 

tension development (Jagatheesan, Rajan and Wieczorek, 2010). The flow cytometry studies of 

certain proteins as tropomyosin is useful to understand the effectiveness of an experiment in 

case the direct cardiac reprogramming (Jackaman et al., 2007).  

HL-1 cells are mice cardiomyocytes that in this context will help us to understand what 

levels of tropomyosin are expected in cardiomyocytes. Comparing HL-1 tropomyosin results 

with Gm 03348 cells infected with MGT it is possible to understand the efficiency of the 

retroviral transduction process and whether Gm 03348 cells are manifesting cardiac features.  

 Wi-38 is a diploid human cell line composed of fibroblasts derived from lung tissue of a 

3-month-gestation aborted female fetus that were used to understand the efficiency of 

tropomyosin staining by the anti-human tropomyosin antibody used. In order to define the best 

stanning condition for detecting tropomyosin expression in our experimental setting, we also 

tested the use of the conjugated anti-human. The tropomyosin primary antibody alone or 

combined with a secondary antibody (anti-goat Alexa 488) results for FACS analysis can be 

seen at Figure 10. 
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a)               b)         c) 

 

    d)                e)           f)       

 

 

Figure 10. FACS were ran in Accuri™ C6 Flow Cytometer (BD Biosciences) and analysed using Flow Jo Software. 

a) HL-1 cells unstained (negative control); b) HL-1 cells with primary antibody; c) HL-1 cells with secondary 

antibody; d) HL-1 cells with primary and secondary antibodies; e) Wi-38 cells with primary antibody; f) Wi-38 with 

primary and secondary antibodies. 

 

The results obtained in HL-1 cells with primary antibody only and with primary and 

secondary antibodies have similar result which means that the primary antibody tropomyosin 

conjugated to anti-goat Alexa 488 is totally functional being the percentage of alive HL-1 cells 

expressing tropomyosin 78.7%, with both antibodies the percentage was 86.3%. The difference 

between the b) and d) is probably only due to the secondary anti-goat Alexa 488 antibody 

autofluorescence. In summary, and as expected, HL-1 cells have a significant expression of 

tropomyosin and the use of anti-goat Alexa 488 conjugated tropomyosin primary antibody alone 

gives satisfactory results for flow cytometry analysis. 

 Wi-38 FACS analysis shown a percentage of 91.1% of alive cells expressing 

tropomyosin when was used the primary antibody only. Wi-38 cells, being embryonic cells, this 

high expression of tropomyosin was not expected. Then, it was necessary a negative control, i.e. 

Wi-38 with no antibody to verify the level of autofluorescence from unstained cells. Using both 

Tropomyosin+ 
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antibodies the result was 96.8% and as for the HL-1 cells. This difference may be due to the 

anti-goat Alexa 488 secondary antibody autofluorescence.  

 

2.3. The impact of cell culture media composition in the expression of tropomyosin 

by Gm 03348 MGT infected cells 

 

 Gm 03348 cells were transduced with MGT and after the fourth viral infection were 

cultured with different media: All high, No FBS, No glutamine and Low glucose. After 

culturing for 15 days, cells were stained with tropomyosin antibody and the percentage of cells 

expressing tropomyosin was calculated through flow cytometry. The results can be seen at 

Figure 11. 
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a)              b)        c) 

 

  d)                e)           f) 

 

g)              h)   

 

 

Figure 11. FACS were ran in Accuri™ C6 Flow Cytometer (BD Biosciences) and analysed using Flow Jo Software. 

a) Gm 03348 cells infected (positive control); b) Gm 03348 cells not infected (negative control); c) Gm 03348 cells 

infected cultured in “All high” medium; d) Gm 03348 cells infected cultured in “No FBS” medium; e) Gm 03348 

cells infected cultured in “No Glutamine” medium; f) Gm 03348 cells infected cultured in “Low glucose” medium; g) 

Gm 03348 cells infected cultured in “All high medium with 10% of Claycomb” medium; h) Gm 03348 cells infected 

cultured in “No FBS medium with 10% of Claycomb” medium; with n=1 each. 

 

Analysing the FACS results it can be concluded that All high medium was the one with 

best results with a 2.04% of alive cells expressing tropomyosin. Low glucose was the second 

medium that demonstrated better performance with 1.12% of Gm 03348 alive cells expressing 

Tropomyosin+ 
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tropomyosin whereas No FBS and No glutamine media revealed lowest efficiency with 0.3% 

and 0.9% respectively.  

 The fact that All high and Low glucose media had the highest score of alive cells 

expressing tropomyosin is mainly because their composition are very similar being the glucose 

concentration the only difference. This data suggests that glucose can possibly be one of the 

main energy sources for these cells. Moreover, results of cells cultured with No glutamine 

medium indicates that glutamine is crucial to cell survival and metabolism.  

 After the retroviral transduction process, cells were culture with the media All high and 

No FBS supplemented with 10% of Claycomb medium from HL-1 cultured cells and analysed 

for tropomyosin expression by FACS. The results can be seen in Figure 11 g) and h). 

In both cases it was observed diminished expression of tropomyosin when Claycomb 

medium was added. Cells culture in All high medium + 10% of Claycomb medium showed a 

regression of 1.14% comparing with the cells cultured with just All high medium. Equally, cells 

cultured with No FBS medium + 10% of Claycomb medium showed a decrease of 0.74% 

comparing with the cells cultured with just No FBS medium. These results are quite surprising, 

it was expected an enhancement in the percentage of alive cells expressing tropomyosin. 

 

3. Cellular viability  

 

In order to evaluate the impact of the different growth media used in the proliferation 

and viability of Gm 03348 cells, we assayed cellular viability using the Cell Counting Kit-8 

(CCK-8), a kit that provides information about cell proliferation and cytotoxicity. In a 96-well 

Gm 03348 cells were platted at different cells densities, 3000 cells and 5000 cells per well, and 

cells were cultured with different media: All high, No FBS, No glutamine and Low glucose as 

before. The cells were maintained in culture for 15 days, in which it was studied the cellular 

viability using the CCK-8 kit. The results can be seen at Figure 12. 
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a)                    b)  

 

Figure 12. Cellular viability of Gm 03348 plated [a) 3000 cells and b) 5000 cells per well] measured by CCK-8 

absorbance at 450 nm detected in a Microplate Tecan 2000 reader, with n=6 for each medium. Data are presented as 

mean ± SD. Statistical significance was determined by two-tailed Student t-test. *, P < 0.05; **, P < 0.01; ***, P < 

0.001. 

 

 Cells plated whit Low glucose medium demonstrated the best results, next was with No 

FBS medium, followed by No glutamine medium.  Similar results were obtained when 5000 

cells were plated. 

As mentioned before Low glucose and All high media are identical just differing at 

glucose concentration, thus similar results were expected. However, we obtained significant 

different results between these media which can be an artefact, these results can be seen at 

Figure 15 (annex 3). 
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CHAPTER 5 - DISCUSSION 
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Heart diseases affect more than 30 million individuals worldwide and they are the most 

significant cause of morbidity and mortality in the world, representing 30% of all global deaths. 

The mammalian heart lacks an adequate capacity to generate new cardiomyocytes and re-

establish its normal function after injury (Talkhabi, Razavi and Salari, 2017; Shah, 2020). For 

these reasons the prevention of disease and death owing to heart failure needs to be made a 

global health priority (Ponikowski et al., 2014). 

After injury, cardiac fibroblasts generate fibrotic scars that cause remodelling and 

hypertrophy which compromises heart function (Rastegar-Pouyani et al., 2017). Numerous 

medical interventions including drug therapy, organ transplantation and cell therapy have been 

developed to treat patients. It seems that cell therapy has more advantages in repairing the 

cardiac normal functions after injury. In the last years, different types of human cells have been 

studied clinically and experimentally to enhance the cardiac regeneration as for example iPSCs 

(Talkhabi, Razavi and Salari, 2017). 

iPSCs technology opened a new avenue for generating different cell types from 

differentiated somatic cells, only by overexpressing specific TFs or miRNAs (Talkhabi, Razavi 

and Salari, 2017). Nevertheless, iPSC-derived cardiomyocytes present several concerns about 

the maturity and functional heterogeneity of these cells, their low survival when delivered to the 

injured myocardium and their potential tumorigenicity (Jayawardena, Mirotsou and Dzau, 2014; 

Miyamoto et al., 2018). 

In this regard, transdifferentiation or direct reprogramming, in which the identity of one 

type of somatic cells is transformed to other adult cell types without intermediate reversion to a 

pluripotent state (Talkhabi, Razavi and Salari, 2017) holds great promise for regenerative 

medicine as it overcomes several problems of the iPSC-based therapy (Jayawardena, Mirotsou 

and Dzau, 2014; Miyamoto et al., 2018). 

Others advantages of the direct cardiac reprogramming are that the overexpression of 

cardiac reprogramming factors in fibroblasts not only induced the cardiac program but also 

repressed fibroblast signatures such as cell proliferation, synthesis of the extracellular matrix, 

and expression of cytokines (Miyamoto et al., 2018).  

 In our study, to evaluate the transdifferentiation efficiency, MGT expression analysis 

was evaluated by qPCR. Gata4 and Mef2c had a clear increase in expression in MAFs infected 

with MGT comparing with MAFs infected with GFP, these findings lead to the conclusion that 

the retroviral infection was effective. However, for Tbx5 the results were different, in fact Tbx5 
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had lower mRNA expression in MAFs infected with MGT, as already mentioned probably due 

to the use of less efficient primers (Figures 13). 

 When retroviral infection were tested in cells with different ages, Feeders and MAFs, 

Gata4 and Mef2c present increase expression in MAFs infected with MGT comparing with 

Feeders infected with MGT (Figure 6), this results are expected since retroviral infection is only 

effective in mitotic cells. Feeders were inactivated during the mitomycin-C process which 

means that they lost their proliferative capacity, thus it is expected that MAFs have higher 

mRNA expression of the TFs. However, it is important to mentioned that Feeders had senescent 

aspect.  

Cellular senescence is an irreversible cell cycle arrest process that occurs in response to 

different stresses. Besides cell cycle exit, senescent cells undergo phenotypic changes including 

increased cellular volume, increased reactive oxygen species (ROS) level, persistent DNA 

damage response, loss of proliferative potential, resistance to apoptosis and increased metabolic 

activity (Khosla et al., 2020; Lin et al., 2020; Yu et al., 2020). 

Tbx5 had lower mRNA expression in both cells (MAFs and Feeders) infected with 

MGT comparing with MAFs infected GFP for the reasons already discussed in chapter 4 

(Figure 6).  

In 2010, for the first time it was directly reprogrammed mouse cardiac fibroblasts and 

tail tip fibroblasts into beating CMs by overexpressing Gata4, Mef2c, and Tbx5. It seems that 

GMT are the “master regulators” for direct cardiac reprogramming. However, in this first study, 

the efficiency of reprogramming was low, which increased the necessity of other strategies to 

enhance the efficiency of iCMs generation (Talkhabi, Razavi and Salari, 2017). 

One of the main goals of this dissertation/experiments was to understand which of the 

previously selected lncRNAs are the best candidates for modulation/knocking down in order to 

increase direct reprogramming efficiency. qPCR analysis shown that MGT infected cells 

(MAFs and Feeders) had larger expression of the lncRNAs that the MAFs infected with GFP. 

Mir22hg it was elected as the best candidate to the knockdown since it was the lncRNA 

candidate that shown the most solid results using both ACTC1 and GAPDH as housekeeping 

references (Figures 7 and 14).   

Comparing both infected MGT- MAFs and Feeders, it was observed that Gm 15856 and 

Gm 28592 had a large expression difference amongst cells infected with MGT which lead to the 

suspicion that are not the best candidates to the knockdown. Gm 27028 expression analysis was 

inconclusive using GAPDH as the housekeeping gene, making it is necessary to repeat in the 

near future. We used Phlda1 and Bvht worked as positive controls, and its results allowed to 
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guarantee that Gm 28592 amplification was not being mistaken by its antisense gene Phlda1, 

and Bvht being a known lncRNA that is highly expressed in the heart demonstrated what the 

level of mRNA expression detected was the expected for lncRNAs (Figures 7 and 14). 

 Human cells are more resistant to the reprogramming process therefore, it is reasonable 

to speculate that additional regulatory events are necessary to propel human cells toward 

alternative cell fates. Others have shown infection of human fibroblasts with GMT only present 

of 3.45% of tropomyosin positive cells. (Nam et al., 2013). In our experiments Gm 03348 cells 

infected with MGT presented a percentage of 10.77% GFP positive cells by FACS (Figure 9).  

Over the last years studies reported that modification of reprogramming factors, 

manipulating signalling pathways, or the use of defined culture conditions promoted cardiac 

reprogramming in mouse and human fibroblasts (Miyamoto et al., 2018). It is known that GMT 

that reprogrammed iCMs from mouse fibroblasts, are able to reprogram human fibroblasts into 

iCMs in vitro; nevertheless, inclusion of additional reprogramming factors resulted in increased 

successful reprogramming rates (Fu and Srivastava, 2015). These studies opened the possibility 

to modulate other variables in cardiac environment, including nutrient alterations, as a strategy 

to increase transdifferentiation efficiency. 

In this regard, we decided to modulate the levels of energy supplying nutrients 

(including glucose, glutamine, and lipids) in the Gm 03348 cells growth medium. Flow 

cytometry analysis revealed that following MGT infection higher tropomyosin percentages were 

obtained with media rich in glucose instead of media with “No FBS” and “No glutamine”. From 

that, we can conclude that through the transdifferentiation process from fibroblasts to 

cardiomyocytes, cells preferably choose metabolism pathways involving glucose instead of FAs 

or glutamine (Figure 11). The GFP+ with different media for Gm 03348 cells were: 2.04 % to 

“All high” medium, 1.12% to “Low glucose” medium, 0.9 % to “No FBS” medium and 0.27 % 

to “No glutamine” medium. 

Proliferating cells often display enhanced uptake of glucose, providing an important 

source of carbon to support lipid production and the biosynthesis of nucleotides and non-

essential amino acids, which ensues via redirection of metabolites of glycolysis and the TCA 

cycle. To replace TCA cycle intermediates that are used to produce biomass, cells use 

anaplerosis, and an important anaplerotic substrate is glutamine  (Zhu and Thompson, 2019).  

Additionally, as observed in tumours, cells obtain glucose from glycogenolysis of stored 

glycogen, but also from gluconeogenic mechanisms, using lactate and glutamine as alternative 

fuels to favour cell proliferation. Glutamine is the most abundant amino acid in the organism 

and is a pillar fuel for cancer cells that, similar to glucose, provides the energy generation, 

biomass and redox control (Afonso et al., 2020). Based on these facts, it is expected that cells 
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grown in culture medium rich in glucose and glutamine had better proliferation/viability and 

therefore, increased retroviral infections rates. 

Since both glucose and glutamine fuel pathways that are vital for cellular proliferation 

and survival, several enzymes that control these pathways can be considered attractive for 

therapeutic targets (Méndez-Lucas et al., 2020), including for our experiments of direct cardiac 

reprogramming. 

Fatty-acid utilization is energetically favourable for post-mitotic adult cardiomyocytes 

(Cardoso et al., 2020) however, increased fatty-acid oxidation perpetuates dependence on fatty-

acid utilization by inhibiting glucose oxidation via the TCA cycle, in which acetyl-coA 

generated from fatty-acid oxidation inhibits the mitochondrial enzyme PDH (Figure 4). Shortly 

after birth, cardiomyocytes exhibit a shift in energetic substrate utilization, from pyruvate to 

FAs. This postnatal metabolic shift coincides with increased DNA damage, expression of DNA-

damage markers, and cell-cycle arrest of cardiomyocytes. The inhibition of fatty-acid utilization 

by cardiomyocyte mitochondria results in a marked shift in myocardial substrate utilization to 

glucose-derived pyruvate utilization and increased cardiomyocytes proliferation. This was 

accompanied by a significant decrease in DNA damage, both base oxidation and double-strand 

breaks (Cardoso et al., 2020). In our experiments, cells cultured in “No FBS” medium had the 

second lower survival and transdifferentiation rates (Figure 11). FAs depletion is important for 

promoting glucose utilization and cardiomyocytes proliferation, this is in accordance with our 

data since glucose richer media are more beneficial for direct reprogramming from cardiac 

fibroblasts. 

During cellular viability test using the CCK-8 it was visible in both cells densities (3000 

cells and 5000 cells) (Figures 12 and 15) plated that the survival rate was bigger in cells plated 

in “Low glucose” medium. On the other hand, “All high” medium had the lower survival rate 

during both platting. Since “All high” had similar composition with the “Low glucose” medium, 

it was expected similar results. Surprisingly, “No FBS” medium had the second-best survival 

rate, which leads to the conclusion already made that high levels of glucose enhance survival 

and proliferation in cells. “No glutamine” medium shown poorest cell viability results 

suggesting that glutamine as well as glucose is crucial for cellular proliferation and survival 

(Afonso et al., 2020; Méndez-Lucas et al., 2020). 

To induce further cardiac maturation in direct cardiac reprogramming of human 

fibroblasts, conditioned media from murine cardiomyocytes was used according to Wada et. al. 

In Wada et. al. work, after one week of transduction, cells were re-plated onto neonatal rat 

cardiomyocytes and expression of cardiac markers, such as α-actinin and cardiac troponin was 

observed in the transdifferentiate cells. After seven days of co-culture, 5% of the transduced 
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cells contracted synchronously with surrounding cardiomyocytes; nevertheless, conditioned 

media from rat cardiomyocytes did not induce spontaneous contraction in the transduced cells. 

Compared with mouse iCMs, human iCMs require coculture with murine cardiomyocytes to 

differentiate into beating cardiomyocytes (Wada, Muraoka, Inagawa, Yamakawa, Miyamoto, 

Sadahiro, et al., 2013).  

 In our experiments, 10% of conditioned media from HL-1 cells (Claycomb medium) 

was used as stimulus to increase the transdifferentiation rate instead of coculture with murine 

cardiomyocytes. However, different results were obtained, in fact the percentage number of 

cells expressing tropomyosin after this process was lower comparing to the cells just infected 

with MGT [Figure 11 g) and h)]. These surprising results could be due to the fact that Claycomb 

is recommended for mice cardiomyocytes culture and here it was used in human cells or some 

specific factor presenting the medium composition that decreased the transdifferentiation rate in 

Gm 03348 cells. 

 To have a perception, which is the level of tropomyosin expressed by mice 

cardiomyocytes, we analysed its expression in HL-1 cells by FACS (Figure 6).  As expected, 

the percentage of HL-1 cells expressing tropomyosin was considerable high (Jackaman et al., 

2007; Jagatheesan, Rajan and Wieczorek, 2010).  Although relevant, it is important to mention 

that in these experiments these cells were not the perfect positive control since we are using 

human Gm 03348 fibroblasts and it would have been important to use human cardiomyocytes as 

positive control. 

For the Wi-38 cells flow cytometry analysis, revealed even higher tropomyosin 

expression compared to HL-1 (Figure 10), such results were not expected since Wi-38 cells are 

embryonic cells and HL-1 are cardiomyocytes. In the future, it will be necessary to perform a 

negative control of these cells, i.e. Wi-38 with no antibody, to understand if some tropomyosin 

expression is due from autofluorescence.  

 The major challenge in the field is to achieve direct cardiac reprogramming in vivo, 

studies shown that gene transfer of retroviral GMT or GMT plus Hand2, or lentiviral 

microRNAs into mouse infarct hearts reprogrammed resident CFs into iCMs in vivo, improved 

cardiac function and reduced fibrosis after MI (Miyamoto et al., 2018). Nevertheless, all these 

iCMs were generated using integrating retroviruses or lentiviruses, which could disrupt 

endogenous gene expression and are associated with the risk of insertional mutagenesis. 

Moreover, the process of the induction of functional iCMs in vitro with these vectors is slow 

and of low efficiency, which is an obstacle to the research of the mechanisms of cardiac 

reprogramming and progress to its clinical applications (Miyamoto et al., 2018). 
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 Thus, development of an integration-free cardiac reprogramming method that is 

appropriate for both in vitro and in vivo applications with high efficiency would be ideal to the 

benefit of clinical translation and basic biology (Miyamoto et al., 2018). The fact that 

fibroblasts are derived from different origins, even in the same organ such as heart is an obstacle 

to the efficiency of direct cardiac reprogramming (Talkhabi, Razavi and Salari, 2017). 

Direct cardiac reprogramming is currently far from cardiac cell-based therapy. 

Improving the efficiency and maturity is not enough, and for producing a large number of CMs 

lost after a MI, 2D culture systems must become 3D culture systems. Therefore, finding novel 

transcriptional activators that increase the efficiency and maturity of iCMs in 2D culture 

systems could pave the way for producing a large number of iCMs required in cell-based 

therapy (Talkhabi, Razavi and Salari, 2017). In sum, despite using different strategies and 

protocols and the considerable effort spent in identifying new TFs for increasing the efficiency 

and functionality of generated iCMs, the efficiency and functional properties of the generated 

cells are still not adequate to be used in clinical trials (Rastegar-Pouyani et al., 2017). LncRNAs 

and nutrient experiments are relevant for the reason that they can bring us new clues to the 

development of this therapeutic strategy. 

In sum, our study provides considerable information for a current challenge in the field, 

in which the efficiency of the direct conversion of mouse and human fibroblasts into iCMs. It is 

important to mention that cardiac fibroblasts are heterogeneous, which raises the question of 

whether we can find a subpopulation of cardiac fibroblasts that is favourable for direct cardiac 

reprogramming. In addition, we still do not have an appropriate culture method to facilitate or 

maintain the maturation of adult CMs in vitro. Therefore, we need to identify the optimal 

conditions for cell culture to enhance in vitro cardiac reprogramming (Fu and Srivastava, 2015; 

Miyamoto et al., 2018).  
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CHAPTER 6 - CONCLUSIONS AND FUTURE PERPECTIVES 
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The heart has a limited self-renewing capacity, including after injury, establishment of a 

strategy for heart regeneration has been desired. Direct cardiac reprogramming has great 

potential to become one of the main therapies of regenerative medicine in heart failure. During 

the experimental work of this dissertation, some advances were made in mouse and human 

systems indicating that cardiac reprogramming efficiency can be improved by various strategies, 

as lncRNAs silencing or metabolism manipulation, and might eventually become powerful 

enough for clinical application. 

MGT seems to be the master regulator of rodent cardiac reprogramming in vitro. 

However, as documented in the first chapter, other TF combinations can also direct cardiac 

reprogram successfully, both in mice and human cells. Thus, it is important to consider in the 

future that other factors such as growth factors and epigenetic regulating factors can assist MGT 

in this regard. Nevertheless, it seems that MGT must be included in the final combination for 

cardiac reprogramming in different species. With our experimental work we shown that is 

possibly to transdifferentiate with MGT retrovirus murine fibroblasts of different ages and 

human fibroblasts. In addition, it was observed that the chosen lncRNAs had an increased 

expression in MAFs and Feeders after the transduction process.  

Another fascinating feature of direct cellular reprogramming in most cell types is the 

progressive, yet rapid, alteration of cellular phenotype, genome-wide epigenetic and 

transcriptional changes occur to establish the necessary landscape for a new cell type without 

progression through a progenitor state, this is a huge advantage against iPSCs, due to the fact 

that this last ones have a bigger probability of tumour development. 

Our studies of cellullar metabolism, through the nutrient manipulation in media, 

elucidate us that cells are more viable in glucose rich media. This finding leads us to the 

conclusion that metabolism manipulation can be a strategy to enhance direct cardiac 

reprogramming efficiency. 

Mice exhibit significant cardiovascular differences compared to humans. Besides the 

differences such as small size and short lifespan, mouse differ from humans in various of 

anatomical, physiological, energetic, electrophysical, and mechanical features that include heart 

rate, coronary artery structure, and contraction/relaxation kinetics. Although significant progress 

has been achieved in direct cardiac reprogramming in mice, research in reprogramming human 

cells lags far behind, reprogramming human fibroblasts requires the addition of extra factors. 

Spontaneously beating cells are rare, suggesting that is necessary more work to translate 

findings from the mouse to human and uncover undiscovered molecular barriers in human 

reprogramming.  
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In the future additional research is necessary to translate direct cardiac reprogramming 

into a clinical therapy. Required steps include continued basic research, research in large animal 

models, improvement in human reprogramming, and bioengineering of delivery mechanisms. 

Also, it is required a better understanding of the mechanism of late stage reprogramming events 

and iCMs maturation.  

One intriguing area worth describing is iCM maturation. As mentioned before, 

experiments of direct cardiac reprogramming were made using co-culture of mice 

cardiomyocytes with the intention of potential beneficial effects of environmental cues like 

extra-cellular matrix, signalling pathways and mechanical or electrical stimulation. In our case 

we tried to give an extra stimulus with Claycomb medium used previously in HL-1, in order to 

enhance reprogramming. Our results were not satisfactory, therefore it is important to explore 

ways of cellular stimuli.  

The continuous findings of the regulatory functions of lncRNAs in diverse cellular 

processes will lead to improvements on the understanding of cardiac homeostasis and disease 

and will possibly provide us with additional therapeutic targets and a more sophisticated tools 

for cellular transdifferentiation approaches in heart regeneration. Compared to other classes of 

ncRNAs, lncRNAs demonstrate a surprisingly wide range of sizes, shapes, and functions. These 

characteristics have endowed them with previously underappreciated functional potentials. 

LncRNAs have various roles in all aspects of gene expression by different mechanisms of 

action. These versatile functions of lncRNAs are dependent of their subcellular localization and 

the adoption of specific structural modules with interacting partners, a process that may undergo 

dynamic changes in response to local environments in cells, based on these facts it is important 

to keep exploring the role of lncRNAs during the transdifferentiation process in order to 

improve direct cardiac reprogram efficiency. 
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Annex 1 

 

 

Figure 13. MGT expression in MAFs infected with MGT comparing with MAFs infected with GFP using the ACTC1 
as housekeeping gene. The calculus was made based in ACTC1 expression. Data refers to n=2 from 1 independent 
experiment. 

  

 

 

 

 

 

 

 

 

1.000

13144.733

0

2000

4000

6000

8000

10000

12000

14000

MAFs GFP MAFs MGT

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
Gata4

1.000

625.001

0

100

200

300

400

500

600

700

MAFs GFP MAFs MGT

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

Mef2c



56 
 

Annex 2 

 

 

Figure 14. lncRNAs expression in MAFs infected with GFP, MAFs infected with MGT and Feeders infected with 
MGT using the GAPDH as housekeeping gene. Data refers to n=2 from 1 independent experiment.  
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Annex 3 

 

a)              b) 

  

Figure 15. Cellular viability of Gm 03348 cells [a) 3000 cells per well and b) 5000 cells per well] measured by CCK-
8 absorbance at 450 nm detected in a Microplate Tecan 2000 reader, with n=6 for each medium. Data are presented 
as mean ± SD. Statistical significance was determined by two-tailed Student t-test. *, P < 0.05; **, P < 0.01; ***, P < 
0.001.   



58 
 

Annex 4 

 

To Be Published in: Article collection Non-coding RNA as Therapeutic Target: A Game 

Changer in Cardiac Regenerative Strategies? Frontiers in Physiology - Clinical and 
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Abstract  

Aging imposes a barrier for tissue regeneration. In the heart, aging leads to a severe 

rearrangement of the cardiac structure and function and to a subsequent increased risk 

of heart failure. An intricate network of distinct pathways contributes to age-related 

alterations during healthy heart aging and account for the higher susceptibility of heart 

disease. Our understanding of the systemic aging process has already leaded to the 

design of anti-aging strategies or to the adoption of protective interventions such has 

the cardioprotective role of exercise. Still, our understanding of the molecular 

determinants operating during cardiac aging or repair remains limited. Here, we will 

recapitulate the molecular and physiological alterations operating during heart aging, 

highlighting the potential role for long non- coding  RNAs  (lncRNAs) as novel and 

valuable targets in cardiac regeneration/repair.  
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Introduction   

Heart failure is a devastating disease leading to millions of deaths worldwide (Yusuf et 

al., 2001; Lloyd-Jones et al., 2009; Lloyd-Jones et al., 2010). Aging is probably the 

highest risk factor for heart failure (Li et al., 2020a). Indeed, heart failure is still the 

major cause of death in the elderly in industrialized countries. Contrary to the neonatal 

heart, adult mammalian hearts lost the capacity to fully regenerate after an exogenous 

or endogenous harm (Lam and Sadek, 2018). This may be mediated through several 

interconnected processes including cellular senescence and secreted factors, telomere 

attrition, mitochondrial damage, cell death or inflammation (for a comprehensive review 

on age-related pathways affecting heart see (Li et al., 2020a)). Although a partial 

myocyte turnover has been observed in adult heart after damage (e.g. myocardial 

infarct), it only partially and slightly restores heart function. Understand what 

distinguishes neonatal to adult hearts or, in other words, understand the functional 

alterations occurring during the early days of neonatal heart development to adult will 

permit to potentially design novel strategies targeted to the adult heart. For instance, it 

has been recently demonstrated that manipulation of telomere length through the 

expression of telomerase, which expression is silenced in the mice heart from day 5 to 

7 (Blasco et al., 1995;Borges and Liew, 1997;Richardson et al., 2012), may prove 

beneficial in heart healing and healthspan (Bernardes de Jesus and Blasco, 2011;Bar 

et al., 2014). Here, we will challenge the cardiac regeneration properties of neonatal 

versus adult hearts in the light of their intrinsic and distinct properties. Namely, we will 

discourse their different expression profiles paying particular attention to the role of 

non-coding transcripts in particular long non-coding RNAs (lncRNAs). LncRNAs have 

been associated with several biological processes, including chromosome dosage 

compensation, genomic imprinting, epigenetic regulation, aging, and cell differentiation 

(Mercer et al., 2009; Rinn and Chang, 2012; Sousa-Franco et al., 2019). Additionally, 

we will summarize different approaches aimed at converting the identity of heart cells 

and their effectiveness in healing a damaged heart.  
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Cardiac Regeneration in Neonatal and Adult Hearts  

There is a general consensus on the capacity of neonatal hearts to regenerate, after 

distinct types of damage (Figure 1 - (Porrello et al., 2011;Haubner et al., 2012;Jesty et 

al., 2012;Mahmoud et al., 2013;Porrello et al., 2013;Rubin et al., 2013;Andersen et al., 

2014;Aurora et al., 2014;Mahmoud et al., 2014;Sadek et al., 2014;Bryant et al., 

2015;Darehzereshki et al., 2015;Han et al., 2015;Jiang et al., 2015;Konfino et al., 

2015;Mahmoud et al., 2015;Aix et al., 2016;Andersen et al., 2016;Blom et al., 

2016;Haubner et al., 2016;Kang et al., 2016;Tao et al., 2016;Valiente-Alandi et al., 

2016;Xiong and Hou, 2016;Yu et al., 2016;Ai et al., 2017;Bassat et al., 2017;Malek 

Mohammadi et al., 2017;Zebrowski et al., 2017;Ahmed et al., 2018;Ingason et al., 

2018;Sampaio-Pinto et al., 2018;Sereti et al., 2018;Cai et al., 2019;Elhelaly et al., 

2019;Wang et al., 2019b;Fan et al., 2020;Li et al., 2020b;Li et al., 2020c;Pei et al., 

2020)). Interestingly, the repair of some types of injuries (e.g. apical resection) may be 

addressed differentially from other lesions (cryoinjury or ischemia). A comprehensive 

overview of neonatal heart regeneration studies has been previously and elegantly 

detailed by Nicholas Lam et al. (Lam and Sadek, 2018). Neonatal heart regeneration 

seems to be mediated through a concerted action of the proliferation of the 

cardiomyocytes, something lost during heart development (Eschenhagen et al., 2017), 

and the extension and characteristics of the injury. This occurs in an extremely short 

time window (less than 10 days), where the cardiomyocytes loss their dividing 

properties, and rewire several of their characteristics including their metabolic needs. 

This implies huge alterations at the level of transcription networks, including coding 

and non-coding genes. It is accepted that the division of pre-existing cardiomyocytes is 

fuelling cardiac regeneration, rather than mobilization of circulation or resident stem 

and progenitor cells (Valiente-Alandi et al., 2016;Lam and Sadek, 2018). Indeed, 

several novel strategies designed for adult heart healing address the death of mouse 

tissues through forcing the pre-existing cardiomyocytes to re-enter cell cycle, to 

convert other cell types of the heart (e.g. cardiac fibroblasts – addressed in the next 

chapter) in dividing cardiomyocytes, or to cell replacement therapies through the 

expansion of cardiomyocytes in vitro (Qian et al., 2012;Addis and Epstein, 2013;Nam 

et al., 2013;Wada et al., 2013;Ghiroldi et al., 2017;Amin et al., 2018;Engel and 

Ardehali, 2018).   

  

Reprogramming the Heart  

Cellular reprogramming has upsurge as a novel strategy allowing the conversion of 

fully determined cells in cells with the potency to be differentiated in novel tissues, 
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including tissues from different development lineages (Takahashi and Yamanaka, 

2006;Yamanaka, 2009;Abad et al., 2013). Variables of the process have been adapted 

to different needs, overpassing limitations and safety concerns of the original protocol. 

Namely, direct conversion between two distinct cell types has been widely explored 

and advocated has a safer and applicable strategy for adult tissue dysfunction. 

Additionally, many of the reprogramming barriers such as the obstacles imposed by 

aging have been, for instance, addressed through the direct manipulation of the 

tumour suppressor genes, p53 or Ink4a/ARF (Li et al., 2009;Marion et al., 2009) or the 

EMT factor ZEB2 (De Jesus et al., 2018;Santos et al., 2019). Here, the lncRNA Zeb2-

NAT which controls the levels of Zeb2 (7) and facilitate cellular reprogramming of aged 

tissues, may have a potential role in cardiac remodelling. Cardiac fibroblast to 

myofibroblast phenoconversion is a critical step during cardiac fibrosis (Czubryt, 2019). 

Zeb2 increases with aging and plays a crucial role by repressing Meox2 leading to the 

upregulation of key myofibroblast markers (Cunnington et al., 2014). Targeting of 

Zeb2-NAT may prove beneficial as an anti-fibrotic target.  

As previously stated, several strategies have been adapted to the heart. Here, for the 

sake of clarity, we will singly discuss the reprogramming into functional 

cardiomyocytes. Mouse postnatal cardiac or dermal fibroblasts can be 

transdifferentiated into functional beating cardiomyocytes through the combined 

expression of three different transcription factors, Gata4, Mef2c, and Tbx5 (GMT). 

GMT activates a cardiac-like gene expression program and promotes cardiomyocyte 

differentiation (Ieda et al., 2010;Qian et al., 2012). Compensation of the GMT cocktail 

with Hand2 showed to enhance direct cardiac reprogramming of mouse cells, being 

however inefficient for human samples (Sahara et al., 2015).  

Remarkably, this approach has been adapted in vivo where cardiac fibroblasts have 

been transdifferentiated into induced cardiomyocytes (iCMs) (Song et al., 2012;Zhang 

et al., 2019a;Zhang et al., 2019b) bypassing the need to dedifferentiate to a stem cell 

state (Liu et al., 2017;Muraoka et al., 2019).  

Direct cardiac reprogramming of fibroblasts into iCMs has emerged as an attractive 

strategy. Alternative sets of reprogramming factors based on different TFs, 

microRNAs, chemical compounds, epigenetic modifications, defined culture conditions, 

and small molecules, have been studied in order to promote cardiac reprogramming 

(Hashimoto et al., 2018;Hashimoto et al., 2019;Muraoka et al., 2019;Testa et al., 

2020). Comparative gene expression analyses reported that iCMs induced in vitro 

exhibited bona-fide adult cardiomyocyte-like features, (e.g. such as fatty-acids (FAs) 

oxidation or cell-cycle exit), surpassing the characteristics of induced pluripotent stem 

cell (iPSC)-derived cardiomyocytes  (Muraoka et al., 2019). Although silencing the 
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fibroblast program is a prerequisite for cardiac reprogramming, the molecular 

mechanisms underlying this process remain unknown. For instance, the desirable 

conversion of aged adult fibroblasts into different cell lineages is still limited through 

defined and undefined age-related barriers (Price et al., 2014;Muraoka et al., 2019). 

Even considering the low efficiency of the transdifferentiation process, new 

cardiomyocytes reprogrammed from endogenous cardiac fibroblasts enhanced cardiac 

function after MI (Wada et al., 2013) fully demonstrating their promise for adult-heart 

repair. Numerous approaches have been applied to improve cardiac reprogramming 

efficiency. A strategy passes through the partial reprogramming of the original cells into 

cardiac progenitors, bypassing pluripotency. Forced expression of a combination of 

five TFs: Mesp1, Gata4, Tbx5, Nkx2-5, and Baf60c reprogrammed murine fibroblasts 

into an expandable multipotent cardiac progenitor cell population, with potential to be 

transplanted into murine hearts after MI, and enhancing survival (Hashimoto et al., 

2018). One week after GMT expression in vivo, about 5% of mice fibroblasts 

expressed α-MHC and cardiac Troponin T (cTnT). Additionally, GMT expression 

following coronary ligation lead to approximately 10% of α-Actinin+ iCMs from cardiac 

fibroblasts in the infarcted region. In order to improve cardiac reprogramming efficiency 

other TFs (e.g. MESP1, MyoD, Baf60c and Hand2), combination of miRNAs (e.g. miR-

1, miR-133, miR-208, and miR-499) and chemical inhibitors (e.g. SB431542, and 

XAV939) have been placed along with GMT transduction (Qian et al., 2012;Chang et 

al., 2019). Addition of Hand2 can increase the efficiency about 28% after three weeks 

in mouse MI models. It is important to mention, however, that the safety issues 

associated with the use of lentivirus and/or retrovirus is a barrier for the potential 

translational aspect of this application. Non-viral reprogramming systems such as the 

use of cationic gold nanoparticles (AuNPs) have emerged as a promising platform for 

gene and drug delivery due to their easy preparation and inertness (Chang et al., 

2019).   

Because human cells are more resistant to the reprogramming process, it is 

reasonable to speculate that additional regulatory events are required to propel human 

cells toward alternative cell fates (Fu et al., 2013;Nam et al., 2013). GHM or GHMT 

factors alone seem insufficient for the reprogramming of human fibroblasts. Additional 

factors such as myocardin, MESP1, oestrogen-related receptor-γ (ESRRγ), zinc-finger 

protein ZFPM2, or miR-1 / miR-133 are needed to successfully induce the conversion 

of human fibroblasts towards a cardiac fate  

(Ghiroldi et al., 2017;Hashimoto et al., 2018).   
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A role for lncRNAs in heart regeneration  

The importance of lncRNAs in heart regeneration has shed some light recently (Bar et 

al., 2016). LncRNAs are a vast category of non-coding, poorly conserved and tissue- 

and developmental stage-specific transcripts with distinct functions in several biological 

processes, including epigenetic, transcriptional and posttranscriptional regulation. 

Regarding the role of lncRNAs in heart regeneration we will discuss some recent 

studies describing lncRNAs directly acting (facilitating or inhibiting) on heart 

regeneration. In 2018, Cai and colleagues explored the role of lncRNAs during heart 

regeneration after ischemic injury, in both neonatal and adult mice (Cai et al., 2018). 

CAREL, a lncRNA whose expression gradually increased in the neonatal hearts from 

P1 to P10 mice, with P7 corresponding to the timepoint at which the heart regenerative 

capacity is lost in mice (Cai et al., 2018). Cardiac-specific overexpression of CAREL 

led to a decrease of cardiomyocyte proliferation and reduced heart regeneration in 

neonatal mice after injury. On the contrary, silencing CAREL promoted cardiac 

regeneration and improved heart functional parameters after myocardial infarction in 

neonatal and adult mice (Cai et al., 2018). CAREL was found to be an endogenously 

competing RNA (ceRNA), sequestering miR-296. It was suggested that the CAREL-

miR-296 interaction led to the activation of Trp53inp1 and Itm2a, leading to a decrease 

in cardiomyocyte proliferation, thus resulting in a reduction of regeneration. 

Intramyocardial administration of CAREL to p1 neonatal mice inhibited cardiomyocyte 

mitosis and increased the formation of cardiac scar and, on the other hand, 

overexpression of miR-256 promoted cardiomyocyte proliferation and cardiac 

regeneration after injury. Similarly to CAREL, the lncRNA CPR (cardiomyocyte 

proliferation regulator) was shown to be a negative regulator of cardiomyocyte 

proliferation and cardiac repair. Ponnusamy and colleagues observed that higher 

levels of CPR hampered cardiomyocyte proliferation, whilst silencing CPR resulted in 

cardiomyocyte proliferation in postnatal and adult hearts (Ponnusamy et al., 2019). 

CPR expression levels were found to be higher in the adult heart, which is consistent 

with their lack of regeneration. The authors reported that CPR recruits DNMT3A to 

several locus leading, in particular, to increased levels of methylation in the MCM3 

promoter (Ponnusamy et al., 2019). In dividing tissues, MCM3 promotes the initiation 

of DNA replication and cell cycle progression (Lin et al., 2008), something halted by 

CPR in the heart and leading to the inhibition of cardiomyocytes proliferation. Another 

lncRNA that appears to be involved in cardiac regeneration is NR_045363, whose 

expression correlates with the regenerative capacity of mice. P7 mice subjected to 

LAD ligation and injected with adenovirus containing NR_045363 exhibited improved 

left ventricular ejection fraction and reduced infarct size compared to the control-
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injected group (Wang et al., 2019a). Mice overexpressing NR_045363 showed higher 

expression of cardiomyocyte mitotic markers, such as Ki67 and phosphorylated 

histone H3 (pH3), suggesting that improved heart function after MI was due to 

cardiomyocyte proliferation. The authors reported that NR_045363 acted as a ceRNA, 

binding to miR-216a (Wang et al., 2019a). miR-216a is known to repress JAK2, leading 

to decreased levels of phosphorylation of STAT3 (Hou et al., 2015). Furthermore, 

deletion of STAT3 was shown to impair cardiomyocyte proliferation after apical 

resection (Kurdi et al., 2018), suggesting that NR_045363 promoted cardiomyocyte 

proliferation by modulating the JAK2-STAT3 pathway. So, the absence of NR_045363 

(which results in an upregulation of miR216a) led to reduced activity of the JAK2-

STAT3, whilst NR_045363 overexpression (which leads to a downregulation of miR-

216a) resulted in an increase of the phosphorylation levels of JAK2 and STAT3, thus 

promoting cardiomyocyte proliferation (Wang et al., 2019a). More recently, NR_045363 

was associated with cardiomyocyte apoptosis. Chen and colleagues reported that loss 

of NR_045363 led to activation of the p53 signaling pathway, promoting apoptosis. On 

the other hand, overexpressing NR_045363 inhibited apoptosis and improved cardiac 

function after MI (Chen et al., 2020), thus potentially mediating the cardiac functions 

observed after NR_045363 modulation. Another lncRNA with a possible role in 

modulation cardiac regeneration is LncDACH1. This lncRNA was found to be gradually 

upregulated in postnatal hearts, which is in accordance with the loss of myocardial 

regenerative capacity soon after birth (Cai et al., 2020). Cardiac-specific 

overexpression of LncDACH1 resulted in the suppression of neonatal heart 

regeneration and aggravation of cardiac function after apical resection. These 

phenotypes were accompanied by a decrease in the number of cardiac-cells 

expressing proliferative markers (Cai et al., 2020). LncRNA ECRAR (endogenous 

cardiac regeneration-associated regulator) was found to be upregulated in the fetal 

heart, and its expression gradually decreased in postnatal hearts. Overexpression of 

ECRAR in postnatal rat cardiomyocytes, both in vitro and in vivo, resulted in an 

increase of DNA synthesis, and an increase of cytokinesis (pH3 and aurora B kinase), 

suggesting a direct involvement in cardiomyocytes proliferation (Chen et al., 2019). 

Overexpression of ECRAR resulted in the phosphorylation of ERK1/2, their 

subsequent translocation to the nucleus and the transcription of cell proliferation and 

cell cycle-related genes (Chen et al., 2019). Li and colleagues identified Sirt1 

antisense lncRNA (Sirt1-as), whose expression was high during heart development. 

Overexpression of this lncRNA resulted in an increase of Ki67- and pH3-positive 

cardiomyocytes. On the other hand, silencing of Sirt1-as, both in vitro and in vivo, led 

to a decrease of Ki67- and pH3-positive cardiomyocytes, indicating a potential decline 
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in cell division (Li et al., 2018a). Furthermore, overexpression of Sirt1-as after MI in 

adult mice resulted in an increased expression of cell-cycle specific factors Ki67 and 

pH3, thus suggesting a potential implication in cardiac health (Li et al., 2018a). 

Cardiomyocyte regeneration-related lncRNA (CRRL) was also found to play a role in 

heart regeneration. CRRL silencing was associated with an increased expression of 

EdU, Ki67 and pH3 in P1 and P7 rat cardiomyocytes (Chen et al., 2018). Similar 

results were obtained in neonatal rats post-MI, concomitantly with better prognosis 

such as reduction of the fibrotic length of the infarct wall and fibrosis area in the non-

infarct zone. Instead, overexpression of CRRL leads to a decrease in pH3-positive 

cardiomyocytes and inhibition of functional recovery postMI. Similarly to other 

lncRNAs, CRRL function seemed to be mediated through the binding to miR-199a-3p 

resulting in an increased expression of Hopx, which is a negative regulator of 

cardiomyocyte proliferation (Trivedi et al., 2010). LncRNA AZIN2-sv, a splice variant of 

the AZIN2 gene, was found to be upregulated in human adult hearts. AZIN2-sv was 

reported to negatively regulate cardiomyocyte proliferation, both in vitro and in vivo (Li 

et al., 2018b). Overexpression of AZIN2-sv led to an anti-proliferative phenotype, 

marked by decreased levels of EdU-, Ki67-, pH3- and Aurora-B. On the other hand, 

silencing AZIN2-sv promoted cardiomyocyte proliferation and improved cardiac 

function after MI. AZIN2-sv sequesters miR-214, leading to the release of its target 

PTEN, resulting in a decrease in the phosphorylation of Akt and Cyclin-D, therefore 

inhibiting cardiomyocyte proliferation. Reduced levels of AZIN2-sv allow miR-214 to 

repress PTEN, leading to increased levels of phosphorylated Akt and Cyclin-D, thus 

promoting cardiomyocyte proliferation. More recently, Trembinski and colleagues 

identified lncRNA SARRAH (SCOT1-antisense RNA regulated during aging in the 

heart), whose expression declines during aging. Inhibition of Sarrah induces caspase 

activity in mouse and human cardiomyocytes, promoting apoptosis. Gene set 

enrichment analysis after SARRAH silencing, showed an enrichment of apoptosis 

related pathways, corroborating previous observations (Trembinski et al., 2020). 

SARRAH was also found to directly bind to the promoters through RNADNA triplex 

helix structures, suggesting that its binding may activate gene expression. Indeed, it 

was reported that SARRAH interacted with CRIP2 (cardiac transcription factor 

cysteine-rich protein 2) and p300, which acetylates histone H3 lysine 27 to activate 

transcription (Trembinski et al., 2020). On the contrary, overexpression of SARRAH led 

to a decrease in caspase activity. In adult mice a decline in apoptosis was observed 

after overexpressing SARRAH, suggesting that reduced expression levels of this 

lncRNA in aged mice might contribute to cardiomyocyte cell death in vivo. 

Furthermore, reduced levels of Sarrah were observed in the infarcted and border 
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regions after acute MI (Trembinski et al., 2020). Other lncRNAs involved with aged 

heart include the lncRNA H19 (downregulated in aged or ischemic heart (Hofmann et 

al., 2019)); MALAT1 a lncRNA which is, himself, regulated by an antisense lncRNA 

transcript (TALAM1) (Zong et al., 2016), was also shown to be decreased in aged 

hearts (Bink et al., 2019;Gomes et al., 2019), and this decrease was shown to be 

involved in cardiac dysfunction (Zhu et al., 2019;Li et al., 2020a).  

 

Conclusions  

As previously discussed several lncRNAs are deregulated during the development of 

the heart or during heart pathologies. LncRNA targeting may be a novel strategy 

against heart diseases (Bar et al., 2016). Technically, the development of specific and 

deliverable antisense transcripts (e.g. LNA-GapmeRs) has been proved powerful and 

efficient carriers for in vivo targeting and RNase H-mediated degradation of specific 

targets (Bernardes de Jesus et al., 2018). Similar approaches may be designed for 

expression of selected lncRNAs, down-regulated in cardiac diseases. In conclusion, 

lncRNAs are critical regulators of heart health and disease. Understand their specific 

profiles in dividing versus non-dividing cardiomyocytes may allow the detection of 

potentially druggable targets for adult heart repair.  
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Figure 1 – Studies on neonatal heart regeneration  
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To Be Published in: Article collection Non-coding RNA as Therapeutic Target: A Game 
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Running title: lncRNAs and metabolic signaling in cardiac regeneration 

 

ABSTRACT  

 

Heart disease is the leading cause of mortality in developed countries. The 

associated pathology is typically characterized by the loss of cardiomyocytes that 

leads, eventually, to heart failure. Although conventional treatments exist, novel 

regenerative procedures are warranted for improving cardiac regeneration and 

patients well fare. Whereas following injury the capacity for regeneration of adult 

mammalian heart is limited, the neonatal heart is capable of substantial regeneration 

but this capacity is lost at postnatal stages. Interestingly, this is accompanied by a 

shift in the metabolic pathways and energetic fuels preferentially used by 

cardiomyocytes from embryonic glucose-driven anaerobic glycolysis to adult oxidation 

of substrates in the mitochondria. Apart from energetic sources, metabolites are 

emerging as key regulators of gene expression and epigenetic programs which could 

impact cardiac regeneration. Long non-coding RNAs (lncRNAs) are known master 

regulators of cellular and organismal carbohydrate and lipid metabolism and play 

multifaceted functions in the cardiovascular system. Still, our understanding of the 

metabolic determinants and pathways that can promote cardiac regeneration in the 

injured hearth remains limited. Here, we will discuss the molecular interplay between 

lncRNAs and metabolic signaling in the regenerative heart and whether their 

manipulation could provide ground for the development of innovative treatments. 
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INTRODUCTION 

The World Health Organization (WHO) has been reporting every year that 

cardiovascular diseases (CVD) are the leading cause of death in the world. Although 

currently there are large range of pharmaceutical drugs and surgical options that 

prevent further deterioration or restore function to the failing heart, for end-stage heart 

failure, the only long-term selection is heart transplantation which presents several 

limitations (Hudson and Porrello, 2013). Therefore, the development of improved 

cardiac regenerative strategies is an area of growing interest.  

Subsequent to cardiac injury, cardiomyocytes undergo necrotic and apoptotic cell 

death and cardiac fibroblasts are activated to produce collagen and other extracellular 

matrix components, leading to fibrosis and harmed cardiac function (Song et al., 2012; 

Hashimoto et al., 2018). The main goal of regenerative cardiovascular medicine is to 

repair injured hearts by replacing cardiomyocytes and diminishing fibrosis. In order to 

suppress the outcomes of heart failure several regenerative strategies have been 

proposed, including post-injury activation of cardiomyocyte proliferation, recruitment of 

stem cells or progenitor cells, delivery of de novo cardiomyocytes from iPSCs, and 

direct reprogramming of resident cardiac fibroblasts (CFs) into induced cardiac-like 

myocytes (iCLMs) (Ieda et al., 2010; Song et al., 2012; Ghiroldi et al., 2018; 

Hashimoto, Olson and Bassel-Duby, 2018) 

Besides holding great promise, most cardiac regenerative strategies still lack 

effective clinical outcomes (Ghiroldi et al., 2017; Hashimoto et al., 2018). Therefore 

understanding the molecular mechanisms and players governing cardiac regeneration 

in the injured hearth is warranted for improving the efficiency of cardiac regenerative 

strategies. In this context, long non-coding RNAs (lncRNAs), a class of >200 

nucleotides-long ribonucleic acid sequences, are abundantly expressed in the 

cardiovascular system and are part of a complex regulatory network governing 

cardiovascular function in health and disease (Bär et al., 2016; Das et al., 2018; Hobuß 

et al., 2019). Essential roles for few lncRNAs in heart development have been 

described (Matkovich et al., 2014; Bär et al., 2016; Haemmig et al., 2017) and 

exploring the role of lncRNAs in cardiovascular function may facilitate the development 

of new therapeutics for treating cardiovascular disease (Bär et al., 2016; Hobuß et al., 

2019). 

Although the adult mammalian heart has limited regenerative capacity, with 

estimation of only ≈1% de novo cardiomyogenesis per year (Neidig et al., 2018), the 

neonatal heart is capable of substantial regeneration but this capacity is lost by 
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postnatal day (P) 7 (Soonpaa et al., 1996). Interestingly, this lost in proliferative 

potential is accompanied by a shift in the main energetic metabolic pathway and fuels 

preferentially used by cardiomyocytes from embryonic glucose-driven anerobic 

glycolysis to adult oxygen-dependent oxidative phosphorylation (OXPHOS) nof 

pyruvate and fatty acids (FAs) in the mitochondria (Lopaschuk et al., 1992; Lehman 

and Kelly, 2002). Apart from energetic sources, metabolites have emerged as key 

regulators of gene expression programs acting as essential substrates or cofactors for 

epigenetic enzymes (Intlekofer and Finley, 2019) opening the possibility for a two-way 

communication between metabolism and lncRNAs in cardiac heart regeneration. 

Interestingly, lncRNAs are emerging as master regulators of cellular and systemic 

carbohydrate and lipid metabolism with clear implications for cardiovascular function 

(Zhao, 2015; van Soligen, 2018; Mongelli et al., 2019). 

Here, we will discuss the molecular interplay between lncRNAs and metabolic 

signaling in the heart highlighting recent evidence in lncRNA modulation that improves 

cardiac regeneration. Also, particular emphasis will be given to those lncRNAs 

regulating metabolic targets in the cardiovascular system which manipulation could 

provide ground for the development of innovative cardiovascular treatments.  

 

CAN AN EMBRYONIC-LIKE METABOLIC PROGRAM PROMOTE HEART 

REGENERATION? 

The fetal heart’s environment is low in oxygen and FAs, thus fetal 

cardiomyocytes are highly dependent on glycolysis for ATP production (Lopaschuk et 

al., 1992). The heart suffers a major metabolic alteration driven by the physiological 

changes at postnatal stages, as enhanced workload and the demand for growth, that 

cannot be supported by glucose and lactate metabolism (Malandraki-Miller et al., 

2018). The mammalian heart has to contract constantly thus, the need for an optimal 

energy fuel is imperative. Mitochondria is the organelle that coordinates the energy 

transduction function and it is responsible to produce more than 95% of ATP utilized by 

the heart (Doenst et al., 2013). Additionally, mitochondrion regulates intracellular 

calcium homeostasis, signaling and apoptosis (Kolwicz et al., 2013). As a result, 

mammalian cardiomyocytes undergo extensive metabolic remodeling after birth. In 

order to adapt to high-energy demands of the postnatal life, cardiomyocytes suffer a 

metabolic switch and produce their energy via mitochondrial OXPHOS, a more efficient 

process than glycolysis (Lehman and Kelly, 2002; Vivien et al., 2016). Postnatal 

cardiomyocytes also revealed a shift in the energetic substrate utilization from pyruvate 
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to FAs that are energetically more favorable (Lopaschuk et al., 1992; Lehman and 

Kelly, 2002). As the neonatal mammalian heart regenerative capacity is lost by P7, 

which corresponds with cardiomyocyte binucleation and cell-cycle arrest (Soonpaa et 

al., 1996; Porrello et al., 2011), it is intriguing to think that the “fetal metabolic shift” 

would have a role in suppressing cardiomyocyte proliferation and heart repair (Martik, 

2020). Currently many studies are focusing in understanding the role of mitochondrial 

metabolism in regulating cell-cycle arrest postnatally and new regenerative strategies 

could arise. 

Heart regeneration in zebrafish is incredibly effective and relies on the 

proliferation of pre-existing cardiomyocytes. Apart from cardiomyocytes, other cell 

types (such as epicardial, endocardial, immune cells and fibroblasts) respond to the 

heart injury and contribute for the healing process (Vivien et al., 2016; Honkoop et al., 

2019).  Cardiomyocytes from highly regenerative species such as zebrafish have a 

preference for glycolysis and increased OXPHOS activity promotes cardiomyocyte 

maturation and reduces the proliferative capacity (Vivien et al., 2016; Honkoop et al., 

2018; Fukuda et al., 2019). Although the “fetal switch” to mitochondrial respiration has 

been associated to loss of the regenerative capacity (Malandraki-Miller et al., 2018), 

the role of bioenergetics in regulating cardiogenesis remains unclear. Recent evidence 

suggest that hypoxia inducible factor 1 (HIF1) signaling, an important inducer of 

aerobic glycolysis and the Warburg effect in cancer cells (Kroemer and Pouyssegur, 

2008), controls the embryonic switch toward oxidative metabolism in developing mouse 

heart (Menendez-Montes et al., 2016).  

The adult mammalian heart cannot regenerate lost or damaged myocardium 

although it does present a limited myocyte turnover that reveals insufficient for 

restoration of contractile dysfunction. The brief window of regenerative response 

following injury seems to be also driven by proliferation of pre-existing cardiomyocytes 

(Porrello et al., 2011; Elhelaly et al., 2019). Strikingly, increased production of 

mitochondrial-derived reactive oxygen species (ROS) and DNA oxidation leads to cell-

cycle arrest in mouse postnatal cardiomyocytes through the activation of DNA damage 

response pathways (Puente et al., 2014). FAs oxidation is directly linked with increased 

production of ROS and cardiomyocyte cell-cycle arrest (Cardoso et al., 2020). 

Moreover, the constant use of FAs as an energetic fuel provokes a dependency on this 

substrate as the acetyl-coA produced from FAs oxidation inhibits the mitochondrial 

enzyme pyruvate dehydrogenase (PDH) (Rindler et al., 2013). Currently the focus is to 

clarify whether modulating substrate utilization would affect DNA damage and promote 

cell-cycle re-entry in cardiomyocytes. Supplementation of FAs depleted diets in mice 
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prolongs the postnatal window for cardiomyocyte proliferation however, it is associated 

with a marked hepatomegaly and steatosis due to a compensatory increase in hepatic 

de novo fatty-acid synthesis (Cardoso et al., 2020). Moreover, deletion of the 

dehydrogenase kinases isoform 4 (PDK4), main responsible for PDH inhibition and 

FAs usage, in adult cardiomyocytes results in a marked shift in myocardial substrate 

utilization with decrease FAs and enhanced pyruvate-driven glucose oxidation, leading 

to a decrease in DNA damage and increase in cardiomyocyte proliferation (Cardoso et 

al., 2020). Activation of PDH through administration of dichloroacetate in mice also 

resulted improved glucose utilization and resulted cardioprotective (Cardoso et al., 

2020). 

In sum, the intricate relationship between the “fetal metabolic switch” and loss of 

cardiomyocyte proliferative potential in the mammalian heart is beginning to shed light 

into important regulatory axis, including HIF signaling, mitochondrial-dependent ROS 

formation and bioenergetic fuels (FAs, glucose, pyruvate). Several important questions 

and opportunities are still open in the field. Can other cardiac regenerative strategies, 

as generation of induced cardiac-like myocytes (iCLMs) from iPSCs or resident cardiac 

fibroblasts (CFs), be potentiated by induction of the “fetal metabolic switch”? And, is 

there evidence for systemic metabolic shifts, as nutritional stages and diets, favoring 

cardiac regeneration pós-injury in the mammalian heart? 

 

LncRNAs CONTROLING METABOLIC PATHWAYS IN THE HEART  

LncRNAs represent one of the most prominent but least understood transcriptome 

in the heart. Thousands of lncRNAs have been identified to be dynamically transcribed 

during the development, differentiation, and  maturation of cardiac myocytes (Devaux 

et al., 2015; He et al., 2016; Li et al., 2017; Beermann et al., 2018). Due to their unique 

regulatory action and tissue-specific expression, lncRNAs are attractive candidates for 

modulation and diagnosis of cardiac pathophysiological conditions (Bär et al., 2016; 

Hobuß et al., 2019). lncRNAs execute their functions by forming RNA-DNA, RNA-

protein, and RNA-RNA interactions that regulate gene expression through diverse 

mechanisms, including epigenetic remodeling, transcriptional activation or repression, 

posttranscriptional regulation, and modulation of protein activity (Schonrock et al., 

2012; Kornfeld and Brüning, 2014; Devaux et al., 2015; Thum and Condorelli, 2015; 

Muret et al., 2019). 

Interestingly, lncRNAs are emerging as master regulators of cellular and organismal 

carbohydrate and lipid metabolism in adipose tissue and liver (Kornfeld and Brüning, 
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2014; Zhao, 2015; van Soligen, 2018; Mongelli et al., 2019; Muret et al., 2019). 

Alteration in blood lipids levels is one of the most relevant risk factor for CVD. In the 

recent years, several studies have highlighted the complex contribution of lncRNAs in 

controlling systemic and cell-type-specific cholesterol, FAs and triglyceride metabolism, 

with important implications for CVD. For instance, several lncRNAs, including H19, 

lncRNA HCV regulated 1 (lncHR1), MALAT-1 and lncARSR, have been shown to 

regulate the expression of the sterol regulatory element binding protein 1c (SREBP-1c), 

a transcription factor that regulates lipid synthesis and uptake in the liver (Liu et al., 

2018; Li D. et al., 2018; Yan et al., 2016; Zhang M. et al., 2018). Other examples are 

the liver-specific triglyceride regulator lncRNA Lancaster (lncLSTR) that regulates 

triglyceride plasma levels and energy metabolism (Li P. et al., 2015) or AT102202 that 

inhibits cholesterol synthesis in the liver by targeting the rate- limiting enzyme HMGCR 

(Liu et al., 2015). Whether lncRNAs-mediated control of systemic lipid metabolism 

directly impacts cardiac regeneration remains unknown.  

As previously discussed, of particular interest are the lncRNAs controlling the “fetal 

metabolic switch” from embryonic glycolysis to adult mitochondrial respiration and the 

preferred usage of FAs as energetic fuel in differentiated cardiomyocytes. Although 

most of our knowledge in lncRNAs control of metabolism comes from studies in 

lipogenic tissues and/or cancer energetics (Gomes et al., 2019), some mechanistic 

insights in cardiac muscle development and function, particularly concerning 

mitochondrial metabolism, are beginning to arise (Table 1).  Due to the implication of 

mitochondrial-dependent FAs oxidation and ROS production in cardiomyocyte loss of 

proliferation (Puente et al., 2014; Cardoso et al., 2020), lncRNAs that regulate these 

pathways are particularly attractive for cardiac regeneration.  

In heart and skeletal muscle, the lncRNA LINC00116 is among the most significantly 

downregulated genes in aging muscles (GEO: GSE362 and GSE674). Interestingly, a 

small region of the most predominant isoform is actively translated in human and 

mouse and has been found to encode a highly conserved transmembrane 

microprotein, named mitoregulin (Mtln), that localizes to the inner mitochondrial 

membrane, enhancing mitochondrial membrane potential while decreasing ROS 

formation (Stein et al., 2018). The impact of Mtln expression in cardiovascular disease 

and regeneration is still unclear but GTEx portal annotates the existence of 

common genetic variants that strongly associate with LINC00116 expression in human 

heart (Stein et al., 2018). NEAT1 (nuclear enriched abundant transcript 1) is another 

lncRNAs with increased expression in non-regenerative cardiomyocytes (Table 1). In 

skeletal muscle, NEAT1 modulates myogenesis by accelerating myoblast proliferation 
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and suppressing myoblast differentiation and fusion (Wang et al., 2019). NEAT1 act by 

recruiting EZH2 to target gene promoters, decreasing the expression of the cyclin-

dependent kinase inhibitor p21 and suppressing the myoblast differentiation program. 

Strikingly, several mitochondrial regulators have been identified to associate to NEAT1 

in paraspeckles, a type of nuclear body with multiple roles in gene expression (Wang et 

al., 2018). Specifically, NEAT1 depletion lead to profound effects on mitochondrial 

dynamics and function by altering the paraspeckles-specific sequestration of essential 

mito-mRNAs, including CYCS (cytochrome c), NDUFA13 (NADH:Ubiquinone 

Oxidoreductase Subunit A13) and CPT1A (Carnitine Palmitoyltransferase 1A) (Wang et 

al., 2018) and NEAT1-depleted HeLa cells showed a reduction in mitochondrial DNA, 

ATP production and proliferation rate (Wang et al., 2018). 

Cardiac muscle is extremely metabolically active and undergoes significant changes in 

its energy metabolism during disease. In mouse cardiomyocytes, cardiac apoptosis-

related lncRNA (CARL) bound to and sequesters miR-539, a microRNA found to target 

the mRNA of the PHB2 sub-unit of prohibitin, a protein localized to the inner 

mitochondrial membrane that regulates mitochondrial homeostasis (Wang et al., 2014). 

Downregulation of PHB2 during pathological insults was found to be dependent on 

upregulation of miR-539. CARL act as the endogenous sponge for this microRNA, 

suppressing mitochondrial fission and cardiomyocyte apoptosis (Wang et al., 2014), 

highlighting the therapeutic potential of lncRNAs during myocardial infarction. The 

lncRNA CDKN2B‐AS1 (also known as ANRIL) has been described as a genetic risk 

factor for coronary artery disease (CAD) (Deloukas et al., 2013). ANRIL expression 

level is associated with left ventricular dysfunction after myocardial infarction (Vausort 

et al., 2014). Experimental manipulation in several human cell lines (including HEK and 

HeLa), showed that knock-down of ANRIL decreases the expression of ADIPOR1 

(adiponectin receptor 1), TMEM258 (also known as C11ORF10 for chromosome 11 

open reading frame 10) and VAMP3 (vesicle associated membrane protein 3), both at 

the transcript and protein level, which are important genes in the regulation of glucose 

and fatty-acid metabolism (Bochenek et al., 2013). The mechanistic action of ANRIL 

and the existence of ANRIL-mediated metabolic regulation in cardiomyocytes remains 

to be explored. Conversely, in patients with myocardial infarction the levels of the 

lncRNA hypoxia inducible factor 1A antisense RNA 2 (HIF1A‐AS2) was found to be 

upregulated (Vausort et al., 2014). In humans, the HIF pathway is induced early in 

acute myocardial and remains activated in chronic human heart failure (Zolk et al., 

2008). Due to the role of the HIF signaling in controlling myocardial metabolism and 

differentiation in the neonatal heart (Menendez-Montes et al., 2016) and the implication 
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of the lncRNA lincRNA-p21 in hypoxia-enhanced glycolysis (Yang et al., 2014), 

manipulation of the lncRNAS/HIF regulatory network might modulate metabolism and 

potentiate regeneration in the failing heart.  

Type 2 diabetes (T2D) is a multifactorial disorder and diabetic cardiomyopathy (DCM) 

is a critical complication (Jia et al., 2018). Studies suggest that lncRNAs that regulate 

metabolic targets are aberrantly regulated in DCM, thus targeting lncRNAs could have 

potential implications for DCM diagnosis or therapy. The mitochondrial long intergenic 

noncoding RNA predicting cardiac remodeling (MT-LIPCAR) is a lncRNA possibly 

transcribed from mitochondrial DNA that cross the membrane barrier being released 

into the circulation (Dorn, 2014). Plasma levels of MT-LIPCAR were positively 

associated with left ventricular diastolic dysfunction in T2D patients with DCM showing 

prognostic value as an indicator of future heart failure and patient mortality. MT-

LIPCAR was the first proof that plasma lncRNAs might be used for cardiovascular 

disease prognostic (Kumarswamy et al., 2014). Despite the invaluable potential as a 

cardiac biomarker, MT-LIPCAR targets and metabolic impact remains unclear. 

Evidence suggested that the complete MT-LIPCAR sequence could map to the 

mitochondrial genes CYTB (Mitochondrially Encoded Cytochrome B) and COX2 

(Mitochondrially Encoded Cytochrome C Oxidase II) (Dorn, 2014), raising further 

questions regarding MT-LIPCAR biogenesis as a mitochondrial or nuclear pseudogene 

transcript. 

H19 is a lncRNA transcribed from H19/ insulin-like growth factor-II (IGF2) genomic 

imprinted cluster which accumulates in cardiomyocytes of the mature myocardium in 

humans and rodents (Pant et al., 2018; Viereck et al., 2020). Decreased expression of 

cardiac H19 was reported in a rat model of DCM (Li et al., 2016; Zhuo et al., 2017). 

Overexpression of H19 in myocardial tissues was able to suppress oxidative stress, 

inflammation and improved left ventricular function leading to DCM amelioration. 

Mechanistically, H19 serves as template for microRNA-675 expression from its first 

exon (Zhang et al., 2017; Pant et al., 2018). Since microRNA-675 has multiple 

biological targets, H19 is able to regulate a number of mitochondrial functions including 

suppression of apoptosis by targeting voltage-dependent anion channel 1 (VDAC1) (Li 

et al., 2016), or inhibiting autophagy activation in cardiomyocytes exposed to high 

glucose through the down-regulation of the GTP- binding protein Di-Ras-3 (DIRAS3) 

(Zhuo et al., 2017). 

In sum, recent work on lncRNAs has started to shed light on their regulatory 

potential on heart metabolic homeostasis during health and disease. A question to be 
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exploited is whether lncRNAs-mediated control of metabolic targets may be applied for 

cardiac regeneration.  

 

lncRNAs AND METABOLISM ARE CENTRAL EPIGENETIC PLAYERS IN CARDIAC 

REGENERATION? 

A hallmark function of lncRNAs is their ability to mediate epigenetic regulation 

and lncRNAs have crucial roles in regulating cardiac chromatin structure during heart 

development and pathological remodeling (Schonrock et al., 2012). lncRNAs exhibit 

tissue-specific and regulated expression patterns which are frequently lost during 

disease (Cabili et al., 2011). How lncRNAs are regulated in different cardiac 

developmental and disease states is still unclear. Strikingly, inhibition of epigenetic 

modifications alters the expression pattern of lncRNAs (Schonrock et al., 2012). 

Metabolites are emerging as key regulators of gene expression programs and 

epigenetic modifications, acting as essential substrates or cofactors for enzymes that 

deposit or remove chemical modifications in DNA and/or histones (Intlekofer and 

Finley, 2019). FAs and cholesterol have been show to regulate lncRNAs expression in 

lipogenic tissues. For instance, the lncRNA CHROME which is upregulated in 

nonhuman primates with atherosclerotic vascular disease, regulates cellular and 

systemic cholesterol homeostasis and conversely, CHROME expression is influenced 

by dietary and cellular cholesterol (Hennessy et al., 2019). Also, the expression of the 

lncRNAS H19 and MALAT1 is upregulated by FAs exposure, coinciding with an 

increase in (SREBP)-1c in hepatic cells (van Soligen, 2018) and HULC is induced by 

cholesterol in hepatoma cells via the retinoic receptor RXRA, leading to lipogenesis 

(Cui et al., 2015). Evidence for the direct implication of nutritional signals in the 

epigenetic alterations that govern lncRNAs expression is still lacking but it seems clear 

that lncRNAs and metabolites engage in a two-way communication road in the control 

of systemic metabolism. Recently the nutritional microenvironment has also been show 

to control the specification of skeletal cell fate, highlighting the possibility for a similar 

network to potentiate cardiac regeneration. When lipids are scarce, skeletal progenitors 

activate forkhead box O (FOXO) transcription factors leading to a Sox9-dependent 

suppression of FAs oxidation and chondrogenic commitment (van Gastel et al., 2020). 

Moreover, glucose metabolism is crucial for muscle stem cells (MuSCs) commitment.  

In proliferating MuSCs, glucose is dispensable for mitochondrial respiration and 

becomes available for maintaining high histone acetylation via acetyl-CoA whereas 

differentiating MuSCs increase glucose oxidation and have consequently reduced 
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acetylation (Yucel et al., 2019). Pyruvate dehydrogenase (PDH) is pivotal for this 

switch and determines the differentiation potential of myogenic progenitors during 

muscle regeneration (Yucel et al., 2019). Whether metabolic choices also directly 

impinge cardiomyocyte cell fate decisions and if dietary cues can impact cardiac 

regeneration by the control of lncRNAs expression remains to be explored. 

 

CONCLUDING REMARKS 

Given the emerging regulatory potential of lncRNAs, it is undoubted that these 

molecules offer potential solutions in the pursuit for cardiac regeneration (Hudson and 

Porrello, 2013). But can we boost cardiac regeneration by modulating the lncRNAs-

metabolism node? Accumulating evidence suggests that exploring the two-way 

communication road between lncRNAs and (cardiac or systemic) metabolism may offer 

new perspectives for increasing the regenerative potential of the injured heart. 
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