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Abstract: In this work, magnetic yeast (MY) was produced through an in situ one-step method. Then,
MY was used as the core and the antibiotic sulfamethoxazole (SMX) as the template to produce
highly selective magnetic yeast-molecularly imprinted polymers (MY@MIPs). The physicochemical
properties of MY@MIPs were assessed by Fourier-transform infrared spectroscopy (FT-IR),
a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis
(TGA), specific surface area (SBET) determination, and scanning electron microscopy (SEM).
Batch adsorption experiments were carried out to compare MY@MIPs with MY and MY@NIPs
(magnetic yeast-molecularly imprinted polymers without template), with MY@MIPs showing a better
performance in the removal of SMX from water. Adsorption of SMX onto MY@MIPs was described
by the pseudo-second-order kinetic model and the Langmuir isotherm, with maximum adsorption
capacities of 77 and 24 mg g−1 from ultrapure and wastewater, respectively. Furthermore, MY@MIPs
displayed a highly selective adsorption toward SMX in the presence of other pharmaceuticals,
namely diclofenac (DCF) and carbamazepine (CBZ). Finally, regeneration experiments showed that
SMX adsorption decreased 21 and 34% after the first and second regeneration cycles, respectively.
This work demonstrates that MY@MIPs are promising sorbent materials for the selective removal of
SMX from wastewater.

Keywords: antibiotics; emerging contaminants; pharmaceuticals; wastewater treatment; polymeric
adsorbents; magnetization

1. Introduction

Antibiotics are intensively used as human and veterinary medicines for the treatment and
prevention of infectious diseases [1]. Among them, sulfamethoxazole (SMX) is a sulfonamide
bacteriostatic antibiotic that has been commonly used during the last 80 years to treat urinary tract
infections due to its low cost and broad spectrum of activity to treat bacterial diseases [2,3]. However,
the widespread and indiscriminate use of SMX, as of other antibiotics, constitutes a huge potential threat
to human health and contaminates natural ecosystems by affecting aquatic and soil organisms [4,5].
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Recently, SMX has been detected in effluents of sewage treatment plants (STP), and also in surface and
groundwater [6,7]. Indeed, it is known that pharmaceuticals (including SMX) can reach the aquatic
environment in their unchanged or transformed forms mainly through discharge of effluents from
municipal STP [7]. According to the statistics, more than 20,000 tons of SMX enter the environment
worldwide every year, resulting in concentrations that range from 0.001 to 5.0 µg L−1 in untreated or
treated wastewater [8–10]. Therefore, the problem of environmental contamination by SMX is of great
concern as pathogen resistance is highly documented and has been induced even by low levels of
antibiotics [11].

To solve the above-mentioned problems, substantial research efforts have been directed worldwide
to develop sustainable treatments for the removal of antibiotics, including SMX, from contaminated
waters, such as membrane separation, adsorption processes, photocatalysis, and chemical oxidation [12].
Among these treatments, adsorption-based processes have been highlighted to be efficient, easy to
implement and, furthermore, avoid the generation of transformation products [13–15]. However,
the application of these processes is quite challenging due to the characteristic features of
contaminated wastewaters, namely, large discharge flux, complex composition, and very low antibiotic
concentrations [16]. Increasing the adsorbent specificity has been proposed as a strategy to address
these challenges and improve the efficiency of the adsorptive removal of antibiotics from such complex
matrices [17].

Molecularly imprinted technology (MIT) involves the creation of tailor-made selective binding
sites in a polymeric matrix with memory of the shape, size, and functional groups of the template. Thus,
molecularly imprinted polymers (MIPs) have become increasingly attractive as adsorbent materials
due to their capacity to selectively bind specific targets and to their promising characteristics, such
as low cost, easy synthesis, high stability to harsh chemical and physical conditions, and excellent
reusability [18,19]. In recent years, MIPs, whose application of the extraction and analysis of organic
contaminants in environmental water samples is well-established [20], have been successfully used for
the adsorptive removal of pharmaceuticals, including antibiotics, from contaminated water [21–24].
In the specific case of SMX adsorption by MIPs, few works have been published, with most of them
aiming at the analytic quantification of this antibiotic. For example, Qin et al. [5] used Fe3-O4-chitosan
MIPs for SMX selective extraction and determination in aqueous samples, with the produced materials
having attained a maximum adsorption capacity of 4.32 mg g−1. Zhao et al. [25] prepared core–shell
MIPs on the surface of magnetic carbon nanotubes (MCNTs@MIP) for SMX, the resulting material
having a maximum SMX adsorption capacity from aqueous solution of 864.9 µg g−1. However, to the
best of our knowledge, the removal of SMX from complex wastewaters using MIPs has just been
assessed by Valtech et al. [19]. Among the materials produced by these authors [18], those having
the largest maximum adsorption capacity (6.5 × 10−5 mol g−1 (16.5 mg g−1)) performed similarly to a
commercial activated carbon in terms of removal, but presented higher selectivity toward SMX in the
presence of other pharmaceuticals and better regeneration ability.

Despite the above-mentioned advantages and applications, the preparation of MIPs by
conventional MIT has two main drawbacks: (1) The imprinted polymer matrices are thick and, thus,
hold a small number of recognition sites per unit volume; and (2) the template molecules are deeply
embedded in the matrix, so there is a diffusion barrier for them, the mass transfer rate is low, and binding
to the recognition sites is somehow hampered [26]. Surface molecular imprinting has been proved
to improve mass transfer, recognition, and binding ability relative to MIT [27]. Among solid-support
substrates used for the surface molecular imprinting process, microbial nano-magnetic materials are
alternative supporters that have many advantages compared to inorganic materials [28]: (1) They are
easy to obtain and short generations can be artificially cultured [29]; (2) there are many surface chemical
functional groups and so modification steps can be avoided, reducing secondary pollution; (3) cells
can guide the regulation of the growth process of inorganic materials [30]; (4) microbial cells have a
variety of structures and can provide a rich array of templates for nanomaterials by template-assisted
synthesis; and (5) magnetic properties allow for a simple after-use separation of the materials.
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Yeasts, which belong to the fungus kingdom, are relatively large eukaryotic and single-celled
microorganisms (diameters typically measuring 2.0–4.0 µm). Their cell wall includes glucan, mannan,
chitin protein, and a small amount of lipids, and it has many surface chemical groups such as carboxyl
(–COOH), carbonyl (–C=O), amino (–NH2), hydroxyl (–OH), and phosphoryl (–P=O) groups. Moreover,
yeast is very cheap, easy to obtain, and environmentally friendly. These advantages make yeasts
appropriate and widely used as supports for bio-nanocomposites [31].

In the above-described context, the objectives of this study were to: (1) Prepare a bio-nanocomposite
of yeast-Fe3O4 (magnetic yeast, MY) using an in situ one-step preparation of nano-Fe3O4; (2) use
MY as the core to synthesize magnetic yeast-molecularly imprinted polymers (MY@MIPs) by a
surface-imprinted polymerization method with MIPs as the shell and SMX as the template molecule;
(3) characterize the resulting materials by Fourier-transform infrared spectroscopy (FT-IR), a vibrating
sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), specific
surface area (SBET) determination, and scanning electron microscopy (SEM); (4) test the removal
performance of MY@MIPs toward SMX and compare it with those of MY and MY@NIPs (magnetic
molecularly imprinted polymers without template); and (5) explore the selective sorption capacity
of MY@MIP in a real complex matrix (wastewater collected at a STP) and in the presence of other
pharmaceuticals (diclofenac and carbamazepine).

2. Materials and Methods

2.1. Chemicals and Materials

Yeast cells (CICC 30225) were obtained from the China Center of Industrial Culture Collection
(CICC). Iron salts used to produce MY were ferric chloride hexahydrate (FeCl3·6H2O) and
ferrous chloride tetrahydrate (FeCl2·4H2O), purchased from Sigma-Aldrich (Stenheim, Germany).
In addition, 2-vinyl pyridine (2-vpy), ethylene glycol dimethacrylate (EGDMA), acetonitrile (ACN),
and azo-bis-isobutyronitrile (AIBN), which were also purchased from Sigma-Aldrich (Stenheim,
Germany), were used for MIT. Other reagents used in this work included ammonium hydroxide,
toluene (99.8%, Aldrich), ethanol (99.9%, Riedel-de Haën), methanol (99.99%, Fischer Chemical),
and acetic acid (p.a., Merck). Ultrapure water was obtained from a Milli-Q water purification system
(Millipore). SMX was purchased from TCI Europe (>98%); carbamazepine (CBZ; Sigma-Aldrich, 99%);
diclofenac (DCF, TCI Europe, >98%). All solutions were stored at 4 ◦C immediately after preparation.

2.2. Materials Preparation

2.2.1. Preparation of Magnetic Yeast (MY)

Nano-Fe3O4 was loaded onto the yeast cell surface by a one-step method as described by
Tian et al. [32]. Briefly, the yeast cells were cultured in ultrapure water with glucose. After reaching
the exponential growth phase (6–10 h), the yeast cells were collected by centrifugation (4000 rpm).
Then, collected cells (1.0 g) were suspended in 40 mL of 0.125 M FeCl3 solution in a three-necked flask
and stirred for 1 h at room temperature. After that, 0.6 g of FeCl2·4H2O was added under nitrogen
atmosphere and stirred for another 1 h. The mixture was then heated in a water bath at 80 ◦C for
15 min, and the pH was adjusted to approximately 11 with 25% (w/v) ammonium hydroxide. Stirring
was kept for 30 min and then stopped to age for 1 h. The resulting magnetic yeast (MY) was then
washed, separated by applying a magnetic field, and then dried in an oven (35 ◦C, 4 h).

2.2.2. Preparation of Magnetic Yeast-Based Molecularly Imprinted Polymer (MY@MIPs)

MY was treated as the core and the MIPs as the shell. The process used for the production of
MY@MIPs was as follows: 1 mg of SMX (template molecule) and 4 mmol of 2-vpy (monomer) were
dissolved in 60 mL of ACN/toluene (3/1; v/v). This solution was then self-polymerized for 8 h at room
temperature (25 ◦C). Subsequently, 100 mg of MY (polymer supporter), 0.36 mmol of AIBN (initiator),
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and EGDMA (crosslinker) were added into the polymerized solution (template:monomer:crosslinker,
1:4:20), which was ultrasonicated for 10 min. The mixture was heated and maintained at 60 ◦C for 24 h
under stirring with nitrogen protection. At last, the MY@MIPs were washed with methanol/formic
acid (9/1; v/v) for 12 h and purified for 24 h by a Soxhlet extraction method (the extraction solution was
methanol). Meanwhile, the MY@NIPs were also produced by following the above-described procedure
but in the absence of the template.

2.3. Characterization of MY, MY@MIPs, and MY@NIPs

Fourier-transform infrared spectra of the produced materials were obtained in a Shimadzu-IRaffinity-1
equipment, using an ATR module (FTIR-ATR), under a nitrogen purge. The measurements were
recorded in the range 500–4000 cm−1, 4.0 of resolution, 256 scans, and applying atmosphere and
background correction.

A vibrating sample magnetometer (VSM EV9) with an oscillatory applied magnetic field (H)
to a maximum of 22 kOe was used to determine the saturation magnetization (MS). The MS was
calculated by plotting the magnetic moment versus the applied magnetic field, and it corresponded to
the plateau value of the magnetic moment reached divided by the sample mass (10 mg). The sample
was encapsulated in an acrylic cylindrical container (5.85 mm of diameter and 2.60 mm of height),
which was coupled to the lineal motor of the VSM EV9 instrument, centered between the two polar
heads of the electromagnet used to fluctuate the magnetic field. The instrument was calibrated with a
disk of pure nickel (8 mm of diameter) using a procedure that establishes the determination of the
magnetic field, applied at around 1 Oe, while the dispersion of the magnetic moment is inferior to 0.5%.

X-ray diffraction (XRD, 5–90◦) was measured on a D8-Focus X-ray diffractometer (Bruker Optics)
with a test rate of 10◦·min-1. The results were analyzed by Jade program (9.0) and Origin (9.0).

Thermogravimetric analysis (TGA) was performed in a thermogravimetric balance Setsys
Evolution 1750, Setaram, TGA mode (S type sensor). The samples were heated at a heating rate of
10 ◦C min−1, under nitrogen atmosphere, from room temperature to 105 ◦C and from 105 ◦C to 900 ◦C,
maintaining constant temperature until total stabilization of the sample mass at the end of both stages
(approximately 30 min).

The SBET and micropore volume (W0) were determined by nitrogen adsorption isotherms, acquired
at 77 K using a Micromeritics Instrument, Gemini VII 2380, after outgassing the materials overnight at
120 ◦C. SBET was calculated from the Brunauer–Emmett–Teller equation in the relative pressure range
0.01–0.1. Pore volume (Vp) was estimated from the amount of nitrogen adsorbed at a relative pressure
of 0.99.

The surface morphology of the materials was analyzed by scanning electron microscopy (SEM)
using a Hitachi S4100. The images were obtained at magnifications of 500, 3000, and 10,000×.

2.4. Adsorptive Removal of SMX by the Produced Materials

The produced materials (MY, MY@MIPs, MY@NIPs) were used as adsorbents for the removal of
SMX under batch operation conditions. Summarizing, the materials were put in contact with a 5 mg L−1

SMX solution in polypropylene tubes, which were shaken in a head-over-head shaker (80 rpm) for a
predetermined period of time at controlled temperature (32 ◦C). The corresponding adsorbent material
was separated from the suspension liquid by an external magnetic field. At last, the concentration
of SMX in the liquid phase was measured by micellar electrokinetic chromatography (MEKC), using
a methodology adapted from Silva et al. (2019) [33]. The experiments were conducted in triplicate,
and control experiments without adsorbent were run in parallel. The performance of the materials was
evaluated by carrying out kinetic, equilibrium, pH, selectivity, and regeneration/reutilization studies,
described in detail in the next subsections.
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2.4.1. Kinetic Adsorption Studies in Ultrapure Water

In the kinetic study, tubes containing 250 mg of adsorbent material (MY, MY@NIPs, or MY@MIPs),
together with 10 mL of a 5 mg L−1 SMX solution in ultrapure water, were incubated and shaken
as described above. After shaking during defined periods of time (t, min), at intervals from 0 to
24 h, the materials were separated from the aqueous phase and the remaining SMX concentration in
solution was measured by MEKC. At each time, the corresponding value of the adsorbed concentration
(qt, mg·g−1) was determined as follows:

qt =
C0 −Ct

Cm
(1)

where Ct (mg L−1) is the residual SMX concentration at time t, C0 is the initial SMX concentration
(mg L−1), and Cm is the adsorbent dosage (mg·L−1).

When adsorption equilibrium was attained, the percentage of adsorption R (%) was determined as:

R (%) =
C0 −Ce

C0
× 100% (2)

where Ce (mg·L−1) is the residual SMX concentration at equilibrium.

2.4.2. Equilibrium Adsorption Studies in Ultrapure Water

For the equilibrium studies, the corresponding adsorbent material (MY, MY@NIPs, or MY@MIPs),
with doses ranging from 50 to 2000 mg L−1, was added to 10 mL of a 5 mg L−1 solution of SMX in
ultrapure water. Tubes with the mixtures were shaken for 16 h, which allowed equilibrium to be
reached. The materials were recovered from the suspension by the application of a magnetic field and
the residual concentration of SMX was determined by MEKC. Then, for the different doses of material,
the adsorbed concentration at the equilibrium (qe, mg·g−1) was determined as follows:

qe =
C0 −Ce

Cm
(3)

where Ce (mg L−1) is the SMX concentration in the liquid phase at equilibrium.

2.5. Adsorptive Performance of MY@MIPs

From the results of the above-mentioned kinetic and equilibrium studies in ultra-pure water,
the most efficient material for removal of SMX was MY@MIPs. Thus, in order to assess the practical
application of this material, further studies were carried out on the adsorptive performance of MY@MIPs
under different experimental conditions.

2.5.1. Kinetic and Equilibrium Adsorption Studies in STP Effluent

The kinetic and equilibrium procedures described in Section 2.4. were carried out using MY@MIPs
for the adsorptive removal of SMX from a real matrix, namely the effluent from a STP. In this case,
5 mg L−1 solutions of SMX were prepared using a STP effluent instead of ultrapure water. The effluent
was collected from an urban STP in Aveiro (Portugal) that is designed to serve 159,700 population
equivalents. This STP consists of primary and biological treatment stages. For this work, water was
collected at the outlet of the biological decanter, as this is the final treated effluent that is discharged
from the STP into the aquatic environment. Immediately after collection, the effluent was filtered
through 0.45 µm, 293 mm Supor® membrane disk filters (Gelman Sciences) and stored at 4 ◦C until use,
which occurred within a maximum of 15 days. The collected effluent had a pH of 7.99, conductivity of
3.03 mS cm−1, and total organic carbon content of 21.5 mg L−1.
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2.5.2. pH Study

Adsorption studies on the effect of pH were carried out at 32 ◦C with the initial conditions of
C0 = 5 mg L−1 in ultrapure water and Cm = 300 mg L−1. Experiments were carried out at three different
pHs, namely 4, 7, and 8 (pH was adjusted by adding HCl or NaOH, 1 M). After shaking during
16 h, MY@MIPs were separated from the liquid suspensions, the residual concentration of SMX was
analyzed by MEKC, and the corresponding qe (mg g−1) at each pH was determined using Equation (3).

2.5.3. Selective Adsorption

To study the selective capacity of MY@MIPs toward SMX, diclofenac (DCF) and carbamazepine
(CBZ) were used as competing species in the adsorption experiments. These pharmaceuticals were
selected due to their high global frequency of occurrence in wastewater, surface water, and groundwater
and their recalcitrant properties, with low removal rates after conventional STP treatments [34].
The concentration of DCF and CBZ in ultrapure water solution was the same as that of SMX (5 mg L−1),
the Cm was 300 mg L−1, the incubation temperature was 32 ◦C, the pH was 4, and shaking was
maintained during 16 h. Then, the residual concentration of SMX at equilibrium was analyzed and the
corresponding qe (mg g−1) was determined with Equation (3).

2.5.4. Regeneration and Reutilization

In order to evaluate the adsorptive performance after regeneration, after SMX saturation in
ultrapure water, MY@MIPs were regenerated and then tested for the adsorption of SMX in four
subsequent cycles. For the regeneration, saturated MY@MIPs were washed by methanol/acetic acid
(9/1, v/v) through Soxhlet extraction during 72 h. Then, the regenerated material was used in adsorption
experiments as described in previous sections (shaking during 16 h at 32 ◦C with the initial conditions
of C0 = 5 mg L−1 in ultrapure water and Cm = 300 mg L−1). The residual concentration of SMX at the
equilibrium was analyzed and the corresponding R (%) was determined as for Equation (2).

3. Results

3.1. Preparation of MY

In this study, an in situ one-step method was carried out to load nano-Fe3O4 particles on the
surface of yeast, which was used as a biological solid support. Under alkaline conditions, Fe2+ and
Fe3+ co-precipitated on the surface of yeast and then Fe(OH)2 or Fe(OH)3 was converted to nano-Fe3O4

at 80 ◦C, according to the following chemical reactions:

Fe2+ + 2OH−→ Fe(OH)2↓

Fe3+ + 3OH−→ Fe(OH)3↓

Fe(OH)2 + 2Fe(OH)3
80 ◦C
→ Fe(Fe2O4) ↓ +4H2O

The observation of MY by a high-power optical microscope (Olympus CX22, Japan) clearly showed
the loading of magnetic nanoparticles over yeast cells, as shown in Figure 1a. Meanwhile, Figure 1b
represents the picture of MY at the actual size. Compared to other methods used to anchor Fe3O4

nanoparticles on the surface of yeast biomass, such as cross-linking or electrostatic-interaction-driven
hypercoagulation, the one-step method applied here only took approximately 3.5 h, in opposition to
the referred methods, which can take up to 13.5 and 6 h, respectively [35], without considering the
time of washing and drying. Hence, the results suggest that the one-step method is an interesting
synthesis option.
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Figure 1. Optical microscopy photograph (500×) of magnetic yeast (MY) (a); actual size photograph of
MY (b).

3.2. Preparation of MY@MIPs

MY was used as support of a MIP-based material for the selective adsorption of SMX. Compared
to other support materials such as SiO2, carbon nanotubes, or Fe3O4-SiO2 used in the literature [36,37],
MY particles can act as support without the need of an intermediate chemical modification step and
can distinctly improve grafting efficiency.

The shell of MIPs was co-polymerized on the surface of MY. Hence, to synthetize MIPs with
affinity, selectivity, and appreciable removal capacity toward the target compound, the monomer and
crosslinker types and the ratio of the reagents should be taken into account. Normally, if the template
molecule has an alkaline chemical group, the monomer should be methacrylate (MAA), but if it has an
acidic group, the monomer should be vinyl pyrimidine (vpy) [38]. As SMX has an oxazole moiety
that displays acidity, 2-vpy was chosen as it has both a hydrogen-bond acceptor (N atom of pyridine)
and alkalinity [39]. In this work, the molar ratio of the mixture of template and monomer was 1:4,
as the monomer and template were in dynamic equilibrium, and it is not useful to add the monomer
indiscriminately. Indeed, an excessive monomer may increase the non-selective sites, resulting in a
selectivity decrease. On the other hand, during the synthesis of MIPs, in order to immobilize the
template into the polymer without changing the spatial configuration of pores in the polymer, this must
have a high rigidity. Therefore, it was necessary to use a crosslinker for increasing rigidity, EDGMA
being selected due to its appropriate cost and solubility. However, if the ratio of monomer to crosslinker
is too high, it will make the extraction of the template difficult due to the excessive rigidity of the
MIP. Considering the referred considerations and conclusions from other studies [40,41], the ratio of
monomer and crosslinker was selected to be 1:5.

3.3. Characterization of MY, MY@MIPs, and MY@NIPs

FTIR spectra of the produced materials (MY, MY@MIPs, and MY@NIPs), which were obtained in
order to shed some light about the chemical groups present on their surface, are depicted in Figure 2.
At 548 cm−1, a characteristic adsorption peak belonging to the Fe-O chemical bond was observed
for all materials. Compared to MY, MY@MIPs and MY@NIPs had some new peaks. Among them
were the absorption bands at 2363 and 2328 cm−1 (MY@MIPs) and at 2377 and 2337 cm−1 (MY@NIPs),
which were attributed to the stretching vibrations of -CN or -NC, respectively. The peak at 1758 cm−1

(MY@MIPs) or at 1727 cm−1 (MY@NIPs) belongs to the stretching vibration of C=O in the EGDMA ester
group and the carboxyl group, suggesting that EGDMA worked on the surface. Moreover, MY@MIPs
had new peaks at 1118 and 955 cm−1, which belonged to the symmetrical and asymmetric stretching
vibration of C-O in EGDMA, respectively, and reflected that it had a cross-linking polymerization on
the surface of MY@MIPs. In the spectra of MY@MIPs and MY@NIPs, adsorption peaks at 1350 or
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1340 cm−1 were due to N–H bending vibrations, while this peak was very weak in MY, indicating the
N–H bond of 2-vpy. Peaks at 1595 cm−1 (MY@MIPs) or 1572 cm−1 (MY@NIPs) were due to bending
vibrations of N-H.
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Figure 2. FTIR spectra of magnetic yeast (MY), magnetic yeast-molecularly imprinted polymers without
template (MY@NIPs), and magnetic yeast-molecularly imprinted polymers (MY@MIPs).

The magnetic properties of the MY, MY@MIPs, and MY@NIPs were studied by VSM at room
temperature, the MS of each material being shown in Table 1. The MS values were determined to be
between 26 and 34 emu g−1, which were compatible with good magnetization. Indeed, Figure S1,
within Supplementary Information, shows that MY@MIPs can be easily separated by an external
magnetic field, which is beneficial for the after-use separation of the saturated MY@MIPs from treated
water, achieving one of the major goals of this study.

Table 1. Physical characterization of the produced materials.

Materials SBET (m2 g−1) Vp (cm3 g−1) D (nm) MS (emu g−1)

MY 38.8 0.11 5.71 26.1
MY@NIPs 39.2 0.11 5.41 24.2
MY@MIPs 43.2 0.11 5.06 34.1

N2 adsorption at −196 ◦C; Vp = total pore volume; D = average pore diameter; MS = saturation magnetization.

The XRD spectrum of MY in the 2θ range of 20 to 80◦ is shown in Figure 3, where the (220),
(311), (400), (422), (511), and (440) planes of Fe3O4 may be observed at 2θ = 30.22◦, 35.40◦, 43.36◦,
53.68◦, 57.21◦, and 62.43◦. This pattern is consistent with the standard XRD data of Fe3O4 in the
JCPDS-International Centre for Diffraction Data (JCPDS Card: PDF#75-0033). Therefore, XRD results
evidenced that Fe3O4 was successfully loaded onto the yeast surface during the production of MY and
that, subsequently, surface molecular imprinting did not change the crystalline structure of magnetic
nanoparticles. Similar patterns confirming the effective loading of magnetite have been reported in the
literature on magnetic MIPs (MMIPs), including MMIPs produced for melamine analysis in milk [42],
PEGylated magnetic core−shell structure-molecularly imprinted polymers (PMMIPs) for the specific
adsorption of bovine serum albumin (BSA) [43], or core−shell MMIPs for the selective adsorption of
tetracycline [44].
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Figure 3. X-ray diffraction spectrum of MY.

The thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of MY, MY@NIPs,
and MY@MIPs are shown in Figure 4. All the materials evidenced three main weight loss peaks:
The first at ~100 ◦C related to moisture; the second at ~300 ◦C related to the most thermolabile organic
fraction; and the third centered at ~700 ◦C related to less thermolabile organic or inorganic fractions.
For MY, a weight loss of approximately 62% was reached at 900 ◦C (Figure 4a); the second weight
loss peak is particularly accentuated in this material, as it is the one with the highest amount of yeast
per unit mass of material and, thus, yeast cells carbonized with increasing temperature. Meanwhile,
MY@NIPs (Figure 4b) and MY@MIPs (Figure 4c) suffered, globally, a lower weight loss than MY,
reaching 30% and 50% of weight loss, respectively, at 900 ◦C. This might be due to the introduction of
less thermolabile structures in the composition of these materials (such as the magnetic nanoparticles
and polymers).
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The results of SBET are shown in Table 1. The SBET of each material was as follows: MY—38.8 m2 g−1,
MY@MIPs—43.2 m2 g−1, and MY@NIPs—39.2 m2 g−1. Similar SBET (47 m2 g−1) were determined
for magnetic sorbents with a metal–organic framework core and MIP shell [45]. Meanwhile, lower
SBET, between 6 and 11 m2 g−1, have been measured for magnetic sorbents based on the iron oxide
(Fe3O4) core and MIP shell [46,47]. Regarding the average pore diameter (D), it was 5.71, 5.41,
and 5.06 nm respectively for MY, MY@MIPs, and MY@NIPs. Therefore, the three produced materials
are mesoporous with no significant differences between them in terms of porosity.

The surface of MY, MY@MIPs, and MY@NIPs was examined by SEM (Figure 5). All the figures
suggested that the particles (either MY, MY@NIPs, or MY@MIPs) were elliptical, which is due to the
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use of yeast as support, as it has been observed to have an ellipsoid shape with uniform size [48]. As it
may be seen, MY@NIPs and MY@MIPs have a dispersed and comparatively smoother appearance
than MY, which is rough-faced due to the magnetic nanoparticles coating the smooth-faced yeast [49].
Moreover, under 3000×magnification, results showed that MY@MIPs had a better dispersion compared
to MY and MY@NIPs. Under 10,000×, MY@MIPs showed a bigger porosity than the other materials,
which may benefit the adsorption of SMX and improve the mass transfer rate from the aqueous phase.

Globally, the characterization results demonstrated the successful loading of Fe3O4 on the yeast
surface and the preparation of MIPs on the surface of MY.
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3.4. Adsorptive Removal of SMX by the Produced Materials

3.4.1. Adsorption Kinetics

The kinetic results on the adsorption of SMX onto the produced materials are shown in Figure 6,
which evidences that, in all cases, the adsorbed concentration qt (mg g−1) rapidly increased until
360 min of contact and then slowly increased until becoming stable. Moreover, all the materials
performed quite similarly from a kinetic point of view.

Comparing the results obtained here to those reported in the literature, it may be said that a shorter
equilibrium time (around 20 min, at room temperature) was determined for the adsorption of SMX
onto core−shell MIPs on the surface of magnetic carbon nanotubes (MCNTs@MIP) by Zhao et al. [25].
Meanwhile, using MIPs on the surface of yeast (yeast@MIPs), Wang et al. [16] found that (at 298
to 318 K) 200 min were necessary to attain equilibrium for the adsorption of ciprofloxacin (CIP),
and Pan et al. [50] observed an equilibrium time around 375 min for the adsorption (at 303 K) of
cephalexin. In any case, it has been noticed that surface-imprinting improves the binding kinetics as
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compared to traditionally imprinted materials, which take longer (usually around 12–24 h) to attain
adsorption equilibrium [51].
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Figure 6. Experimental kinetic results together with pseudo-first- and pseudo-second-order model
fittings for the adsorption of sulfamethoxazole (SMX) onto MY (a), MY@NIPs (b), and MY@MIPs (c) in
ultrapure water.

Pseudo-first-order [52] and pseudo-second-order [53] kinetic models were applied to describe the
adsorption kinetics of SMX onto the produced materials. The formulation of the models is as follows:

Pseudo-first-order
qt = qe ×

(
1− e(−k1t)

)
(4)

Pseudo-second-order

qt =
k2 × q2

e × t
1 + k2 × qe × t

(5)

where k1 (min−1) and k2 (g mg−1 min−1) are the pseudo-first-order and the pseudo-second-order
rate constants.

The non-linear fitting kinetic parameters are summarized in Table 2. According to the correlation
coefficient (R2) and concordance between experimental and fitted qe values, both models described the
SMX adsorption onto the produced materials, with the pseudo-second-order model describing slightly
better the results onto MY and MY@NIPs and the pseudo-first-order model onto MY@MIPs.
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Table 2. Kinetic parameters corresponding to the adsorption of SMX onto MY, MY@NIPs, and MY@MIPs
in ultrapure water.

Materials
Experimental Pseudo-First Order Model Pseudo-Second Order Model

qe (mg g−1) qe (mg g−1) k1 (min−1) R2 qe (mg g−1) k2 (g mg−1 min−1) R2

MY 10.6 ± 0.7 11.1 ± 0.9 0.993 ± 0.003 0.931 12.5 ± 0.8 0.009 ± 0.005 0.994
MY@NIPs 8.2 ± 0.2 8.1 ± 0.1 0.993 ± 0.002 0.978 9.5 ± 0.2 0.009 ± 0.005 0.988
MY@MIPs 19 ± 1 19 ± 1 0.992 ± 0.001 0.966 21 ± 1 0.001 ± 0.004 0.952

3.4.2. Adsorption Isotherm

Equilibrium results on the adsorption of SMX onto the produced materials are shown in Figure 7.
With the aim of describing these results, four isotherm models were used: Langmuir [54] and
Freundlich [55] isotherm models for the adsorption of SMX onto MY@MIPs; BET isotherm [56] for the
adsorption onto MY@NIPs; and Zhu−Gu isotherm [57] for the adsorption onto MY. The equations of
these models are as follows:

Langmuir isotherm

qe =
qm × b×Ce

1 + b×Ce
(6)

Freundlich isotherm
qe = k f × ce

1
n (7)

BET isotherm

qe =
qm × c×Ce

(1− c×Ce) × (1− c×Ce + c×Ce)
(8)

Zhu−Gu isotherm

qe =
qm ×

(
g×Ce ×

(
1
r + e×Ce

r−1
))

(1 + g×Ce) ×
(
1 + e×Ce

r−1
) (9)

where qm is the maximum adsorption capacity (mg g−1); b (L mg−1) is the Langmuir equilibrium
constant; kf (mg g−1 (mg L−1)−1/n) is the Freundlich constant; n is the degree of non-linearity in the
Freundlich isotherm; c is the BET constant, related to the energy of adsorption in the first adsorbed
layer; g is the Zhu−Gu constant related to the first adsorption step (the first layer of molecules on the
materials); e is the Zhu−Gu constant related to the subsequent layers adsorbed; and r is the aggregation
number in the Zhu−Gu isotherm.

Experimental results on the equilibrium of SMX adsorption onto the produced materials are
depicted in Figure 7 together with fittings to the above-mentioned isotherm models. From Figure 7,
it is evident that, contrarily to the adsorption onto MY@MIPs, in the case of MY and MY@NIPs, the qe

did not tend to stabilization. Furthermore, in the Ce range between 0 and 3 mg L−1, a lower qe occurred
for MY@NIPs than for MY. This may be related to the presence of chemical groups on the surface of
MY, which were able to bind SMX groups, but became inaccessible in MY@NIPs due to molecular
imprinting. In addition, a first stage with stabilization of qe at Ce around 3 mg L−1 may be observed
in the MY isotherm, which could be associated with the saturation of the chemical adsorption sites.
In the case of MY@MIPs, the isotherm showed an increase in qe with Ce with a stabilization trend from
Ce ~ 3 mg L−1. Furthermore, it should be noted that, at relatively low Ce, the qe values determined for
MY@MIPs are higher than those for MY and MY@NIPs, which points to their larger affinity for SMX.
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Figure 7. Experimental equilibrium results together with fittings to the considered models for the
adsorption isotherm of SMX onto MY (a), MY@NIPs (b), and MY@MIPs (c) in ultrapure water.

The fitted equilibrium parameters are shown in Table 3 together with the correlation coefficients
of the fittings (R2). In the case of SMX adsorption onto MY@MIPs, the Langmuir isotherm provided
the best fitting of equilibrium results with a higher R2 than the Freundlich model. From the results of
non-linear fittings for the different isotherm models, the values of qm for MY, MY@NIPs, and MY@MIPs
were, respectively, 23 ± 1, 3.8 ± 0.3, and 77 ± 3 mg g−1. These values indicate that molecularly imprinted
polymers with the template resulted in a substantial increase in the monolayer adsorption capacity,
SMX adsorbing onto the surface of MY@MIPs in a homogeneous distribution by occupying specific
sites. Similarly, equilibrium results on the adsorption of SMX onto the MCNTs@MIP produced by
Zhao et al. [25] also fitted the Langmuir isotherm, but with a considerably lower qm (0.87 mg g−1).
Indeed, compared to other materials used for the adsorption of SMX (Table 4), MY@MIPs are competitive
in terms of SMX adsorption capacity.
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Table 3. Equilibrium parameters corresponding to the adsorption of SMX onto MY, MY@NIPs,
and MY@MIPs from ultrapure water.

Materials Isotherm Model Parameters Fitted Values

MY

Zhu−Gu qm (mg g−1) 23 ± 1
r 0.834 ± 0.005
e 0.775 ± 0.005

R2 0.957

MY@NIPs
BET qm (mg g−1) 3.8 ± 0.3

c 0.205 ± 0.008
R2 0.979

MY@MIPs

Freundlich
kf (mg g−1 (mg L−1)−1/n) 26 ± 1

1/n 0.575 ± 0.003
R2 0.965

Langmuir
qm (mg g−1) 77 ± 3
b (L mg−1) 0.498 ± 0.003

R2 0.998

Table 4. Maximum Langmuir adsorption capacities (qm, mg g−1) of different MIPs used for the
adsorption of SMX.

Adsorbent (mg) qm (mg g−1) Experimental Conditions References

MIPs (100) 16.5 pH = 3; Time = 15 min; room temperature;
CSMX = 7500 µmol/L; V = 15 mL [19]

Fe3O4-chitosan
MIPs (10) 4.32 pH = 4; Time = 30 min; room temperature;

CSMX = 200 µg/mL; V = 10 mL [5]

Magnetic carbon
MIPs (15) 0.87 pH = 4; Time = 60 min; room temperature;

CSMX = 8 µg/mL; V = 20 mL [25]

Monolithic
MIPs (200) 0.02 pH = 3; Time = 30 min; room temperature;

CSMX = 4 µmol/L; V = 10 mL [58]

MY@MIPs (250) 77 pH = 4; Time = 360 min; room temperature;
CSMX = 5 mg/L; V = 10 mL This study

CSMX = Initial concentration of SMX.

3.4.3. Kinetic and Equilibrium Adsorption Studies from STP Effluent

In order to assess the practical applicability of MY@MIPs, kinetic and equilibrium experiments
were carried out in a real matrix, namely the effluent from a STP. The obtained results together with
fittings to the considered kinetic and equilibrium models are in shown in Figure 8, and the fitted
parameters are depicted in Table 5. As it may be seen, the pseudo-second-order and the Langmuir
isotherm models were those that best described the kinetic and equilibrium experimental results,
respectively. On the other hand, it is evident in Figure 8 that, under identical experimental conditions,
the adsorption velocity was slower and the qe values were lower for the STP effluent than they were
for ultrapure water. This was confirmed by the parameters in Table 5, especially by the comparatively
lower qm (24 ± 2 mg g−1) than in ultrapure water, which might be related to interferences due to the
complex composition of the STP effluent.



Polymers 2020, 12, 1385 15 of 21

Polymers 2020, 12, x FOR PEER REVIEW 14 of 21 

 

MY@MIPs 

Freundlich 
kf (mg g−1 (mg L−1)−1/n) 26 ± 1 

1/n 0.575 ± 0.003 
R2 0.965 

Langmuir 
qm (mg g−1) 77 ± 3 
b (L mg−1) 0.498 ± 0.003 

R2 0.998 

Table 4. Maximum Langmuir adsorption capacities (qm, mg g−1) of different MIPs used for the 
adsorption of SMX. 

Adsorbent (mg) qm (mg g−1) Experimental Conditions References 

MIPs (100) 16.5 
pH = 3; Time = 15 min; room temperature; CSMX = 7500 µmol/L; V = 15 

mL [19] 

Fe3O4-chitosan 
MIPs (10) 

4.32 pH = 4; Time = 30 min; room temperature; CSMX = 200 µg/mL; V = 10 mL [5] 

Magnetic carbon 
MIPs (15) 

0.87 pH = 4; Time = 60 min; room temperature; CSMX = 8 µg/mL; V = 20 mL [25] 

Monolithic MIPs 
(200) 

0.02 pH = 3; Time = 30 min; room temperature; CSMX = 4 µmol/L; V = 10 mL [58] 

MY@MIPs (250) 77 pH = 4; Time = 360 min; room temperature; CSMX = 5 mg/L; V = 10 mL This study 

CSMX = Initial concentration of SMX. 

3.4.3. Kinetic and Equilibrium Adsorption Studies from STP Effluent 

In order to assess the practical applicability of MY@MIPs, kinetic and equilibrium experiments 
were carried out in a real matrix, namely the effluent from a STP. The obtained results together with 
fittings to the considered kinetic and equilibrium models are in shown in Figure 8, and the fitted 
parameters are depicted in Table 5. As it may be seen, the pseudo-second-order and the Langmuir 
isotherm models were those that best described the kinetic and equilibrium experimental results, 
respectively. On the other hand, it is evident in Figure 8 that, under identical experimental conditions, 
the adsorption velocity was slower and the qe values were lower for the STP effluent than they were 
for ultrapure water. This was confirmed by the parameters in Table 5, especially by the comparatively 
lower qm (24 ± 2 mg g−1) than in ultrapure water, which might be related to interferences due to the 
complex composition of the STP effluent.  

 

(a) (b) 

Figure 8. Experimental results together with fittings to the considered models for the adsorption 
kinetics (a) and adsorption equilibrium isotherm (b) of SMX onto MY@MIPs in sewage treatment 
plant (STP) effluent. 

  

Figure 8. Experimental results together with fittings to the considered models for the adsorption
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Table 5. Kinetic and equilibrium parameters corresponding to the adsorption of SMX onto MY@MIPs
from the STP effluent.

Adsorption Models Parameters Fitted Values Experimental

Kinetics

Pseudo-first order qe (mg g−1) 11.9 ± 0.3 12.3 ± 0.2
k1 (min−1) 0.471 ± 0.004

R2 0.978

Pseudo-second order qe (mg g−1) 13.8 ± 0.7 12.3 ± 0.2
k2 (g mg−1 min−1) 0.009 ± 0.005

R2 0.979

Equilibrium

Freundlich kf (mg g−1 (mg L−1)−1/n) 8.5 ± 0.4
1/n 0.387 ± 0.008
R2 0.979

Langmuir qm (mg g−1) 24 ± 2
b (L mg−1) 0.609 ± 0.004

R2 0.989

3.5. pH Study

Results from the study of pH effects on the adsorption of SMX onto MY@MIPs are shown in
Figure 9. Under identical experimental conditions, except for the pH, decreasing qe values were
obtained at pH 4 > pH 7 > pH 9, thus indicating that SMX adsorption onto MY@MIPs was favored
under acidic conditions. This may be related to the pH influence on the status of not only the adsorbate
(by protonation/deprotonation) but also the adsorbent (by surface charge). For SMX, the pKa values
are 1.97 and 6.16 (Table S1, as Supplementary Information), which means that SMX is mostly positively
charged (protonated NH2 groups, NH3

+ groups) at pH < 1.97 but predominantly negatively charged
(deprotonated NH groups, N−) at pH > 6.16. Therefore, at the experimental pH 4, adsorption of SMX
in the non-ionic form was favored, while at pH 7 and 9, SMX was mostly present in the anionic form,
which partially hindered its adsorption. Indeed, the decrease in SMX adsorption from wastewater
(with pH > 7) has already been related to electrostatic repulsion between the negatively charged SMX
and the negatively charged surface of the waste-based adsorbents [59]. Moreover, the monomer used
in the synthesis of MIPs was 2-vpa and the pKa of pyridine was 5.21, which is, therefore, negatively
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charged when pH > 5.21. Thus, at the experimental pH 7, electrostatic repulsion forces between SMX
and MY@MIPs cannot be disregarded, these increasing at pH 9.
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3.6. Selective Adsorption

In order to find out the selectivity of MY@MIPs toward SMX, its adsorption was compared to
those of DCF and CBZ from their single solution and then from their ternary solution. The values
of percentage of adsorption (R (%)) for the single adsorption of each pharmaceutical are shown in
Figure 10a and for adsorption from their ternary solution in Figure 10b.
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The results in Figure 10a evidence that MY@MIPs have a larger R (%) for SMX than for DCF or CBZ.
Furthermore, under identical experimental conditions but from the ternary solution of the considered
pharmaceuticals (Figure 10b), selective adsorption of SMX onto MY@MIPs occurred. Indeed, the R (%)
determined for SMX from the ternary solution was just slightly lower than from its single solution,
which points to the selectivity of MY@MIPs. Moreover, the results reflected that the adsorption of
MY@MIPs was SMX > DCF > CBZ.



Polymers 2020, 12, 1385 17 of 21

In this work, 2-vpy was the monomer and it was combined through –NH2. Moreover, considering
the structure and properties of SMX, DCF, and CBZ, which are depicted in Table S1, they all have
–NH2 and/or –NH groups. However, SMX has two amino groups: -NH and –NH2, which is probably
the main reason for its selective adsorption onto MY@MIPs under the presence of DCF and CBZ. For
DCF and CBZ, the pKa was 4 and 15.96 (Table S1), respectively. Meanwhile, the pKa value of 2-vpy
(monomer) is 5.21, which may explain why MY@MIPs had a better removal ability for DCF than for
CBZ. Selectivity toward SMX was also verified by Zhao et al. [25], who prepared MCNTs@MIP by using
SMX as the template molecule and copolymerization of vinyl end groups on the surface of MCNTs [25].
These authors demonstrated the selective adsorption of SMX under the presence of other sulfonamides
(SAs), namely sulfamethazine (SMZ), sulfamerazine (SMR), sulfadimethoxine (SDM), and sulfameter
(SME). Still, the adsorbed concentration of SMX from the quinary solution was lower than from its
single solution, which was ascribed to the close structure of the other SAs, which, therefore, could
competitively occupy the imprinted sites.

3.7. Regeneration and Reutilization

Saturation of the produced MY@MIPs with SMX was carried out as described in Section 2.4.1.
At that moment, R (%) calculated by Equation (2) was 92 ± 4%. Then, saturated MY@MIPs was
regenerated as indicated in Section 2.5.4. and reused for the adsorption of SMX until saturation. A total
of four regeneration/reutilization cycles were performed and the R (%) calculated for each of them are
shown in Table 6.

Table 6. SMX adsorption onto MY@MIPs in subsequent cycles after regeneration.

Cycles R (%)

SMX saturation 92 ± 4
1 73 ± 3
2 61 ± 2
3 58 ± 1
4 55 ± 2

As it may be seen, after cycles 1 and 2, the R (%) values decreased to 73 ± 3 and 61 ± 2%,
respectively. Such decreases (21 and 34%, respectively, in cycle 1 and 2) indicate that the regeneration
procedure affected the adsorption sites on the surface of MY@MIPs, which lost efficiency in the removal
of SMX. After cycle 2, just a slight decrease in R (%) occurred, its value being similar in cycles 3 and 4
(58 ± 1 and 55 ± 2%, respectively). Therefore, deterioration of MY@MIPs adsorptive properties was not
progressive with successive regenerations but occurred initially, with the performance remaining stable
after cycle 2. MIPs sorbents are known to be easily regenerated by washing with organic solvents,
with mixtures of methanol and acetic acid having been successfully employed to remove adsorbed
pharmaceuticals [60]. Using the same regeneration agent as in this work, namely methanol/acetic acid
(9/1, v/v), Dai et al. [61] regenerated MIPs synthesized for the adsorption of diclofenac and carried out
thirty cycles with ≥95% recovery. Likewise, Duan et al. [62] also used this mixture for the regeneration
of a multitemplate MIP, which was used in twenty regeneration/reutilization cycles, giving ≥95%
removal of ibuprofen, naproxen, ketoprofen, diclofenac, and clofibric acid. Wang et al. [48], who used
MIPs on the surface of yeast (yeast@MIPs), desorbed ciprofloxacin using the same mixture with losses
of only about 8.5% of initial capacity after five cycles. Therefore, the relatively larger deterioration of
the adsorptive performance observed in the present work may be related to the fact that magnetic
yeast was used here as MIPs support. Thus, further work is to be carried out on the regeneration of the
produced MY@MIPs, to maintain a high R (%) upon cyclic operation.
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4. Conclusions

This work developed an efficient strategy to prepare yeast-Fe3O4 (magnetic yeast, MY) and then
used molecularly imprinted technology (MIT) to modify MY. The characterization of the produced
magnetic yeast-molecularly imprinted polymers (MY@MIPs) showed that elliptical and monosized
imprinted polymeric nanospheres with a surface area of about 43.2 m2 g−1 were successfully produced.
Sulfamethoxazole (SMX) adsorption studies using MY@MIPs indicated that the equilibrium was
attained in 360 min either in ultrapure water or in a sewage treatment plant (STP) effluent. The Langmuir
isotherm model provided the best fitting of equilibrium results and pointed to the monolayer and
favorable adsorption of SMX onto MY@MIPs. In addition, the fitted parameters of the Langmuir
isotherm model indicated that the maximum SMX adsorption capacity of MY@MIPs was 77 and
24 mg g−1 in ultrapure water and STP effluent, respectively. The pH study pointed out that hydrogen
binding was underneath the SMX adsorption onto MY@MIPs. Moreover, MY@MIPs showed successful
selective adsorption of SMX from ternary solution under competition by other pharmaceuticals, namely
diclofenac (DCF) and carbamazepine (CBZ). Finally, regeneration implied a reduction in SMX removal
by MY@MIPs in the first two cycles, then tending to stabilization. Overall, it may be concluded that the
MIPs-coated magnetic yeast designed here could be an alternative adsorbent for the selective removal
of SMX from complex matrices such as wastewaters.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/6/1385/s1,
Table S1: Physico-chemical properties of the pharmaceuticals used in this study (Source: Drugbank), Figure S1:
MY@MIPs in the presence (a) and absence (b) of an external magnetic field.

Author Contributions: Conceptualization, J.F., Y.D., V.I.E., M.O. and V.C.; methodology, L.Q., J.F., Y.D., V.I.E.,
M.O. and V.C.; materials characterization, L.Q. and M.V.G.; experimental work, L.Q. and G.J.; data analysis, Q.L.,
V.I.E., M.O. and V.C.; writing, L.Q., M.O. and V.C.; supervision, J.F., Y.D. and V.I.E. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is a contribution to the research project WasteMAC (POCI-01-0145-FEDER-028598) funded by
FCT – Fundação para a Ciência e a Tecnologia, I.P., through national funds, and the co-funding by the FEDER,
within the PT2020 Partnership Agreement and Compete 2020. Thanks are due to FCT/ Ministério da Ciência,
Tecnologia e Ensino Superior (MCTES), for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020),
through national funds. The work was also sponsored by the Natural Science Foundation of Jiangsu Province
(SBK201404182); the environmental protection scientific research subject in Jiangsu province (Grant NO.2016003);
and the A Project Fund by the Priority Academic Program Development of Jiangsu Higher Education Institutions
(PAPD). Marta Otero and Vânia Calisto are thankful to FCT for the Investigator Program (IF/00314/2015) and
for the Scientific Employment Stimulus (CEECIND/00007/2017), respectively. Guilaine Jaria thanks for her FCT
PhD grant (SFRH/BD/138388/2018) supported by the National Funds and FSE, POCH (Programa Operacional
Capital Humano), and the European Union. María V. Gil acknowledges support from a Ramón y Cajal grant
(RYC-2017-21937) of the Spanish Government, co-financed by the European Social Fund (ESF).

Conflicts of Interest: The authors declare no conflict of interest. Furthermore, funders had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision
to publish the results.

References

1. Guo, J.; Sinclair, C.J.; Selby, K.; Boxall, A.B.A. Toxicological and ecotoxicological risk-based prioritization
of pharmaceuticals in the natural environment. Environ. Toxicol. Chem. 2016, 35, 1550–1559. [CrossRef]
[PubMed]

2. Andreozzi, R.; Caprio, V.; Ciniglia, C.; De Champdoré, M.; Giudice, R.L.; Marotta, R.; Zuccato, E. Antibiotics
in the Environment: Occurrence in Italian STPs, Fate, and Preliminary Assessment on Algal Toxicity of
Amoxicillin. Environ. Sci. Technol. 2004, 38, 6832–6838. [CrossRef] [PubMed]

3. Ashfaq, M.; Khan, K.N.; Rehman, M.S.U.; Mustafa, G.; Nazar, M.F.; Sun, Q.; Iqbal, J.; Mulla, S.I.; Yu, C.-P.
Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in
Pakistan. Ecotoxicol. Environ. Saf. 2017, 136, 31–39. [CrossRef] [PubMed]

4. Hsu, J.-T.; Chen, C.-Y.; Young, C.-W.; Chao, W.-L.; Li, M.-H.; Liu, Y.-H.; Lin, C.-M.; Ying, C. Prevalence of
sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water
bodies and soils adjacent to a swine feedlot in northern Taiwan. J. Hazard. Mater. 2014, 277, 34–43. [CrossRef]

http://www.mdpi.com/2073-4360/12/6/1385/s1
http://dx.doi.org/10.1002/etc.3319
http://www.ncbi.nlm.nih.gov/pubmed/26799673
http://dx.doi.org/10.1021/es049509a
http://www.ncbi.nlm.nih.gov/pubmed/15669346
http://dx.doi.org/10.1016/j.ecoenv.2016.10.029
http://www.ncbi.nlm.nih.gov/pubmed/27810578
http://dx.doi.org/10.1016/j.jhazmat.2014.02.016


Polymers 2020, 12, 1385 19 of 21

5. Qin, S.; Su, L.; Wang, P.; Gao, Y. Rapid and selective extraction of multiple sulfonamides from aqueous
samples based on Fe3O4–chitosan molecularly imprinted polymers. Anal. Methods 2015, 7, 8704–8713.
[CrossRef]

6. Thiebault, T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: A critical review.
Sci. Total Environ. 2020, 715, 136916. [CrossRef] [PubMed]

7. Yang, Y.; Ok, Y.S.; Kim, K.-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals
and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review.
Sci. Total Environ. 2017, 596, 303–320. [CrossRef] [PubMed]

8. Lu, Z.; Na, G.; Gao, H.; Wang, L.; Bao, C.; Yao, Z. Fate of sulfonamide resistance genes in estuary environment
and effect of anthropogenic activities. Sci. Total Environ. 2015, 527, 429–438. [CrossRef] [PubMed]

9. Na, G.; Lu, Z.; Gao, H.; Zhang, L.; Li, Q.; Li, R.; Yang, F.; Huo, C.; Yao, Z. The effect of environmental factors
and migration dynamics on the prevalence of antibiotic-resistant Escherichia coli in estuary environments.
Sci. Rep. 2018, 8, 1663. [CrossRef]

10. Andreozzi, R. Carbamazepine in water: Persistence in the environment, ozonation treatment and preliminary
assessment on algal toxicity. Water Res. 2002, 36, 2869–2877. [CrossRef]

11. Dmitrienko, S.G.; Kochuk, E.V.; Apyari, V.V.; Tolmacheva, V.V.; Zolotov, Y.A. Recent advances in sample
preparation techniques and methods of sulfonamides detection—A review. Anal. Chim. Acta 2014, 850, 6–25.
[CrossRef] [PubMed]

12. Jia, A.; Hu, J.; Wu, X.; Peng, H.; Wu, S.; Dong, Z. Occurrence and source apportionment of sulfonamides and
their metabolites in Liaodong Bay and the adjacent Liao River basin, North China. Environ. Toxicol. Chem.
2011, 30, 1252–1260. [CrossRef] [PubMed]

13. Ramos, A.M.; Otero, M.; Rodrigues, A.E. Recovery of Vitamin B12 and cephalosporin-C from aqueous
solutions by adsorption on non-ionic polymeric adsorbents. Sep. Purif. Technol. 2004, 38, 85–98. [CrossRef]

14. Jaria, G.; Lourenço, M.A.; Silva, C.P.; Ferreira, P.; Otero, M.; Calisto, V.; Esteves, V.I. Effect of the surface
functionalization of a waste-derived activated carbon on pharmaceuticals’ adsorption from water. J. Mol. Liq.
2020, 299, 112098. [CrossRef]

15. Silva, C.P.; Jaria, G.; Otero, M.; Esteves, V.I.; Calisto, V. Waste-based alternative adsorbents for the remediation
of pharmaceutical contaminated waters: Has a step forward already been taken? Bioresour. Technol. 2018,
250, 888–901. [CrossRef]

16. Wang, C.; Zhang, S.; Guo, F.; Ge, Y.; Wang, Y.; Li, H.; Hu, J.; Liu, H. Local Environment Structure in Positively
Charged Porous Ionic Polymers for Ultrafast Removal of Sulfonamide Antibiotics. Ind. Eng. Chem. Res. 2019,
58, 16629–16635. [CrossRef]

17. Lu, Y.C.; Mao, J.H.; Zhang, W.; Wang, C.; Cao, M.; Wang, X.D.; Wang, K.Y.; Xiong, X. A novel strategy for
selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly
imprinted nano−polymers. Chemosphere 2020, 238, 124640. [CrossRef] [PubMed]

18. Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and
highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [CrossRef]

19. Valtchev, M.; Palm, B.S.; Schiller, M.; Steinfeld, U. Development of sulfamethoxazole-imprinted polymers for
the selective extraction from waters. J. Hazard. Mater. 2009, 170, 722–728. [CrossRef]

20. Speltini, A.; Maraschi, F.; Govoni, R.; Milanese, C.; Profumo, A.; Malavasi, L.; Sturini, M. Facile and fast
preparation of low-cost silica-supported graphitic carbon nitride for solid-phase extraction of fluoroquinolone
drugs from environmental waters. J. Chromatogr. A 2017, 1489, 9–17. [CrossRef]

21. Bajpai, S.K.; Jhariya, S. Selective Removal of Amikacin From Simulated Polluted Water Using Molecularly
Imprinting Polymer (MIP). J. Macromol. Sci. Part A 2015, 52, 901–911. [CrossRef]

22. Hou, L.; Han, X.; Wang, N. High performance of molecularly imprinted polymer for the selective adsorption
erythromycin in water. Colloid Polym. Sci. 2020, in press. [CrossRef]

23. Ou, H.; Chen, Q.; Pan, J.; Zhang, Y.; Huang, Y.; Qi, X. Selective removal of erythromycin by magnetic
imprinted polymers synthesized from chitosan-stabilized Pickering emulsion. J. Hazard. Mater. 2015, 289,
28–37. [CrossRef] [PubMed]

24. Zhang, X.; Gao, X.; Huo, P.; Zhu, Z. Selective adsorption of micro ciprofloxacin by molecularly imprinted
functionalized polymers appended onto ZnS. Environ. Technol. 2012, 33, 2019–2025. [CrossRef] [PubMed]

http://dx.doi.org/10.1039/C5AY01499A
http://dx.doi.org/10.1016/j.scitotenv.2020.136916
http://www.ncbi.nlm.nih.gov/pubmed/32041046
http://dx.doi.org/10.1016/j.scitotenv.2017.04.102
http://www.ncbi.nlm.nih.gov/pubmed/28437649
http://dx.doi.org/10.1016/j.scitotenv.2015.04.101
http://www.ncbi.nlm.nih.gov/pubmed/25981941
http://dx.doi.org/10.1038/s41598-018-20077-x
http://dx.doi.org/10.1016/S0043-1354(01)00500-0
http://dx.doi.org/10.1016/j.aca.2014.08.023
http://www.ncbi.nlm.nih.gov/pubmed/25441155
http://dx.doi.org/10.1002/etc.508
http://www.ncbi.nlm.nih.gov/pubmed/21351294
http://dx.doi.org/10.1016/j.seppur.2003.10.008
http://dx.doi.org/10.1016/j.molliq.2019.112098
http://dx.doi.org/10.1016/j.biortech.2017.11.102
http://dx.doi.org/10.1021/acs.iecr.9b03409
http://dx.doi.org/10.1016/j.chemosphere.2019.124640
http://www.ncbi.nlm.nih.gov/pubmed/31524609
http://dx.doi.org/10.1039/c0cs00084a
http://dx.doi.org/10.1016/j.jhazmat.2009.05.007
http://dx.doi.org/10.1016/j.chroma.2017.02.002
http://dx.doi.org/10.1080/10601325.2015.1080096
http://dx.doi.org/10.1007/s00396-020-04660-1
http://dx.doi.org/10.1016/j.jhazmat.2015.02.030
http://www.ncbi.nlm.nih.gov/pubmed/25704432
http://dx.doi.org/10.1080/09593330.2012.655324
http://www.ncbi.nlm.nih.gov/pubmed/23240195


Polymers 2020, 12, 1385 20 of 21

25. Zhao, Y.; Bi, C.; Hea, X.; Chen, L.; Zhangad, Y. Preparation of molecularly imprinted polymers based on
magnetic carbon nanotubes for determination of sulfamethoxazole in food samples. RSC Adv. 2015, 5,
70309–70318. [CrossRef]

26. Bao-Jiao, G.; Wang, J.; An, F.; Liu, Q. Molecular imprinted material prepared by novel surface imprinting
technique for selective adsorption of pirimicarb. Polymer 2008, 49, 1230–1238. [CrossRef]

27. Guan, W.-S.; Lei, J.-R.; Wang, X.; Zhou, Y.; Lu, C.-C.; Sun, S.-F. Selective recognition of beta-cypermethrin
by molecularly imprinted polymers based on magnetite yeast composites. J. Appl. Polym. Sci. 2013, 129,
1952–1958. [CrossRef]

28. Liu, B.; Chen, W.; Peng, X.; Cao, Q.; Wang, Q.; Wang, N.; Meng, X.; Yu, G. Biosorption of lead from aqueous
solutions by ion-imprinted tetraethylenepentamine modified chitosan beads. Int. J. Boil. Macromol. 2016, 86,
562–569. [CrossRef]

29. Qiu, L.; Feng, J.; Dai, Y.; Chang, S. Biosorption of strontium ions from simulated high-level liquid waste by
living Saccharomyces cerevisiae. Environ. Sci. Pollut. Res. 2018, 25, 17194–17206. [CrossRef]

30. Gai, Q.-Q.; Qu, F.; Liu, Z.-J.; Dai, R.; Zhangad, Y. Superparamagnetic lysozyme surface-imprinted polymer
prepared by atom transfer radical polymerization and its application for protein separation. J. Chromatogr. A
2010, 1217, 5035–5042. [CrossRef]

31. Qiu, L.; Feng, J.; Dai, Y.; Chang, S. Mechanisms of strontium’s adsorption by Saccharomyces cerevisiae:
Contribution of surface and intracellular uptakes. Chemosphere 2019, 215, 15–24. [CrossRef] [PubMed]

32. Tian, Y.; Ji, C.; Zhao, M.; Xu, M.; Zhang, Y.; Wang, R. Preparation and characterization of baker’s yeast
modified by nano-Fe3O4: Application of biosorption of methyl violet in aqueous solution. Chem. Eng. J.
2010, 165, 474–481. [CrossRef]

33. Silva, C.P.; Jaria, G.; Otero, M.; Esteves, V.I.; Calisto, V. Adsorption of pharmaceuticals from biologically
treated municipal wastewater using paper mill sludge-based activated carbon. Environ. Sci. Pollut. Res.
2019, 26, 13173–13184. [CrossRef]

34. Mestre, A.; Carvalho, A.P. Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac,
and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules 2019, 24, 3702.
[CrossRef] [PubMed]

35. Qiu, Y.; Guo, H.; Guo, C.; Zheng, J.; Yue, T.; Yuan, Y. One-step preparation of nano-Fe3O4 modified inactivated
yeast for the adsorption of patulin. Food Control. 2018, 86, 310–318. [CrossRef]

36. Inanan, T.; Tüzmen, N.; Akgöl, S.; Denizli, A. Selective cholesterol adsorption by molecular imprinted
polymeric nanospheres and application to GIMS. Int. J. Boil. Macromol. 2016, 92, 451–460. [CrossRef]

37. Clausen, D.N.; Pires, I.M.R.; Tarley, C.R.T. Improved selective cholesterol adsorption by molecularly
imprinted poly(methacrylic acid)/silica (PMAA–SiO2) hybrid material synthesized with different molar
ratios. Mater. Sci. Eng. C 2014, 44, 99–108. [CrossRef]

38. Qin, S.; Su, L.; Wang, P.; Deng, S. Mixed templates molecularly imprinted solid-phase extraction for the
detection of sulfonamides in fish farming water. J. Appl. Polym. Sci. 2014, 132, 41491. [CrossRef]

39. Qin, S.; Deng, S.; Su, L.; Wang, P. Simultaneous determination of five sulfonamides in wastewater using
group-selective molecularly imprinted solid-phase extraction coupled with HPLC-DAD. Anal. Methods 2012,
4, 4278. [CrossRef]

40. Zheng, N.; Li, Y.; Wen, M.-J. Sulfamethoxazole-imprinted polymer for selective determination of
sulfamethoxazole in tablets. J. Chromatogr. A 2004, 1033, 179–182. [CrossRef]

41. Xu, W.; Wang, Y.; Huang, W.; Yu, L.; Yang, Y.; Liu, H.; Yang, W. Computer-aided design and synthesis of
CdTe@SiO2core-shell molecularly imprinted polymers as a fluorescent sensor for the selective determination
of sulfamethoxazole in milk and lake water. J. Sep. Sci. 2017, 40, 1091–1098. [CrossRef] [PubMed]

42. Qi, Y.; Li, G.; Wei, C.; Zhao, L.; Gong, B. Preparation of Magnetic Molecularly Imprinted Polymer for
Melamine and its application in milk sample analysis by HPLC. J. Biomed. Sci. 2016, 5, 1–10. [CrossRef]

43. Li, X.; Liu, H.; Deng, Z.; Chen, W.; Li, T.; Zhang, Y.; Zhang, Z.; He, Y.; Tan, Z.; Zhong, S. PEGylated
Thermo-Sensitive Bionic Magnetic Core-Shell Structure Molecularly Imprinted Polymers Based on Halloysite
Nanotubes for Specific Adsorption and Separation of Bovine Serum Albumin. Polymers 2020, 12, 536.
[CrossRef] [PubMed]

44. Dai, J.; Zhou, Z.; Zhao, C.; Wei, X.; Dai, X.; Gao, L.; Cao, Z.; Yan, Y. Versatile Method to Obtain Homogeneous
Imprinted Polymer Thin Film at Surface of Superparamagnetic Nanoparticles for Tetracycline Binding.
Ind. Eng. Chem. Res. 2014, 53, 7157–7166. [CrossRef]

http://dx.doi.org/10.1039/C5RA13183A
http://dx.doi.org/10.1016/j.polymer.2007.12.041
http://dx.doi.org/10.1002/app.38879
http://dx.doi.org/10.1016/j.ijbiomac.2016.01.100
http://dx.doi.org/10.1007/s11356-018-1662-6
http://dx.doi.org/10.1016/j.chroma.2010.06.001
http://dx.doi.org/10.1016/j.chemosphere.2018.09.168
http://www.ncbi.nlm.nih.gov/pubmed/30300807
http://dx.doi.org/10.1016/j.cej.2010.09.037
http://dx.doi.org/10.1007/s11356-019-04823-w
http://dx.doi.org/10.3390/molecules24203702
http://www.ncbi.nlm.nih.gov/pubmed/31618947
http://dx.doi.org/10.1016/j.foodcont.2017.10.005
http://dx.doi.org/10.1016/j.ijbiomac.2016.07.007
http://dx.doi.org/10.1016/j.msec.2014.08.008
http://dx.doi.org/10.1002/app.41491
http://dx.doi.org/10.1039/c2ay26091c
http://dx.doi.org/10.1016/j.chroma.2003.10.010
http://dx.doi.org/10.1002/jssc.201601180
http://www.ncbi.nlm.nih.gov/pubmed/28032689
http://dx.doi.org/10.4172/2254-609X.100030
http://dx.doi.org/10.3390/polym12030536
http://www.ncbi.nlm.nih.gov/pubmed/32131435
http://dx.doi.org/10.1021/ie404140y


Polymers 2020, 12, 1385 21 of 21

45. Parvinizadeh, F.; Daneshfar, A. Fabrication of a magnetic metal–organic framework molecularly imprinted
polymer for extraction of anti-malaria agent hydroxychloroquine. New J. Chem. 2019, 43, 8508–8516.
[CrossRef]

46. Rezaei, M.; Rajabi, H.R.; Rafiee, Z. Selective and rapid extraction of piroxicam from water and plasma
samples using magnetic imprinted polymeric nanosorbent: Synthesis, characterization and application.
Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124253. [CrossRef]

47. Wang, X.; Pei, Y.; Hou, Y.; Pei, Z. Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres
towards Hypericin via Click Polymerization. Polymers 2019, 11, 313. [CrossRef]

48. Wang, J.; Daib, J.; Meng, M.; Song, Z.; Pan, J.; Yan, Y.; Li, C. Surface molecularly imprinted polymers based on
yeast prepared by atom transfer radical emulsion polymerization for selective recognition of ciprofloxacin
from aqueous medium. J. Appl. Polym. Sci. 2013, 131, 40310. [CrossRef]

49. Li, X.; Pan, J.; Dai, J.; Dai, X.; Xu, L.; Wei, X.; Hang, H.; Li, C.; Liu, Y. Surface molecular imprinting onto
magnetic yeast composites via atom transfer radical polymerization for selective recognition of cefalexin.
Chem. Eng. J. 2012, 198, 503–511. [CrossRef]

50. Pan, J.; Hang, H.; Li, X.; Zhu, W.; Meng, M.; Dai, X.; Daib, J.; Yan, Y. Fabrication and evaluation of temperature
responsive molecularly imprinted sorbents based on surface of yeast via surface-initiated AGET ATRP.
Appl. Surf. Sci. 2013, 287, 211–217. [CrossRef]

51. Li, L.; He, X.; Chen, L.; Zhangad, Y. Preparation of Core-shell Magnetic Molecularly Imprinted Polymer
Nanoparticles for Recognition of Bovine Hemoglobin. Chem. Asian J. 2009, 4, 286–293. [CrossRef] [PubMed]

52. Lagergren, S. Zur theorie der sogenannten adsorption gelöster stoffe. Water Res. 1996, 30, 1143–1148.
53. Ho, Y.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465.

[CrossRef]
54. Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc.

1918, 40, 1361–1403. [CrossRef]
55. Freundlich, H. Über die Adsorption in Lösungen. Habilitationsschrift durch welche. zu haltenden Probevorlesung

“Kapillarchemie und Physiologie” einladet Dr. Herbert Freundlich; W. Engelmann: Leipzig, Germany, 1906.
56. Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938,

60, 309–319. [CrossRef]
57. Gu, T.; Zhu, B.-Y. The S-type isotherm equation for adsorption of nonionic surfactants at the silica gel—water

interface. Colloids Surf. 1990, 44, 81–87. [CrossRef]
58. Liu, X.; Ouyang, C.; Zhao, R.; Shangguan, D.; Chen, Y.; Liu, G. Monolithic molecularly imprinted polymer

for sulfamethoxazole and molecular recognition properties in aqueous mobile phase. Anal. Chim. Acta 2006,
571, 235–241. [CrossRef]

59. Jaria, G.; Calisto, V.; Silva, C.P.; Gil, M.V.; Otero, M.; Esteves, V.I. Fixed-bed performance of a waste-derived
granular activated carbon for the removal of micropollutants from municipal wastewater. Sci. Total Environ.
2019, 683, 699–708. [CrossRef]

60. Madikizela, L.; Tavengwa, N.; Pakade, V. Molecularly Imprinted Polymers for Pharmaceutical Compounds:
Synthetic Procedures and Analytical Applications. In Recent Research in Polymerization; IntechOpen: London,
UK, 2018; pp. 47–67.

61. Dai, C.; Zhou, X.; Zhang, Y.; Liu, S.-G.; Zhang, J. Synthesis by precipitation polymerization of molecularly
imprinted polymer for the selective extraction of diclofenac from water samples. J. Hazard. Mater. 2011, 198,
175–181. [CrossRef]

62. Duan, Y.-P.; Dai, C.; Zhang, Y.; Chen, L.-. Selective trace enrichment of acidic pharmaceuticals in real
water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted
polymers. Anal. Chim. Acta 2013, 758, 93–100. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C9NJ01385G
http://dx.doi.org/10.1016/j.colsurfa.2019.124253
http://dx.doi.org/10.3390/polym11020313
http://dx.doi.org/10.1002/app.40310
http://dx.doi.org/10.1016/j.cej.2012.05.106
http://dx.doi.org/10.1016/j.apsusc.2013.09.130
http://dx.doi.org/10.1002/asia.200800300
http://www.ncbi.nlm.nih.gov/pubmed/19040251
http://dx.doi.org/10.1016/S0032-9592(98)00112-5
http://dx.doi.org/10.1021/ja02242a004
http://dx.doi.org/10.1021/ja01269a023
http://dx.doi.org/10.1016/0166-6622(90)80189-B
http://dx.doi.org/10.1016/j.aca.2006.05.005
http://dx.doi.org/10.1016/j.scitotenv.2019.05.198
http://dx.doi.org/10.1016/j.jhazmat.2011.10.027
http://dx.doi.org/10.1016/j.aca.2012.11.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Chemicals and Materials 
	Materials Preparation 
	Preparation of Magnetic Yeast (MY) 
	Preparation of Magnetic Yeast-Based Molecularly Imprinted Polymer (MY@MIPs) 

	Characterization of MY, MY@MIPs, and MY@NIPs 
	Adsorptive Removal of SMX by the Produced Materials 
	Kinetic Adsorption Studies in Ultrapure Water 
	Equilibrium Adsorption Studies in Ultrapure Water 

	Adsorptive Performance of MY@MIPs 
	Kinetic and Equilibrium Adsorption Studies in STP Effluent 
	pH Study 
	Selective Adsorption 
	Regeneration and Reutilization 


	Results 
	Preparation of MY 
	Preparation of MY@MIPs 
	Characterization of MY, MY@MIPs, and MY@NIPs 
	Adsorptive Removal of SMX by the Produced Materials 
	Adsorption Kinetics 
	Adsorption Isotherm 
	Kinetic and Equilibrium Adsorption Studies from STP Effluent 

	pH Study 
	Selective Adsorption 
	Regeneration and Reutilization 

	Conclusions 
	References

