
Master’s Programme in Data Science

Semantic Segmentation with Neural
Networks in Environment Monitoring

Johannes Elmnäinen

August 29, 2020

Supervisors: Associate Professor Laura Ruotsalainen
Dr. Joel Pyykkö

Examiners: Associate Professor Laura Ruotsalainen
Dr. Joel Pyykkö

University of Helsinki
Faculty of Science

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki

Faculty of Science Master’s Programme in Data Science

Johannes Elmnäinen

Semantic Segmentation with Neural Networks in Environment Monitoring

Master’s thesis August 29, 2020 81

lake biomass estimation, invasive alien species, neural networks, semantic segmentation, U-net

The Finnish Environment Institute (SYKE) has at least two missions which require surveying
large land areas: finding invasive alien species and monitoring the state of Finnish lakes. Various
methods to accomplish these tasks exist, but they traditionally rely on manual labor by experts or
citizen activism, and as such do not scale well. This thesis explores the usage of computer vision to
dramatically improve the scaling of these tasks. Specifically, the aim is to fly a drone over selected
areas and use a convolutional neural network architecture (U-net) to create segmentations of the
images. The method performs well on select biomass estimation task classes due to large enough
datasets and easy-to-distinguish core features of the classes. Furthermore, a qualitative study of
datasets was performed, yielding an estimate for a lower bound of number of examples for an useful
dataset.

ACM Computing Classification System (CCS):
CCS → Computing methodologies → Machine learning → Machine learning approaches → Neural
networks

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Degree programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Related work 7
2.1 Non-semantic segmentation methods 8

2.1.1 Thresholding . 8
2.1.2 Watershed . 10

2.2 Semantic segmentation methods . 11
2.3 Biomass estimation methods . 14

3 Neural networks 17
3.1 Structure of Neural Networks . 18

3.1.1 Dense feedforward neural networks 19
3.1.2 Activation functions . 20
3.1.3 Training neural networks . 21

3.2 Convolutional Neural Networks . 24

4 Segmentation with neural networks 29
4.1 Fully convolutional network . 29
4.2 Mask R-CNN . 30
4.3 U-net . 32

5 Using U-net to segment drone images 35
5.1 Methodology . 37

5.1.1 Data . 37
5.1.2 Qualitative analysis of the dataset 47
5.1.3 Preprosessing . 51
5.1.4 Training . 52

5.2 Results . 55
5.2.1 Biomass estimation . 57
5.2.2 Invasive alien species . 59

v

vi

6 Conclusions 71
6.1 On the relationship between model success and dataset size 71

References 75

1. Introduction

In 2019 the Anthropocene Working Group voted to suggest a beginning of a new ge-
ological epoch to the International Commission on Stratigraphy [64]. The new epoch,
called ”anthropocene”, would signify the plethora of effects human actions have on
Earth. As the global consciousness on environmental issues has risen, new method-
ologies for combatting human effects on the environment are required. However, any
method to improve the state of the environment requires good data on its current state.
This thesis explores the usage of computer vision as a method for monitoring the state
of environment. Two use cases are presented: the first is using computer vision to
estimate biomass in lakes. The second is finding Invasive Alien Species (IAS) from
the environment. This thesis explores the possibility of using a U-net neural network
architecture [60] to produce estimates on both invasive alien species and lake biomass
in an area. The network generates estimates by producing a semantic segmentation
(ie. a pixelwise prediction task) on aerial images taken by a drone.

Alien species are flora and fauna which have travelled outside their traditional
habitats [48]. While species can migrate on their own, human aid has accelerated the
introduction of species to new ecological habitats since the Age of Discovery [9]. How-
ever, introduction of a new species should not always be considered unnatural in itself.
Species can migrate by themselves to new habitats in response to various migratory
pressures, such as destruction or overcrowding of original habitat. Furthermore, it is
sometimes unclear if the species is new per se. For example, it is possible for a species to
return to an area it previously migrated from. Sometimes a return of a species is even
achieved through human intervention in rewilding schemes such as in the case of the
European bison. The European bison survived only in zoos until rewilding attempts
were made, returning it to original habitat from which it was lost [59].

Despite the arguments above, it is clear that human actions have accelerated
invasive events. Furthermore, some new species have negative effects on their new
ecological habitats. Such effects are disrupting the species hierarchy, nutrient cycle and
plan productivity of the ecosystem they invade. Alien species which disturb their new
habitat are called invasive alien species. Although the term ”invasive alien species” has
faced contestation [17], the term is used by the European Union in its legislation [66].

1

2 Chapter 1. Introduction

As the focus of this thesis is in the implementation of European Union’s legislation,
the term ”invasive alien species” will be used in this thesis as well.

Because of their adverse effects to the environment, the European Union has
regulated the prevention and management of the introduction and spread of invasive
alien species [66], which Finland has implemented as part of its national legislation
[55]. In the EU regulation, an invasive alien species is defined as

1. having been introduced to its new environment through human assistance,

2. have a serious negative influence on the biodiversity or ecosystem services of the
environment it has been introduced to and

3. being able to reproduce.

The regulation mandates member states to mitigate the damage caused by invasive
species. In Finland, tasks related to protection of the environment have been delegated
to Centre for Economic Development, Transport and the Environment and Finnish
municipalities [55]. The Ministry of Environment oversees and coordinates the work.
In addition, the Finnish Environment Institute (SYKE) acts as a state-funded center
for research and expertise within the environmental field.

However, locating invasive alien species is a difficult problem. The naive solution
would be to have experts exploring the land, spotting IAS as they go. This solution
does not scale well vis-à-vis personnel costs, especially in sparse countires like Finland.
Another way to solve this problem is to educate civilians to spot invasive species and
require them to act against them. Indeed, Finland has a law on managing the risks
posed by invasive species [55]. The law requires owners of property to eradicate or
contain invasive species to a reasonable degree. However, this does not mandate action
on property owned by the government. Thus, the same law which requires civilians
to eradicate IAS mandates SYKE to remove IAS where encountered. As such, SYKE
has a need for an efficient way of monitoring large patches of land with as low costs as
possible. This has been taken into account in the Finnish Government’s Alien species
strategy, which instructs SYKE to create methods for IAS surveillance in Finland [67].

The other application for computer vision in this thesis is measuring lake biomass.
Biomass estimation can be used as a proxy variable for eutrophication [12]. Eutroph-
ication can cause the body of water to suffer from cyanobacteria, make the water
undrinkable, reduce its recreational value and ultimately cause hypoxia, which leads
to death of lake life through suffocation. Eutrophication can have more subtle effects
as well. For example, increased algal blooms in the water can reduce visibility, which
hinders predatory fish’s ability to pursue their prey. To protect the lakes, SYKE has
an interest in keeping track of lake biomass in Finland.

3

Figure 1.1: The traditional method for lake biomass estimation at SYKE.

In this work, biomass estimation is implicit, as opposed to explicit measurement
[63]. Specifically, water biomass is estimated through features visible on surface level.
The explicit alternative would be to dig up the biomass and weigh it, but this method
has direct consequences to the body of water and makes longitudal studies difficult.

Traditionally, SYKE has estimated lake biomass with a human resource-intensive
solution. This method involves a researcher on a rowboat and a square net to estimate
the amount of biomass in a lake, as depicted in Figure 1.1. A large enough area of the
lake is sampled, after which a reliable estimation can be achieved. The drawback of
the traditional method is that the process consumes large amounts of a professional’s
time.

This thesis presents semantic segmentation as part of a method for large-scale
detection of IAS in the wild as well as biomass estimation. Semantic segmentation is a
process where an image is divided into its constituent parts, each of which should have
a meaningful interpretation [71, 25]. These segmentations allow computer systems to
interpret visual scenes and detect objects in them. Such systems can operate in various
domains, such as self-driving vehicles [72], medical imaging [60] or terrain mapping [40].

As an example of input and output for the segmentation task at hand, Figure
1.2 has two images: in the left image there is a orthogonal picture of a winter dock
in Kaisaniemi, Helsinki, during winter. The image on the right is a hand-crafted
segmentation of the picture on the left side. The different segments have the follow-
ing semantic meanings: sea(blue), walkways(ochre), docks(purple), cars(dark green),
boats(light green), driveways(beige), trash bins(grey) and parks(yellow). It should be
noted that the segmentation given in Figure 1.2 is but one of many possible interpre-
tations. Other valid segmentations could be land-sea, ice-water, people-background,
etc.

4 Chapter 1. Introduction

Figure 1.2: An example of image segmentation. Left: an orthographic picture of Kaisaniemi during
winter. Right: a segmentation of the different objects.

A single image can also have multiple correct segmentations depending on se-
mantic domains and desired granularity. For example, take an image of a countryside
road. For a system that governs driving a car, interesting classes are the edges of
the road, markings on the road, other vehicles, humans and animals. Meanwhile, the
specific species of roadside flora can collectively be classified as vegetation. However,
for an application designed to catalogue the different species found along the roads,
differentiating between said species is important, while the markings on the road and
road signs are irrelevant.

Typically, a semantic segmentation system attempts to predict a single class for a
single pixel [71]. This differs from humans’ ability to potentially assign multiple classes
to single pixel in cases where that pixel consists of a translucent object, for example
a glass. While this phenomenon is interesting, due to its philosophical nature it is
outside of the scope for this thesis. However, it should be noted that a similar problem
is encountered in the biomass estimation task, where images of lakes are in question.
Here, the problem is as follows: given a plant which slowly submerges until it cannot be
seen, which pixels should be considered as ”water” and which ”plant”? In this thesis,
the answer is ”the pixels which the human annotator annotates as plants are plants”,
and the potential resulting degradation of accuracy is accepted.

As this thesis is concerned with mapping surface areas, orthogonal aerial images
of target locations are needed. To this end, drones are flown over the locations with
cameras pointing directly downwards, resulting in images with perspectives similar to
the left-hand image in Figure 1.2. These images are then fed to a model trained for
semantic segmentation task, ideally resulting in a segmentation similar to the image
on the right side.

In this thesis three different image processing methods appear. These are image
segmentation, image classification and semantic segmentation. This is because seman-

5

tic segmentation can be seen as the combination of image segmentation and image
classification.

Image classification is a task where one or more labels are produced for the objects
in the image. For example, the left image in Figure 1.2 could be labelled as ”terrain”
or ”docks” in a image classification task, or given multiple labels, such as ”dock, boats,
road”. The main difference to semantic segmentation is how this information is pre-
sented. Semantic segmentation aims to produce a pixelwise prediction, i.e. each pixel
is assigned a class it belongs to, while image classification is concerned with associating
the labels on the whole image, but is not interested in where in the image these labels
are. Historically, this has caused regular classification to be more popular due to the
smaller complexity of the model and the ease of producing annotated data. To train
a model to classify an image to single class, pairs of (image, label) are needed. While
not trivial, this dataset can be generated easier than that of semantic segmentation,
where ideally each pixel in each image needs to be labelled correctly.

On the other hand, image segmentation can be defined as subdividing the image
into regions that have inner cohesion and are distinguishable from their neighbours
[25]. As such, it differs from semantic segmentation in that semantic segmentation
stresses the importance of object detection and classification. The added requirement
of having semantic interpretation of the segmentation has traditionally made semantic
segmentation considerably harder task when compared to image segmentation. This
is because usually the spatial relations of images do not yield hints to their semantic
makeup. For example, a backside of a honey bee has a single semantic interpretation
which is hard to capture by observing only the spatial dimensions of the image - namely
the yellow-and-black stripes.

As mentioned previously, semantic segmentation can be seen as a combination
of image classification and image segmentation. It attempts to divide the image into
regions (segments) where the inner cohesion is achieved by classifying each segment
into a singular class.

The contents of this thesis are as follows: in chapter 2, segmentation as a problem
space is discussed and methods earlier than neural networks for both non-semantic and
semantic segmentation are presented. Furthermore, related work for biomass estima-
tion is discussed. In chapter 3, a brief introduction to feedforward and convolutional
neural networks is given. Following that, in chapter 4 the thesis will present two
central architectures for doing segmentation with neural networks: a fully-connected
convolutional neural network and the U-net. Finally, a report on practical application
of semantic segmentation to detect IAS as well as to estimate lake biomass is given
in chapter 5. Here, the dataset is analysed and exact training methods, parameters
and results given. Finally, chapter 6 includes conclusions and discussions for future

6 Chapter 1. Introduction

research.

2. Related work

In this chapter, the philosophy of image segmentation is discussed. Furthermore, var-
ious traditional image segmentation as well as biomass estimation methods are pre-
sented.

Image segmentation is a step in an image processing pipeline [54]. It is used to
simplify the image or capture regions of interest. As a problem space, image segmen-
tation is concerned with dividing an image into regions based on defining features, for
example contours or changes in colour palette [25]. The goal of image segmentation is
to assign a region for each pixel in the original picture so that no regions overlap with
each other, that each region is similar according to some metric, and no neighbouring
regions are similar according to that metric.

Formally, image segmentation is defined as a set of regions X1, X2, ..., Xn and
uniformity predicate P , such that

∪n
i=1Xi = X,

Xi ∩Xj = ∅, i 6= j

P (Xk) = TRUE,

P (Xk ∪Xl) = FALSE

where i, j, k, l ∈ [1, n] and Xk and Xl are adjacent. The latter rule might benefit
from elaboration: it simply states that the union of two adjacent regions must not be
uniform. If their union would be uniform, they would naturally belong in the same
region. Additionally, a simple example of uniformity predicate P in a monochromatic
image with pixel brightness measured from 0 (white) to 255 (black) could be ”Pixel’s
brightness is less than 127”.

The definition given above means that for a single image there are multiple dif-
ferent segmentations which can be considered valid. Furthermore, there are multiple
approaches to image segmentation, such as characteristic feature thresholding or clus-
tering, edge detection or region extraction [54]. None of these is the single correct
algorithm, but each works well on a specific domain.

Traditionally, research has focused on methods that work on monochromatic im-
ages - that is, images that consist of single colour of varying intensity [11]. A classic

7

8 Chapter 2. Related work

setting is a grayscale image, for example a magnetic resonance image (MRI) of brain.
However, the rising computational power has made the use of colour information prac-
tical. This broadens the possibilities and challenges for techniques by increasing the
dimensions they can work in.

2.1 Non-semantic segmentation methods

As mentioned before, a plethora of image segmentation methods exists. While the
focus of this thesis is in semantic segmentation done with neural networks, this chapter
presents two traditional methods for context. The presented methods are thresholding
and watershed.

2.1.1 Thresholding

Thresholding is primarily a monochromatic image segmentation technique, although
variations for multichromatic scenarios do exist [11]. It has been used for example
in medical imaging. Thresholding uses histogram of the image pixel luminosity (i.e.
histogram depicting how much of certain brightness of grey exists in the image) to
detect regions. Formally, thresholding an image consisting of pixels in locations (x, y)
into m regions can be defined as follows [25]:

S(x, y) = k ⇔ Tk−1 ≤ f(x, y) < Tk, (2.1)

where S is the region assignment function, f is the feature function (e.g. gray level
function), m is the number of desired regions, k = 0, 1, ...,m + 1 and T0, ..., Tm are
the threshold values for segments. Notice that k is required to get values from 0
to amount of regions + 1 because equation 2.1 requires us to define both the up-
per and lower limit to the region. Basically this means that each pixel is allocated
into a region based on some of its properties; traditionally this property has been
its position on a scale from white to black. As an example, suppose again that a
monochromatic image with brightness values in [0, 255] should be divided into two re-
gions with brightness < 127 and brightness >= 127. The thresholds chosen would now
be k0 = 0, k1 = 127 and k2 = 256.

The problem then reduces to selecting the thresholds T . Myriad ways of express-
ing T exist. Generally [25], these can be divided to three classes. Thresholds that are
expressed only through f are called global. These methods only use the values of x and
y. If in addition to x and y the threshold uses data from the area around (x, y) it is
called local, while dynamic thresholds use coordinate information of (x, y), the values
at x, y and the values at the area around x, y. A simple global method for choosing

2.1. Non-semantic segmentation methods 9

Figure 2.1: An example of thresholding with two classes. Left: the original picture of a street in
Kaarina, Finland. Right: a segmentation into two classes of the original picture.

a threshold for monochromatic images is to create a histogram of colour luminosities
and, identify the peaks and valleys, and set thresholds T to equal the valley values.

An example of thresholding can be seen in Figure 2.1, which depicts a street in
Kaarina, Finland. The original image has been segmented into two classes (represented
by black and white) by using GNU Image Manipulation Program’s [68] thresholding
function. This is the simplest thresholding, called bilevel thresholding [54]. Because
the image is colourful instead of grayscale, pixel brightness is used to first map the
image into a grayscale representation. This step is not depicted. A global function
of pixel brightness was used, where pixel brightness took values from 0 (black) to 256
(white). Here, T0 = 0, T1 = 127 and T2 = 256. Values 0 and 256 were selected because
they are the lowest and highest possible values - otherwise some pixels would not have
received a classification. The value 127 was achieved through trying out various options
and selecting the one that looked good. Note that in reality, only T1 is selected by
the user in GNU Image Manipulation program. This is because practical applications
necessarily do not need to concern themselves with theoretical soundness. Importantly,
the Figure 2.1 reveals that while the segmentation is achieved with thresholding, it does
not have semantic meaning. For example, both classes contain trees, road and parts
of the fence. As such, the segmentation has little meaning and is hard to use as a part
of larger computer vision pipeline. However, the technique can be used to perform
meaningful tasks. For example, the technique has been used to generate segmentations
in breast cancer images [33].

10 Chapter 2. Related work

2.1.2 Watershed

(a) Original grayscale image

(b) Topographical interpretation of original
grayscale image

(c) Beginning to fill the topography from
the two basins

(d) Final filling of the image (e) Final segmentation, or watershed lines

Figure 2.2: Example of watershed method on a simple greyscale image. Note that images b) and
c) are metaphorical and included to make understanding of the watershed method easier. The actual
watershed method does not produce 3D images.

Watershed methods share their namesake metaphor. The basic idea is likened to a
geological watershed [54], which cause water to drain from high ground into surrounding
lowlands (catchment basins). Given enough water (for example rainfall), these high

2.2. Semantic segmentation methods 11

ground formations would become a divisor between bodies of water, i.e. a watershed.
Mathematically, any grayscale image can be considered a topographical surface, i.e.
the darker the pixel is, the higher it is considered to be, or vice versa. Essentially, a
greyscale image can be transformed into a heightmap. Then, the map is metaphorically
filled with different, non-mixable colours. This filling can be thought of as finding all
the local minimas of the landscape, and beginning to flood the area with different-
coloured non-mixable liquids from them.

An example of the watershed method can be seen in Figure 2.2a. Here, a simple
example with two main areas is given as an illustration on how the watershed algorithms
work. Figure 2.2a denotes the original image. In Figure 2.2b a topographical interpre-
tation of 2.2a can be seen. Figure 2.2c shows a metaphorical ”filling of basins” from
local minimas, and figures 2.2d and 2.2e are produced by actually running a watershed
algorithm found in OpenCV[70] package on image 2.2a. They show the segmentation
and segmentation lines, respectively. Although the image seen in Figure 2.2d has been
produced by the actual OpenCV implementation of watershed algorithm, it has been
colour corrected in an image manipulation program to ensure colour consistency with
the image in Figure 2.2c. As can be seen, the algorithms correctly identifies the two
areas. However, it should be noted that this example was extremely simplified.

While rigorous mathematical definitions on watershed methods are available, this
thesis will forego presenting them, as they are rather lengthy and not directly relevant
to the subject matter at hand. An interested reader can find these in [7], [54] and [32].

The watershed method has been used in the field of medical imagining [32],
steel imperfection detection [7] and bubble detection in radiographic plates. However,
it suffers from various problems, such as oversegmentation (tending to create more
segments than necessary, especially if there are multiple basins in the image), sensitivity
to noise in the image, and poor detection of regions with low contrast or thin basins.
For example, two similar coins next to each other can easily be classified as separate by
humans, but prove difficult to separate with watershed because it relies purely on spatial
information. Some of these problems can be alleviated. For example, oversegmentation
can be improved by providing a separate marker function, which specifies which local
minimas flood the landscapes and which do not. This results in a desired amount
of classes with the additional requirement that the user should specify the marker
function.

2.2 Semantic segmentation methods

The key difference between image segmentation and semantic segmentation is that
semantic segmentation attempts to create regions with semantic meaning [71]. While

12 Chapter 2. Related work

the thresholding and watershed methods might result in a segmentation with semantic
meaning, this should be considered more of an accident than a rule. The methods this
thesis has presented up until this point have been satisfied when some mathematical
property (e.g. all the pixels with RGB value of (148, 158, 0) or greater are classified
as ”background”), has been filled. This leaves room for potential errors, such as the
problem of segmenting a bee’s backside mentioned previously. Other examples of error
states rising from the lack of semantics include, for example, a situation where the
object is occluded [35] by another object. Such situations are fairly typical in the
real world - an example could be a streetlamp in front of a car. Thresholding and
watershed have no means to classify the two parts of the car as a single object which
just happens to be behind another object. However, such a task is trivial for most
humans. Another common example of failure cases are situations where objects in
the foreground have textures similar to those found in the background, for example a
soldier wearing camouflage. Yet another common flaw can be seen in OpenCV’s [3]
watershed tutorial, where watershed algorithm tries to classify a collection of coins.
While the image is almost correctly segmented, there are error cases where a segment
has leaked from one coin to another because their colours has been close enough. Such
an error would never be made by humans, because humans have an inner model of the
concept of a ”coin”.

Successful semantic segmentation systems developed before the advent of neural
network methods included random forests, support vector machines, Markov random
fields or conditional random fields [71]. While it is trivial to claim that the traditional
methods of watershed and thresholding do not build a semantic understanding of the
image, it is more difficult to argue the same about the methods presented in this sec-
tion. Typically, they are not framed as building a semantic understanding of objects
in the image, but a well-trained distribution of probabilities. However, some of them
use methods similar to convolutional neural networks. For example Shotton et al’s
method [62] uses the convolution operation, which is the basic building block of con-
volutional neural networks. Convolutional neural networks in turn have been claimed
to build an understanding of objects in the image [30]. While these questions of un-
derstanding are fascinating, they are out of scope for this thesis. As such, this thesis
will adopt a practical stance: it can be argued that some of the methods presented
here build a understanding of concepts. However, in the case of neural networks this
claim is stronger. Although this understanding is weak and does not necessarily follow
human logic, it helps neural networks achieve good results on image recognition and
segmentation tasks.

In this section, the accuracies of reviewed methods are often discussed. However,
earlier papers do not tend to specify how they define ”accuracy” - a good guess is they

2.2. Semantic segmentation methods 13

calculate how many pixels were given the correct class. The newer papers tend to use
intersection over union (IOU, see equation 4.1). As such, these accuracies are not
directly comparable. Furthermore, the datasets they use for validating their results
differ. Therefore, it is difficult to have an honest comparison between all the methods
without building a complicated map of competitions, their datasets and comparisons.
Whenever the accuracy of the methods presented below are compared to convolutional
neural networks, the comparison should be considered as a somewhat enlightened guess,
not objective truth. U-net’s (see chapter 4.3) IOU scores of 0.7756 and 0.9203 on two
different datasets are used as a baseline.

Shotton et al [61] used random forests to produce a semantic segmentation. These
are an ensemble of decision trees, where each node is a learned class distribution.
Shotton et al. use a special case of a random forest: a semantic random forest. This is
achieved by passing d ∗ d patches of images down a random forest, and using an image
filter as a discriminant in each node. By applying said procedure on regions of image,
they produce a bag of semantic textons. Shotton et al. report 42% - 66.9% accuracies
on various datasets, a result which is eclipsed by those of modern CNN architectures.

Yang et al. [73] used bounding boxes produced by object detection as a guide for
segmentation. Their method uses support vector machine-based detection of features.
The features detected are appearance, depth ordering and labels of entities in the
image. Objects detected by the bounding boxes are arranged in depth-wise layers so
that the first layer contains the object which is closest to the camera, second the second
closest, and so forth. This helps the final segmentation process. They came in 7th in
Pascal VOC 2009 [20] and 2010 [21].

Zhang et al. [76] used a Hidden Markov Random Field (HMRF) combined with
their expectation-maximization (EM) algorithm to produce a semantic segmentation on
magnetic resonance images (MRI) of brains. Essentially, a Markov Random Field treats
each pixel and its corresponding label as conditionally independent random variables
given their local neighborhood, and a HMRFs state is unobservable. They learn the
distribution P (x, y) where x represents a pixel value and y corresponding label. This
enables them to produce a segmentation that takes into account the context of a given
pixel. The authors have not included any results from segmentation challenges, and
themselves discuss the difficulties involved in choosing initial tissue parameters and
classification, noting that this is a good step for future research.

Conditional random fields (CRFs) are similar to MRFs, but instead of learning
the distribution P (x, y), they learn the distribution P (y|x), which greatly reduces
the number of random variables in the model. Furthermore, no assumptions of the
distribution of x has to be made. As with MRFs, x denotes a pixel value and y its
label. Gonfaus et al. [29] presented usage of CRFs with a new potential function called

14 Chapter 2. Related work

the harmony potential. In short, a potential function make up a part of the calculation
P (y|x) in conditional random fields. Harmony potential uses a global random variable
to penalize the per-pixel random variables when they try to take on values outside
those allowed by the global variable. They achieved results similar to Shotton et al
[61]. As such, they fall short of results achieved by neural networks. However, they
did achieve first place in Pascal VOC 2010.

In addition, a CRF was used by Shotton et al. [62]. Their random field had
four features, which were texture-layout, colour, location and edges. Of these, texture-
layout turned out to be the most important. Texture-layout, in turn, performs a
convolution operation (see Section 3.2 for more on the convolution operation) on the
image. The convolution filters are learned as an ensemble of weak classifiers (ie. clas-
sifiers which correlate weakly with their predicted class). This process is known as
boosting, and combined with convolutional operation it has similarities to the oper-
ation of convolutional neural networks, which are used in this thesis. Shotton et al.
achieved a 73% accuracy on their validation set. They report biggest failure cases to
be in classes with high visual variability and structured objects. Again, the accuracy
seems to fall short of convolutional neural network’s accuracy, although not by much.
However, neural network methods’ rise in popularity has resulted in various frameworks
and off-the-shelf implementations, which makes their use easier.

2.3 Biomass estimation methods

Biomass estimation has been an active research field. However, there are multiple
distinct ecological contexts, and the methods used in one are not necessarily applicable
to another. Furthermore, meaningful methods vary depending on end goals. For
example, there is a good amount of research into estimating lake cyanobacteria biomass,
probably due to it being poisonous to humans. However, literature on calculating lake
biomass based on flora is scarce. Here, few such methods - and some from closely
related problem domains - are presented.

Lehmann et al. [44] presented a model which used lake bathymetry (lake floor
topology), species composition and vegetation density to estimate the biomass of a
mapped area. Their work was conducted on a 800m ∗ 800m area of Lake Geneva.
Vegetation density and biomass were estimated through aerial photography and man-
ual sampling, while the bathymetry was produced by using echo sounding, a type of
sonar. Lehmann et al. calculate an estimate for the area by combining the bathymetry
data with vegetation densities, distribution and biomass data. However, their method
suffers from inaccuracies caused by successive calculations and is more suited towards
qualitative than quantitative analysis. Furthermore, the system is more complex than

2.3. Biomass estimation methods 15

one would hope.
Zhang [75] and Armstrong [6] used a multispectral camera to sample aquatic

biomass. This technique relies on the reflectivity of submerged vegetation. Armstrong
used GPS data to complement the multispectral image on biomass, while Zhang used
a combination of principle component analysis to extract meaningful components of
multispectral bands. Both used linear regression to estimate the biomass. Their results
were promising, but the method used is not applicable to lakes over 3m deep. This
would make the method inapplicable to many Finnish lakes. Furthermore, their method
relies on mounting a multispectral camera on a boat, which is unwieldy in places with
large amount of small lakes (such as Finland), and slow compared to using an unmanned
aircraft system.

Additionally, a method based on satellite data has been used by Jachowski et
al. [38]. They built a support vector machine for estimating mangrove biomass which
achieved a correlation coefficient of 0.81. Their method used the elevation as well as
the blue, green, red and near infrared bands of the satellite image. While their study
site was a river mouth leading to ocean, and mangrove tends to behave in a different
manner to lake flora, the results are impressive. However, it is unclear if their method
can distinguish between different species of fauna.

Zweig et al. [77] used an unmanned aircraft system to take orthogonal images of
wetlands. They then used The Feature Analyst [65] add-on for ArcGIS [19] to classify
the imagery. The Feature Analyst [53] is a commercial product which uses an ensemble
learning method with neural network, decision tree, clustering and bayesian learning
components to extract features and recognize objects from orthogonal images. Using
this combination, Zweig et al. achieved a 69% accuracy when attempting to distinguish
between nine different classes, consisting of four different types of slough, three different
types of sawgrass, emergent vegetation, and trees. When the classes were combined
to a total of three classes, consisting of slough, emergent vegetation and sawgrass,
the accuracy jumped to 91%. The results provide optimistic precedent for the work
conducted in this thesis. However, they are from a slightly different ecological domain
and the classification used is of higher abstraction. For example, this thesis is interested
in classifying, among others, yellow water lilies, which are a member of the emergent
class in Zweig et al.’s work. Moreover, the Feature Analyst add-on was not supplied
for this thesis.

In this chapter, this thesis has given an overview of traditional image segmenta-
tion methods, non-neural network semantic segmentation methods as well as biomass
estimation methods. Next, neural networks will be introduced. Following the break-
throughs made during the last few years by deep neural networks in image classi-
fication tasks, similar methodologies were utilized for segmentation tasks [10]. These

16 Chapter 2. Related work

approaches generally try to understand what is in the image, and where it is. Next, this
thesis presents the general philosophy of neural networks and describes their structure.
Special attention is paid to convolutional neural networks.

3. Neural networks

This chapter introduces neural networks in the context of computer vision. First, the
philosophy of neural networks is discussed from both cognitive science and artificial in-
telligence viewpoints. Then, classical dense feedforward networks, activation functions
and network training are examined. Finally, this chapter presents the theory behind
convolutional neural networks.

Neural networks are a mode of computing that is based on connectionism [26],
a cognitive science movement which tries to explain intelligence by borrowing ideas
from the structure of the human brain. On a basic level, human cognition is formed by
networks of neurons. A single neuron can have multiple inputs and multiple outputs.
The neuron receives impulses from other neurons through its inputs. If a neuron
receives a substantial enough impulse, it activates and sends the signal to all of its
outputs, which in turn are the inputs to other neurons.

From artificial intelligence viewpoint, neural network models as discussed in this
thesis are a method of supervised machine learning [31]. This has two implications:
first, being a machine learning method implies that the system does not contain logic
for how the model should operate, but it is given a set of instructions on how to learn
the patterns required to succeed in a given task. Second, in supervised learning, the
model is taught through examples. Each example consists of an (input, output)-tuple.
For each input, the agent tries to guess the correct output. If the model outputs an
incorrect prediction, it will be adjusted slightly in order to get better predictions. This
mode of learning is contrasted by unsupervised learning, where the model is given only
inputs but no right answers, and reinforcement learning where the model is given a
problem space and is rewarded according to its performance in that space [31].

The canonical example of a neural network is the MNIST digit classifier. Here,
the input is a 64x64 image of a handwritten digit from MNIST dataset, examples of
which can be seen in Figure 3.1. The output is the network’s guess on which number
0-9 a single image represents. While learning to describe written digits is in itself
an achievement, this is nowadays considered an introduction to the field of neural
networks.

17

18 Chapter 3. Neural networks

Figure 3.1: 16 * 10 example inputs for MNIST classifier [39].

Figure 3.2: An example of dense feedforward network

3.1 Structure of Neural Networks

This section discusses the structure and workings of neural networks. First, the archi-
tecture of standard feedforward neural networks is presented. Then, activation func-
tions are introduced. Finally, the thesis presents gradient descent as a way to update
the network.

A neural network consists of neurons (nodes) arranged in layers [31]. Canonically,
the first layer is called the input layer, the last layer the output layer and the layers
between hidden layers. Each neuron has an activation function. Furthermore, each
neuron has a set of incoming connections from and a set of outgoing connections to
other neurons. A bias term is added to the incoming connections if a neuron; in

3.1. Structure of Neural Networks 19

the context of this thesis, it can be thought of as an additional incoming connection.
Each connection has a weight associated with it. A neuron calculates its output by
calculating the dot product of the values produced by incoming connections and the
weights of incoming connections, taking a sum of the result and running the sum
through the neuron’s activation function.

An example image of a neural network is shown in Figure 3.2. Seen here is a
high-level abstraction of a simple fully connected feedforward network with one input
layer with two input neurons, one hidden layer with three neurons and an output layer
with one neuron. This thesis will denote layers as li = (l1, l2, ..., ln), where n is the
number of the layer, l1 is the input layer and ln is the output layer.

The set of inputs to the network is denoted as x. Each individual input to the
network is considered to be a vector x̄ = (x1, x2, ..., xn), and the output of the network
a value y, with corresponding set of outputs y. These are not found in Figure 3.2.

Each connection from a neuron to another has an attached weight. These are
marked as wi_j in Figure 3.2, where i denotes the layer and j specifies which neurons
are connected. Whenever the neuron receives an input, this input is multiplied by the
weights (see equation 3.2). Bias terms are not depicted in Figure 3.2, but are marked
in equation 3.2 as bi. Bias terms work similar to normal inputs to neurons, and they
have a weight associated with them.

After the input has been multiplied by the weights, the end result will be summed
up and passed to the neuron’s activation function, marked as f(x) in Figure 3.2 . While
activation functions in a layer tend to be the same function, they technically are not
required to. The activation determines how strong impulse will be sent to all the
neurons connected to this particular neuron. A classical choice for activation function
is the logistic function, given in equation 3.3 and depicted in Figure 3.3. However,
other activation functions, such as the Rectified Linear Unit (Figure 3.5 and equation
3.5) and tanh (Figure 3.4 and equation 3.4), exist.

As implied in the second paragraph of this chapter, a neural network needs a
minimum of three layers: the input layer, which is responsible for loading the input to
the network, a hidden layer, and an output layer, which is responsible for outputting
the network’s guess to user.

3.1.1 Dense feedforward neural networks

A dense feedforward network is a classical case of a neural network. Its definition is a
combination of dense network and feedforward network [31]. In a dense network, each
of the neurons in layer li is connected to each neuron in layer li+1, with the exception of
the output layer, which is not connected to any other layer except the layer ln−1. In a

20 Chapter 3. Neural networks

feedforward network, the computation only goes through the network in one direction.
Essentially, this means that the computation flows from input layer to the first hidden
layer, then in order through the rest of the hidden layers, until it reaches the output
layer, which outputs the prediction. As such, it can be considered a directed acyclic
graph - vis-à-vis a recurrent neural network [31], which contains cycles.

Altogether, the computation done by dense feedforward neural networks can be
expressed as

y = f1(f2(...fn(x̄)...)), (3.1)

where y is the prediction generated by the network, x̄ is the input vector and fi corre-
sponds to computation done by layer i, and is expressed as

fi = ai(
∑

(wi(x_
i bi))), (3.2)

where ai is the activation function for layer i, wi is the weight matrix and x_
i bi is the

input vector concatenated with a bias term.
As an example, the aforementioned MNIST classifier can be implemented as a

dense feedforward network. Such models can perform admirably well, with a reported
0.35% error rate on a large model [14]. However, even relatively small, two-layer models
have been reported [74] to achieve up to 0.7% error rates.

3.1.2 Activation functions

A number of activation functions exist [31]. This thesis presents three: logistic, tanh,
and ReLU, all of which are non-linear. Using non-linear activation functions is cru-
cial, because it enables the network to learn non-linear relationships. However, more
complex activation functions result in more complex derivatives. As such, minimally
non-linear functions are preferred as activation functions.

The formula for logistic activation function can be seen in equation 3.3, and it is
plotted in Figure 3.3. It is closely related to tanh activation, which is given in equation
3.4, and plotted in Figure 3.4. Both logistic and tanh are examples of sigmoid functions,
and both of them work well when x is near 0, but are slow to learn the further away
from 0 x gets. This is due to the derivative of both these functions being very small
when x is very large or very small.

logistic(x) = 1
1 + e−x

, (3.3)

tanh(x) = ex − e−x

ex + e−x
, (3.4)

3.1. Structure of Neural Networks 21

Rectified Linear Units, or ReLUs, have become the preferred activation function
whenever they can be used. The formula for ReLU can be seen in equation 3.5, and
plotted in Figure 3.5.

ReLU(x) = max(0, x) (3.5)

As can be seen, ReLU introduces a minimal amount of non-linearity. This makes it
easy to calculate the derivative of the loss function (also known as the gradient) which
is discussed in chapter 3.1.3. The network used in this thesis uses ReLUs as activation
function in all but the last layer, which uses a logistic activation.

Activation functions

Figure 3.3: Logistic Figure 3.4: Tanh Figure 3.5: ReLU

All figures by Laughsinthestocks [43]

3.1.3 Training neural networks

As stated before, neural networks as discussed in this thesis are a supervised learn-
ing method [31]. As such, the training process involves a training dataset of (input,
output)-tuples. On a high level, their training consist of initializing a network with
random weights and then repeating the following procedure: first, the network tries
to guess a correct output for given input. Then, if the guess is incorrect, the network
weights are adjusted slightly. Finally, the network tries to guess the correct output for
the next input, and so forth.

To measure the correctness of an output predicted by a network, a loss function is
needed. There are multiple different cost functions, but a simple one is Mean Squared
Error (MSE) [31], defined as

L(y, ŷ) = 1
2

n∑
i=1

(yi − ŷi)2 (3.6)

where (yi) is the correct output from training data, ŷi is the network prediction and
n is the amount of training samples. However, MSE is typically used with regression
tasks, and this thesis is concerned with classification. As such, binary cross entropy
[49], which is better suited for classification tasks, is used in this work. The equation
for binary cross entropy is

L(y, ŷ) = −(y ∗ log(ŷi) + (1− y) ∗ log(1− ŷi)), (3.7)

22 Chapter 3. Neural networks

Figure 3.6: An example of finding global minimum through gradient descent.

where again y is the correct output and ŷ is the model prediction.

Optimization

Once the error has been calculated, it is propagated backwards through the network
[31]. On a high level of abstraction, the adjustment generated by this propagation can
be formulated as

Θ′ = Θ− α∇ΘJ(Θ), (3.8)

where Θ′ is the next position, Θ is the current position, α is the learning rate (a
small number), and ∇xJ(Θ) is the vector for the adjustment. For a more in-depth
presentation of these topics, see resources by Goodfellow et al. [31] or Nielsen [49].

In each neuron, a partial derivative with regards to each of its inputs and error
is calculated. These partial gradients make up the vector ∇xJ(Θ). The weight matrix
and bias members are then adjusted according to the partial derivative and the learning
rate, and the error is propagated further backwards through the network. This method
is known as gradient descent, as calculating the derivatives results in a gradient of the
cost function and the objective is to find the global minimum of the gradient; ie. the
objective is to descend along the gradient to the global minimum. Note, however, that
finding the global minimum nor a local minima of the gradient is not guaranteed by
using gradient descent. A simple example of gradient descent can be seen in Figure
3.6. Here, y-axis (”Cost”) is a function of x-axis (”Parameter value”). The black

3.1. Structure of Neural Networks 23

dot depicts the current situation, and the arrows the future steps of algorithm. The
numerical evaluation of the gradient is made efficient by the use of backpropagation
algorithm.

The learning rate is simply a hyperparameter dictating how large steps the net-
work should take when adjusting the weights. In Figure 3.6, learning rate is depicted
by the size of an single arrow. Large learning rates lead to the algorithm potentially
finding a minimum faster, but may result in the minimum being inaccessible due to
a valley in the gradient. In this situation, the learning will ”bounce” back and forth
between the sides of the valley. In Figure 3.6, this could mean having a learning rate
large enough that the steps taken (arrow size) would be long enough so that the train-
ing would bounce from one side of the global minimum valley to another. However,
too small learning rate can get stuck in a local minimum, or cause the network train-
ing to slow down. To combat these problems, momentum can be used. Essentially,
adding momentum increases learning rate when the gradient is steep or has recently
been steep, and decreases learning rate when the gradient is gentle. In Figure 3.6, this
can be seen as longer arrows during descent and shorter during ascent.

While gradient descent is a classical method for optimizing the network, more
advanced methods exist. In particular, the work in this thesis uses an algorithm called
Adam (Adaptive moment estimation) [41] to optimize the network. Adam is an exten-
sion on stochastic gradient descent, which in itself is a modification of gradient descent
[31]. Gradient descent has a time complexity of O(m), where m is the number of
training examples. This m can become quite large, as large datasets are a requirement
for proper learning in neural networks. Put together, these two conditions can make
training times with regular gradient descent prohibitively long. In stochastic gradient
descent, the gradient of the cost function is calculated by using an uniformly drawn
subset of the data. This results in an estimate of the gradient of the whole dataset.
However, the subset - often called a minibatch - is considerably smaller and does not
grow if more data is added, which relaxes the computational time requirements.

In addition to minibatches, Adam combines the advantages of two previous al-
gorithms: AdaGrad’s [18] ability to work on sparse gradients (gradients which contain
very little information on how to adjust the parameters; imagine a gradient with very
flat topology) and RMSProp’s [28] ability to work on moving objectives. Adam achieves
this by using parameter (neuron)-specific learning rates. The adaption of the learning
rates are based on moving average and uncentered variance of the data.

By repeating the forward propagation (network guessing a prediction for given
input) and backwards propagation (adjusting weights and bias terms according to the
derivative of the cost function) over and over, the network aims to minimize the result
of the cost function [31]. Given properly chosen architecture, enough data and time,

24 Chapter 3. Neural networks

this results in the network learning how to solve the given problem.
There are various methods on how to enhance the training results of neural net-

works [31]. In this work, one basic enhancement is used: dropout. Essentially, dropout
is a method for neural network regularization. As a highly robust and complex sys-
tems, neural networks have a tendency for overfitting. Put simply, overfitting means
that the network has learned the peculiarities of its dataset too well, and does not
behave well on a general case anymore. Regularization methods are aimed to combat
overfitting. Dropout aims to achieve this by randomly shutting down a described pro-
portion of neurons in the network. This forces each neuron to be able to work in a
more generalized environment, because there are no guarantees it will receive inputs
from the same set of neurons as before, nor can it rely on exactly the same set of future
inputs on receiving its own signal. The benefits of dropout versus other regularization
methods is that it is computationally cheap, applies to most of neural network models
and doesn’t interfere with the practicalities of training setup.

3.2 Convolutional Neural Networks

Convolutional neural networks, or ConvNets, or CNNs, are a special form of neural
networks [31]. They are inspired by the research into how the mammalian visual cortex
processes images, especially by the V1 part of the cortex. The crux of this research is
that mammalian brains tend to respond the strongest to specific arrangements of light,
such as horizontal bars. The convolution operation of CNNs take their inspiration from
the simple cells of the primary visual cortex. These perform an operation that can be
approximated as a linear function on their input. The max-pooling operations, in turn,
are inspired by the complex cells in the primary visual cortex. These cells are similar
to the simple cells with one exception: they aren’t concerned with small shifts of the
position or lighting of the detected feature. However, the max-pooling operations only
concern positional, not illumination changes.

In the mammalian brain, the signals sent by the eyes are passed through various
layers until they eventually hit the ”gradmother cells”. These are cells specialized
in recognizing a concept, such as ”grandmother” or ”Emma Watson” - whether it is
encountered as an image, audio, text, or so forth. This process results in a mammalian
brain transforming the visual stimulus into a mental concept. In a philosophical sense,
this process is what convolutional neural networks in image recognition tasks try to
mimic - however, the models used are extremely simple compared to the mammalian
visual cortex.

There are also differences between CNNs and mammalian vision. The human
eye is very low resolution, except for the center of attention. The illusion of high

3.2. Convolutional Neural Networks 25

resolution is created by saccades, ie. the eye moving around in fast bursts, and the
subconscious rendering a single larger high-resolution mental image from these smaller
images. However, CNNs can see the whole image in high-resolution in one go. Fur-
thermore, human cognition uses all senses available, while CNNs are purely a visual
tool. Third, the model used by convolutional neural networks is a highly simplified
version of a brain, which has intricacies such as higher-level feedback and different
activation/pooling methods.

From a practical standpoint, convolutional neural networks can be used when-
ever the data has spatial dependencies, ie. when it can be arranged in a n-dimensional
grid. For example, a 2D image is a two-dimensional grid of pixels, or sound can be
represented as a one-dimensional grid of pitch, sampled at specific intervals. Whenever
a network has one or more convolutional layer, it is called a convolutional network.
Their main difference to the dense feedforward networks is that instead of using ma-
trix multiplication on all previous layer outputs, they use a convolution operation. The
convolution operation is simply a sum of elementwise multiplication between two ma-
trices. When performing convolution, the first of these matrices is a subsection of the
input layer, and the second is the convolution kernel. The kernel K contains the kernel
weights, and has to have same amount of dimensions as the input layer because due to
the desire to do matrix multiplication between the two matrices. When the network
is taught, it is these kernel weights that are being adjusted. In this thesis, the kernel
has two dimensions because it is concerned with images, which are two-dimensional
objects. The subsection of input layer is calculated by sliding a convolution window
over the input layer. The size of this window is equal to the kernel size, and in each
step of the convolution it creates a submatrix of input layer by selecting the contents
inside the window. Because this process only gives a result for a small submatrix in
the output layer, the convolution window is then moved to cover a different part of
the input layer. A classical choice for this move is to move the window forward by its
own size, ie. so that each element in the input layer is inside the convolution window
in exactly one step. The size of this movement is called the stride of the convolution
window. Essentially, for one-dimensional cases, the value of output layer element li+1

x

can be calculated as
li+1
x = a(sum(Ix∗s ◦K)),

where li+1
x denotes the x:th element of output layer, Ix∗s denotes the submatrix of

the input layer created by selecting input layer values from position x * stride to x *
stride + window size, K is the kernel, ◦ is the elementwise multiplication operator,
sum refers to calculating sum of matrix elements and a is a activation function. In
multidimensional cases extra markup is required to denote the location of convolution
window, but here the one-dimensional case is presented for simplicity. A classical choice

26 Chapter 3. Neural networks

for activation function in convolutional layers is the rectified linear unit (eq 3.5).
Examples of convolutional operations can be seen in figures 3.7 and 3.8. In Figure

3.7, a single step in the convolutional layer is shown. Here, a 3x3 kernel is applied into
a single window in the input layer, resulting in a 1x1 output on the output layer. In
Figure 3.8, the result of applying a 2x2 kernel with stride 2 on a 3x3 input is shown.
The output can be seen on the right side of the figure. Note how the output layer is
smaller than the input layer. If this is undesirable, the output layer can be padded to
avoid layer shrinking. This padding can be achieved through addition of pixels around
the image.

As a sidenote, in image context - which is of interest to this thesis - the kernel
transformations can be thought of as image filters in the same sens as in photo editing
software. For example blurring or detecting edges in input images can be expressed as
a convolutional operation. Thus, the kernels are often called filters.

In dense networks, each node connects to every node in the previous layer. This
means that even relatively simple networks often have a large number of parameters,
which leads to long training times. Convolutional layers only train the kernel weights,
which means that there are less parameters to train. This leads to a significantly
smaller parameter size for convolutional layers. However, it is common for ConvNets
to train multiple different kernels for a single layer.

Figure 3.7: An example of kernel applied to input [36]

Figure 3.8: A numerical example of a 2x2 kernel applied to layer.

Typically in convolutional neural networks, a convolution layer is paired with a
pooling layer. A pooling layer slides a window over the input grid and calculates a
summary statistic - such as max value or average - on it. Similar to a convolutional

3.2. Convolutional Neural Networks 27

Figure 3.9: An example of 2x2, 2-stride max pooling [5].

kernel, a pooling operation has a window size and a stride.
An example on max pooling can be seen in Figure 3.9. Here, 2x2 max pooling

with stride of 2 is applied to a 4x4 input, resulting in a 2x2 output. Thus, the window
is first placed to the top-left (orange) quadrant, and the maximum value (hence, max-
pooling) out of the four is calculated. This value (6) is then inserted to the top-left
cell of the result matrix. Then, due to stride two, the window is moved two steps to
the right, which lands it in the quadrant coloured green. This process is repeated until
the input matrix has been gone through. The pooling layers have the effects of making
the network less vulnerable to noise in the data and downsampling the problem space,
which means that smaller layers are required in later parts of the network.

The main advantage that ConvNets have over dense feedforward networks is that
they require less parameters to train. A dense feedforward network would use one
parameter in each layer for each pixel in the image. However, ConvNets’ window size
govern their parameter size - for example, a 2x2 window results in 2∗2 = 4 parameters
for a single layer. Furthermore, because the pooling layers shrink images, they are
more invariant towards small variance. ConvNets can also handle variable input sizes.
In addition to these theoretical features, ConvNets have been shown to perform well
on, for example, image classification [42] and image segmentation [10].

In this chapter, this thesis has presented neural networks. It introduced the
classical dense feedforward network architecture as well as the convolutional neural
network architecture. It then presented a comparison between the two. Furthermore,
different activation functions and optimization strategies were discussed. In addition
to traditional neurons, convolution operation as well as pooling operations were intro-
duced. In the next chapter, the thesis returns into the domain problem of doing image
segmentation through convolutional neural networks.

4. Segmentation with neural
networks

Semantic segmentation done by neural networks is a well-researched problem with
multiple published papers. In this chapter, three architectures pertaining to doing
semantic segmentation with convolutional neural networks will be presented. These
are the fully convolutional neural network by Long et al. [46], the Mask R-CNN
architecture by He et al. [34] and the U-net architecture by Ronneberger et al. [60].

4.1 Fully convolutional network

Long et al. [46] introduced fully convolutional networks (FCNs, networks with only
convolutional layers and pooling operations) as a method to do semantic segmentation
with pixel-to-pixel resolution. The paper presents a transfer-learned, fully convolu-
tional network coupled with skip architecture. Long et al.’s network accomplishes
pixel-level segmentation by taking an existing image classification network, such as
AlexNet [42], and modifying it. The modifications include interpreting all dense layers
as convolutional layers, as well as replacing the final layer with upsampling. Inter-
preting dense layers as convolutional layers is done by considering each dense layer
as a convolutional layer with kernel size equal to image size. Furthermore, the final
prediction layer of the network is discarded, and a convolutional layer is added to
produce predictions for the layer. This prediction is then upsampled through deconvo-
lution, which is convolution operation applied backwards: a single pixel is multiplied
by window values, and these values are the upsampled pixel values.

Furthermore, Long et al. make use of a skip architecture. Skip architecture
means that layers have connections to layers farther down the network than just the
next layer. Skip architecture helps in producing fine-grained predictions by letting the
network remember details about the fine-detail layers at the first levels of computation.

Long et al. report training time of up to four days when converting from existing
classification network, however this was in 2015 and on a single ”typical” GPU, so
smaller numbers could be expected on modern environments. The actual GPU used is

29

30 Chapter 4. Segmentation with neural networks

not reported. Their model does inference relatively fast, in 100ms, again with a single
GPU.

Long et al. [46] achieved good results with their architecture, which are displayed
in Figure 4.1. Here, VOC2011 [22] and VOC2012 [23] test sets refer to Pascal VOC
datasets, which is an image dataset of 20 mundane classes such as ”cats” and ”air-
planes”. Mean IU score compares the model prediction to the ground truth annotation
and reduces score for both false positive and false negative values. Hence, bigger score
in IU is better. Long et al.’s results were, at the time, better than the competition’s,
and their model’s inference time was faster.

Table 4.1: Results reported by Long et al. [46] on the semantic segmentation performance on
PASCAL VOC. FCN-8 is their network, while SDS and R-CNN are previous well-performing networks

mean IU VOC2011 test mean IU VOC2012 test inference time
R-CNN (2014) 47.9 - -
SDS (2014) 52.6 51.6 50s
FNC-8s (2014) 67.5 67.2 100ms

4.2 Mask R-CNN

Mask R-CNN, introduced by He et al. [34], uses a multi-tiered architecture to pro-
duce both object instance segmentation as well as bounding boxes. Object instance
segmentation is slightly different problem than semantic segmentation: in semantic
segmentation, every instance of ”car” belongs to the segment corresponding to the
class ”car”. In instance segmentation, each instance of ”car” belongs to its own seg-
ment. However, the method is more recent and could be used to produce a semantic
segmentation, so it is introduced here.

Mask R-CNN consist of four parts: a feature extractor, a region proposal network
which scans the image for objects, a region classifier and a mask network. The features
can be extracted by a standard convolutional neural network. However, He et al. sug-
gest the use of feature pyramid networks [45]. Feature pyramid networks consist of three
parts: bottom-up pathway, top-down pathway and lateral connections. Bottom-up
pathway is a series of convolutional operations, generating smaller-resolution features
from the original image. Top-down pathway takes the result of the top-down pathway
and generates higher-resolution features from it with the help of lateral connections
and the convolution operation.

The region proposal network [58] uses a convolutional neural network to generate
regions of interest. These regions are generated by the use of anchor boxes. Essentially,

4.3. U-net 31

Figure 4.1: U-net architecture [60]. The blue boxes are layers, the number above them depicts the
number of specified layer and the pair of numbers to the left of the box the size of the layer. Arrows
depict operations, such as 3x3 convolution (blue), max pool (red), concatenation(grey), upwards
convolution (green) and 1x1 convolution (teal).

a set of boxes are distributed in the image, each box is checked, and if it contains an
object, it is then adjusted to better fit the object. To speed up the computation, these
regions are then pooled. The pooled regions are then passed to the region classifier,
which refines the bounding box and assigns a label to it via the use of convolutional
neural networks. A FCN [46] (see Section 4.1) is run parallel to the region classifier to
produce the segmentation on the images.

Mask R-CNN took 32 hours to train on a COCO train set and an 8-GPU en-
vironment, and does inference in 210ms on a Nvidia Tesla M40 GPU [51]. It is safe
to say that Mask R-CNN is a heavier model than the FCN, but the train and the
inference times will not be a hindrance for using the model. Similar to VOC challenges
[20][21][22][23], COCO segmentation challenge [15][16] has images containing everyday
objects from 90 classes. He et al. achieve good results on segmentation, reporting
beating winners of 2015 and 2016 COCO segmentation challenges.

32 Chapter 4. Segmentation with neural networks

4.3 U-net

U-net, by Ronneberger et al. [60] is an improvement on Long et al.’s work presented
above. U-net improves on Long et al. by implementing multiple deconvolutions (result-
ing in a the implementation’s namesake U-shaped network) and increasing the amount
of features used in skip connections. These deconvolution layers are the steps that
separate U-net from traditional CNNs such as the one presented by Long et al. Their
function is to create a high-resolution map based on the lower resolution maps pro-
duced by the previous layers of deconvolutions. The architecture is displayed in detail
in Figure 4.1. It can be seen that in the left or deconvolution part of the network there
are repeated applications of two 3x3 unpadded convolutions followed by 2x2 stride 2
max pool operation. The same is true for all but the final convolution operations on
the upsampling or right part of the network, with max pool replaced by deconvolution
layers. Finally, the last layer is a 1x1 convolution which predicts a class for each pixel
in the image. Ronneberger et al. use ReLU (see eq. 3.5) as their activation function.

Ronneberger et al. use weighted loss function to force their network to learn
cell borders. Essentially, they have created a loss map for their training data which
punishes mistakes in classifying cell borders more than otherwise. In this thesis, no
weighted loss functions were used due to the fact that there is no need to be able to
distinguish between single instances of classes. As this thesis is mainly interested in
how much target classes there exists in the pictures, the amount of work required to
produce the weighted loss maps is not justifiable.

Ronneberger et al. stress the importance of data augmentation: that is, producing
more training data by applying transformations to original training dataset in order to
increase the amount of training dataset. They also note that this works well in their
domain (medical imaging), because realistic-looking transformations to their medical
data are relatively easy. These transformations include shifting, rotating and deforming
the image as well as varying the gray levels. However, augmenting data by style transfer
has also been shown to work well on image classification [27]. As such, it might be
safe to assume that data augmentation could work well for other segmentation tasks
besides medical imaging.

Ronneberger et al. report training times of 10 hours on a single 6GB Nvidia
Titan GPU [52]. They do not provide inference times. Ronneberger et al. claim good
results, their U-net architecture achieving significantly better results (table 4.2) in ISBI
Cell Tracking Challenge [37] than the next-best try. The IOU (intersect over union)
metric used in the competition is defined as follows:

IOU = A ∩B
A ∪B

, (4.1)

4.3. U-net 33

where A is a set of the predicted pixels for a class and the B is the set of actual
pixels belonging to that class. Here the maximum score is 1 and the minimum is 0.
Essentially, IOU is a metric of how well the predicted area overlaps with the actual
area. U-net’s results in EM segmentation challenge (table 4.3) are good as well, with
the model only losing to competition in on case - DIVE-SCI achieved a better Rand
error value. Rand error is calculated [57] as

1− a+ b(
n
2

) , (4.2)

where a is the number of pair of pixels in the image which are correctly classified to the
same class in both the prediction and ground truth, and b is the number of pixel pairs
in the image which were correctly classified differently. The authors explain their loss
as the difference between their more general model taking on an algorithm specifically
designed for the dataset.

Table 4.2: U-net IOU results on ISBI Cell Tracking Challenge 2015, two different image datasets
[60]

Name PhC-U373 DIC-HeLa
IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5325 -
second-best[sic] (2015) 0.83 0.46
U-net (2015) 0.9203 0.7756

Table 4.3: U-net results on EM segmentation challenge [60]. Lower is better.

Rank Group name Warping Error Rand error Pixel error
** human values ** 0.000005 0.0021 0.0010

1 u-net 0.000353 0.0382 0.0611
2 DIVE-SCI 0.000355 0.0305 0.0584
3 IDSIA [1] 0.000420 0.0504 0.0613
4 DIVE 0.000430 0.0545 0.0582
...
10 IDSIA-SCI 0.000653 0.0189 0.1027

In this chapter, three methods for doing semantic segmentation with convolu-
tional neural networks were given. These were the fully convolutional neural network
by Long et al. [46], the Mask R-CNN by [34] and the U-net, which is an improvement
on U-net, by Ronneberger et al. While these networks do not directly deal with the

34 Chapter 4. Segmentation with neural networks

problem domain of biomass estimation or recognizing alien invasive species, their re-
sults are promising. It is intuitively hard to see clear differences in, for example, cell
detection versus marine plant detection. As such, this thesis will next present applying
U-net architecture to the two problem domains: discovering alien invasive species and
biomass estimation. The U-net was chosen as it was deemed to potentially achieve
a good result with a simpler architecture when compared to Mask R-CNN. Further-
more, in the context of this thesis, semantic segmentation is enough; object instance
segmentation is not needed.

5. Using U-net to segment drone
images

In the previous chapter, an overview of semantic segmentation was given. Furthermore,
U-net was introduced as a valid choice for network architecture for semantic segmenta-
tion. In this chapter, an implementation of U-net for the Finnish Environment Institute
(SYKE) is presented. This chapter begins by broadly describing the specifics of the
context and the approach taken to solve the problems of biomass estimation and in-
vasive alien species detection. It continues by giving a description of the dataset used,
discusses the potential problems of the data, as well as presents learning points for
future work. It then goes over the model training step, from image preprocessing to
the specifics of the training process. Finally, results are given.

As described in Chapter 1, the Finnish Environment Institute has two goals in
mind in the context of this project: to monitor the amounts of invasive plant species
found in Finland, and to estimate lake biomass. Both of these missions have tradition-
ally required SYKE to monitor large areas. The naive solutions to these problems are
described in Chapter 1. These approaches have two downsides: scaling and inefficient
use of resources. If the government wants to monitor larger areas for biomass or IAS,
traditional methods require more personnel in a linear fashion. The personnel doing
this kind of a job typically have a university degree, quickly making the cost of the
monitoring task prohibitive. Both of these activities tie up expert resources to a fairly
trivial task. Thus, a more efficient method for solving the two problems is needed.

To be able to achieve this goal, this thesis explores the usage of semantic segmen-
tation produced by an U-net in combination of images taken by drones. To produce
the required dataset, SYKE has purchased drone photograph services from BVDrone
[8] which photographed image datasets from both land and lake areas. These drones
take pictures of the respective areas, which are then fed into a neural network. The
neural network should produce a mask based on existence of each invasive species. In
this thesis, a U-net (see chapter 4) will be used to produce a semantic segmentation
of the images, which can be then used to estimate lake biomass as well as to locate
alien invasive species. Next, the specifics of the used model as well as the details of the

35

36 Chapter 5. Using U-net to segment drone images

Figure 5.1: Monoclass model prediction pipeline

training process will be discussed.
There are two possible ways to approach building the models. The first is to

train a model to produce multiclass predictions. The second is to train one model for
each class (ie. a binary classifier), run prediction task for single image through each of
the models, and then use a reconciliation function to produce a final prediction. This
thesis uses the second method, as this allows each model to concentrate on one specific
class, making learning easier.

In the multiclass prediction task, the model outputs a probability distribution
over the classes for each pixel. The prediction image is then produced by mapping
through each pixel, selecting the RGB value of class with highest probability. In the
training phase, conversion to RGB can be omitted by precomputing one-hot vectors
out of ground truth images.

The second method is to train a model for each class in the dataset. This method
is depicted in Figure 5.1. In this approach, prediction is done by running an input
image through each model, which produces n predictions, where n is the number of
classes. Each of these predictions is a grayscale image. The colour black corresponds
to probability of 0 for a given pixel to belong to the class predicted by the model.
Correspondingly the colour white corresponds to a probability of 1. Each pixel then
contains the probability of that pixel to belong to the class predicted by the class’s
model. Once n predictions of an image have been produced (i.e. each model has
produced a prediction), the predictions are reconciled by a reconciliation function.
Typically, the reconciliation function goes through the n intermediary predictions and
chooses for each pixel in the final prediction the colour of the most probable class (i.e.

5.1. Methodology 37

Profile 1 Profile 2 Profile 3
Focal length 8.8mm 8.8mm 8.8mm
Exposure 1/100s 1/1000s 1/160
Focal ratio f/4 f/2.8 f/4.5
Resolution 5472x3648 5472x3648 5472x3648
Image format PNG PNG PNG
Colour space RGB RGB RGB
Colour profile sRGB IEC61966-2.1 sRGB IEC61966-2.1 sRGB IEC61966-2.1

Table 5.1: Camera setting profiles for drone cameras

the class whose model has scored highest) from the prediction images. Imagewise,
this would mean the class whose model produced the whitest pixel in the intermediary
predictions. In this thesis, binary classifiers were used due to skewness of the datasets
(see Figures 5.2 through 5.17).

5.1 Methodology

As mentioned before, the models were trained with datasets provided by SYKE. In
this section, the dataset and its problems are discussed. Then, a description of data
preprocessing as well as training steps are given.

5.1.1 Data

The dataset consists of three different categories of data. The first are the actual
images taken by drones. Whenever ”input images” are mentioned in this chapter, it
is a reference to these imges taken by a drone. The second are ground truth images
created by experts at SYKE based on the drone images. These will be known as
”ground truth images”. The third are the category files for each ground truth image.
The category files contain a mapping from colour to the class for given image, as the
colour used for a single class might vary from image to image.

The dataset used for biomass estimation task consists of three separate DJI Phan-
tom 4 Pro drone runs over Onkivesi lake in Finland, while the dataset for invasive alien
species dataset has been collected from two runs near Hollola, Finland and one run
at Ojaküla, Estonia. Two different profiles for the camera were used. These profiles
are listed in table 5.1. Two of the Onkivesi runs used profile 1 and one used profile 2.
Ojaküla run used profile 2. One of the Hollola runs used profile 2 while the other used
profile 3.

The runs used different flying altitudes. Initially this was to figure out the best

38 Chapter 5. Using U-net to segment drone images

altitude for prediction task. Flying higher would be faster as the camera could see
more at once, but at higher altitudes the details of single plants would become hard
to distinguish, even to the point where human experts would not be sure which plants
they were looking at. In the end, all altitudes where human experts were able to make
positive identifications were used to create a more robust model.

In both of the tasks the datasets are heavily skewed towards ”out of research
interest”-class. Class distributions in the datasets are given in Figures 5.2 through
5.17. Furthermore, class distributions are given in tables 5.2 for biomass estimation
data and 5.3 for alien invasive species data. For example, table 5.2 tells us that of the
total 19448 images in biomass estimation task, Nuphar lutea appears in 2404, or 12.37%
of the images. Furthermore, as can be seen in Figure 5.10, the distribution of images
with Nuphar lutea is highly skewed: even when Nuphar lutea appears in a image, it is
probable that it covers a small portion of said image. The Y axis in the figure displays
a number of teaching images (512x512 tiles of the original), and the X-axis indicates
how many percent of that image had Nuphar lutea in it. Images without Nuphar lutea
are around two orders of magnitude more common than those that have at least 1%
of Nuphar lutea in them. Because of this restriction, single-class models trained on
the whole dataset tended to learn to predict that there were no instances of their class
anywhere in the pictures. Thus, a restricted dataset had to be used. This dataset was
created by examining the original dataset and keeping any 512x512 tiles which had at
least one pixel of target class in it.

The dataset has following limitations. First of all, having only images which
include at least a little bit of the target class in the image raised the worry that the
model could become biased. However, due to the abundance of examples of ”not-in-
class” in the training set, this was not considered a serious issue. As can be seen from
Figures 5.2 through 5.17, even the images which contain target class typically have a
good amount of examples of ”not-in-class”. Indeed, when the Nuphar lutea model was
trained with around 5% of the training set consisting of entirely out-of-research-interest
images, the model training would often fail catastrophically and halt in an early stop
just after a couple of epochs of training. Second, the dataset is already small (223 full
images), and this problem is further exacerbated by cutting the dataset to include only
tiles with the target class in them. For example, while the total number of images in
biomass estimation dataset is 19448 (512x512 pixel tiles), only 2434 (12,5%) of them
were images which had at least one pixel classified as Nuphar lutea. The amount of
images used to train the models would further drop due to the usage of 3-fold cross-
validation: out of the 2434, 2

3 = 1622 would be used to train the model, while the rest
were used for evaluation. Yet a third potential problem is the annotation of the data.
The dataset was annotated by experts at SYKE, who have done mostly admirable

5.1. Methodology 39

0 20 40 60 80 100
% of target class

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.2: Distribution of Phragmites australis in the dataset (log scale)

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.3: Distribution of Scripus in the dataset (log scale)

40 Chapter 5. Using U-net to segment drone images

0 20 40 60 80 100
% of target class

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.4: Distribution of Sagittaria natans in the dataset (log scale)

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.5: Distribution of Hydrocharis morsus-ranae in the dataset (log scale)

5.1. Methodology 41

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.6: Distribution of Sagittaria sagittifolia in the dataset (log scale)

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.7: Distribution of Sparganium emersum in the dataset (log scale)

42 Chapter 5. Using U-net to segment drone images

0 20 40 60 80 100
% of target class

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.8: Distribution of Sparganium gramineum in the dataset (log scale)

0 20 40 60 80 100
% of target class

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.9: Distribution of Potamogeton natans in the dataset (log scale)

5.1. Methodology 43

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.10: Distribution of Nuphar lutea in the dataset (log scale)

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.11: Distribution of Persicaria amphibia in the dataset (log scale)

44 Chapter 5. Using U-net to segment drone images

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.12: Distribution of Impatiens glandulifera in the dataset (log scale)

0 20 40 60 80 100
% of target class

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.13: Distribution of Heracleum persicum in the dataset (log scale)

5.1. Methodology 45

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.14: Distribution of Solidago canadensis in the dataset (log scale)

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.15: Distribution of Solidago virgaurea in the dataset (log scale)

46 Chapter 5. Using U-net to segment drone images

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.16: Distribution of Rosa rugosa in the dataset (log scale)

0 20 40 60 80 100
% of target class

100

101

102

103

104

A
m
ou

nt
of

im
ag
es

Figure 5.17: Distribution of Lupinus polyphyllus in the dataset (log scale)

5.1. Methodology 47

Figure 5.18: Example of a vague annotation. Some of the plants belonging to the Sparganium
gramineum (cyan) are actually marked as belonging to the Sagittaria natans (yellow) class in the
bottom-left quadrant, and both classes contain pixels which should be classified as ”water” or ”out of
research interest”.

job, but at times human fatigue can clearly be seen in the annotations which have
been created with a rather large brush. An example of this can be seen in Figure
5.18. Furthermore, the dataset contains images where class exemplars have not been
annotated, as can be seen in Figure 5.19. The two problems mentioned above result in
noisy class distribution in training set.

Furthermore, it is sometimes hard to explicitly say where a plant starts, especially
when we consider the stem. Taking aerial photos case results in an image where the
plant’s stem slowly fades out of the image as it goes deeper and doesn’t reflect enough
light for human eye, or indeed the drone’s camera, to see it.

The dataset is also temporally limited, which is a problem because Finland has
four seasons. While it wouldn’t make sense to include images from winter (due to
freezing of the lakes), the dataset might benefit from having spring - summer - fall
variance in it. Some classes, such as Persicaria amphibia, also have blooms, which
greatly alter the classification task. It is naturally easier to classify them when they
are blooming. Despite these shortcomings, the dataset was considered good enough to
train some of the models.

5.1.2 Qualitative analysis of the dataset

To get a better picture of the problems mentioned above and depicted in figures 5.18
and 5.19, a qualitative analysis for the dataset was conducted. The analysis consisted

48 Chapter 5. Using U-net to segment drone images

Figure 5.19: Example of an incomplete annotation. As can be seen from the image, some parts
of the Sagittaria natans (yellow) class have not been annotated at all, while other parts have been
annotated with a large brush.

Amount Percent
Potamogeton natans 3919 20.16
Phragmites australis 3069 15.79
Sparganium gramineum 2760 14.2
Nuphar lutea 2404 12.37
Sagittaria natans 1019 5.24
Persicaria amphibia 942 4.85
Sparganium emersum 656 3.37
Scirpus 331 1.7
Hydrocharis morsus-ranae 84 0.43
Sagittaria Sagittifolia 8 0.04
Total 19448 100

Table 5.2: Absolute number and proportion of 512x512 tiles with given class in biomass estimation
dataset. Note that the values do not sum up to 19448 images or 100%

5.1. Methodology 49

Amount Percent
Impatiens glandulifera 2302 11.84
Heracleum persicum 1555 8.0
Lupinus polyphyllus 820 4.22
Reynoutria japonica 146 0.75
Rosa Rugosa 17 0.09
Solidago canadensis 0 0
Solidago virgaurea 0 0
Total 16401 100

Table 5.3: Absolute number and proportion of 512x512 tiles with given class in alien invasive species
dataset. Note that the values do not sum up to 16401 images or 100%

of going through each annotation and deciding if the annotation was done well or if it
had some problems from machine learning point of view. Three categories of mistakes
were flagged: broad strokes, wrong category and absence of annotation. ”Broad brush”
means a situation where the annotation is mostly correct, but due to usage of a large
brush to paint the area, the annotation is inaccurate. ”Wrong category” means a
situation where member of a class has been painted with the colour of another class,
and ”absence of annotation” means a situation where member of a class has not been
painted. It should be noted that the above flags are not mutually exclusive: indeed,
”wrong category” is often a result of using too broad brush. If none of these errors
were present, the annotation was flagged as good.

It should be noted that correct data annotation is a notoriously difficult problem,
and the data in this thesis exacerbates the problem. The main problem is that the
dataset contains multiple large pictures with plenitude of small details, which can be
frustrating for humans to annotate accurately. The problems outlined below are a
result of resource limits (e.g. work time spent on the annotation job), and as noted in
Section 5.2, the problems do not seem to greatly affect the end results. However, there
were prevalent problems in the dataset, which should be addressed when discussing
the results of this thesis. Summaries of these problems are given in tables 5.4 and 5.5.
Note that the amounts of problems do not sum up to total number of images. This is
because some images had multiple problems, and others had no annotations at all. The
latter was not considered a ”good” annotation, but simply skipped over as it would
be excluded from the training data and as such would not affect the training process.
Thus, for example dataset 3 in table 5.4 has 110 images, but the amount of annotation
grades do not reach 110.

Invasive alien species data had three datasets. Their problem cases are presented

50 Chapter 5. Using U-net to segment drone images

Table 5.4: Description of IAS dataset image problems

Set 1 Set 2 Set 3
Total number of images 30 52 110
Broad brush 18 1 89
Wrong class 1 0 1
Absence of annotation 6 1 2
Good 7 50 9

in table 5.4. Most of the problems revolve around using a broad brush, with small
amount of target class members missing annotations and a few cases where a class
was incorrectly annotated. Notably, the second dataset has really good annotations.
However, the images in this dataset contain only small amounts of target classes. This
reflects a larger trend in all of the images: those with small amounts of target classes
were annotated exceptionally well, while those with medium to large amounts of target
classes were annotated using broader brushstrokes. Furthermore, the only target class
to appear in this dataset is Rosa rugosa.

In the first and third sets of the alien invasive species dataset the most prevalent
problem is using a broad brush. Especially the first dataset is exceptionally hard to
annotate even for a human equipped with extreme patience due to the abundance of
flora. This makes it difficult to spot the members of the target classes and especially
annotate them precisely. Furthermore, the height differentials create lots of shadows
which obscure some parts of the images, adding further complications.

On the biomass estimation side of the dataset, problems are more prevalent.
The problems are listed in Table 5.5. Again, the problems are concentrated to the
broad brush-category with a few problems in other categories. This is probably due
to the nature of the dataset: for example, Sparganium gramineum and Sparganium
emersum are long, thin plants which are hard to annotate in an exact manner with
the circle brush that was available to the annotators. The broad brush strokes in
these annotations result in a class that has high amount of water pixels in them.
Similarily, Sagittaria natans is a small plant, but tends to form colonies, which makes
exact annotation an extremely time-consuming process. Due to Sagittaria natans often
coexisting among other target classes, the broad brush strokes creates annotations
which include large amounts of members of other classes in them. Especially in set 1
(Table 5.5), these broad strokes led to other classes of errors.

In hindsight, biomass estimation annotation would probably have benefited from
using a colour range selection tool. Due to the background consistently being of dif-
ferent colour (ie. different colours of water), the annotations could have been created

5.1. Methodology 51

Set 1 Set 2 Set 3
Total number of images 104 63 56
Broad brush 112 42 50
Wrong class 26 0 0
Absence of annotation 29 3 0
Good 2 12 0

Table 5.5: Description of BE dataset image problems

by first selecting all green parts of the image, and then labelling those parts. It is also
interesting to speculate on the effect of drone flying altitude on annotations: biomass
estimation dataset 1 happens to be the one flown at 10 meters and contains more
errors than sets 2 and 3, which were flown at 5 meters. Set 1 also contains consid-
erably more errors, even when taking into account the fact that it has approximately
twice the number of images in it. The intuitive reason for this would be a frustrated
annotator rushing the annotation process due to the sheer amount of work going into
the annotation of a single image. A possible experiment to test this hypothesis would
be to offer two groups of annotators the same image dataset, but one would be tiled
into many smaller images, while one would contain large images, and see which set has
more accurate annotations.

While this audition has found some problems in the dataset, it was conducted
by a person who is not an expert in biology. Thus, there is a high probability of
both false negatives and false positives in ”wrong class” or ”absence of annotation”
categories. However, the broad brush-category is easily identified even by people who
are not experts in biology. Furthermore, as can be seen in the results, it seems that
the annotations were good enough for the classes that had enough data.

5.1.3 Preprosessing

Some preprocessing for the input images is required to begin the training pipeline. To
begin the preprocessing, both the input, as well as the ground truth images are tiled
into a 512 x 512 pixel tilemap. The size of 512 x 512 has no special meaning; it was
chosen arbitrarily. Because every image does not have dimensions which would be a
multiple of 512, extra black pixels are added to the right and bottom part of the tiles
when necessary. Due to the sparsity of the target classes in the dataset (see figures
5.2 through 5.17), especially when training single-class models, the next step of data
preprocessing is to select which tiles are used.

To select the dataset used for single-class-model training, a Python script goes
through each ground truth image and checks if any pixel of that image contains that

52 Chapter 5. Using U-net to segment drone images

class in question. Based on the script, the dataset is then divided into images that
contain the class in questions and those that do not. Different mixes between the
two categories were tried, but in the end best training results were achieved when the
training set consisted only of images in ”contains the class”-category. Elaboration on
this can be found in Section 5.1.1.

5.1.4 Training

Layer Type Output Shape Connected to
input1 InputLayer (None, 512, 512, 3)
conv2d1 Conv2D (None, 512, 512, 64) input1

conv2d2 Conv2D (None, 512, 512, 64) conv2d1

max_pooling2d1 MaxPooling2D (None, 256, 256, 64) conv2d2

conv2d3 Conv2D (None, 256, 256, 128) max_pooling2d1

conv2d4 Conv2D (None, 256, 256, 128) conv2d3

max_pooling2d2 MaxPooling2D (None, 128, 128, 128) conv2d4

conv2d5 Conv2D (None, 128, 128, 256) max_pooling2d2

conv2d6 Conv2D (None, 128, 128, 256) conv2d5

max_pooling2d3 MaxPooling2D (None, 64, 64, 256) conv2d6

conv2d7 Conv2D (None, 64, 64, 512) max_pooling2d3

conv2d8 Conv2D (None, 64, 64, 512) conv2d7

dropout1 Dropout (None, 64, 64, 512) conv2d8

max_pooling2d4 MaxPooling2D (None, 32, 32, 512) dropout1

conv2d9 Conv2D (None, 32, 32, 1024) max_pooling2d4

conv2d10 Conv2D (None, 32, 32, 1024) conv2d9

dropout2 Dropout (None, 32, 32, 1024) conv2d10

up_sampling2d1 UpSampling2D (None, 64, 64, 1024) dropout2

conv2d11 Conv2D (None, 64, 64, 512) up_sampling2d1

concatenate1 Concatenate (None, 64, 64, 1024) dropout1,
conv2d11

conv2d12 Conv2D (None, 64, 64, 512) concatenate1

conv2d13 Conv2D (None, 64, 64, 512) conv2d12

up_sampling2d2 UpSampling2D (None, 128, 128, 512) conv2d13

conv2d14 Conv2D (None, 128, 128, 256) up_sampling2d2

concatenate2 Concatenate (None, 128, 128, 512) conv2d6,
conv2d14

conv2d15 Conv2D (None, 128, 128, 256) concatenate2

conv2d16 Conv2D (None, 128, 128, 256) conv2d15

5.1. Methodology 53

up_sampling2d3 UpSampling2D (None, 256, 256, 256) conv2d16

conv2d17 Conv2D (None, 256, 256, 128) up_sampling2d3

concatenate3 Concatenate (None, 256, 256, 256) conv2d4,
conv2d17

conv2d18 Conv2D (None, 256, 256, 128) concatenate3

conv2d19 Conv2D (None, 256, 256, 128) conv2d18

up_sampling2d4 UpSampling2D (None, 512, 512, 128) conv2d19

conv2d20 Conv2D (None, 512, 512, 64) up_sampling2d4

concatenate4 Concatenate (None, 512, 512, 128) conv2d2,
conv2d20

conv2d21 Conv2D (None, 512, 512, 64) concatenate4

conv2d22 Conv2D (None, 512, 512, 64) conv2d21

conv2d23 Conv2D (None, 512, 512, 2) conv2d22

conv2d24 Conv2D (None, 512, 512, 1) conv2d23

Table 5.6: Network architecture

The architecture for the experiments was taken from Ronneberger et al. [60]
and is described in Table 5.6. Note that the concatenation layers are connected to
two other layers - these are the skip connections. ReLU activations were used on
every layer except the last, which used a sigmoid activation. In addition, Adam was
used as optimizer, loss was calculated with binary crossentropy (Equation 3.7) and
keras accuracy metric (Equation 5.1) was used to calculate training accuracy during
training, with IOU scores calculated for each model at the end of the training phase.
In addition to Figure 4.1, dropout was added to the end of the downsampling part and
the beginning of the upsampling part of the U-net.

AWS SageMaker [4] was used for the training process. The training is done with
three-fold cross-validation technique, which separates the training data into three parts.
The same model is then trained three times (”over three folds”), using two thirds of
the data as training set and one third as a evaluation set. The parts which are in the
training set and in the evaluation set change for each fold. Cross-validation folds are
generated by Scikit-learn’s [56] K-Fold class. The model itself is compiled with Keras
[13] using a TensorFlow [1] backend. In the training phase, input images are shown to
the model in batches. An image generator is used to generate the batches for training.
The images as well as ground truth images are read from disk by Pillow [24] and then
translated into Numpy [50] arrays.

The datasets are augmented during batch generation. The augmentations are
applied randomly to 75% of the training images, and they are computed online (as op-

54 Chapter 5. Using U-net to segment drone images

posed to precomputing the augmentations). Furthermore, the parameters of the aug-
mentations are computed randomly for each batch. This leads to the situation where
the same input image could have multiple different augmentations applied to it in dif-
ferent epochs, or it could be presented without augmentations in one epoch, yet appear
augmented in another. The augmentations used for input images in are rotation, shear-
ing (shifting one corner of the image while the rest remain stationary), flipping, chang-
ing the hue and adding noise to the images. Ground truth images use only distortive
augmentations (i.https://hangouts.google.com/call/FiH7Xymzcr4KYIPvPBoFAAEIe.
rotation, shearing and flipping). It should be noted that the same distortions are used
for a (input, ground truth)-image pair. Imgaug [2] is used to generate the augmenta-
tions, with different spatial distortions applied both to the actual images and ground
truth images, but colour-affecting distortions only to the actual images.

When training single-class models, the ground truth images need to be cleaned
to contain only a boolean map of (”belongs to class”, ”does not belong to class”).
This is done separately for each ground truth image to enable usage of distortion
augmentations mentioned above. Technically it would be possible to calculate the
maps before training, which would save some time during training, but it drastically
limits the augmentation possibilities of the dataset and requires more hard drive space.
Because the datasets were already small, and hard drive space on cloud computing
systems are expensive, doing single-class mapping from general ground truth images
to specific class ground truth images was preferred.

Finally, the input images are normalized. Because Pillow reads the images as
8-bit RGB triplets, each pixel in the original input image are described as a triplet
(0-255, 0-255, 0-255). Each of the values is divided by 255 to normalize the values to a
range [0,1]. The single-class ground truth image described above already includes only
values between [0, 1], so further normalization was not necessary.

During the training, the default Keras accuracy function [69] (equation 5.1) was
used to measure the accuracy of the model.

accuracy(ytrue, ypred) = mean(equal(ytrue, round(ypred))), (5.1)

where ytrue is a vector of ground truth values, ypred is the vector of network guesses,
mean is a standard averaging function, round(x) is a standard elementwise rounding
function and equal is an elementwise equals function:

equal(x, y) =

1 if x = y,

0 if x 6= y
(5.2)

To calculate the loss, binary crossentropy (equation 3.7) was used.

5.2. Results 55

Training for biomass estimation task was done over 25 epochs, each of which goes
through the whole dataset once. For alien invasive species task 30 epochs were used
because during biomass estimation task it became apparent that some models could
have benefitted from longer training times. However, a TensorFlow EarlyStopping
module was used. If the test set loss metric plateaus for three consecutive epochs (five
for alien invasive species task), the training is considered to have reached a minimum
and is halted for said fold. Furthermore, the TensorFlow ModelCheckpoint module,
which is used for saving the model, saves the model at the end of an epoch, but only
if it has scored better on the test set loss metric than the previous saved model.

After each fold, IOU scores (see 4.1) are calculated for the model. This is achieved
by running the model against every image in the test set, calculating the IOU for the
prediction, and saving all of the IOU:s in a list. However, the model produces values
between (0, 1), inclusive, and IOU requires us to supply a true/false map of the image.
Thus, a threshold is required. If a pixel’s value is above this threshold, we consider this
pixel to belong to the class. Otherwise, we consider it to not belong to the class. While
relatively simple, this method makes the threshold a parameter in how successful our
model is considered to be. Essentially, the same model can get different IOU scores
depending on which threshold was chosen.

5.2 Results

This section presents the results of training a U-net model described in the beginning
of chapter 5 on the datasets described in Section 5.1.1. IOUs as well as training metrics
are provided and discussed. Due to the skewness of datasets each trained model will
be discussed separately. It should be noted that models for Solidago canadensis and
Solidago virgaurea were not trained because the dataset did not contain any examples
for these.

Due to the small amount of data, it was decided that 3-fold cross validation
IOUs were a suitable metric for measuring model success. This doesn’t yet provide
a statistically sound proof of model’s accuracy, but enables making good, informed
estimates.

Furthermore, some example predictions generated by the models are shown in
figures 5.38a through 5.40b. The figures depict a full-size image taken from Nuphar
lutea test set and run against the Nuphar lutea model. The predictions have been post-
processed in Affinity Photo [47] software to compensate for the distortion produced by
scaling down a full-sized prediction (around 5472x3648 pixels) image into 480x349 pixel
image. The correction was done by applying a level adjustment layer, increasing the
black level to 60% for each image. This results in dim colours becoming more vibrant

56 Chapter 5. Using U-net to segment drone images

Avg IOU
Potamogeton natans 0.856
Phragmites australis 0.814
Sparganium gramineum 0.742
Nuphar lutea 0.625
Sagittaria natans 0.445
Scripus 0.444
Persicaria amphibia 0.353
Sparganium emersum 0.113
Sagittaria sagittifolia 0.039
Hydrocharis morsus-ranae 0.018

Table 5.7: Average of IOU scores for biomass estimation models. 1 is the best possible score, 0 worst.

while not overexposing light colours. Notably all of the predictions display seams
around the 512x512 pixel tiles. This is a known feature of U-net architecture, and can
be corrected by using overlapping tiling strategy as presented by Ronneberger et al [60].
This process is depicted in Figure 5.37. Essentially, for each prediction, a padding
in each direction is used. The window is also moved 2 ∗ padding size less between
predictions, which results in the areas inside the paddings being used in prediction
twice. For example, in 5.37, the light red square corresponds to the a tile given to
the model for prediction, and bright red to the area that is used of the prediction.
Similarly, the light blue corresponds to the next tile given to the model for prediction,
and the dark blue to the area that ends up being used from that prediction. Using such
procedure for a whole input image should cut the number of seam lines in prediction
images. However, it was not implemented in this thesis due to it not being a finalised
product.

The example prediction in Figure 5.38a depicts a situation where the input image
contains a cluster of target class (Nuphar lutea), a cluster containing both Nuphar lutea
and other flora as well as a small cluster of other flora. As can be seen from 5.38b, the
model has fairly good results on this image. Some out-of-class flora have triggered a
small response (probably due to them being also green), and some members of Nuphar
lutea - especially those whose colouring is yellowish - trigger weaker response than a
truly robust model would, but in general the model behaves well. Similar success can
be seen in figures 5.39a and 5.39b, where input contains only Nuphar lutea. Figure
5.40a contains an input without any Nuphar lutea, but some non-target-class. As can
be seen in Figure 5.40b, the right-hand-side non-target-class flora has triggered a small
response, but one not on par with actual Nuphar lutea.

5.2. Results 57

Nuphar lu
tea

Hydrocha
ris morsus-ran

ae
Sagittaria

natans
Sagittaria

sagittifoli
a

Potamogeton natans

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or
e

Biomass estimation models’ IOU scores

Persicaria
amphibia

Sparganiu
m emersum

Sparganiu
m gramineum

Phragmites austr
alis Scirpus

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or
e

Figure 5.20: IOU scores for biomass estimation task.

5.2.1 Biomass estimation

The average IOUs for biomass estimation task are listed in table 5.7. As can be seen,
the results vary quite significantly from good (Potamogeton natan’s 0.856) to poor

58 Chapter 5. Using U-net to segment drone images

Lupinus p
olyphyllu

s
Rosa rugosa

Heracleum
persicum

Impatiens gl
andulifera

Reynoutr
ia japonica

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or
e

IAS models’ IOU scores

Figure 5.21: IOU scores for invasive alien species task.

(Hydrocharis morsus-ranae’s 0.018). Boxplots for IOUs with 95% confidence intervals
are reported in Figure 5.20. These reflect the results in table 5.7. However, it is clear
from the figure that each model has images it thrives on as well as images it has very
clear problems with. It is probable that the good results the poor models get in some
images result from input image overlapping. In this context, overlapping means that
there are some images in the dataset which have overlapping parts. If one of such
images ends up in the training set and the other in evaluation set, it is possible for the
model to have seen a part - albeit from a slightly different angle - of the evaluation
image during training, which would explain some of the high scores scored by poor

Avg IOU
Heracleum persicum 0.447
Reynoutria japonica 0.409
Impatiens glandulifera 0.407
Lupinus polyphyllus 0.374
Rosa rugosa 0.245

Table 5.8: Average of IOU scores for invasive alien species models. 1 is the best possible score, 0
worst.

5.2. Results 59

models.
Training metrics for biomass estimation models are given in Figure 5.22 through

5.31. As explained in Section 5.1.4, each model in biomass estimation task was trained
with three folds for 25 epochs with an early stop if the evaluation loss metric would
not improve during the last three epochs. As with the IOUs, the results vary. Nuphar
lutea and Potamogeton natans exhibit somewhat well-behaved training patterns in each
fold: they reach small losses and high accuracy with a logarithmic curve. However, the
models achieve good results suspiciously quickly: even the first epoch has relatively
high accuracy (> 0.6, >0.8 for Nuphar lutea). This might be explained by the problem
being relatively easy to begin with, as in biomass estimation task a good first guess is
to guess everything with correct colour to belong to these classes, and the shapes of
different classes being fairly distinct. However, this hypothesis was not tested.

On the other hand, Sagittaria natans, Scripus, Sparganium emersum, Sagittaria
sagittifolia and Hydrocharis morsus-ranae models have clear difficulties in converging
to a solution, probably due to small sample size. Phragmites australis has two folds
where the model has made almost no progress for a long time before quickly finding a
sweet spot and one fold where the spot was found quickly enough to make one suspect
some sort of problem in the training phase. Phragmites australis is also an example of
training which could have benefitted from more training: the two folds where training
continued for 25 epochs have clearly not yet converged. Sparganium gramineum has
a similar training pattern where two folds quickly get to high accuracy and small loss
on both training and validation sets, while the third struggles to learn the necessary
features.

5.2.2 Invasive alien species

In general, U-net didn’t fare as well in alien invasive species task as in biomass es-
timation. The IOUs for AIS task can be found in Figure 5.21 and Table 5.8. The
results are much more uniform compared to biomass estimation task, with the best av-
erage IOU scored by Heracleum persicum model (0.447) and the worst by Rosa rugosa
(0.245). However, the Heracleum persicum result is comparable to Sagittaria natans
and Potamogeton natans on biomass estimation task - neither of which behave very
well. Boxplots for IOUs with 95% confidence interval can be found in Figure 5.21.
As with biomass estimation task, some good results with generally poorly behaving
models could be explained by overlapping input images.

Training metrics for alien invasive species task are given in Figures 5.32 through
5.36. Unlike in biomass estimation task, alien invasive species models were given 30
epochs with early stopping after no improvement in evaluation loss for five consecu-

60 Chapter 5. Using U-net to segment drone images

tive epochs. Out of these training sessions, Rosa rugosa had no success whatsoever,
probably due to small training size (n = 17). Lupinus polyphyllus has one somewhat
promising fold (number two), but two which failed to learn significant features - again,
probably due to small sample size (n=820). However, this model looks like it is on a
verge of becoming good, and could’ve benefitted from better annotations, longer train-
ing time or more data. Same holds for Heracleum persicum and Impatiens glandulifera.
For Reynoutria japonica the training loss and evaluation loss graphs look good if some-
what slow to learn, but the accuracy graphs behave erratically. The conclusion is that
a small training set size (n=146) prevents the model from learning proper features.

In conclusion, the models behave well on select biomass estimation species, mainly
Potamogeton natans, Phragmites australis and Sparganium gramineum. None of the
alien invasive species models yield useful predictions. These results are probably a
combination of a few variables. Firstly, the base problem in biomass estimation is
easier. In this task, the probability for given pixel to be a plant versus water is highly
conditional on its colour, which provides a good guess in the first epochs. Easy base
features would also explain the high starting accuracies. However, in alien invasive
species task the class colour does not necessarily differ from out-of-class colour; the
grass next to Reynoutria japonica is still green. Second, the dataset contains more
examples of biomass estimation task images versus alien invasive species task images.
There are about as many examples of Impatiens glandulifera in the alien invasive species
dataset (2302 images, largest dataset in IAS task) as there are Nuphar lutea in the
biomass estimation dataset (2404 images, fourth-largest dataset in biomass estimation
task).

In this chapter, details on using the U-net architecture on finding segmentations
for drone images were given. The chapter begun with a description of the general
parameters of the test setup. It then presented the dataset used, as well as discussed
the problems in the dataset, such as missing or incorrect annotations. Potential ideas
on how to achieve better annotations in the future were presented. Then, a description
on how the models were trained and how well the training process went was given.
Overall, it looks like training went well for a few models, but most would require more
data to be useful.

Next, conclusions to this thesis are given.

5.2. Results 61

0.5

1.0

1.5
Lo

ss
Training loss by epoch Validation loss by epoch

0 10 20
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20
Epoch

Validation accuracy by epoch

Figure 5.22: Training metrics for Phragmites australis (training set size = 3069)

0.5

1.0

1.5

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20
Epoch

Validation accuracy by epoch

Figure 5.23: Training metrics for Potamogeton natans (training set size = 3919)

62 Chapter 5. Using U-net to segment drone images

0.5

1.0

1.5

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20
Epoch

Validation accuracy by epoch

Figure 5.24: Training metrics for Sparganium gramineum (training set size = 2760)

0.5

1.0

1.5

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20
Epoch

Validation accuracy by epoch

Figure 5.25: Training metrics for Nuphar lutea (training set size = 2404)

5.2. Results 63

0.5

1.0

1.5
Lo

ss
Training loss by epoch Validation loss by epoch

0 10 20
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20
Epoch

Validation accuracy by epoch

Figure 5.26: Training metrics for Sagittaria natans (training set size = 1019)

0.5

1.0

1.5

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20
Epoch

Validation accuracy by epoch

Figure 5.27: Training metrics for Persicaria amphibia (training set size = 942)

64 Chapter 5. Using U-net to segment drone images

0.5

1.0

1.5

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20
Epoch

Validation accuracy by epoch

Figure 5.28: Training metrics for Sparganium emersum (training set size = 656)

0.5

1.0

1.5

Lo
ss

Training loss by epoch Validation loss by epoch

2 4 6 8
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

2 4 6 8
Epoch

Validation accuracy by epoch

Figure 5.29: Training metrics for Potamogeton natans (training set size = 331)

5.2. Results 65

0.5

1.0

1.5
Lo

ss
Training loss by epoch Validation loss by epoch

0 10 20
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20
Epoch

Validation accuracy by epoch

Figure 5.30: Training metrics for Hydrocharis morsus-ranae (training set size = 84)

0.5

1.0

1.5

Lo
ss

Training loss by epoch Validation loss by epoch

2 4 6 8
Epoch

0.6

0.8

A
cc
ur
ac
y

Training accuracy by epoch

2 4 6 8
Epoch

Validation accuracy by epoch

Figure 5.31: Training metrics for Sagittaria Sagittifolia (training set size = 8)

66 Chapter 5. Using U-net to segment drone images

0.2

0.4

0.6

0.8

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20 30
Epoch

0.6

0.7

0.8

0.9

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20 30
Epoch

Validation accuracy by epoch

Figure 5.32: Training metrics for Impatiens glandulifera (training set size = 2302)

0.2

0.4

0.6

0.8

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20 30
Epoch

0.6

0.7

0.8

0.9

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20 30
Epoch

Validation accuracy by epoch

Figure 5.33: Training metrics for Heracleum persicum (training set size = 1555)

5.2. Results 67

0.2

0.4

0.6

0.8

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20 30
Epoch

0.6

0.7

0.8

0.9

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20 30
Epoch

Validation accuracy by epoch

Figure 5.34: Training metrics for Lupinus polyphyllus (training set size = 820)

0.2

0.4

0.6

0.8

Lo
ss

Training loss by epoch Validation loss by epoch

0 5 10 15 20
Epoch

0.6

0.7

0.8

0.9

A
cc
ur
ac
y

Training accuracy by epoch

0 5 10 15 20
Epoch

Validation accuracy by epoch

Figure 5.35: Training metrics for Reynoutica japanica (training set size = 146)

68 Chapter 5. Using U-net to segment drone images

0.2

0.4

0.6

0.8

Lo
ss

Training loss by epoch Validation loss by epoch

0 10 20 30
Epoch

0.6

0.7

0.8

0.9

A
cc
ur
ac
y

Training accuracy by epoch

0 10 20 30
Epoch

Validation accuracy by epoch

Figure 5.36: Training metrics for Rosa rugosa (training set size = 17)

Figure 5.37: Overlapping tiles strategy for seamless predictions

5.2. Results 69

(a) Original image (b) Prediction generated by U-net

Figure 5.38: Example image 1 has a cluster of water lilies left from the center and a cluster of water
lilies surrounded by other flora on the right side of the image

(a) Original image (b) Prediction generated by U-net

Figure 5.39: Example image 2 has a few clusters of water lilies as well as some Sparganium
gramineum.

(a) Original image (b) Prediction generated by U-net

Figure 5.40: Example image 3 has no water lilies, but does include a small cluster of Spar-
ganium gramineum in the top-right corner.

6. Conclusions

This thesis has examined U-net as a part of a method to solve the problem of scaling
surveillance of wildlife. This problem relates to two goals that SYKE has: to detect in-
vasive alien species, and to estimate lake biomass. If machine vision could be harnessed,
a drone could be flown over required areas and results be achieved with considerably
fewer human resources. The resulting images could then be fed to a semantic segmen-
tation model in order to know how much biomass or alien invasive species there are
in the image. This thesis presented these objectives in the introduction, which was
followed by a historical perspective on image segmentation.

Neural networks, and more specifically U-net were chosen as a technique due to
promising results they have yielded in other areas of computer vision. To give the reader
a better insight into the selected method, the anatomy of a dense feedforward network
and a convolutional network were given in chapter 3. Convolutional neural networks,
inspired by the mammalian visual cortex, have enjoyed tremendous success in image
classification and segmentation tasks. Out of these networks, the U-net architecture
[60] was selected as a prime candidate for accomplishing the task at hand. After
presenting the related work, this thesis moved from theory into practice by presenting
the training environment. A U-net model was trained for each class of interest.

6.1 On the relationship between model success and
dataset size

It is a well-known adage in machine learning that more data is better. This thesis is
no exception; as can be seen from 6.1, the relation between the IOU score (IAS models
in yellow, biomass estimation in purple) and the dataset size is almost linear. The
linear dependency is quite visible just by looking at the image, but to be more robust,
a Tikhonov regularization with two degrees of freedom was applied, resulting in the
green parabolic line in the figure. The coefficients for the estimator’s 0th, 1st and 2nd
degree members are 0, 2.33111815 ∗ 10−4 and −1.35940254 ∗ 10−8 respectively, which
further support the almost linear dependency interpretation. The parabolic nature of

71

72 Chapter 6. Conclusions

0 500 1000 1500 2000 2500 3000 3500 4000
Number of (512x512) example images

0.0

0.2

0.4

0.6

0.8

IO
U

sc
or
e

Nonlinear regression, 2nd degree polynomial
Biomass estimation
Invasive alien species

Figure 6.1: Model IOU scores by sample size

the curve is justified, however. Let us consider the two scenarios: in the first scenario,
no data is given to the model during training. This model will essentially guess a class
for each pixel. Given that we use a binary classifier it will, on average, guess that a
pixel belongs to the target class around 50% of the time. Thus, the average union
of model prediction and ground truth will consist of more than 50% of the pixels in
an image - 50% from prediction, and some number of pixels from the ground truth.
However, the intersection will be considerably smaller - around 50% of the pixels in
ground truth. For example, if a ground truth image of size 512px ∗ 512px would have
a 100px ∗ 100px area of target class in it, and the model would have a uniform guess,
the IOU score should be approximately

100 ∗ 100 ∗ 0.5
100 ∗ 100 + 412 ∗ 412 ∗ 0.5 ≈ 0.053.

Let us then consider the second scenario, where we have the perfect model. This model
would have an IOU score of one - the maximum IOU allows. As such, the curve has an
absolute plateau at 1. It is also believable that giving more data to an almost perfect
model is less effective than giving more data to a bad model; a good model already
knows the basic shapes and needs to learn the weird situations, which is hard. As such,
the idea of smooth parabolic climb to the plateau is justified.

One can also notice from Figure 6.1 that the models in invasive alien species
task do not seem to enjoy similar gains as the ones in biomass estimation. Due to
the problems of data listed in Section 5.1.1, one should be careful when drawing any

6.1. On the relationship between model success and dataset size 73

conclusions from this. Invasive alien species task didn’t have nearly the amount of
data seen in the best cases of biomass estimation tasks, which further exacerbates the
problem. However, it is also possible that the invasive alien species task is more difficult
for the U-net than biomass estimation. In biomass estimation, the single instances of
target classes are usually a separate colour compared to their background (ie. green
on a grey/blue/brown lake) and have clearly distinguishable shapes. In invasive alien
species task, the target class might well share a colour between its background (ie.
green leaves of Rosa rugosa and the grass next to it).

Yet a third interpretation of Figure 6.1 is that the problems regarding the dataset
listed in Section 5.1.1 might not be as critical as first thought. Even with somewhat
problematic annotations, the models with good amount of examples enjoyed good
results. The annotations do still create a little bit of tension in calculating the IOU
scores, however: even if the model would have learned to avoid lake pixels next to
target class, the IOU calculation would punish it for not also colouring said pixels. In
the general picture, this does not seem to matter much.

As a conclusion, neural networks with U-net architecture still seem a promising
method for achieving the two given tasks. Especially the top three models in biomass
estimation task seem to yield reasonable results. However, this thesis could not yet
demonstrate the usability of machine learning techniques beyond a reasonable doubt.
To make this claim, more data is needed. By looking at the Figure 6.1, it looks like
3000-4000 512x512 tiles per class would be an ideal target for future data gathering.
If this data is collected, it would be a good idea to provide the annotators with more
robust methods of annotating the data. One such tool would be to pre-select colour
ranges (typically green) in biomass estimation task, which would result in more accurate
annotations and less frustrating annotation process for the annotators. Furthermore, it
would interesting to research annotation fatigue and ways to combat it; annotation is
a tedious, repetitive task for a human to do, but vital for machine learning tasks. One
such research setting was introduced towards the end of Section 5.1.1. Essentially, the
research question would consider creating annotations similar to the ones seen in this
thesis. The hypothesis to be tested would be that presenting annotators with multiple
smaller images yields better annotations than presenting few smaller images due to
annotators not feeling overwhelmed by a single task. Initially, this hypothesis seems
to agree with results in motivational psychology. However, it would also be interesting
to see how fast the annotation process is done. It could be that the annotators who
are given the big pictures annotate more images in a given time period, and if they
annotate the images well enough, the vague annotations might overcome the few well-
done annotations by sheer volume.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] alejo. imgaug. https://github.com/aleju/imgaug. Version 0.4.0.

[3] Alexander Mordvintsev & Abid K. Image segmentation with watershed algo-
rithm. https://docs.opencv.org/master/d3/db4/tutorial_py_watershed.
html. Retrieved: 2020-02-13.

[4] Amazon.com. Aws sagemaker. https://aws.amazon.com/sagemaker/. Retrieved
31.7.2020.

[5] Aphex34. Max pooling with a 2x2 filter and stride = 2. https://en.wikipedia.
org/wiki/Convolutional_neural_network#/media/File:Max_pooling.png.
Retrieved 17.03.2019.

[6] R. A. ARMSTRONG. Remote sensing of submerged vegetation canopies for
biomass estimation. International Journal of Remote Sensing, 14(3):621–627,
1993.

[7] S. Beucher and F. Meyer. The morphological approach to segmentation: the
watershed transformation. Mathematical morphology in image processing, 34:433–
481, 1993.

[8] BVDrone Oy. BVDrone Oy. https://www.bvdrone.com/. Retrieved 31.7.2020.

[9] P. Cassey, T. M. Blackburn, R. P. Duncan, and S. L. Chown. Concerning invasive
species: Reply to Brown and Sax. Austral Ecology, 30(4):475–480, 2005.

75

https://github.com/aleju/imgaug
https://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html
https://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html
https://aws.amazon.com/sagemaker/
https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Max_pooling.png
https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Max_pooling.png
https://www.bvdrone.com/

76 References

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2018.

[11] H.-D. Cheng, X. H. Jiang, Y. Sun, and J. Wang. Color image segmentation:
advances and prospects. Pattern recognition, 34(12):2259–2281, 2001.

[12] M. F. Chislock, E. Doster, R. A. Zitomer, and A. E. Wilson. Eutrophication:
Causes, consequences, and controls in aquatic ecosystems. Nature Education
Knowledge, 4(4):10, 2013.

[13] F. Chollet et al. Keras. https://keras.io, 2015. Version 2.2.4.

[14] D. Cirecsan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep big simple
neural nets excel on hand-written digit recognition. arXiv: 1003.0358 v1, 2010.

[15] COCO Consortium. Coco 2015 object detection task. https://cocodataset.
org/#detection-2015. Retrieved 31.7.2020.

[16] COCO Consortium. Coco 2016 object detection task. https://cocodataset.
org/#detection-2016. Retrieved 31.7.2020.

[17] R. I. Colautti and H. J. MacIsaac. A neutral terminology to define ‘invasive’
species. Diversity and Distributions, 10(2):135–141, 2004.

[18] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7),
2011.

[19] Environmental Systems Research Institute. Arcgis. https://www.arcgis.com/
index.html.

[20] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results.
http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html.
Retrieved 31.7.2020.

[21] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results.
http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html.
Retrieved 31.7.2020.

https://keras.io
https://cocodataset.org/#detection-2015
https://cocodataset.org/#detection-2015
https://cocodataset.org/#detection-2016
https://cocodataset.org/#detection-2016
https://www.arcgis.com/index.html
https://www.arcgis.com/index.html

References 77

[22] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2011 (VOC2011) Results.
http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html.
Retrieved 31.7.2020.

[23] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2012 (VOC2011) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.
Retrieved 31.7.2020.

[24] A. C. Fredrik Lundh et al. Pillow. https://python-pillow.org/. Version 6.0.0.

[25] K.-S. Fu and J. Mui. A survey on image segmentation. Pattern recognition,
13(1):3–16, 1981.

[26] J. Garson. Connectionism. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, fall 2018 edition,
2018.

[27] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Bren-
del. Imagenet-trained cnns are biased towards texture; increasing shape bias im-
proves accuracy and robustness, 2018.

[28] Geoffrey Hinton. Lecture 6e RMSProp: Divide the gradient by a running av-
erage of its recent magnitude. http://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf. Retrieved 29.07.2020.

[29] J. M. Gonfaus, X. Boix, J. van de Weijer, A. D. Bagdanov, J. Serrat, and
J. Gonzàlez. Harmony potentials for joint classification and segmentation. In 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 3280–3287, 2010.

[30] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari. Do semantic parts emerge
in convolutional neural networks? International Journal of Computer Vision,
126(5):476–494, 2018.

[31] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[32] V. Grau, A. Mewes, M. Alcaniz, R. Kikinis, and S. K. Warfield. Improved wa-
tershed transform for medical image segmentation using prior information. IEEE
transactions on medical imaging, 23(4):447–458, 2004.

https://python-pillow.org/
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.deeplearningbook.org

78 References

[33] R. Harrabi and E. B. Braiek. Color image segmentation using multi-level thresh-
olding approach and data fusion techniques: application in the breast cancer cells
images. EURASIP Journal on Image and Video Processing, 2012(1):11, 2012.

[34] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[35] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recovering Occlusion Bound-
aries from a Single Image. IEEE 11th International Conference on Computer
Vision, 1 2007.

[36] IntelLabs. River tail documentation. http://intellabs.github.io/
RiverTrail/tutorial/. Retrieved 17.03.2019.

[37] ISBI. ISBI cell tracking challenge. http://celltrackingchallenge.net//. Re-
trieved 31.7.2020.

[38] N. R. Jachowski, M. S. Quak, D. A. Friess, D. Duangnamon, E. L. Webb, and
A. D. Ziegler. Mangrove biomass estimation in Southwest Thailand using machine
learning. Applied Geography, 45:311 – 321, 2013.

[39] Josef Steppan. Example MNIST images. https://commons.wikimedia.org/w/
index.php?curid=64810040. Retrieved 29.07.2020.

[40] P. Kaiser, J. D. Wegner, A. Lucchi, M. Jaggi, T. Hofmann, and K. Schindler.
Learning aerial image segmentation from online maps. IEEE Transactions on
Geoscience and Remote Sensing, 55(11):6054–6068, 2017.

[41] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[43] Laughsinthestocks. Activation funtions. https://en.wikipedia.org/wiki/
Activation_function. Retrieved 14.03.2019.

[44] A. Lehmann, J.-M. Jaquet, and J.-B. Lachavanne. Contribution of GIS to sub-
merged macrophyte biomass estimation and community structure modeling, lake
Geneva, Switzerland. Aquatic Botany, 47(2):99–117, 1994.

http://intellabs.github.io/RiverTrail/tutorial/
http://intellabs.github.io/RiverTrail/tutorial/
http://celltrackingchallenge.net//
https://commons.wikimedia.org/w/index.php?curid=64810040
https://commons.wikimedia.org/w/index.php?curid=64810040
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function

References 79

[45] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2117–2125, 2017.

[46] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[47] S. Ltd. Affinity photo. https://github.com/aleju/imgaug. Version 1.8.

[48] R. N. Mack, D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. A.
Bazzaz. Biotic invasions: Causes, epidemiology, global consequences, and control.
Ecological Applications, 10(3):689–710, 2000.

[49] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
http://www.neuralnetworksanddeeplearning.com.

[50] NumPy team. NumPy. https://numpy.org. Version 1.16.3.

[51] Nvidia Corporation. Accelerating hyperscale data center applica-
tions with Tesla GPUs. https://developer.nvidia.com/blog/
accelerating-hyperscale-datacenter-applications-tesla-gpus/. Re-
trieved 31.7.2020.

[52] Nvidia Corporation. GeForce GTX Titan (6GB). https://www.geforce.
com/hardware/desktop-gpus/geforce-gtx-titan/specifications. Retrieved
31.7.2020.

[53] D. Opitz and S. Blundell. Object recognition and image segmentation: the Feature
Analyst® approach, pages 153–167. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[54] N. R. Pal and S. K. Pal. A review on image segmentation techniques. Pattern
recognition, 26(9):1277–1294, 1993.

[55] Parliament of Finland. Act on managing the risk caused by alien species.
https://www.finlex.fi/en/laki/kaannokset/2015/en20151709, 2015. Retrieved:
2019-07-25.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
Version 0.19.0.

https://github.com/aleju/imgaug
http://www.neuralnetworksanddeeplearning.com
https://numpy.org
https://developer.nvidia.com/blog/accelerating-hyperscale-datacenter-applications-tesla-gpus/
https://developer.nvidia.com/blog/accelerating-hyperscale-datacenter-applications-tesla-gpus/
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan/specifications

80 References

[57] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association, 66(336):846–850, 1971.

[58] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time ob-
ject detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[59] Rewilding Europe. Bison rewilding plan. https://rewildingeurope.com/rewilding-
in-action/wildlife-comeback/bison/. Retrieved: 2020-02-13.

[60] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, page 234–241, 2015.

[61] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image cate-
gorization and segmentation. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8. IEEE, 2008.

[62] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image un-
derstanding: Multi-class object recognition and segmentation by jointly modeling
texture, layout, and context. International Journal of Computer Vision, 81(1):2–
23, 2009.

[63] T. Silva, M. Costa, and J. Melack. Assessment of two biomass estimation methods
for aquatic vegetation growing on the amazon floodplain. Aquatic Botany, 92:161–
167, 04 2010.

[64] M. Subramanian. Anthropocene now: influential panel votes to recognize earth’s
new epoch. https://www.nature.com/articles/d41586-019-01641-5, 2019. Re-
trieved: 2019-07-31.

[65] Textron Systems. The feature analyst. https://www.textronsystems.com/
products/feature-analyst.

[66] The European Parliament and Council. The european parliament and the coun-
cil regulation no 1143/2014 on the prevention and management of the intro-
duction and spread of invasive alien species. https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32014R1143&from=EN. Retrieved:
2019-07-31.

[67] The Finnish Government. Kansallinen vieraslajistrategia.
http://vieraslajit.fi/sites/default/files/Vieraslajistrategia_web.pdf#overlay-
context=fi/node/27. Retrieved: 2019-07-31.

https://www.textronsystems.com/products/feature-analyst
https://www.textronsystems.com/products/feature-analyst

References 81

[68] The Gimp Team. Gnu image manipulation program. https://www.gimp.org/.
Version: 20.10.14.

[69] The Keras team. Keras / metrics.py. https://github.com/keras-team/keras/
blob/master/keras/metrics.py. Retrieved: 2020-05-07.

[70] The OpenCV Team. Opencv. https://opencv.org/. Version: 3.4.9.

[71] M. Thoma. A survey of semantic segmentation. arXiv preprint arXiv:1602.06541,
2016.

[72] M. Treml, J. Arjona-Medina, T. Unterthiner, R. Durgesh, F. Friedmann, P. Schu-
berth, A. Mayr, M. Heusel, M. Hofmarcher, M. Widrich, et al. Speeding up seman-
tic segmentation for autonomous driving. In MLITS, NIPS Workshop, volume 2,
page 7, 2016.

[73] Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. Layered object models
for image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(9):1731–1743, 2012.

[74] Yann LeCun & Corinna Cortes & Christopher J.C. Burges. The MNIST database
of handwritten digits. http://yann.lecun.com/exdb/mnist/. Retrieved: 2020-
05-12.

[75] X. Zhang. On the estimation of biomass of submerged vegetation using land-
sat thematic mapper (tm) imagery: a case study of the honghu lake, pr china.
International Journal of Remote Sensing, 19(1):11–20, 1998.

[76] Y. Zhang, M. Brady, and S. Smith. Segmentation of brain mr images through a
hidden markov random field model and the expectation-maximization algorithm.
IEEE Transactions on Medical Imaging, 20(1):45–57, 2001.

[77] C. L. Zweig, M. A. Burgess, H. F. Percival, and W. M. Kitchens. Use of unmanned
aircraft systems to delineate fine-scale wetland vegetation communities. Wetlands,
35(2):303–309, 2015.

https://www.gimp.org/
https://github.com/keras-team/keras/blob/master/keras/metrics.py
https://github.com/keras-team/keras/blob/master/keras/metrics.py
https://opencv.org/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Related work
	Non-semantic segmentation methods
	Thresholding
	Watershed

	Semantic segmentation methods
	Biomass estimation methods

	Neural networks
	Structure of Neural Networks
	Dense feedforward neural networks
	Activation functions
	Training neural networks

	Convolutional Neural Networks

	Segmentation with neural networks
	Fully convolutional network
	Mask R-CNN
	U-net

	Using U-net to segment drone images
	Methodology
	Data
	Qualitative analysis of the dataset
	Preprosessing
	Training

	Results
	Biomass estimation
	Invasive alien species

	Conclusions
	On the relationship between model success and dataset size

	References

