
Exponential fitting for stripe noise reduction from

dental x-ray images

Anssi Koskinen

Supervisor: Samuli Siltanen
Advisor: Henrik Lohman

University of Helsinki

August 25, 2020

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/334611319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The applied mathematical field of inverse problems studies how to recover un-
known function from a set of possibly incomplete and noisy observations. One
example of real-life inverse problem is image destriping, which is the process of
removing stripes from images. The stripe noise is a very common phenomenon
in various of fields such as satellite remote sensing or in dental x-ray imaging.

In this thesis we study methods to remove the stripe noise from dental x-
ray images. The stripes in the images are consequence of the geometry of our
measurement and the sensor. In the x-ray imaging, the x-rays are sent on certain
intensity through the measurable object and then the remaining intensity is
measured using the x-ray detector. The detectors used in this thesis convert
the remaining x-rays directly into electrical signals, which are then measured
and finally processed into an image. We notice that the gained values behave
according to an exponential model and use this knowledge to transform this
into a nonlinear fitting problem. We study two linearization methods and three
iterative methods. We examine the performance of the correction algorithms
with both simulated and real stripe images.

The results of the experiments show that although some of the fitting meth-
ods give better results in the least squares sense, the exponential prior leaves
some visible line artefacts. This suggests that the methods can be further im-
proved by applying suitable regularization method. We believe that this study
is a good baseline for a better correction method.
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1 Introduction

1.1 Inverse problems and noise reduction

Inverse problems rise from the need to evaluate parameters that we cannot
directly observe. Inverse problems can be seen as a reverse of forward problems.
Consider an equation

m = A(f),

where m is the measurement, f denotes some unknown function and A some
operator describing the relation between the unknown and the measurement.
Here, whereas the forward problem would be determining m given A and f , the
respective inverse problem is determining f , given m and A.

The main issue with inverse problems can be easily seen in the following
example: consider a forward problem of computing the sum of two numbers
a and b. It is easy to see that the corresponding inverse problem ”given the
sum of two numbers, determine the input values a and b” has infinitely many
solutions. This is an example of an ill-posed problem in the Hadamard’s sense.
Hadamard’s conditions for well-posed problem are

1. Existence. The solution exists.

2. Uniqueness. There is at most one solution.

3. Stability. The solution depends continuously from the data.

The take away from this example is that to guarantee well-posedness, some kind
of additional knowledge, which we call prior knowledge, is sometimes required.
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1.2 Basics of x-ray imaging

Figure 1: Example of the x-ray imaging experimental setup [1].

In the x-ray imaging, the x-rays are sent on certain intensity through the mea-
surable object and then the remaining intensity is measured using the x-ray
detector. The idea is that different materials absorb x-rays with different effi-
ciencies, letting different amounts of x-rays to reach the detector. In mathemat-
ical way we can describe the measurable object with some unknown function
f : B → R≥0 with compact support, where B ⊂ R2 is the imaging area. The
function at a point x = (x1, x2) ∈ B corresponds the intensity loss of the x-rays
at that point. We assume that the x-ray source is located at the point x0 and
the ray arrives on a detector pixel at point x1. We denote the initial intensity
and the measured intensity by I(x0) = I0 and I(x1) = I1 respectively. The
relative loss in the intensity I of a narrow x-ray along the line s = s(t), t ∈ [0, 1]
from s(0) = x0 to s(1) = x1 is given by the formula

∆I(s)

I(s)
= −f(s)∆s, (1.1)

By taking the line integral along the path s, we get∫
s

f(s)ds = −
∫
s

1

I(s)

d

ds
I(s)ds = − [log I(s(t))]

1
0 = log I0 − log I1. (1.2)

By rearranging the terms we the equation known as Beer-Lambert law for
monochromatic x-rays:

I1 = I0 exp

(
−
∫
s

f(s)ds

)
. (1.3)
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It is common to represent this equation of the form

I1 = I0e
−µ∆s, (1.4)

where µ :=
∫
s
f(s) is known as the attenuation coefficient.

In computed tomography, the inverse problem is to recover the function f
of an object of interest given the initial intensity I0, the measured intensity I1
and the path s. To satisfy the Hadamard’s conditions, several measurements
from multiple angles of view is required. Additionally, in dental imaging, we
want to minimize the x-ray doses exposed to the patient. Creating a suitable
reconstruction algorithm while balancing between these kinds of requirements
is a very interesting subject in and on itself. For more information we refer
to book Linear and nonlinear inverse problems with practical applications by
Jennifer L. Mueller and Samuli Siltanen [2].

1.3 The problem description

Figure 2: Example image with stripe noise

Noise reduction is other example of an inverse problem. In noise reduction, the
wanted signal f is influenced by a partially known process A, giving the noisy
measurement of the signal m. The goal in noise reduction is to reverse the
effects of that process. In this thesis we go through methods for reducing the
so-called stripe noise from the dental x-ray images. The stripe noise is a very
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common phenomenon in various of fields such as satellite remote sensing [3], or
in our case, dental x-ray imaging.

In recent years, several destriping methods have been proposed. These meth-
ods can roughly be divided into three categories: filtering-based, optimization-
based and statistics-based methods. In the filtering-based methods, the stripe
noise is reduced by constructing filter on a transformed domain, such as the
Fourier transform [4] and wavelet analysis [5]. These methods perform very
well when the stripe noise is periodic, however, the filters may also affect the
structural details with the same frequencies as the stripes.

In the optimization-based methods, the destriping is regarded as an ill-posed
inverse problem. For example, Yong Chen et al. proposed a denoising algorithm
for remote sensed images using total variation and group sparsity constraint [6],
and Min Wang et al. proposed a unidirectional total variation and second order
total variation model for destriping [7]. While these methods perform quite
well most of the time, they do not consider the characteristics of the stripes
themselves. This means that these methods may obtain favorable results for
specified images, and might not work in generic case.

Statistics-based methods are based on the statistical properties of the de-
tector response. Typical examples for statistics-based methods are moment
matching [8] and histogram matching [9]. These methods attempt to remove
the stripes by matching the mean and standard deviation or histogram of an
uncalibrated signal to the reference signal. The method we use in this thesis
belongs to this category.

The stripes in the images are consequence of the geometry of our mea-
surement and the sensor itself. The detectors used in this thesis convert the
remaining x-rays directly into electrical signals using the material cadmium tel-
luride (CdTe), which are then measured and finally processed into an image.
The detectors are built by lining up rectangular hybrids of CdTe such that a
gap is left between the panels. Since the gap area doesn’t measure anything,
it leaves stripes along the measurement direction. Additionally, the response of
the pixels near the gaps is nonlinear, and might also change during the course
of time, thus making the calibration difficult. We notice that the gained values
behave according to the exponential model, which we will show in the section
2.2. We use this prior knowledge to try to improve the existing gap correction
method.
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2 Materials and Methods

2.1 The image observation model

We represent the relation between the noisy image In ∈ Rn×m, the gain matrix
g ∈ Rn×m and the true image I ∈ Rn×m as

In(i, j) = g(i, j) [I(i, j) + ε(i.j)] , (2.1)

where ε denotes all the additional noise which we assume to be Gaussian. In
this thesis, we are only interested in removing the effects of the gain matrix g,
hence we consider pixel (i, j) healthy, if g(i, j) = 1. We also omit the processing
of the gap areas, where we assume that g(i, j) = 0. The gain matrix near the
gap edges behave according to exponential function

g(i, j) = 1 + d0A
|i−i0|, (2.2)

where d0 ∈ (−1, 1) is the gain-loss at the edge-most row i0, and A ∈ (0, 1) is
the rate of which the gain normalizes as we get further from the edge. Since

g(i, j)→ 1, as |i− i0| → ∞, (2.3)

we assume that there exists k ∈ N s.t.

g(i, j) = 1, when |i− i0| ≥ k. (2.4)

For simplicity, we consider only areas below the gaps. Now, for edge row i0,
(2.2) and (2.4) gives

g(i, j) = 1 + d0A
i−i0 , where i0 ≤ i ≤ i0 + k − 1. (2.5)

Then, we denote

y1,j := g(i0, j)

y2,j := g(i0 + 1, j)

...

yk,j := g(i0 + k − 1, j).

Now (2.5) becomes

yi,j = 1 + d0A
i−1, where 1 ≤ i ≤ k. (2.6)

Finally, due to the reference methods used, we will have a lot of deviation
between the estimated gain values. For that reason, since the gain function
(2.5) does not depend on the column j, we first estimate the gain value on each
row separately. The estimation is done by taking median row-wise. By setting
yi := median ({yi,j : 1 ≤ j ≤ m}), (2.6) transforms into

yi = 1 + d0A
i−1, where 1 ≤ i ≤ k (2.7)
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2.2 Fitting the exponential function

2.2.1 Linearization methods

Common way to fit the exponential model is to linearize the model. One way to
do this is to use logarithm. Subtracting one and taking the logarithm on (2.7)
yields a linear model

yli := ln(yi − 1) = ln(d0) + ln(A)(i− 1).

Now we have, in matrix notation:

y :=


yl1
yl2
...
ylk

 =


1 0
1 1
...

...
1 k − 1


[
ln(d0)
ln(A)

]
=: Xβ

We solve this by minimizing residual sum of squares

β̂ = arg min
β

{
‖y−Xβ‖2

}
. (2.8)

The minimizer β̂ satisfies

∂ ‖y−Xβ‖2

∂β

∣∣∣∣∣
β̂

= 0.

=⇒ XT (Xβ̂ − y) = 0

=⇒ XTXβ̂ −XTy = 0

The solution of the minimization problem (2.8) is therefore

β̂ = (XTX)−1XTy. (2.9)

Other way for linearizing the gain function is to use numerical integration
[10]. We assume that yi is a discrete sample of continuous function f : R → R
such that

f(i) = 1 + d0A
i−1. (2.10)

We estimate the integral of f from 1 to t ≤ k, t ∈ N as follows∫ t

1

f(i)di ≈
t∑
i=1

Si :

{
S1 = 0

Si = 1
2 (yi − yi−1)), when i > 1.

(2.11)

Applying (2.11) gives

t∑
i=1

Si = t− 1 +
d0

ln(A)
At−1 − d0

ln(A)
.
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Multiplying both sides by ln(A) yields

ln(A)

t∑
i=1

Si = ln(A)(t− 1) + d0A
t−1 − d0.

Applying the measurement (2.7) and rearranging the terms gives

yt − y1 = ln(A)(

t∑
i=1

Si − t+ 1).

We have, in matrix notation

y :=


y2 − y1

y3 − y1

...
yk − y1

 =


∑2
i=1 Si − 1∑3
i=1 Si − 2

...∑k
i=1 Si − k + 1

 ln(A) =: X ln(A). (2.12)

The least squares estimate of A is now

Â = exp
[
(XTX)−1XTy

]
. (2.13)

Now applying (2.13) to (2.7) yields

y :=


y1 − 1
y2 − 1
y3 − 1

...
yk − 1

 =


1

Â

Â2

...

Âk−1

 d0 =: Xd0.

And the least squares estimate of d0 is

d̂0 = (XTX)−1XTy. (2.14)

2.2.2 Non-linear system

Next we look at iterative least squares methods. In these methods we mini-
mize the residual sum of squares iteratively through a sequence of updates to
parameter values. From (2.7), we have

f(i, β) := 1 + d0A
i−1, where β := [d0, A]T .

We set

y :=


y1

y2

...
yk

 and f(β) :=


f(1, β)
f(2, β)

...
f(k, β)

 (2.15)
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Like in (2.8), we search the solution by minimizing the least squares

β̂ = arg min
β
{‖y− f(β)‖2}

We denote
r(β) := y− f(β), and l(β) := ‖r‖2 . (2.16)

To optimize (2.16), we want to generate a sequence of parameters β1, β2, . . .
from an initial guess β0 such that

l(β0) ≥ l(β1) ≥ l(β2) ≥ . . . (2.17)

2.2.3 The gradient descent

Let s ∈ R2×1 and l be infinitely differentiable. Then the Taylor series of l is

l(β + s) = l(β) + [∇l(β)]
T
s+

1

2
sT∇2l(β)s+ . . . , (2.18)

where ∇l(β) denotes the gradient vector given by

∇l(β) = 2

[
∂r(β)

∂β

]T
r(β) (2.19)

and ∇2l(β) the matrix of second derivatives, so called Hessian matrix computed
by

∇2l(β) = 2

([
∂r(β)

∂β

]T
∂r(β)

∂β
+ [r(β)]

T ∂
2r(β)

∂2β

)
(2.20)

We set

Jr =
∂r(β)

∂β
and Qr = [r(β)]

T ∂
2r(β)

∂2β
. (2.21)

Now (2.19) and (2.20) can be written in matrix notation as

∇l(β) = 2JTr r(β). (2.22)

and
∇2l(β) = 2

(
JTr Jr +Qr

)
(2.23)

respectively.
The gradient descent method, also known as the steepest descent method,

was introduced by Cauchy in 1847 [2]. In gradient descent, we assume that the
function l around β is linear. Then, if ‖s‖ is small, the Taylor series (2.18)
becomes

l(β + s) = l(β) + [∇l(β)]
T
s. (2.24)

We set s such that the function l decreases the fastest. The rate of change of l
at the point β in a direction represented by a unit vector u is given by

Dul(β) = lim
h→0

l(β + hu)− l(β)

h
= ∇l(β) · u.
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By the chain rule, we have

Dul(β) = ∇l(β) · u,

where · denotes the dot product. To find the direction where l can be reduced
the fastest, we minimize Dul(β) with respect to u. Since

∇l(β) · u = ‖∇l(β)‖ ‖u‖ cos(θ).

where θ is the angle between ∇l(β) and u, and the minimum value of cos(θ) is
-1 when θ = π, the Dul(β) is minimized when u is at the opposite direction of
the gradient ∇l(β). Hence, for each t ≥ 1, we set

βt+1 = βt − γt∇l(β), γt > 0, (2.25)

where γt determines the step length at iteration step t. Inserting (2.25) to (2.24)
gives

l(βt+1) = l(βt − γt∇l(β)) = l(βt)− γt [∇l(β)]
T ∇l(β)︸ ︷︷ ︸

≥0

≤ l(βt).

Thus; if the step lengths γt are small enough, the sequence of parameters
β0, β1, β2, . . . defined in (2.25) satisfy (2.17).

In the gradient descent, the step length γt is chosen by the so called line
search rule

γt = arg min
γ≥0

l(βt − γ∇l(βt)). (2.26)

However, this method is known to converge slowly, therefore we use method
introduced by Barzilai and Borwein in 1988. In Barzilai-Borwein, the step
length γt is given by the rule

γt =
‖βt − βt−1‖2

(βt − βt−1)
T

(∇l(βt)−∇l(βt−1))
. (2.27)

2.2.4 The Gauss–Newton algorithm

The Newton method follows from the second-order Taylor approximation

l(β + s) ≈ l(β) + [∇l(β)]
T
s+

1

2
sT∇2l(β)s. (2.28)

Since (2.28) is quadratic function of s its minimum can be found by setting
derivative to zero. We have

d

ds

(
l(β) + [∇l(β)]

T
s+

1

2
sT∇2l(β)s

)
= 0

=⇒ ∇l(β) +∇2l(β)s = 0,
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s = −
[
∇2l(β)

]−1∇l(β). (2.29)

The Hessian matrix in (2.29) is not always positive definite; thus; its inverse
might not exist. In Gaussian-Newton method we approximate the Hessian ma-
trix by setting

Qr = 0.

Now (2.23) can be written as

∇2l(β) = 2JTr Jr. (2.30)

By substituting (2.30) and (2.22) into (2.29) we obtain

s = −
[
JTr Jr

]−1
JTr r(β)

and therefore we set

βt+1 = βt −
[
JTr Jr

]−1
JTr r(β). (2.31)

The Gaussian-Newton method is known to converge faster than the gradient
descent when the Hessian approximation(2.30) is sufficiently accurate. However,
the convergence of the Gauss-Newton method is not always guaranteed. The
approximation

|Qr| � |JTr Jr| (2.32)

that needs to hold in order to set Qr to zero is valid when the values in r(β)

are small in magnitude, or when the values ∂2r(β)
∂2β are relatively small.

2.2.5 The Levenberg-Marquardt-Fletcher algorithm

The last fitting method we are going to look at is modified Marquardt subroutine
by R. Fletcher.[11]. The Levenberg-Marquardt algorithm varies the parameter
updates between the gradient descent update and Gauss-Newton update:

βt+1 = βt −
[
JTr Jr + λtI

]−1
JTr r(βt), (2.33)

where λt ≥ 0 is the damping parameter and I is the identity matrix. The
damping parameter λt serves for scaling purposes. For λ = 0, the method
transforms into the Gauss-Newton method (2.31), while for λ→∞ the method
approaches the gradient descent method (2.25).

We set the initial damping parameter value λ0 to be relatively large so that
that first updates are small steps in the gradient descent direction. If any
iteration results in worse approximation ((

¯
βt+1) > r(βt)), we set λt+1 = νλt,

where 2 ≤ ν ≤ 10, to get closer to gradient descent, otherwise we set λt+1 = λt/ν
so that as we approach the minimum, the Levenberg-Marquardt update gets
closer and closer to the Gauss-Newton update.

Levenberg’s algorithm has a disadvantage that if λ is large, the value of[
JTr Jr + λtI

]−1
is not used at all, making the method converge slowly in the
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direction of a small gradient. Fletcher improved the Levenberg-Marquardt al-
gorithm by replacing the identity matrix I in (2.33) by diagonal matrix of the
Hessian estimation (2.31):

βt+1 = βt −
[
JTr Jr + λtdiag(JTr Jr)

]−1
JTr r(βt), (2.34)

scaling each component of the gradient according to the curvature, allowing
larger movement along the directions where the gradient is smaller.

2.3 Creating the reference image

Figure 3: Demonstration of the reference methods used on one row.

Before fitting the gain function, we need to have an estimate of I which we
call reference image Ir. Of course, a nearly perfect reference image Ir would
give a very accurate estimation of the gain function g. However, it would also
make the rest of the correction method redundant since we could just use the
reference image as our solution. Therefore we examine how the fitting method
behaves under coarse reference images. We compare two simple methods: linear
interpolation and median filtering.

Let x1 and x2 denote the uppermost and the lowest gap row respectively.
In the linear interpolation method, for each column, we choose two reference
points taken k rows up and below the gap area, and replace the in between area
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by linearly interpolated values. In the median filtering method we replace these
pixels by median filtered values. Let l := 2k + x2 − x1 + 1; that is, the height
of the gap area. In the linear interpolation method, for each column j ∈ [1,m]
and i ∈ [0, l − 1], we set

Ir(x1 − k + i, j) = Ir(x1 − k, j) + i
In(x2 + k, j)− Ir(x1 − k, j)

l − 1
. (2.35)

In the median filtering method, for each column j ∈ [1,m] and i ∈ [x1−k, x2+k],
we set

Ir(i, j) = median({In(i−M, j), . . . , In(i+M, j)}), (2.36)

where M ∈ N determines the size of the filtering window.

2.4 The correction algorithm

The correction algorithm goes as follows:

1. Using the input image In, compute the reference image Ir using either
median filtering or linear interpolation.

2. Create the gain measurement yi as described in the section (2.1.2).

3. Estimate the gains by fitting the exponential model using the fitting meth-
ods described in the section (2.2).

4. Use the estimated gain function ĝ to correct the edge gain affected areas
of the image.

5. Apply the existing gap correction method for the gap area.

Overall goal of this thesis is to find the best possible method to estimate the
gain function g.

2.5 Quality measures

In this section we define the quality measures used in the result section in this
thesis. First we define the relative square error for the fitting evaluation, then
we define the measures PSNR, SSIM and HaarPSI used in the image quality
evaluation.

2.5.1 RSE

The relative square error, RSE, is the residual sum of squares normalized with
the square sum of the real value of the signal, given the square error as a
percentage of the real value. Given the real signal y ∈ Rn and the estimation
x ∈ Rn, the RSE is defined as

RSE(x, y) =
‖x− y‖2
‖y‖2

∗ 100%. (2.37)
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2.5.2 PSNR

Peak signal-to-noise ratio (PSNR) is the ratio between the maximum possible
value of the signal and the level of noise. PSNR is commonly defined via mean
squared error (MSE). Given a noise-free n×m image y and the estimated image
x, the MSE is defined as:

MSE(x, y) =
1

nm

m∑
i=1

n∑
j=1

[y(i, j)− x(i, j)]
2
. (2.38)

Because of the very wide dynamic range of the 16 bit images, we express the
PSNR in terms of the logarithmic scale as follows:

PSNR = 10 log10

(
MAX2

x

MSE

)
. (2.39)

Here, the MAXf represents the maximum possible pixel value of the image, e.g
in 16 bit images, this is 216 − 1 = 65535. It is worth noting that in the absence
of noise, PSNR is undefined.

2.5.3 SSIM

The structural similarity (SSIM) index developed by Wang et. al [12] compares
three features: luminance, contrast and structure. SSIM is built such that each
of these three components are relatively independent, for example changes in the
luminance and/or contrast will not affect the structure of images. The system
diagram of the SSIM measurement system can be seen in the Figure 4.

Figure 4: Diagram of the structural similarity (SSIM) measurement system

First, the luminance of each signal is compared. For image x we evaluate
this using the mean intensity

µx =
1

nm

m∑
i=1

n∑
j=1

xi,j . (2.40)
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The luminance comparison function l(x, y) is then a function of µx and µy.
Then, we estimate the signal contrast. First, we remove the mean intensity

from the signal. The resulting image x− µx corresponds to projection of image
x onto the hyper plane defined by

m∑
i=1

n∑
j=1

xi,j = 0. (2.41)

The signal contrast is now estimated using the standard deviation. An unbiased
estimate is given by

σx =

 1

nm− 1

m∑
i=1

n∑
j=1

(xi,j − µx)2

 1
2

. (2.42)

The contrast comparison function c(x, y) is then the comparison of σx and σy.
To estimate the structure of the signal, we first normalize the image by

its standard deviation, so that the resulting two images have unit standard
deviation. The structure function s(x, y) is quantified using these normalized
signals (x− µx)/σx and (y − µy)/σy.

Finally, the three functions l(x, y), c(x, y), s(x, y) are combined using some
combination function f(·) to form an overall similarity measure

S(x, y) = f(l(x, y), c(x, y), s(x, y)), (2.43)

The similarity measure (2.43) should also satisfy the following conditions:

1. Symmetry: S(x, y) = S(y, x);

2. Boundedness: S(x, y) ≤ 1;

3. Unique maximum: S(x, y) = 1 if and only if x = y.

To satisfy these three conditions, we define functions (2.40) and (2.42) as
follows:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
, (2.44)

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
, (2.45)

Here; the constants c1 andc2 are chosen in order to avoid division by zero. More
specifically, we set

c1 = (k1L)2, and c2 = (k2L)2, (2.46)

where k1 � 1 and k2 � 1 are small constants and L is the dynamic range of
the pixel values.

Structure comparison is associated with normalized signals (x−µx)/σx and
(y − µy)/σy. We use correlation between these two to measure the structural
similarity. Note, that correlation between the normalized signals is equivalent
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to the correlation coefficients of x and y. Thus, we define structure comparison
function as

s(x, y) =
σxy + c3
σxσy + c3

, (2.47)

where σxy can be estimated as

σxy =
1

nm− 1

m∑
i=1

n∑
j=1

(x− µx)(y − µy) (2.48)

As in the luminance and contrast measures, the constant c3 is chosen in order
to avoid division by zero.

The general form of SSIM is defined as

SSIM(x, y) =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
, (2.49)

where α > 0, β > 0 and γ > 0 are parameters used to adjust the relative im-
portance of the three components. In this thesis, we use the following simplified
form of this measure by setting α = β = γ = 1 and c3 = c2/2:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (2.50)

2.5.4 HaarPSI

The Haar Wavelet-based Perceptual Similarity Index [13] is a similarity measure
of two digital images to the value in the interval [0, 1], that is

HaarPSI : `(Z2)× `(Z2)→ [0, 1]. (2.51)

The output value of HaarPSI aims to express the perceptual similarity of two
images with respect to human eye, such that the HaarPSI of two identical images
is 1 and HaarPSI of two completely different images is 0.

For measuring the local similarity, HaarPSI uses the coefficients of a dis-
crete wavelet transform. The wavelet chosen for HaarPSI is the so-called Haar
wavelet proposed by Alfred Haar in 1910, which is known for its simplicity and
computational efficiency. Lets briefly recall the main ideas about Haar wavelets.
The Haar scaling function is defined by

φ(x) =

{
1, if 0 ≤ x ≤ 1

0, elsewhere
(2.52)

Suppose that j ∈ N. The space of step functions at level j, denoted by Vj is
defined to be the space spanned by the set{

. . . , φ(2jx− 1), φ(2jx), φ(2jx+ 1), φ(2jx+ 2), . . .
}

(2.53)
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over real numbers. Now Vj is the space of piece-wise constant functions of finite
support whose discontinuities are contained in the set{

. . . ,− 1

2j
, 0,

1

2j
,

2

2j
, . . .

}
. (2.54)

Following proposition holds by the definition (2.52) and (2.53)

f(x) ∈ V0 if and only if f(2jx) ∈ Vj , (2.55)

f(x) ∈ Vj if and only if f(2−jx) ∈ V0.

We also have∥∥φ(2jx− k)
∥∥2

2
=

∫ ∞
−∞

(
φ(2jx− k)

)2
dx =

1

2j

∫ k+1

k

1dx =
1

2j
, (2.56)

and using the L2 inner product we have

〈φ(x− k), φ(x− j)〉 =

∫ ∞
−∞

φ(x− k)φ(x− j)dx = 0, (2.57)

since φ(x− k) and φ(x− j) are disjoint when j 6= k. We conclude that the set
of functions {

2
2
j φ(2jx− k), k ∈ Z

}
(2.58)

is an orthogonal basis of Vj .
The Haar mother wavelet is defined by

ψ(x) = φ(2x)− φ(2x− 1). (2.59)

By definition, the Haar mother wavelet ψ is a member of V1. Also it holds that∫ ∞
−∞

(φ(2x)− φ(2x− 1))φ(x)dx =

∫ 1/2

0

1dx−
∫ 1

1/2

1dx = 0, (2.60)

moreover, if k 6= 0, then the support of ψ(x) and φ(x− k) does not overlap and
so we have

∫
ψ(x)φ(x−k)dx = 0. Therefore ψ belongs to V1 and it is orthogonal

to V0. By above deduction, it follows that any function of the form

f1 =
∑
k∈Z

akφ(2x− k) ∈ V1, (2.61)

is orthogonal to each φ(x− l), l ∈ Z, i.e; is orthogonal to space V0 if and only if

a1 = −a0, a3 = −a2, . . . (2.62)

hence we have

f1 =
∑
k∈Z

a2k (φ(2x− 2k)− φ(2x− 2k − 1)) =
∑
k∈Z

a2kψ(x− k). (2.63)
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We know have shown that an arbitrary function f1 in V1 is orthogonal to V0 if
and only if it is of the form

∑
k∈Z a2kψ(x − k). Now, let Wj be the space of

functions of the form ∑
k∈Z

akψ(2j − k), ak ∈ R, (2.64)

where we assume that only finite number of ak are nonzero. By (2.63), we have

V1 = V0 ⊕W0, (2.65)

in other words, function in V1 can be decomposed uniquely as a sum of a function
in V0 and a function inW0. By the similar deduction and the induction principle,
we can state a more general result

Vj+1 = Vj ⊕Wj (2.66)

= Vj−1 ⊕Wj−1 ⊕Wj

= . . .

= V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj

Above result means that each f ∈ Vj+1 can be decomposed uniquely as a sum

f = f0 + w0 + w1 + · · ·+ wj , (2.67)

where f0 ∈ V0 and wl ∈Wl for all 0 ≤ l ≤ j.
Basic idea behind wavelet decomposition is to approximate the signal f in

space Vj spanned by (2.58) and then decompose it according to (2.67). We
want to choose the scale j ∈ N large enough so that the approximation fj ∈ Vj
captures most of the important features of f . Suppose

f(x) ≈ fj(x) =
∑
k∈Z

ajkφ(2jx− k) ∈ Vj . (2.68)

Then by (2.67), fj can be decomposed as

fj = fj−1 + wj−1, (2.69)

where
wj−1 =

∑
k∈Z

bj−1
k ψ(2j−1x− k) ∈Wj−1 (2.70)

fj−1 =
∑
k∈Z

aj−1
k φ(2j−1x− k) ∈ Vj−1. (2.71)

Here, the scalars aj−1
k and bj−1

k are called approximation and detail coefficients
respectively, which are the coefficients of a discrete wavelet transform mentioned
in the beginning of this section. Next we are going to define the Haar filters
used to compute the discrete Haar wavelet transform. For more information
about the Haar wavelet transform and its implementation, we refer to the book
Ten lectures on wavelets by Ingrid Daubechies [14].
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The one dimensional Haar wavelet filters for level 1 are given by

h1D
1 =

1√
2
· [1, 1]T (2.72)

and

g1D
1 =

1√
2
· [−1, 1]T (2.73)

where h1D
1 denotes the low-pass scaling filter which and g1D

1 the corresponding
high-pass wavelet filter. One-dimensional filters h1D

j and g1D
j for j > 1 are given

by
g1D
j = h1D

1 ∗
(
g1D
j−1

)
↑2 , (2.74)

and
h1D
j = h1D

1 ∗
(
h1D
j−1

)
↑2 , (2.75)

where ↑ 2 denotes the dyadic up-sampling operator which lengthens the given
vector by substituting zero values:


x1

x2

...



↑2

=



0
x1

0
x2

0
...


(2.76)

and ∗ denotes the one-dimensional convolution operator with zero boundary
conditions.

The two dimensional Haar wavelet system is spanned by the functions

φ(x)ψ(y), ψ(x)φ(y) and ψ(x)ψ(y) (2.77)

giving us the horizontal-, vertical- and diagonal details, and by

φ(x)φ(y) (2.78)

which gives a coarse approximation of the given image. For any scale j ∈ N the
horizontal features are given by the filter

g
(1)
j = g1D

j

[
h1D
j

]T
(2.79)

and the vertical features are obtained by the filter

g
(2)
j = h1D

j

[
g1D
j

]T
. (2.80)

Let f1, f2 ∈ `(Z2) be two gray-scale images and let the scalar values a, b ∈ R
assess the local features of f1 and f2 respectively. We measure the similarity of
those two measures with function

S(a, b, C) =
2ab+ C

a2 + b2 + C
, (2.81)
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where a constant C > 0. In HaarPSI, the scalar values a, b are based on the
first two levels of discrete Haar wavelet transform. We compute

LS
(k)
f1,f2

[x] =
1

2

2∑
j=1

S
(
|
(
g

(k)
j ∗ f1

)
[x]|, |

(
g

(k)
j ∗ f2

)
[x]|, C

)
, (2.82)

where C > 0 is constant, k ∈ {1, 2} selects either horizontal or vertical filters
and ∗ denotes the two-dimensional convolution operator.

To correctly predict the perceptual similarity experienced by human viewers,
the following logistic function given by parameter α > 0 is applied:

lα(x) =
1

1 + e−αx
. (2.83)

Hence, the Haar wavelet based local similarity map HS is defined as

HS
(k)
f1,f2

[x] = lα

(
LS

(k)
f1,f2

[x]
)
. (2.84)

Finally, the Haar-wavelet based perceptual similarity index for grey-scale

images f1, f2 is defined as a weighted average of the local similarity map HS
(k)
f1,f2

.
The weights are given by the third scale of a discrete Haar wavelet transform,
that is,

W
(k)
f [x] = |(g(k)

3 ∗ f)[x]|. (2.85)

Now the the Haar-wavelet based perceptual similarity index is defined by

HaarPSIf1,f2 = l−1
α

(∑
x

∑2
k=1HS

(k)
f1,f2

[x] ·W (k)
f1,f2

[x]∑
x

∑2
k=1W

(k)
f1,f2

[x]

)
(2.86)

where
W

(k)
f1,f2

[x] = max
{
W

(k)
f1,

[x],W
(k)
f2

[x]
}
. (2.87)

2.6 Implementation

2.6.1 Creating the reference image

Before going through the results, let’s recall all the methods we will use in this
thesis and how we are going to implement them. We described the relation
between the noisy image In ∈ Rn×m, the gain function g ∈ Rn×m, the real
image I ∈ Rn×m and additional noise ε ∈ Rn×m as

In(i, j) = g(i, j) [I(i, j) + ε(i.j)] .

We defined two methods which we will use to estimate the term I called the
reference image Ir. In the implementation of these two methods, we assume
that we know the uppermost and the undermost rows of the gap, denoted x1

and x2 respectively.
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In the first method, called the linear interpolation method, for each column
j, we compute a straight line between the two reference points taken k ∈ N rows
above and below the gap and use them as the reference image values.

Algorithm 1 Linear interpolation

1: Input:
Image I, gap rows x1 and x2, number of reference rows k

2: Output:
Reference image Ir

3: Initialize:
Ir ← I
l← 2k + x2 − x1 + 1

4: for j = 1 to m do
5: for i = 0 to l − 1 do

6: Ir(x1 − k + i, j)← I(x1 − k, j) + i
(
I(x2+k,j)−I(x1−k,j)

l−1

)
7: end for
8: end for

In the median filtering method, for each column j, we replace each pixel
with median of M preceding and following pixels. Since all the tested gaps were
far enough from the border, we were able to determine M such that M > k,
x1− k−M > 0 and x2 + k+M > m. Here, the first condition is to ensure that
the filtering method can remove the stripe and the last two conditions allows us
to avoid the boundary issues.

Algorithm 2 Median filtering

1: Input:
Image I, gap rows x1 and x2, number of reference rows k,
size of the filtering window M

2: Output:
Reference image Ir

3: Initialize:
Ir ← I

4: for j = 1 to m do
5: for i = x1 − k to x2 + k do
6: Ir(i, j)← median({I(i−M, j), . . . , I(i+M, j)})
7: end for
8: end for

2.6.2 Creating the measure

After applying the reference image, we have an approximation

In(i, j) = g(i, j) [I(i, j) + ε(i, j)] ≈ g(i, j)Ir(i, j),
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from which we get

g(i, j) ≈ In(i, j)

Ir(i, j)
.

We assumed that g(i, j) is constant column-wise so we will take median to create
the measurement vector y.

Algorithm 3 Creating the measurement vector

1: Input:
Image I, reference image Ir

2: Output:
Vector containing the gain function approximations y

3: Initialize:
y← 1 ∈ Rm

4: for i = 1 to n do
5: yi ← median

({
I(i,1)
Ir(i,1) , . . . ,

I(i,m)
Ir(i,m)

})
6: end for

We stated that near the edges the gain function g behaves according to an
exponential function

g(i, j) = 1 + d0A
|i−i0|,

where i0 is the edge-most row above or below the gap. It is worth to note, that
parameter values d0 and A may differ for the lower and the upper edge-most
row, so they have to be processed separately. Without the loss on generality,
we made assumption that i0 is the edge-most row below the gap. Now we have

yi ≈ g(i, j) = 1 + d0A
i−i0 , i0 ≤ i ≤ i0 + k − 1

After re-indexing so that yi0 = y1 we finally get the measurement vector y ∈ Rk

yi ≈ 1 + d0A
i−1, 1 ≤ i ≤ k.

2.6.3 Linearization methods

Now let’s recall the fitting methods. Logarithm method uses the logarithm to
transform our equation into a linear one:

yli := ln(yi − 1) = ln(d0) + ln(A)(i− 1).

We will solve in the least squares sense.
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Algorithm 4 The Logarithm method

1: Input:

Measurement vector y

2: Output:

Vector β containing the estimations of the parameters d0 and A.

3: Initialize:

yl ← 1 ∈ Rk

X← 1 ∈ Rk×2

4: for i = 1 to k do

5: yli ← ln(yi − 1)

6: X(i, 2)← i− 1

7: end for

8: β ←
(
XTX

)−1

XTyl

9: β ← exp(β)

In the second linearization method, we assumed that yi is a discreet sample
of continuous function, in other words,

yi ≈ 1 + d0A
i−1 =: f(i).

We manipulated this equation by taking the integral both sides. After some
manipulations we got

yt − y1 = ln(A)

(∫ t

1

f(i)di− t+ 1

)
,

for 1 ≤ t ≤ k. We estimate the integral with Simpson’s rule∫ t

1

f(i)di ≈
t∑
i=1

Si :

{
S1 = 0

Si = 1
2 (yi − yi−1)), when i > 1.

and now the parameters d0 and A can be solved separately in the least squares
sense.
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Algorithm 5 The integral method

1: Input:

Measurement vector y

2: Output:

Vector β containing the estimations of the parameters d0 and A.

3: Initialize:

yd ← 0 ∈ Rk

X← 0 ∈ Rk

S ← 0
4: for i = 2 to k do

5: ydi ← yi − y1

6: S ← S + 1
2 (yi − yi−1)

7: Xi ← S − i+ 1

8: end for

9: A←
(
XTX

)−1

XTyd

10: A← exp(A)

11: for i = 1 to k do

12: y ← yi − 1

13: Xi ← Ai−1

14: end for

15: d0 ←
(
XTX

)−1

XTy

16: β ← [d0, A]

2.6.4 Iterative methods

Then we introduced three different non-linear least square methods. We have
the measurement

yi ≈ 1 + d0A
i−1 =: f(i, β)

and want to find β = [d0, A]T that minimizes

l(β) := ‖r‖22 := ‖f(β)− y‖22 .

We denoted the Jacobian matrix as

Jr(β) :=
∂r(β)

∂β
.

First, we introduced the gradient descent method, which is based on the fact
that the function l(β) decreases the fastest, if we take suitable sized steps from
β in the direction of the negative gradient. In other words, we say that if

βt+1 = βt − γt∇l(βt)
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for γt ∈ R+ small enough, then l(βt) ≥ l(βt+1). Due to it’s faster convergence
rate we use the Barzilai-Borwein method to determine the step size γt, that is,
we set

γt =
‖βt − βt−1‖2

(βt − βt−1)
T

(∇l(βt)−∇l(βt−1))
.

We also noted that the gradient can be written in terms of the Jacobian matrix
Jr as

∇l(βt) = 2JTr r(βt)

Algorithm 6 The Barzilai-Borwein method

1: Input:

Measurement vector y, tolerance T , initial value of β, max

iterations M , initial step size γ
2: Output:

Vector β containing the estimations of the parameters d0 and A.

3: Initialize:

i← 1

J← Jr(β)

r← f(β)− y

g ← 2JT r
4: while ‖r‖22 > T or i ≤M do

5: βprev ← β

6: β ← β − γg
7: r← f(β)− y

8: J← Jr(β)

9: gprev ← g

10: g ← 2JT r

11: γ ← ‖β−βprev‖22
(β−βprev)T (g−gprev)

12: i← i+ 1

13: end while

The second non-linear method we introduced was The Gaussian-Newton
method which is a modification of the Newton’s method. Unlike the Newton’s
method, the Gauss-Newton algorithm does not require the computation of the
second derivatives. Instead, we set

∇2l(β) = 2JTr Jr(β)

so that the iteration step can be written as

βt+1 = βt −
[
JTr Jr

]−1

JTr r(β)
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Algorithm 7 The Gaussian-Newton method

1: Input:

Measurement vector y, initial value of β, tolerance T , max

iterations M
2: Output:

Vector β containing the estimations of the parameters d0 and A.

3: Initialize:

i← 1

r← f(β)− y

4: while ‖r‖22 > T or i ≤M do

5: J← Jr(β)

6: s←
[
JTJ

]−1

JT r

7: β ← β − s
8: r← f(β)− y

9: i← i+ 1

10: end while

The last method we introduced was the Levenberg-Marquardt-Fletcher(LMF)
algorithm which varies the parameter updates between the previous two. In the
Levenberg-Marquardt algorithm, set

βt+1 = βt −
[
JTr + λtI

]−1

JTr r(βt).

Fletcher’s modification of this algorithm replaces the identity matrix by diagonal
matrix of the Hessian estimation to allow larger movement along the directions
where the gradient is smaller. Hence, we set

βt+1 = βt −
[
JTr Jr + λtdiag

(
JTr Jr

)]−1

JTr r(β).

The damping parameter λt ≥ 0 serves for scaling purposes. We noted that when
λ = 0, the method transforms into the Gauss-Newton method, while for λ→∞
the method approaches the gradient descent method. We set λ0 to be relatively
large so that first updates are small steps in the gradient descent direction.
We set λt+1 = νλt, if (r(βt+1) > r(βt)), otherwise, we set λt+1 = λt/ν, for
2 ≤ ν ≤ 10.
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Algorithm 8 The LMF-method

1: Input:

Measurement vector y, initial value of β, initial value of λ,

tolerance T , max iterations M
2: Output:

Vector β containing the estimations of the parameters d0 and A.

3: Initialize:

i← 1

r← f(β)− y

4: while ‖r‖22 > T or i ≤M do

5: J← Jr(β)

6: s←
[
JTJ + λdiag

(
JTJ

)]−1

JT r

7: β ← β − s
8: rprev ← r

9: r← f(β)− y

10: if r > rprev then

11: λ← νλ

12: else

13: λ← λ/ν

14: end if

15: i← i+ 1

16: end while
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3 Results

3.1 Preliminary tests

3.1.1 Reference image method evaluation

To find out which reference image generation method to use, we used 12 images.
For each image, we planted 6 simulated gaps such that the parameter values
of the exponential function were randomized. Then, we applied the reference
methods for each of the gap areas separately. Since the areas above and below
the gaps can be treated separately, we have a 144 testing areas.

Since our fitting methods minimize the residual sum of squares, we evalu-
ated the reference methods using the relative least squares. The methods are
evaluated based on how well the methods estimate the real image as well as how
well they, together with row-wise median (see: (2.7)), estimate the gains.

Reference Method Mean (%) Variance (%) Max (%)
Linear 7.15 0.49 50.63
Median 5.36 0.20 37.13

Table 1: Relative square errors of the reference image vs the real image

In the Table 1, we have the mean, variance and maximum of the relative
square errors of the linear and the median estimations. As we can see, the
median reference method seems to give much better results than the linear
method.
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Figure 5: Relative square errors of linear and median gain estimates computed
using the row-wise median

.

In (2.7), we suggested to take row-wise median to make use of the fact
that the gain function is constant row-wise. The Figure 5 shows us the relation
between the simulated d0 and the relative square error after applying the median
row-wise. Now, the linear interpolation seems more stable compared to the
median filtering.
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Figure 6: Linear and median gain estimate of the edge-most row (d0) comparison
.

Note that the gain function g → 1 as we go further from the gap. This means
that the edge-most row has the most noise. Hence, the last thing in this section
we want to examine is the comparison of the real d0 and estimated d0 in the
Figure 6. From here, it is easy to see that both methods give great estimation
of the gain of the edge-most row.

In conclusion, since the linear estimation gave slightly better results after
taking the row-wise median, we chose to use the linear interpolation as the
reference method in the simulation and real data tests.

3.1.2 Exponential fitting

We tested different fitting methods on a simulated sample of randomly generated
exponential function corrupted by a white Gaussian noise with zero mean and
variance σ = 0.1. For this test, 200 exponential function samples with a length
of 15 were generated. Then, we repeated the test, but now added a spike to
randomly selected entry of the measurement vector by multiplying it by a factor
of 1.5. This was to simulate possible sudden detail changes which in combination
with reference method can cause a spike to the measurement vector. Example
of a simulated gain function can be seen in the Figure 7. The point of these
tests was to pick one linearization and one iterative optimization method for
the actual correction method tests.
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Figure 7: Example of a simulated gain function used in the preliminary fitting
tests

.

Perfect
Correction Method Mean (%) Variance (%) Avg Time (s)

Logarithm ∼0 ∼0 0.0001
Integral 0.1 ∼0 0.0001

Gauss-Newton ∼0 ∼0 0.0003
LMF 0 ∼0 0.0007

Table 2: Relative square errors and computation time of the perfect measure-
ment fitting

Table 2 shows the fitting results from the perfect measurements. The purpose
of this test is to see the possible computational errors in each method. During
this and the next test we noticed that the Barzilai-Borwein failed to converge as
soon as any noise was introduced. In the other methods, the error in the best
case scenario is basically non-existent.
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Noised, σ = 0.1
Correction Method Mean (%) Variance (%) Avg Time (s)

Logarithm 7.97 0.22 0.0001
Integral 3.34 0.03 0.0001

Gauss-Newton 3.48 0.03 0.0371
LMF 3.43 0.03 0.0012

Table 3: Relative square errors and computation time of the noised measurement
fitting

Table 3 shows the effect of the Gaussian noise to each method. We notice
that mean and variance of the relative square error of the logarithm method is
over two times larger than the other methods. Additionally, we can notice that
the Gauss-Newton is significantly slower than the other methods.

Noised and spiked, σ = 0.1
Method Mean (%) Variance (%) Avg Time (s)

Logarithm 8.38 2.4 0.0001
Integral 5.21 1.1 0.0001

Gauss-Newton 5.21 1.0 0.0371
LMF 5.21 1.0 0.0012

Table 4: Relative square errors and computation time of the the simulated
measurement with Gaussian noise and random spike

Table 4 shows the relative errors after we add one random spike. The results
in this tests are very similar to the results in the Table 5: the logarithm method
is significantly worse than every other method and the Gauss-Newton is clearly
the slowest.

In conclusion, we had that the Barzilai-Borwein didn’t converge after ap-
plying any noise, hence we omitted it from these tests entirely. Also, since the
logarithm performed poorly and the Gauss-Newton was slow compared to other
methods, we chose to leave out these methods from the further tests.

3.2 Correction method tests

3.2.1 Simulated data

In this test we used the same planted simulated gaps as in the reference image
test. By the results of the preliminary tests, we computed the gain estimates
using linear reference method and then fitted the gain function using the inte-
gral and LMF methods. Since the linear reference with row-wise median gave
quite good estimates already, we also tested how well the fitting improves that
estimation.
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Figure 8: Fitting example from the data collected using the linear reference
.

In the Figure 8 we have an example of data fitting. As we can see, all the
methods seem to give relatively good estimations of the gain function even if
the data itself is quite scattered.

Figure 9: Zoomed in area of a failed correction
.

Before going through the quality measures, we can immediately notice that
little artefacts in the corrected images as can be seen in the Figure 9. It seems
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that even after correction, the effect of the gain function is still somewhat visible
on the edge-most rows. The explanation for this can be seen in the Figure 8:
most of the remaining error is still on the edge-most rows. Other thing to note
is that the straight linear correction looks slightly better than the corrections
using the fitted gain function.

Above the gap Below the Gap
Method PSNR SSIM HaarPSI PSNR SSIM HaarPSI

Uncorrected 128.2 0.9696 0.51721 125.4 0.9539 0.4007
Linear 140.2 0.9984 0.9747 143.1 0.9994 0.9858

Integral 140.5 0.9983 0.8809 143.9 0.9994 0.9278
LMF 141.6 0.9988 0.9353 144.7 0.9995 0.9476

Table 5: Results of the image area in Figure 9

Table 5 shows the quality measures of the image area which can be seen in
the Figure 9. We notice that the LMF method gives the best results in terms of
PSNR and SSIM, although just slightly. On the other hand the linear estimation
gives the best result in terms of HaarPSI.

Figure 10: The difference between the real parameter value d0 and its estimation
d̂0

.
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Figure 11: The difference between the real parameter value A and its estimation
Â

.

In the Figure 10 we have plotted the relation between the d0 and the dif-
ference between the estimation and the real d0. Respectively, in the Figure
11 we have plotted the relation between the A and the difference between the
estimation and the real A. It seems that both methods give good estimations
of the parameter d0, whereas estimations of the parameter A have a lot more
deviation.

Simulated Data
Method PSNR SSIM HaarPSI

Uncorrected 124.5 0.9330 0.5056
Linear 149.8 0.9990 0.9877

Integral 150.5 0.9986 0.9601
LMF 153.2 0.9994 0.9781

Table 6: Mean results of the simulated data test

Table 6 supports our conclusion from the Table 5: LMF seems to be a little
better in terms of PSNR and SSIM, but in terms of HaarPSI, the straight linear
estimation seems to perform the best.
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3.2.2 Real data

Finally, the whole correction algorithm is evaluated on a real gap data. We
use various doses to generate 10 frame images of a skull phantom using an old
sensor. The corrected images are compared against their respective calibrated
images.

Figure 12: Zoomed in area of a correction of the real image.
.

In Figure 12 we have an example of one image area which is corrected with
different correction methods. Like we saw in the simulated data tests, we again
have the line artefacts in the corrected images. In particular, now the line
artefacts can be seen even more clearly, especially from the images which use
fitted gain function to correct the gain area.

Above the gap Below the gap
Method PSNR SSIM HaarPSI PSNR SSIM HaarPSI

Uncorrected 113.9 0.9222 0.3437 108.6 0.8936 0.3341
Linear 124.1 0.9959 0.9426 124.5 0.9966 0.9475

Integral 123.9 0.9957 0.9088 124.2 0.9963 0.8918
LMF 123.9 0.9958 0.9161 124.2 0.9964 0.9044

Table 7: Test results of the image area in Figure 12

From the Table 7 we can see the quality measures of the area showed in
the Figure 12. We notice that in this image, the linear method was the best
method in terms of every evaluation criteria we used. Additionally, it seems
that only the HaarPSI seems to catch that there is still some line artefact left
in the image.
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Real Data
Method Fit RSE (%) PSNR SSIM HaarPSI

Uncorrected - 126.0 0.9093 0.3729
Linear 4.45 137.272 0.9974 0.9695

Integral 4.64 137.123 0.9972 0.9235
LMF 4.56 137.270 0.9973 0.9359

Table 8 supports the conclusion: linear method is clearly the best correction
method in terms of PSNR, SSIM and HaarPSI. Furthermore, all the methods
have similar PSNR and SSIM even though the difference is clear visually. This
suggests that the HaarPSI is the best quality measure in terms of this applica-
tion.
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4 Discussion

4.1 Preliminary tests

The median filtering turned out to give the best reconstruction of the image,
as can be seen in the table 1. However, after applying the median row-wise, as
suggested in (2.7), the linear estimation gave slightly better estimation of the
gain function than the median filtering, as can be seen in the Figure 5. More
importantly, the linear estimation turned out to be very good estimation of the
gain function overall.

In the exponential fitting test, the Barzilai-Borwein method failed miserably.
The method got relatively close for one parameter, but after that, it failed to
balance the step sizes and diverged to infinity. This was probably due to the
small parameter values (both |d0|, |A| < 1) and the vastly different growth rates
along the parameter directions[15].

From the methods which did give a solution, the logarithm was clearly the
weakest. One of the reasons for this may be because measured values were really
close to one, hence when the noise is applied, the logarithm is sometimes taken
from a negative number. This causes the result to be represented as a complex
number and converting this back to a real number in Matlab, may have resulted
in added inaccuracies.

According to this experiment, the Integral method, the Gauss-Newton and
the LMF are all suitable candidates. As said before, the gradient descent starts
to diverge after a couple of iteration, hence, LMF behaves like a Gauss-Newton
almost immediately. Still, as we can see in the Table 4, adding a spike makes
those couple gradient steps make the LMF-method significantly faster than the
Gauss-Newton method. For that reason, we chose the integration and LMF
method for the image correction tests.

4.2 Correction method tests

As can be seen in the Figure 8, all of the tested methods gave quite good and
similar fitting result. In particular, the fitting methods seem to give very good
estimations of d0 most of the time. On the other hand the estimations of the
parameter A seems to have a little more deviation.

As we can see in the Table 6, LMF-method seems to perform the best ac-
cording to the first three criteria. However, according to HaarPSI, the straight
linear estimation without any fitting appears to produce better quality images.
The reason for this can be seen in the Figure 8. Here, the edge-most gain value
gets slightly over valued. Since fitted function must follows the exponential
function, the parameter A must be slightly under valued to ensure that the
square error is minimized. Therefore, the fitted reconstruction is not as smooth
as the straight linear reconstruction. The problem with this can be seen in the
Figure 9. Here, one can barely see that the linear reconstructed image is just
a little bit darker than the real image, whereas the fitted reconstructions have
one row which is clearly worse than the real image, leaving some line artefacts.
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Hence, although the fitted reconstructions are better in the least squares sense,
they sometimes look worse, which is consistent with the fact that HaarPSI is
constructed with the human perception in mind.

In the real data tests, we stumble upon similar results, although a bit more
clearly. In the Figure 12, we can see that both fitting methods over correct the
edge most pixel, leaving a visible stripe on the edge most row. In these tests the
straight linear reconstruction method was the best according to every evaluation
criteria. This further suggests that forcing the gain function estimate to be
exponential does not improve the solution from the straight row-wise median of
linear reference estimated gains.

4.3 Conclusion

We tested two different reference image generation methods and five different
gain function estimation methods, four of which was based on exponential fit-
ting. We found that although the LMF and integral fitting methods sometimes
gave a better gain estimation in the least squares sense, the shape of the overall
remaining error in these methods left some visible line artefacts, and thus gave
visibly worse overall reconstructions. Still, this study is a good baseline for a
better gap correction method. The results suggest that some kind of regular-
ization method to spread our correction more evenly could improve the overall
correction. However, our search for a suitable regularization method was un-
fruitful. Other direction we could go to would be a method where we alternate
between solving the gain function and the image, following the idea proposed in
the article Stripe Noise Removal of Remote Sensing Images by Total Variation
Regularization and Group Sparsity Constraint by Yong Chen et al. [6].
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[3] Hervé Carfantan and Jérôme Idier. “Statistical linear destriping of satellite-
based pushbroom-type images”. In: IEEE transactions on geoscience and
remote sensing 48.4 (2009), pp. 1860–1871.

[4] Jinsong Chen et al. “Destriping CMODIS data by power filtering”. In:
IEEE Transactions on Geoscience and remote sensing 41.9 (2003), pp. 2119–
2124.

[5] Jinsong Chen et al. “Oblique striping removal in remote sensing imagery
based on wavelet transform”. In: International Journal of Remote Sensing
27.8 (2006), pp. 1717–1723.

[6] Yong Chen et al. “Stripe noise removal of remote sensing images by to-
tal variation regularization and group sparsity constraint”. In: Remote
Sensing 9.6 (2017), p. 559.

[7] Min Wang et al. “A unidirectional total variation and second-order total
variation model for destriping of remote sensing images”. In: Mathematical
Problems in Engineering 2017 (2017).

[8] Lixin Sun et al. “Automatic destriping of Hyperion imagery based on spec-
tral moment matching”. In: Canadian Journal of Remote Sensing 34.sup1
(2008), S68–S81.

[9] Michael Wegener. “Destriping multiple sensor imagery by improved his-
togram matching”. In: International Journal of Remote Sensing 11.5 (1990),
pp. 859–875.

[10] Jean Jacquelin. Regressions and integral equations.(April 2009), 16–17
pages. 2009.

[11] R. Fletcher. Modified Marquardt Subroutine for Non-Linear Least Squares.
Rpt. AERE-R 6799, Harwell.

[12] Zhou Wang et al. “Image quality assessment: from error visibility to struc-
tural similarity”. In: IEEE transactions on image processing 13.4 (2004),
pp. 600–612.

[13] Rafael Reisenhofer et al. “A Haar wavelet-based perceptual similarity in-
dex for image quality assessment”. In: Signal Processing: Image Commu-
nication 61 (Feb. 2018), pp. 33–43. issn: 0923-5965. doi: 10.1016/j.
image.2017.11.001. url: http://dx.doi.org/10.1016/j.image.
2017.11.001.

[14] Ingrid Daubechies. Ten lectures on wavelets. Vol. 61. Siam, 1992.

43



[15] K Irene Snyder and Wesley E Snyder. Determination of exponential pa-
rameters. Tech. rep. North Carolina State University. Center for Commu-
nications and Signal Processing, 1991.

44


