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Abstract

Next-generation networks are expected to serve a wide range of use cases,
each of which features a set of diverse and stringent requirements. For
instance, video streaming and industrial automation are becoming more
and more prominent in our society, but while the first use case requires
high bandwidth, the second one mandates sub-millisecond latency. To ac-
commodate these requirements, networks must be flexible, i.e., they must
provide cost-efficient ways of adapting to different requirements. For ex-
ample, networks must be able to scale with the traffic load to support the
bandwidth requirements of the video streaming use case. In response to the
need for flexibility, the scientific community has proposed Software Defined
Networking (SDN), Network Function Virtualization (NFV), and network
slicing. SDN simplifies the management of networks by separating con-
trol plane and data plane, while NFV allows scaling the network functions
with the traffic load. Network slicing provides the operators with virtual
networks which can be tailored to meet the requirements of the use cases.

While these technologies pave the way towards network flexibility, the ca-
pability of networks to adapt to different use cases is still limited by several
inefficiencies. For example, to improve the scalability of network functions,
network operators use dedicated systems which manage the state of net-
work functions by keeping it in a data store. These systems are designed to
offer specific features, such as reliability or performance, which determine
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the data store adopted and the Application Programming Interface (API)
exposed to the network functions. Network operators need to change the
data store depending on the features required by the use case served, but
this operation involves refactoring the network functions, thus implying sig-
nificant costs. Furthermore, network operators need to migrate the network
functions, for example to minimize bandwidth usage during traffic peaks.
Nevertheless, network slices convey the traffic coming from a multitude of
sources through a small set of network functions, which are consequently
resource-hungry and difficult to migrate, forcing the network operator to
overprovision the network. Due to these inefficiencies, adapting the net-
work to different use cases requires a significant increase in both Capital
Expenditure (CapEx) and Operational Expenditure (OpEx), thus resulting
in a showstopper for network operators.

Addressing these inefficiencies would lower the costs of adapting networks
to different use cases, thus improving network flexibility. To this end, we
propose to decompose the network functions into fine-grained network func-
tions, each providing only a subset of the functionalities, or processing
only a share of the traffic, thus obtaining network functions which are
less resource-hungry, easier to migrate, and easier to upgrade. We exam-
ine three directions along which we can perform the decomposition. The
first direction is leveraging the networking planes, such as control and data
planes, for example separating the functionalities for packet processing from
the ones for network management. The second direction is leveraging the
sources and destinations of the traffic lowing through each network func-
tion and creating a dedicated network function for each source-destination
pair. The third direction is decoupling the state management of the network
functions from the data store by leveraging an API which is independent
from the data store adopted. We show that each decomposition addresses
a specific inefficiency. For example, decoupling the state management from
the data store enables network operators to change the data store adopted
without the need for refactoring the network functions.

Decomposing network functions also brings some drawbacks. For exam-
ple, it can result in an increase of the number of network functions, thus
making network management tasks, such as network reconfiguration, more
challenging. We study two key drawbacks and we discuss the solutions
we designed to contrast them. In this thesis, we show that decomposing
network functions allows improving network flexibility, but it must be com-
plemented with techniques to mitigate any negative side effect.
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Chapter 1

Introduction

Our society is witnessing the proliferation of IT-based services which are
changing an increasing number of aspects in our lives, ranging from work to
leisure time. An example of these services is home entertainment through
on-demand High Definition (HD) video streaming, whose number of users
has increased exponentially in the last years [31,95]. Another example is
industrial automation, which can dramatically improve productivity and
reduce the rate of human-made errors [65]. All these services are char-
acterized by a different set of requirements which the IT infrastructure
providing the services must meet. For example, video streaming requires
a significant amount of bandwidth between the device playing the video
and the server delivering it, while industrial automation requires accurate
synchronization of the actuators, which must experience no delays in their
communication [83]. As we can see, the most stringent requirements involve
the network connecting the appliances providing the service. Networks are
thus expected to be capable of meeting all these requirements, imposing
non-trivial challenges in their design and maintenance.

To accommodate this multitude of different requirements, networks
must be flexible. For example, a network operator should have the pos-
sibility to customize the granularity of the network functions, i.e., the set
of operations they perform and the kind of traffic they are in charge of.
In this way, latency-sensitive operations, e.g., changing the packet header,
can be decoupled from the non-critical operations, e.g., reporting statis-
tics, so the first ones are migrated closer to the users, while the second ones
are performed in the cloud. More generally, we consider a network to be
flexible if a network operator can tune the granularity, the scale, and the lo-
cation of the network functions as desired without incurring excessive costs
in terms of capital or time. As an example, a flexible network is capable
of adapting to a varying traffic load, e.g., scaling up and down the network
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2 1 INTRODUCTION

functions, and to meet stringent latency requirements, e.g., migrating the
network functions towards the edge of the network, without undergoing
time-consuming and expensive upgrade procedures.

In the last years, the scientific community has proposed two main tech-
niques to improve the flexibility of networks, namely Software Defined Net-
working (SDN) [70] and Network Function Virtualization (NFV) [39]. SDN
reduces the granularity of the network functions by separating the data
plane from the control plane and proposing to centralize the control plane,
thus making networks more easy to configure. NFV improves the ability
to scale the network functions in a cost-efficient manner by virtualizing
network functions into software-only entities which can be run on general-
purpose computing nodes. Lastly, the forthcoming 5 Generation (5G)
mobile technology improves network flexibility by leveraging network slic-
ing, which prescribes having isolated groups of network functions for each
service. In this way, network operators can tailor the scale and the location
of the network functions of each network slice to meet the requirements of
the service provided. Network slicing is expected to be the key enabler to
meet the stringent requirements of the aforementioned services [36,47,76],
the reason for which these services are known as the 5G use cases [18].
Figure 1.1 summarizes the benefits brought by each of the technology ad-
vancements.

Regardless of their purpose, network functions feature the same under-
lying architecture in Figure 1.2, which we use as a reference for the rest
of the thesis. A Network Function (NF) is typically virtualized, i.e., it
runs on general-purpose computing nodes and it is instantiated through a
variable number of NF instances, which are virtualized either as traditional
Virtual Machines (VMs) or as containers. Henceforth, we use network func-
tion and Virtual Network Function (VNF) interchangeably.! Each network
function consists of the packet processing logic and the state management.
The packet processing logic comprises the functionalities provided by the
network function, i.e., the operations that are executed when packets flow
through the network function. For example, a network function performing
Network Address Translation (NAT), simply referred to as NAT, changes
the source IP address and port of each packet going from the private net-
work out to the Internet using an assigned (IP address, port) pair. The
state management deals with the handling of state information. For exam-
ple, a NAT stores the (IP address, port) pairs that have been assigned to
the packets going from the private network to the Internet so that when a

"We use the term legacy network functions when we explicitly refer to non-virtualized
network functions.
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reply arrives it can be forwarded to the requester. The state management
stores the state information in a data store, which can correspond to a

simple in-memory data structure as well as to a more complex system, e.g.,
a Distributed Hash Table (DHT).

The adoption of NFV allows i) migrating network functions across the
computing nodes in the network, as well as ii) running several network
functions in the same computing node, an operation also called coalescing,
or co-location, of the network functions. Note that we consider migrating
a network function as migrating all its NF instances, unless we explicitly
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Figure 1.2: A Network Function (NF) comprises a variable number of NF
instances, each of which is virtualized, e.g., as a Virtual Machine (VM)
or a container. Kach network function consists of the packet processing
logic and the state management. The packet processing logic comprises
the functionalities of the network function, e.g., modifying fields in the
packet header in case of Network Address Translation (NAT). The state
management handles state information, e.g., packet counters, by storing it
in a data store.

mention that we consider a different type of migration, e.g., migrating each
NF instance individually. Note also that if i) two network functions send
traffic to each other, and ii) the network functions are co-located in the
same computing node, then we assume the traffic exchanged between the
network functions does not leave the computing node and thus it does not
consume bandwidth of the links in the network.

1.1 Motivation

Despite the flexibility provided by current technologies, network operators
are still facing major issues in their networks for which they incur high
costs. For example, due to the rise in the number of mobile subscriptions
and the increasing usage of messaging applications in the last years, Long
Term Evolution (LTE) networks incur signaling overheads [35]. Network
operators still adopt legacy network functions, which i) provide functional-
ities of different networking planes, e.g., both control and data planes, and
ii) offer no options for customizing the functionalities provided, e.g., sepa-
rating the functionalities of the control plane from the functionalities of the
data plane. As a result, these legacy network functions require specialized
platforms and they cannot be easily scaled, hence the signaling overheads,
which cause degraded performance and consequently high costs for network
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operators [23]. Another example is the limited options that network opera-
tors have in organizing the traffic going through a set of network functions.
When considering a network slice, the network functions must process the
whole traffic flowing between several base stations and several gateways,
which makes network functions resource-hungry and difficult to migrate.
Network operators have difficulties in migrating these network functions,
e.g., moving them towards the edge of the network to meet latency require-
ments, ultimately leading to resource wastage in the network and revenue
loss. Finally, the state management of network functions is currently tightly
coupled with the data store adopted for storing the state information. In
this context, a network operator cannot upgrade the data store required
for a specific use case without refactoring the network functions, which is
a time-consuming and error-prone operation [43,61].

These examples show that current networks are still inflexible because
their ability to adapt to different requirements involves high costs. Achiev-
ing network flexibility requires addressing the described problems to make
the adaptation to different requirements more cost-efficient. Note that, due
to the upcoming advent of 5G technology, the ability to meet stringent and
distinct requirements is expected from the new generation of mobile net-
works. For this reason, in this thesis we consider mainly mobile networks
and network slicing, but the concepts we illustrate can be applied to any
kind of network.

1.2 Problem Statement and Methodology

In this thesis, we focus on three sources of inflexibility, namely signaling
overheads, resource wastage, and data store lock-in. In the following, we
describe how each of the three sources affects network flexibility.

Signaling overheads. The legacy network functions composing mobile
networks incur signaling overheads when the number of active users in-
creases, and scaling these legacy network functions is often expensive [82].
The problem stems from the fact that these legacy network functions pro-
vide a multitude of functionalities that belong to different networking planes.
For example, the Serving Gateway (S-GW) and the Packet Data Network
Gateway (P-GW) of LTE networks provides both control-plane functionali-
ties, e.g., assignment and maintenance of the identifiers of GPRS Tunnelling
Protocol (GTP) tunnels, and data-plane functionalities, e.g., enforcement
of Quality of Service (QoS) rules and forwarding of the packets [12]. A sud-
den spike in requests for one functionality requires either to drop requests
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when hitting the processing limit, or to scale the entire network function,
including under-loaded functionalities [56].

Resource wastage. FEach network slice acts as a bridge for the traffic
between several ingress points, i.e., base stations [42], and several egress
points, i.e., gateways to the Internet [50,51,86]. The uplink traffic is con-
veyed from the ingress points to a limited group of network functions, which
process the traffic and send it out towards the egress points, while the
downlink traffic follows the same path but in the opposite direction [16].
This organization featuring many ingress nodes, a few network functions,
and many egress nodes, results in network functions which require a high
amount of resources, e.g., CPU and memory, to process the entire traffic. It
is thus challenging to migrate the network functions in the network, e.g., to
make room for an additional network slice, to move the network functions
towards the edge for meeting latency requirements, or to save bandwidth
by coalescing the network functions in the same computing node. This
limited mobility of the network functions leads to resource wastage, which
ultimately forces the network operator to deny the hosting of additional
network slices in the network. In this context, overprovisioning the net-
work is the only way a network operator has to accommodate new requests
for hosting network slices.

Data store lock-in. Managing network functions’ state, e.g., packet
counters, is hard because the state is potentially accessed and modified
by many NF instances simultaneously [43]. For this reason, network oper-
ators make use of specific state management systems, which take care of
tasks such as ensuring the consistency of the state across the NF instances.
To store the state of network functions, these systems internally use a data
store, which is chosen depending on the requirements the system is de-
signed to meet, e.g., reliability [57] or performance [101]. Moreover, these
systems expose an API that network functions use to access and modify the
state. The API used by the network functions is highly influenced by the
data store used by the state management system, which results in having
the network functions tightly coupled with the data store. Nevertheless,
network operators need to change the data store adopted when the require-
ments of the use cases are different, but currently this operation is not
possible without refactoring the network functions for the new data store,
and thus incurring significant costs.

Making networks more flexible requires developing new solutions to ad-
dress the problems we described. More specifically, we argue that the way to
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master these problems is leveraging fine-grained network functions, which
we obtain by decomposing each of the network functions, i.e., distributing
its functionalities or its traffic among a number of network functions. The
intuition behind is that fine-grained network functions are less resource-
demanding [59], easier to orchestrate [92], and easier to upgrade [21], thus
providing an additional tool to the network operator for tailoring the net-
work to meet the requirements of the use cases. Before exploring the va-
lidity of our intuition, the first step to solve the described problems is
performing a literature review to get a complete picture about the state of
the art and to make sure a solution has not been found yet. We formulate
our first research question.

RQ1. What are the state-of-the-art techniques to improve network flex-
ibility?

To answer the question, we survey both academic and industrial lit-
erature, and we examine proposals and prototypes which are explicitly
designed to provide flexibility. If the scientific literature already provides
cost-effective ways of achieving network flexibility, then we can consider
applying these techniques to solve the aforementioned problems. Other-
wise, we can conclude that no solution is available yet, and we thus need to
design, implement, and evaluate new solutions for the described problems.
In this case, we need to make sure that the assumptions and data we use
to represent a mobile network and the requirements of the 5G use cases are
realistic, leading us to the second research question.

RQ2. How can we faithfully represent a mobile network and the require-
ments of the 5G use cases?

Given the scarcity of real-world deployment of 5G networks, we collect
information from technical documentation, measurements on testbeds, and
we confirm our data with experts in the field.

The answers to RQ1 and RQ2 provide the tools needed for the second
phase of our research activity, i.e., designing solutions for the aforemen-
tioned problems to improve the flexibility of the network. As previously
mentioned, we examine ways of decomposing the network functions into
fine-grained network functions; more specifically, we examine a different
way of performing network function decomposition for each of the prob-
lems considered. First, we consider the problem of the signaling overheads
affecting LTE networks. We propose to decompose the network functions
using the networking planes, thus creating network functions providing a
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smaller number of functionalities, all having the same requirements, e.g.,
CPU-bounded or I/O-bounded.

RQ3. Can we efficiently mitigate signaling overheads by decomposing
the network functions using the networking planes?

Decomposing network functions may trigger the need for additional sig-
nals because the newly made fine-grained network functions communicate
with each other as well, thus apparently worsening the problem. Neverthe-
less, once network functions are decomposed using the networking planes,
we can assess the benefits of coalescing the network functions that commu-
nicate the most in the same computing node, thus preventing the signals
from flowing on the network links. We thus design a network architec-
ture made of network functions which we decomposed using the networking
planes, and we experiment with different ways of instantiating the obtained
network functions to reduce the signaling overhead.

To solve the problem of resource wastage in network slicing, we consider
the following intuition. If we decompose each network function into network
functions which are tailored for a specific pair of ingress and egress nodes,
i.e., processing the traffic flowing between the two nodes only, then the
demand for resources of each network function is smaller. As a consequence,
the obtained network functions are easier to migrate and easier to fit in the
computing nodes of the network, offering more options for optimizing the
usage of network resources, e.g., coalescing the network functions to save
bandwidth.

RQ4. Can we optimize the usage of network resources by decomposing
the network functions using sources and destinations of the traffic?

We design and implement an Integer Linear Programming (ILP) model
to instantiate network slices in the network while saving as much band-
width as possible. We then compared the amount of bandwidth saved
when adopting normal network slicing and when decomposing the network
functions of each network slice instead.

Lastly, we examined the problem of the data store lock-in that network
operators incur in the management of the state in network functions.

RQ5. Can we adapt the network functions to different use cases by
changing the data store used for managing the state in an effi-
cient manner?
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We propose to decouple the state management of the network functions
from the data store so that i) the packet processing logic is independent
from the data store used for state management, and ii) substituting the
data store requires minimal efforts, e.g., changing a configuration file. We
design an API that the packet processing logic of a network function can
use to access and modify the state. The API is complemented with a series
of data store drivers, which take care of translating the API calls into data-
store-specific query language, thus keeping the API transparent to the data
store actually used for managing the state. The decoupling should also not
compromise the ability of network functions to scale. We decompose two
network functions using the proposed approach and we test their ability to
scale.

Decomposing network functions seems a promising approach to solve
the aforementioned problems, but it also brings some intuitive drawbacks
that must be addressed. First, decomposing a network function originally
designed to work as a single system often implies a loss in performance,
which can be unacceptable in certain contexts [64,101]. For example, when
decoupling the state management in network functions from the data store
adopted, we need to ensure that the resulting performances are as close as
possible to the performance before the decomposition.

RQ6. Can we decouple the state management in network functions from
the data store adopted and preserve line-rate performance?

To answer this research question, we re-design the network functions to
include performance optimizations which allow approaching line-rate packet
processing?.

Another intuitive drawback of network function decomposition is that it
can result in an increase of the number of network functions in the network,
which makes more cumbersome certain network management tasks. For
example, reconfiguring a network involves migrating the instances of its
network functions to obtain a more desirable configuration, e.g., minimizing
bandwidth wastage or maximizing spare computing resources. The increase
in the number of network functions due to network function decomposition,
combined with the stringent requirements of 5G use cases, makes network
reconfiguration more cumbersome, thus triggering the following research
question.

2In this thesis, we consider line-rate packet processing as the packet processing rate
recorded by network functions using state-of-the-art state management systems, which
generally corresponds to values around 10 Million packets per second (Mpps).
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RQ7. How can we reconfigure networks with a high number of network
functions?

We design an algorithm that scales with the resources available on the
computing platform, and we evaluate its ability to find solutions to the
problem when compared with traditional reconfiguration algorithms.

In this thesis, we aim to provide an answer to the seven research ques-
tions we formulated. Table 1.1 summarizes the research questions and the
methodology adopted to answer them.

1.3 Thesis Contributions

The contributions of this thesis can be summarized as follows:

e We provide a detailed analysis of the state-of-the-art techniques to
provide flexibility in networks. More specifically, we focus on exam-
ining and classifying Networks-In-a-Box (NIBs), which are networked
systems explicitly designed to provide connectivity in a range of dif-
ferent scenarios, such as the aftermath of a natural disaster or over-
seas flights. We also collect information from a range of trustworthy
sources, such as scientific and technical documentation, to provide
an input dataset for studying problems in mobile networks. The
dataset includes inputs for the substrate network, e.g., computing
nodes and links, for the virtual network, e.g., network functions and
virtual links, and for the requirements of the use cases, for example
in terms of bandwidth and latency.

o We detail techniques to decompose the network functions that can be
used to address three key problems stemming from the inflexibility
of current networks, namely signaling overheads, resource wastage,
and inability to change the data store used for state management of
network functions. We provide evidence that the proposed techniques
are indeed effective in solving the described problems by comparing
the proposed techniques with the state of the art. In particular, we
provide i) an ILP model that exemplifies the benefits of decomposing
the network functions considering the sources and destinations of traf-
fic, and ii) a system comprising an API and a set of data store drivers
that allows decoupling the state management of network functions
from the data store used for storing state information.

e We provide a set of tools to mitigate the drawbacks of decomposing
network functions, such as drops in performance and managing a po-



figure networks with a high
number of network functions?

uate a scalable algorithm for
network reconfiguration.

1.3 Thesis Contributions 11
Ch. | Research Questions Methodology Publ.
RQ1: What are the state-of- | Survey scientific and indus- P2
3 the-art techniques to improve | trial literature.
§ network flexibility?
2 | RQ2: How can we faithfully | Gather information from sci- | P3, P4
Q . . . .
r:cg represent a mobile network | entific documentation, inter-
and the requirements of the | views with experts, and mea-
5G use cases? surements on testbeds.
RQ3: Can we efficiently | Analyze the amount of signals P1
a mitigate signaling overheads | saved when adopting decom-
% by decomposing the network | posed network functions.
= functions using the network-
| ing planes?
”g RQ4: Can we optimize the | Design and implement an P3
E usage of network resources | ILP model, and evaluate the
2 by decomposing the network | amount of resources saved.
e | functions using sources and
Z destinations of the traffic?
5 RQ5: Can we adapt the net- | Design a scalable, data-store- M1
g work functions to different use | independent system for ac-
8 cases by changing the data | cessing and modifying the
store used for managing the | network function state.
state in an efficient manner?
@ RQ6: Can we decouple the | Design, implement, and eval- M1
;% state management in network | uate performance optimiza-
8 functions from the data store | tions for the network func-
E adopted and preserve line- | tions.
jo rate performance?
g RQ7: How can we recon- | Design, implement, and eval- P4
=
<

Table 1.1: The research questions addressed in the thesis. For each re-
search question, we indicate the chapter (Ch.) in which it is discussed, the
methodology adopted for formulating an answer, and the publication(s)
reporting the details of the work.
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tentially higher number of network functions in the network. More
specifically, we provide i) a range of performance optimizations for
network functions to enable line-rate packet processing when the state
management is decoupled from the data store adopted, and ii) a scal-
able algorithm for reconfiguring networks involving a high number of
network functions.

The contributions are described in four publications and one manuscript,
which is currently under submission. In the following, we report the details
of the publications and the manuscript, highlighting the specific contri-
butions of the author as well. The publications and the manuscript are
appended to the thesis.

Publication 1 (P1): Matteo Pozza, Ashwin Rao, Armir Bujari, Hannu
Flinck, Claudio Enrico Palazzi, and Sasu Tarkoma, “A Refactoring Ap-
proach for Optimizing Mobile Networks,” In IEEE International Confer-
ence on Communications, ICC 2017, Paris, France, May 21-25, 2017, pages
1-6. TEEE, 2017.

Contribution: The original idea of the work was conceived during a dis-
cussion with Ashwin Rao and Sasu Tarkoma. The author developed the
idea by studying the original LTE architecture and designing the refactored
mobile architecture and the signals required between the modules. The au-
thor also performed the analysis and obtained the results reported in the
paper. The author and Ashwin Rao wrote the paper, while the other au-
thors provided feedback throughout all the phases of the work.

Publication 2 (P2): Matteo Pozza, Ashwin Rao, Hannu Flinck, and
Sasu Tarkoma, “Network-In-a-Box: A Survey About On-demand Flexible
Networks,” IEEE Communications Surveys and Tutorials, 20(3):2407-2428,
2018.

Contribution: All listed authors contributed to the conception of the idea.
The author performed the literature review by collecting and analyzing the
scientific and technical documentation. The author also wrote the majority
of the paper. The other authors provided feedback on the development of
the work and on the paper writing.

Publication 3 (P3): Matteo Pozza, Akanksha Patel, Ashwin Rao, Hannu
Flinck, and Sasu Tarkoma, “Composing 5G Network Slices by Co-locating
VNFs in puslices,” In 2019 IFIP Networking Conference, Networking 2019,
Warsaw, Poland, May 20-22, 2019, pages 1-9. IEEE, 2019.
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Contribution: The idea was conceived by Akanksha Patel and Ashwin
Rao. The author performed the literature review of the state of the art,
while Akanksha Patel designed a preliminary version of the ILP model. The
author improved, implemented, and evaluated the ILP model. The author
and Ashwin Rao wrote the paper, while the other authors provided feedback
in all the phases of the work.

Publication 4 (P4): Matteo Pozza, Patrick Kevin Nicholson, Diego Lu-
gones, Ashwin Rao, Hannu Flinck, and Sasu Tarkoma, “On Reconfiguring
5G Network Slices,” IEEE Journal on Selected Areas in Communications,
38(7):1542-1554, 2020.

Contribution: The author performed the literature review of the state of
the art, while the idea was conceived thanks to the participation of all the
authors. The author, Diego Lugones, and Patrick Kevin Nicholson together
developed the core of the idea and the algorithm. The author implemented
and evaluated the algorithm. The author also wrote the majority of the
paper, while all other authors provided feedback in all the phases of the
work.

Manuscript 1 (M1): Matteo Pozza, Ashwin Rao, Diego Lugones, and
Sasu Tarkoma, “FlexState: Enabling Innovation in Network Function State
Management,” Manuscript available at: https://arxiv.org/abs/2003.
10869

Contribution: The author performed the literature review of the state of
the art, while the idea was conceived thanks to the participation of all the
authors. The author and Ashwin Rao developed the idea, integrating the
feedback from Diego Lugones in the process. The author created the testbed
for the evaluation, and implemented and evaluated the system for network
functions and the designed performance optimizations. The author wrote
the magority of the paper, while the other authors provided feedback in all
the phases of the work.

1.4 Thesis Structure

The rest of the thesis is organized as follows. Chapter 2 illustrates the re-
sults of our literature review about the state-of-the-art techniques for pro-
viding network flexibility. The chapter highlights the limitations of these
techniques, shedding light on potential avenues for improving network flexi-
bility. The chapter also illustrates the information we gathered to represent
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a mobile network and its use cases in our experiments. Chapter 3 devel-
ops the core of the thesis, i.e., leveraging network function decomposition
to improve flexibility in networks. We illustrate the severe inefficiencies
affecting networks and the three directions we explore to decompose net-
work functions. In Chapter 4 we discuss the double-edged sword of net-
work function decomposition: the benefits brought by the decomposition
are counterbalanced by drawbacks, which either introduce new problems
or worsen pre-existing problems. In this context, we present two key prob-
lems stemming from network function decomposition and the solutions we
designed to mitigate such problems. Finally, in Chapter 5, we summarize
the outcomes of the thesis, its contributions to the state of the art, and we
discuss directions for future work on the topic.



Chapter 2

Background

In this chapter, we describe two preliminary studies we have conducted in
preparation for the main topic of the thesis, i.e., improving network flexi-
bility by decomposing network functions. First, we performed a literature
review to examine the state of the art in terms of techniques to provide
network flexibility. After we identified that the state-of-the-art techniques
we analyzed were insufficient to meet the requirements of 5G use cases,
we gathered information from scientific documentation, interviews with ex-
perts, and measurements in our testbed to obtain two datasets to represent
realistic mobile networks in our experiments.

2.1 State of the Art in Network Flexibility

We performed a survey that was aimed at finding state-of-the-art networked
systems that are designed to provide flexibility. The ultimate goal of the
survey is to assess if such systems are enough to meet the stringent and
diverse requirements of the 5G use cases. To identify these systems, we
first need to identify which the use cases are that are known for triggering
a need for flexibility in the network. We identified the following use cases.

After-Disaster Scenario. One of the main use cases for a flexible net-
work is in the aftermath of events such as an earthquakes, tsunamis, or
terrorist attacks. These events tend to cause significant damages to the
telecommunication infrastructure, and can often result in the network be-
ing unusable to the survivors and the rescue teams [8,55]. Since repairing
the pre-existing network typically requires excessive time [72], there is a
need for a networked system that complements its working parts, or sub-
stitutes it completely. Therefore, the system must be able to selectively

15
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activate, deactivate, and migrate its network functions depending on which
functionalities are still working in the original network. In addition, given
the significant traffic increase in the hours immediately following the dis-
aster [62], the network functions of the system should be able to scale with
the traffic load.

Connectivity Provisioning in Challenging Contexts. Despite the
ever increasing proliferation of connectivity across the world, there are spe-
cific scenarios in which providing access to the Internet is still challenging.
The most indicative example is providing connectivity to villages in devel-
oping countries, or villages with particularly harsh climate conditions. Net-
work operators are typically not interested in deploying their infrastructure
in such villages because the upfront expense is higher than the expected
revenue [78]. Also, providing connectivity in flights or ships is challeng-
ing due to the limited space available for the actual network deployment
and the difficulties in connecting to the rest of the Internet [32]. In these
scenarios, the network should provide the ability to run the most critical
network functions where the resources available are very limited, e.g., in the
aircraft, and to migrate the non-critical network functions where resources
are more plentiful, e.g., in the cloud. Moreover, the network must offer
this capability in a cost-efficient manner because the available capital for
deploying and maintaining the network is typically limited [38].

Tactical Network. Soldiers on a mission need a network to communi-
cate and organize among themselves. At the same time, they cannot use
the public telecommunication infrastructure for various reasons. First, the
telecommunication infrastructure is likely to be damaged in the battlefield.
Second, even if the infrastructure is properly working, it could be damaged
or tapped by the enemy at any time, thus, using it would represent a threat
for the soldiers [24]. Therefore, the network required by soldiers i) must
be private and ii) it must allow migrating the network functions into a few
computing nodes, which in turn may also be capable of moving.

Flash Crowds. Situations such as concerts or popular sport events de-
termine sudden spikes in the traffic load in the network due to the high
number of users concentrated in a limited geographical area [69]. In these
contexts, the network is not only required to scale adequately, but it must
allow the network operator to select the specific network functions to scale,
depending on how the new users are utilizing network services.
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Both industry and academia have proposed several solutions to meet
the requirements of one or more of these use cases. Among the proposed
solutions, the one we identified as the most suitable to meet also the re-
quirement of the 5G use cases is the idea of a Network-In-a-Box (NIB). As
we show in Subsection 2.1.2, we can indeed leverage several NIBs to obtain
a meta-network whose network functions can be scaled and migrated as
needed. In the following, we describe the NIB concept, we illustrate its
relationship with the flexibility required by 5G use cases in detail, and we
discuss its limitations.

2.1.1 Network-In-a-Box

A Network-In-a-Box (NIB) is a portable system that encapsulates an ar-
bitrary set of network functions. The primary goal of a NIB is to substi-
tute, complement, or improve a pre-existing telecommunication network.
The network functions that are either missing or insufficient in the original
network, e.g., due to the damages of a natural disaster, are replaced or
integrated by the network functions hosted in the NIB. For example, the
NIB could substitute the Evolved Packet Core (EPC) of an LTE network
if the base stations are suddenly detached from the core network [81].

As shown in Figure 2.1, we can abstract three communication channels
in a NIB. The first one is the channel used for service provisioning, which
targets the end users of the network, e.g., survivors in an after-disaster
scenario. The second one is the backhauling channel, which connects the
NIB to an external network, e.g., the Internet. The last channel is the in-
teroperability channel, which the NIB uses to connect to network functions
of the pre-existing network or to other NIBs. Each channel can be imple-
mented through a variety of technologies, depending on the use cases the
NIB is used for. For example, the service provisioning channel can be imple-
mented using the 2"? Generation (2G) technology to maximize the number
of users [99,102], while the backhauling channel can be implemented using
a satellite link to minimize the dependencies with any pre-existing net-
work [30,97]. Note also that the communication channels might or might
not be implemented by a NIB. For example, a NIB that substitutes an entire
LTE network does not need to implement the interoperability channel.

We identified three key features characterizing NIBs, namely ease of
deployment, edge services, and Self-Organizing Network (SON) principles.
In the following, we provide a short summary for each of these key feature.

Ease of Deployment. Given that the majority of its use cases feature a
tight time budget, a NIB is often evaluated on how easily and how fast it can
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Figure 2.1: A Network-In-a-Box (NIB) has three communication channels:
towards the end users (service provisioning), towards the Internet (back-
hauling), and towards other components of the telecommunication infras-
tructure or other NIBs (interoperability). Illustration from Publication 2.

be deployed. The deployment involves two phases, i) placing the physical
components of the NIB, and ii) configuring them. Factors that play a role
in determining the ease of deployment are thus the number of physical
elements composing the NIB, their volume and weight, the transport mean
to perform their placement, e.g., backpack or aerial platform [25], and the
time they require to be configured.

Edge Services. NIBs typically provide to the end users services that are
run locally at the NIB, which are called edge services because the NIB op-
erates at the edge of the network. These services include general-purpose
services, such as firewalling, public safety services, such as Push-To-Talk
(PTT) communication [26], and security services, such as jamming avoid-
ance [24]. There are several reasons for which NIBs provide edge services.
The first one is that the services involve the end users communicating only
with the NIB, making the service independent from any server in an ex-
ternal network and improving its reliability. Edge services also limit the
communication over the backhauling link, which collects the traffic from
all the end users and is thus likely to become the bottleneck of the NIB.
Finally, the services are typically used only by the end users of the NIB,
thus it is preferred to run them locally to the NIB.
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Self-Organizing Network (SON) Principles. Manufacturers often
design NIBs following the SON principles, according to which the net-
work should require minimal human intervention for tasks such as initial
deployment (self-configuration), adaptability to the workload at run-time
(self-optimization), and recovery from failures (self-healing). NIBs follow-
ing the SON principles include services such as Automatic Neighbor Rela-
tion (ANR), which allows the NIB to configure autonomously with other
base stations nearby [11,49].

2.1.2 Relationship with Network Flexibility

We have seen how NIBs are designed to meet the flexibility requirements of
use cases such as after-disaster scenarios and connectivity provisioning in
challenging contexts. At this point, a key question is if NIBs are capable of
meeting the flexibility requirements of 5G use cases as well. Indeed, while
the NIBs’ original use cases all encompass a relatively small geographical
area, 5G use cases span much wider areas and the requests for them are
much more jeopardized [15]. Moreover, the requirements of 5G use cases
are much more stringent [15, 76].

A way to approach the flexibility required by 5G use cases is to orga-
nize several NIBs in a meta-network, i.e., a network of NIBs. The NIBs in
the meta-network do not operate independently, but they are coordinated
through a single management portal. The network operator could deploy
the NIBs to cover a wide geographical area while having a unitary view of
the network. A network of NIBs offers several advantages to the network
operator. First, the network operator can selectively activate and deacti-
vate the network functions inside each NIB, enabling her to freely migrate
the network functions and organize the virtual topology of the network as
needed. Second, the network operator can scale the network by activating
the network function(s) under pressure in many of the NIBs composing the
network. Finally, the network operator can configure a NIB to activate a
network function in case the NIB currently running the network function
suddenly fails. This last example is illustrated in Figure 2.2.

2.1.3 Limitations

Despite the capabilities of NIBs and the advantages a network of NIBs could
bring, we conclude that the state of the art of NIBs is not able to provide
the network flexibility required by 5G use cases. There are two major facts
that corroborate our conclusion. First, none of the examined NIBs allow
the network operator to play with the granularity of the network functions
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Figure 2.2: A fallback plan in a network of NIBs. Through the manage-
ment portal, the network operator instructs NIBs A and C to switch ON
services 2 and 3, respectively, in case NIB B suddenly fails. Illustration
from Publication 2.

because NIBs only allow activating or deactivating network functions as
a whole. There is no way for the network operator to isolate a group of
functionalities of a network function and make it an independent network
function, or to decouple the state management of the network functions
from the data store adopted for storing the state information. One of the
consequences is that, for example, the state of the network functions is man-
aged internally by each NIB and it cannot be externalized in a dedicated
data store, which can be unacceptable for use cases with high availability
requirements [45]. Second, the capability of the network to scale is limited
by the number and the hardware capabilities of the NIBs in the network.
5G use cases require cloud capabilities to have the network functions to
scale adequately, e.g., launching hundreds of NF instances when experienc-
ing a load peak. Instead, if the scalability of the network is tied to the
number of NIBs available, then the network operator must overprovision
the network with a number of NIBs dimensioned for the worst case, thus
incurring high costs.

In summary, NIBs certainly represent a promising step towards the
achievement of network flexibility, but they are insufficient to meet the
requirements of 5G use cases. Before studying new techniques to improve
network flexibility, we need to make sure that our assumptions and data
on the network and on the requirements are realistic. In the following, we
describe the information we collected to model mobile networks and 5G use
cases in our experiments.
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2.2 Modeling Mobile Networks

Research in mobile networks has been chronically suffering from a lack of
datasets and traces [68,96]. There are various reasons for the reluctance
of network equipment manufacturers and network operators to share their
data with the scientific community, such as the risks of backfiring in the
future, e.g., advantaging a competitor or involuntarily revealing the identity
of customers with the development of new de-anonymization techniques. As
a consequence, researchers leverage models to represent mobile networks
and their traffic, but creating a realistic model is challenging when the
information about the network to represent is scarce. This is the case with
5G networks, for which i) there is only a small number of deployments with
limited capabilities [19], and ii) information is scattered among a range of
technical documents and scientific papers. For this reason, we designed
two mobile network models by gathering the information we obtained by
examining technical and scientific documentation, interviewing experts, and
performing measurements on mobile network testbeds.

In this thesis, a model consists of two components, i) a representation
of the substrate network, i.e., the computing nodes and the links connect-
ing them, and ii) a representation of the virtual network, i.e., the network
functions and the virtual links in between, which are dimensioned for the
use cases the network is serving [40]. We abstract both the substrate net-
work and the virtual network as graphs, but while the substrate network
is a connected graph, the virtual network is a collection of disjoint graphs
because each disjoint graph represents a different network slice with ded-
icated network functions and virtual links. The computing nodes in the
substrate network have two attributes, i) the processing capacity, and ii)
the memory capacity. Network functions in the virtual network have the
same attributes, but they correspond to demands rather than capacities. A
model can have a more abstract representation for the network functions,
i.e., without specifying the number of instances and with a single value
of the attributes for the entire network function (Subsection 2.2.1), or a
more detailed representation, i.e., specifying the number of instances and
labeling each instance with the attributes (Subsection 2.2.2). The links in
the substrate network have two attributes as well, i) bandwidth capacity,
and ii) latency incurred. In the virtual network, the network functions
communicated among each other requiring a certain amount of bandwidth
and requiring the communication to incur a delay smaller than a given
budget. Note that the presented models provide a degree of freedom to
the researcher to tailor the network representation for the objectives of the
evaluation. For example, we can increase the capacity of computing nodes
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and links to account for the hardware improvements in the years to come
(see Publication 3), or we can customize the coverage of each use case, i.e.,
which computing nodes receive requests for which use case (see Publication
4).

To obtain a meaningful representation of next-generation networks, we
experimented with two different techniques. In the following, we describe
the details of the two models of mobile network we designed leveraging the
two techniques. In the first model, called LTE-based, we reinterpret the
data of pre-existing LTE networks in the context of 5G. For example, we
model network slices by multiplexing several virtualized LTE networks on
the same substrate network. Mobile operators can leverage this model to
understand how to make use of the pre-existing LTE infrastructure to offer
5G-like services. In the second model, called 5G-based, we use data in 5G
specifications and measurements collected from 5G trials. New network
operators can leverage this clean-slate model to design their 5G networks
from scratch.

2.2.1 LTE-based Model
Substrate Network

To get the topology of real networks, we examined SDNIib [1] and Internet
Topology Zoo [2], and we selected the New York topology from the first one
and the Beijing and Tokyo topologies from the second one. We removed
duplicate links and discarded disjoint nodes to obtain connected graphs.
To model the processing capacity, we assume each computing node corre-
sponds to a small-scale data center with a certain number of servers. We
attribute to each server the highest processing capacity reported in the of-
ficial results of the Standard Performance Evaluation Corporation (SPEC)
benchmark suite of the fourth quarter of 2017 [4]. We assigned 100 servers
for each computing node in the substrate network, which is in line with
the number of servers in micro-data centers [103]. Then, the processing
capacity of each computing node corresponds to the sum of the capacity of
the servers assigned to it. Please note that we do not consider the mem-
ory of the computing nodes in this model. We consider the links in the
substrate network to be point-to-point fiber links having 10 Gigabits per
second (Gbps) of bandwidth and a latency of 1 ms [54].

Virtual Network

We consider two network slices in the virtual network, corresponding to two
different use cases. The use cases correspond to two different quality classes
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Figure 2.3: The network functions in an LTE network. In the LTE-based
Model, a network slice is instantiated as a dedicated set of LTE network
functions. Illustration from Publication 1.

as defined in LTE specifications [13], namely streaming of conversational
video, with Quality Class Identifier (QCI) 2, and buffered streaming of
video, with QCI 8, which we chose because the use cases correspond to the
biggest share of traffic on the Internet [90]. In line with similar studies [88],
we represent a network slice of the virtual network as a dedicated LTE
network. Figure 2.3 illustrates the network functions and the virtual links
composing each slice.

To determine the processing, bandwidth, and latency requirements of
each network slice, we abstract the traffic incurred by each network slice as
a set of control-plane and data-plane procedures. Each procedure involves
a sequence of signals exchanged among a subset of the network functions.
The control-plane procedures we consider are Initial Attach (IA), i.e., when
a User Equipment (UE) first attaches to the network; Active to Idle (Atl)
transition, i.e., when the UE goes in idle mode to save energy; Idle to Ac-
tive (ItA) transition, i.e., when the UE wakes up from its idle state; X2
handover, i.e., when the UE relocates from a base station to another one.
We examined the 3"¢ Generation Partnership Project (3GPP) specifica-
tions [12] to identify the signals exchanged by the network functions when
the procedures are triggered. The data-plane procedures we consider are
data upload and data download, which are both represented as two con-
secutive signals, from evolved Node B (eNB) to S-GW to P-GW and from
P-GW to S-GW to eNB, respectively.

To determine the bandwidth required by each of such procedures, we
conducted measurements on the test network deployed on our campus [5].
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Name Direction Size (B)
UE Context Release Request eNB — MME 90
Release Access Bearers Request MME — S-GW 54
Release Access Bearers Response | S-GW — MME 60
UE Context Release Command MME — eNB 102
UE Context Release Complete eNB — MME 98

Table 2.1: Size of signals exchanged by the network functions during an
Active-to-Idle (Atl) transition. Table from Publication 3.

We measured the size in bytes of the signals exchanged by the network
functions during the procedures considered. For example, Table 2.1 shows
the size of the signals during an Atl transition.! For each use case, we
associate a rate at which each of the procedures is requested. Using the
request rate, we determine i) the number of signals each network function
processes, and thus its computing demand, and ii) the amount of bandwidth
required between any two network functions. We consider the rates at which
control-plane procedures are requested from Metséla et al. [71] for the first
use case, and the rates from Tabbane et al. [94] for the second use case.
We consider the rates of data-plane procedures reported in a white paper
from Huawei [48]. For each use case, the procedures are requested with
the specified rates at all the computing nodes labeled as ingress nodes (see
Section 3.2).

Finally, we formulate the latency requirements of each use case by as-
signing a maximum delay budget for the completion of each of the pro-
cedures. For the control-plane procedures, we consider the delay budgets
reported by Savic et al. [91]. We obtained the delay budgets for the data-
plane procedures using the 3GPP specifications [13].

2.2.2 5G-based Model
Substrate Network

The topology of the substrate network consists of three hierarchical lev-
els [22,27,104], as shown in Figure 2.4. The outermost level is the pre-
aggregation level, in which computing nodes are organized in a ring. The
computing nodes composing the pre-aggregation ring are called Central-
ized Units (CUs) and they correspond to the nodes which base stations are
directly attached to [14]. The middle level is the aggregation level, which

!'The measurements of the signals for the other procedures can be found in Ap-
pendix A.
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Figure 2.4: In the 5G-based Model, the substrate network comprises three
hierarchical levels, namely pre-aggregation ring (outer, green), aggregation
ring (middle, cyan), and core mesh (inner, red). Illustration from Publica-
tion 4.

organizes its nodes in a ring as well. Finally, we have the innermost level,
the core level, in which nodes are organized in a mesh. The hierarchy is so
that each node in the core is connected to up to 2 nodes in the aggregation
ring, and a node in the aggregation ring is connected to at most 7 nodes
in the pre-aggregation ring [17]. The number of nodes in the substrate
network depends on the coverage area of the network, taking into account
that each CU handles the traffic of a 4 km? area.?

We followed an approach similar to the one adopted for the LTE-based
model to attribute the CPU and memory capacity to the computing nodes.
As in the LTE-based model, each computing node is equipped with a certain
number of servers, and each server is equipped with 28 CPU cores and 64
GB of memory [80]. We then vary the number of servers clustered at
each computing node, taking into account that resources are more scarce
towards the pre-aggregation ring and more plentiful towards the core [100].
Nodes are thus equipped with 4, 32, and 64 servers in pre-aggregation,
aggregation, and core levels, respectively.

In modeling the links between the computing nodes, we leveraged fore-
casts on 5G networks released by network equipment companies and insti-
tutions [29,54,74,79]. The links connecting the computing nodes comprise

2The details on how we compute the coverage area of a CU can be found in Publication
4.
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a varying number of 100 Gbps optic fiber connections. Similarly to the
computational capacity, the bandwidth available is higher towards the core
mesh; pre-aggregation ring, aggregation ring, and core mesh have links with
200 Gbps, 400 Gbps, and 800 Gbps, respectively. Moreover, we attribute
200 Gbps to the links between pre-aggregation ring and aggregation ring
and 400 Gbps to the links between aggregation ring and core mesh.

To model the latency of the links in the substrate network, we leveraged
two facts, i) the latency between pre-aggregation ring and core mesh is
approximately 10 ms [74], and ii) the geographical distance between nodes
in the pre-aggregation ring and nodes in the aggregation ring is around 1/4
of the distance between nodes in the aggregation ring and nodes in the core
mesh [52]. We attribute a latency of 2 ms to the links between the two
rings, and a latency of 8 ms to the links between aggregation ring and core
mesh. We also attribute a latency of 2 ms to all links connecting nodes in
the same level.

Virtual Network

We consider three different “macro” use cases, namely enhanced Mobile
BroadBand (eMBB), Ultra-Reliable Low-Latency Communication
(URLLC), and massive Machine-Type Communication (mMTC), and we
associate a dedicated network slice to each of them. We focus on these three
use cases because the requirements of any other use case can be obtained
combining the requirements of the macro-use cases [53]. In the 5G-based
Model we consider each network slice consisting of a Service Function Chain
(SFC), i.e., a set of VNFs traversed in sequence. Each VNF is instantiated
through a varying number of VMs, as illustrated in Figure 2.5, and each
VM requires 4 CPU cores and 4 GB of memory [41].

Table 2.2 describes the bandwidth and latency requirements of the three
use cases considered. We have collected the requirements analyzing 5G
specifications and white papers [15,76]. Each use case demands the same
amount of bandwidth at each link of its SFC. Note that the bandwidth
requirement is nevertheless split evenly among the links between the VMs
composing the VNF's at each hop of the SFC. For example, in Figure 2.5
the VMs composing VNF 1 and VNF 2 have four links in between, and
thus each link demands 25% of the total bandwidth required between the
two VNFs. Similarly to the LTE-based Model, the traffic of a use case must
be able to traverse the entire SFC within the End-to-End (E2E) latency
budget of the use case.
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VNF, VNF, VNF, VNF,

Figure 2.5: In the 5G-based Model, a network slice is implemented as a se-
quence of Virtual Network Functions (VNFs), each of which is instantiated
through a varying number of Virtual Machines (VMs). Illustration from
Publication 4.

Use cases | Bandwidth / km? | E2E Latency
Download | Upload

eMBB 750 Gbps | 125 Gbps | 10 ms

URLLC 10 Gbps 10 Gbps 1 ms

mMTC 100 Gbps | 100 Gbps | 50 ms

Table 2.2: Bandwidth and latency requirements of enhanced Mobile Broad-
Band (eMBB), Ultra-Reliable Low Latency Communication (URLLC), and
massive Machine-Type Communication (mMTC) [15,76]. Table from Pub-
lication 4.

2.3 Summary

In this chapter, we have explored the concept of NIB, i.e., the state-of-
the-art technique that is most suitable to provide network flexibility to the
best of our knowledge, which we confirmed not being sufficient to meet
the requirements of 5G use cases. We have also presented two models for
representing mobile networks that integrate the information available on
next-generation mobile networks, which are scattered among a range of
sources. We hope this contribution will help research in mobile networks
and allow researchers to avoid common pitfalls in formulating subsequent
mobile network models. In the following chapter, we make use of the models
we presented to validate our proposals of network function decomposition.
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Chapter 3

Decomposing Network Functions

In this chapter we illustrate our proposals for decomposing network func-
tions. The techniques illustrated in this section address the inefficiencies
which are limiting network operators in adapting their networks for dif-
ferent use cases. By adopting these techniques, network functions can be
split into a set of more fine-grained network functions, which provide the
network operators with more options for tailoring the network as needed.

3.1 Leveraging Networking Planes

We start with examining LTE networks, which are widespread and used by
billions of users every day [37]. Figure 2.3 in the previous chapter provides a
schematic representation of an LTE network. It features two sub-networks,
i) the Radio Access Network (RAN), which consists of the base stations,
also called eNBs, and ii) the core network, which comprises the network
functions taking care of duties such as user authentication and connecting
the users to the Internet. A more complete description of the function-
alities provided by each network function can be found in Publication 1.
From a high-level perspective, an LTE network takes care of several tasks,
e.g., it forwards the data packets back and forth between the users and
the Internet. LTE networks also take care of storing subscriber-specific
information, such as authentication parameters. The network functions
communicate with each other and concur in carrying out these tasks in a
holistic manner.

LTE networks are considered extremely inflexible and thus inadequate
for the 5G use cases [75,85]. LTE networks typically consist of legacy net-
work functions that are sold as black boxes to the network operator, who
has no possibility to customize nor to upgrade them [20]. Moreover, these
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legacy network functions mix functionalities which belong to different net-
working planes [66,89]. For example, a S-GW takes care of forwarding data
packets, but it also provides control plane functionalities, such as the gen-
eration of identifiers for the GTP tunnels. Another example is the Home
Subscriber Server (HSS), which stores subscriber information but also gen-
erates the authentication parameters required during the security proce-
dures. This makes the scaling of the network functions more troublesome
because the network operator cannot scale the overloaded functionalities
only, but she must rather scale the entire network function, thus wasting
resources [56]. Finally, these legacy network functions are typically imple-
mented as single-function devices rather than being virtualized [20]. This
not only hinders scalability, but it also makes the migration of the network
functions very cumbersome.

The described problems manifest through signaling overhead issues that
LTE network regularly experience, commonly referred to as signaling
storms [77]. The ever-increasing number of mobile subscribers [37], as well
as the behavior of widespread mobile applications, which are characterized
by frequent “heartbeat” messages [46], implies a significant increase in the
number of signals that the network functions of LTE networks must handle.
Nevertheless, the network functions are not able to adapt to these sudden
spikes of load, which cause congestion in the network and downtime. To
cope with these events, network operators need a solution to reduce the
number of signals exchanged by the network functions.

3.1.1 The Approach

By examining LTE networks, we identified three main networking planes,
i.e., high-level tasks conducted by the mobile network. Two of them are
provided by SDN, which are i) sending the data packets (forwarding plane)
and ii) managing the data flows between the users and the Internet (control
plane). Nevertheless, a mobile network also takes care of storing and pro-
viding subscriber-specific information, such as authentication parameters
and QoS profiles. We thus identified an additional networking plane, i.e.,
the management of subscribers’ information, which we call storage plane.
Then, we can decompose the network functions by using these networking
planes, i.e., grouping the functionalities concurring to different planes into
different network functions.! Figure 3.1 shows the result of this process on
an LTE network. For example, we decompose the network functions eNB,
S-GW, and P-GW into two network functions, a forwarding NF and a con-

'In this thesis, we are not considering the management plane because it corresponds
to a meta-plane which network operators use to administer the network functions [28].
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Figure 3.1: Abstracting a mobile network into three networking planes,
namely, sending data packets (forwarding), managing the data flows (con-
trol), and storing subscribers’ information (storage). Illustration from Pub-
lication 1.

trol NF. The forwarding NF takes care of forwarding packets and enforcing
the appropriate QoS rules, while the control NF provides functionalities
related with the management of the data flows, such as generating the
identifiers for GTP tunnels and radio bearers.

The key advantages of decomposing the network functions using the
networking planes of a mobile network are as follows. First, each of the ob-
tained network functions has well-defined requirements. A control NF re-
quires only a computing platform, while a storage NF only needs a database
platform. Similarly, a forwarding NF only requires a platform to send pack-
ets and enforce QoS rules. In this way, it is much easier for a network
operator to scale the network functions and to provision the network with-
out resource wastage. For example, if control NFs are under a heavy load,
the network operator only needs additional computational resources, e.g.,
leveraging a cloud facility. Second, the obtained network functions are less
resource-demanding, and thus it is easier to instantiate them in the network.
Finally, by using the decomposed network functions, the network operator
can experiment with different ways of coalescing the network functions, for
example to reduce the amount of signals transmitted on the links of the
substrate network.

Figure 3.2 shows a few examples of how the network operator can refac-
tor the mobile network, i.e., organize and coalesce the network functions
to achieve different objectives. For example, compared to the original LTE
architecture in Figure 3.2(a), the Split RAN & Core refactoring in Fig-
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ure 3.2(b) attempts to make the RAN independent from the core by instan-
tiating a dedicated control NF in the RAN. Instead, the Thin Edge refac-
toring in Figure 3.2(c) aims to make the RAN a set of remotely-controlled
data packet forwarders, thus coalescing all control NF's in the core network.
Finally, the Intelligent Edge refactoring in Figure 3.2(d) switches the posi-
tion of the control NFs to the RAN while keeping the storage NFs in the
core.

3.1.2 Addressing Signaling Overheads

We consider the aforementioned signaling overhead issues, and we aim to
evaluate which of the three approaches is more effective in mitigating sig-
naling overheads. Note that when two network functions are coalesced in
the same computing node, the signals they exchange do not leave the com-
puting node where they are running, thus minimizing the impact on the
network links. We consider the signals exchanged during the procedures
which are triggered most commonly in LTE networks, namely Initial Attach
(TIA), Active to Idle (AtI) transition, Idle to Active (ItA) transition (both
in UE-triggered and network-triggered variants), X2 Handover (X2H), and
S1 Handover (S1H). We then consider the frequencies with which the pro-
cedures are triggered in an LTE network as reported in the dataset of
Metsélé et al. [71] to obtain the total amount of signals exchanged due to
each procedure.

Table 3.1 shows the results of our analysis. We can see that Intelligent
Edge is able to reduce significantly the amount of signals exchanged in
the network, and it is thus indicated to mitigate the signaling overheads
caused by a high number of subscribers using always-on applications. This
example showcases the potentialities of a network architecture in which
the network functions are decomposed using the networking planes of a
mobile network. While the Intelligent Edge refactoring has shown to be
the most effective in mitigating signaling overheads, the network operator
can refactor the network differently to meet the requirements coming from
another use case.

3.2 Leveraging Traffic Sources and Destinations

In 5G networks, each network slice has dedicated virtual resources that
are instantiated on the physical resources of a substrate network. More
specifically, the instantiation of a network slice describes where its virtual
resources are instantiated, e.g., VNF A is instantiated at node 1 and VNF
B is instantiated at node 2. Each network slice also has multiple ingress and



3.2 Leveraging Traffic Sources and Destinations 33

* Radio Access * Mobile Core . * Radio Access ! Mobile Core
- Network (RAN) « . «Network (RAN) «

RAN |: Core

/: LR IE(EL Control | : Control
. | | . . | H |

(a) LTE Architecture (b) Split RAN & Core
*‘RadioAccess ¢ Mobile Core : *‘RadioAccess & Mobile Core  »
«Network (RAN) « .

- Network (RAN) -

Storage

Control
T :
e F—{on &
(c) Thin Edge (d) Intelligent Edge

Figure 3.2: In the LTE architecture, several network functions participate
to tasks that belong to different networking planes, e.g., the S-GW partic-
ipates to both control plane and data plane tasks. Decomposing the net-
work functions using the networking planes allows customizing the way in
which the network functions are instantiated in the network, thus enabling
network operators to tailor the network to meet different requirements.
Mlustrations (b), (¢), and (d) are taken from Publication 1.

egress points, i.e., network nodes through which traffic flows in the network
and out of the network, respectively. The ingress nodes correspond to the
base stations in the substrate network, while the egress nodes correspond
to the set of User Plane Functions (UPFs) the network slice uses to reach
the Internet [16]. The traffic from the base stations is conveyed through a
set of network functions, which process the traffic and push it towards the
different UPFs. This “bow-tie-shaped” organization is sub-optimal for two
reasons, i) the network incurs a high bandwidth consumption because we
convey the traffic from the ingress nodes to the network functions and from
the network functions to the egress nodes, and ii) the centralized network
functions are resource-hungry because they need to process a high volume
of traffic. In this context, it is difficult to migrate the network functions,
for example to make room for additional network slices. In the worst case,
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Frequency of signals
ItA ItA
Implementation | TA | AtlI | (UE) | (Net) | X2H | S1H
LTE (Baseline) | 17.5 | 204 | 247 255 120 | 44
Split RAN & Core | 13 | 272 | 285 285 160 4
Thin Edge 12 204 | 247 240 128 3.2
Intelligent Edge | 8.5 | 102 | 190 180 96 24

Table 3.1: Frequency of signals considering the different approaches to
refactor the LTE network. For each procedure, the frequency corresponds
to the number of signals exchanged by the network functions per busy hour
per subscriber per base station. Intelligent Edge is the most effective in
mitigating signaling overheads. Table from Publication 1.

the network is unable to host an additional network slice even if it would
actually have the resources for hosting it.

The left side of Figure 3.3 shows an example of the inefficiency of the
current network slicing model. The network operator coalesces network
functions A and B to prevent the high volume of traffic between them from
flowing on the links of the network. Nevertheless, A and B are resource-
hungry network functions, and the only node which can host them is node 3.
The obtained instantiation of the network slice is rather inefficient because
the traffic from nodes 1 and 2 is conveyed to node 3, and then split again
towards nodes 4 and 5, thus consuming a significant amount of bandwidth
in the substrate network.

To address this inefficiency, we propose to identify all the pairs of ingress
nodes and egress nodes for which a share of traffic comes in the network
from the first node and goes out from the network through the second
node. In the example of Figure 3.3, the traffic entering from node 1 goes
out through node 4, while the traffic entering from node 2 goes out through
node 5, so we have two pairs, i) nodes 1 and 4, and ii) nodes 2 and 5. We can
thus decompose each network function into a group of network functions,
each one processing the traffic of a specific pair of ingress and egress nodes.
For example, we decompose network function A into two network functions,
one processing the traffic between nodes 1 and 4, and one processing the
traffic between nodes 2 and 5. By decomposing network functions using this
approach, we obtain dedicated network functions for each pair of ingress
and egress nodes within a network slice, thus we decompose a network slice
into pslices. The benefits of uslicing are exemplified in the right side of
Figure 3.3. The network functions we obtain after the decomposition are
less resource-hungry and they are easier to migrate and to fit into the com-
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Figure 3.3: In this example, the traffic goes through a set of centralized,
resource-hungry network functions, resulting in high bandwidth consump-
tion. We can decompose each network function into a set of network func-
tions, each of which processes the traffic flowing between a pair of ingress
and egress nodes, thus obtaining uslices. Illustration from Publication 3.

puting nodes of the substrate network, providing to the network operator
additional options for tailoring the network for different objectives, e.g.,
saving bandwidth.

3.2.1 A Model for the Approach

To assess the validity of the proposal, we designed and implemented an
ILP model. The idea of the model is to instantiate the network slices in
the substrate network so that i) the requirements of the network slices are
met and ii) the substrate network is not overloaded, while simultaneously
iii) saving as much bandwidth as possible. In effect, the problem the model
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aims to solve is an example of a resource allocation problem [58]. The model
includes a way to toggle uslicing ON or OFF. By switching uslicing OFF,
we can evaluate the benefits and the drawbacks of uslicing when compared
to vanilla network slicing. The goals of our evaluation are to assess i) if
pslicing allows the network operator to save more bandwidth than network
slicing, and ii) if pslicing allows hosting the network slices in input when
network slicing would have failed instead.

We illustrate now the key concepts of the ILP model, while a detailed
description can be found in Publication 3.2 The capacity of the substrate
network, as well as the requirements of the use cases, are abstracted as com-
putation, bandwidth, and latency. Moreover, each network slice declares a
set of ingress-egress node pairs in the substrate network. The model thus
takes care that all the traffic originating at the ingress node flows through
the appropriate set of network functions and eventually ends in the egress
node. The decision variables of the model are defined as follows:

locVs = {1 if VNF v serving puslice s is instantiated at node n (3.1)

0 otherwise.

The model thus decides where to instantiate the network functions of
each pslice in the substrate network, while the virtual links between the
network functions are instantiated on the shortest path between the com-
puting nodes hosting the network functions. As previously mentioned, the
objective of the model is to minimize the usage of bandwidth of the links
in the substrate network, which can be interpreted as maximizing the com-
munication between network functions which are co-located in the same
computing node. The resulting objective function follows:

marimize :
g comSs ;. vy * ( g locVy, s 0, 'lochs,W) +
seNV nenN
v1,V2€
v1#£Ug (32)

g comSs, v - E locVy, sy 0 - locV o5 0

s1EN n,s2€N
veV S$17£82

2 An improvement to the model reported in Publication 3 can be found in Appendix B.
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The objective function consists of a sum of two terms. The first term
deals with communications between different network functions serving the
same puslice, which correspond to the majority of the communications. The
second term deals with communications between instances of the same net-
work function serving different pslices, which occur only during exceptional
procedures, e.g., handovers. Note that comS; v, v, corresponds to the band-
width required between network functions v; and vy when serving pslice s.
We also designed optimizations to reduce the complexity of the model by
i) making it linear, thus avoiding the multiplications between the decision
variables in the objective function, and ii) reducing the total amount of
decision variables.

3.2.2 Evaluating the Benefits

We implemented the ILP model using IBM Cplex Optimization Studio
12.7.1 [7], and we made our implementation publicly available.? For our
evaluation, we used the inputs of the LTE-based Model (Subsection 2.2.1).
To take into account the improvements of the hardware in the years to
come, we multiply the computing capacity of the nodes and the bandwidth
of the links with a series of factors. More specifically, we consider the
factors (x1, x2.5, x5, x7.5, x10) for both the number of servers p in each
computing node, thus obtaining computing capacities (p1, p2, p3, p4, D5),
and the bandwidth ¢ in each link, thus obtaining bandwidth values (c1, co,
3, ¢4, C5). As a result, each computing node is equipped with a number
of servers from 100 (p;) to 1000 (ps), and the bandwidth of each link goes
from 10 Gbps (¢1) to 100 Gbps (c5). In our experiments, we did not use the
same factors to reduce the latency because this would imply the need for
physically moving the computing nodes, which might not be possible from
a practical standpoint. For each (network topology, computing capacity,
bandwidth) tuple, we generate ten different problem instances by varying
the pairs of ingress and egress nodes of each network slice, and we run the
ILP model to solve them, considering uslicing both enabled and disabled.
For each run, we allowed the solver to run for a max of ten minutes. We
chose such a tight time budget because 5G use cases require network slices
to be instantiated and reconfigured potentially many times per day [98].
In Table 3.2 we summarize the results of our evaluation to answer our
first question. For each (network topology, computing capacity, bandwidth)
tuple, we separated the savings in control-plane traffic and the savings in
data-plane traffic, and for both of them we computed the average with

Shttps://version.helsinki.fi/matteo.pozza/avatarifip19
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Topo- | Computing Bandwidth
logy | Capacity c1 Co c3 Cq Cs
s T, 1T 12.68,2.99(2.36, 1.98|2.21, 2.12|2.43, 2.35
0 P4 T, 1T (2.34, 2.57|2.28, 2.32|2.28, 2.23|2.27, 2.25
5% P3 T, 1T (241, 2.50(2.26, 2.02|2.27, 2.16|2.23, 1.98
o P2 —,— 2.36, 2.71|2.29, 2.24|2.37, 2.24|2.34, 2.24
P1 —, — .1 .1 T, 7 )
s T, 1T (2.63,2.70(2.34, 2.36|2.22, 2.23|2.30, 2.33
S D4 T, 1T |2.46, 2.99(2.29, 2.44|2.24, 2.35|2.26, 2.37
3 P3 T, 1T (2.49, 2.58(2.26, 2.30|2.34, 2.29|2.23, 2.25
= P2 T, 1T (2.40, 2.88(2.33, 2.24|2.20, 2.36|2.30, 2.40
P1 T, 71 T, 1 T, .1 T, 71
e D5 2.40, 4.112.39, 2.57|2.34, 2.53|2.45, 2.52|2.26, 2.51
§ P4 2.22, 2.80(2.30, 2.46|2.42, 2.26|2.39, 2.50|2.49, 2.59
. P3 3.39, 3.10(2.33, 2.56|2.52, 2.64|2.31, 2.51|2.25, 2.45
g P2 2.19, 2.75(2.37, 2.57|2.37, 2.33|2.38, 2.67|2.46, 2.43
D1 T?T TaT TvT TvT T?T

uslicing enabled

Table 3.2: Ratio of average traffic savings For each

uslicing disabled’

(topology, computing capacity, bandwidth) tuple, the first value concerns
the control plane and the second value concerns the data plane. Table from
Publication 3.

pslicing enabled and with uslicing disabled. Table 3.2 shows the ratios
between the pslicing-enabled values and the uslicing-disabled values; ratios
higher than one indicate that uslicing is more effective in saving bandwidth,
while ratios lower than one indicate that uslicing is not effective in saving
bandwidth. An arrow pointing upwards ( 1 ) indicates that the solver
was able to find solutions to the problem instances only when uslicing was
enabled, while a long dash ( — ) indicates that the solver was not able
to find solutions to the problem instances at all. We can see that uslicing
always allows the network operator to save around two times more traffic
compared to when uslicing is disabled.

Figure 3.4 aims to reply to our second evaluation question, i.e., assessing
if pslicing allows instantiating the network slices in the substrate network
when vanilla network slicing would fail instead. More specifically, Fig-
ure 3.4 sheds more light on the results presented in Table 3.2 showing that
vanilla network slicing fails and uslicing succeeds when considering certain
(network topology, computing capacity, bandwidth) tuples. For each tuple,
we consider the ratio of problem instances solved when uslicing is enabled,
i.e., the feasibility ratio with uslicing enabled, and the feasibility ratio with
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Figure 3.4: Feasibility ratio, i.e., fraction of solved problem instances, for
each (topology, computing capacity, bandwidth) tuple. Considering the
scenarios with limited resources, i.e., ¢; or pi, the solver is able to solve a
higher fraction of problem instances when uslicing is enabled. Illustration
from Publication 3.

uslicing disabled. For example, a feasibility ratio equal to one means that
the solver was able to solve all ten problem instances. By examining the
data in Figure 3.4, we can see that puslicing is indeed more effective than
vanilla network slicing when considering substrate networks with limited
resources, i.e., when considering c; or p;.

We can conclude by saying that uslicing, i.e., decomposing network
functions using the sources and targets of traffic, indeed allows network
operators to save bandwidth. Most importantly, this decomposition allows
network operators to host the network slices in the substrate network when
it would not have been possible otherwise.

3.3 Decoupling State Management from Data
Store

Network functions are built to be scalable. Each network function consists
of a set of instances whose size varies with the load in the network, and
each instance is designed to fully leverage the resources made available in
the computing node it runs on. This imposes non-trivial challenges in the
handling of the network function’s state, i.e., the information used by the
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network function to provide its functionalities. For example, a network
function performing Network Address Translation, simply referred to as
NAT, handles a pool of (IP address, port) pairs that are used to masquerade
the identities of the senders of the flows traversing the network function,
and managing the pool requires a tight coordination between the instances
of the NAT. For this reason, researchers have developed state management
systems [43,84], i.e., dedicated systems that take care of the entire life cycle
of state information on behalf of the network functions.

For managing state information, these systems internally use a data
store, which is chosen depending on the features the system is designed to
offer. For example, StatelessNF [57] uses a remote Key-Value Store (KVS)
to increase reliability, while S6 [101] leverages a Distributed Hash Table
(DHT) within the network function instances to boost performance. As
shown in the top part of Figure 3.5, the chosen data store affects the Appli-
cation Programming Interface (API) that the state management system ex-
poses to the network functions. A change in the API thus results in a time-
consuming and error-prone refactoring of the network functions [43,61].

Nevertheless, using the network functions with different use cases in-
volves also changing the data store used for managing the state of the
network functions with the data store most suited for the requirements
of the use case(s) being served. There is thus a need for a strong decou-
pling between the state management of a network function and data store
adopted for storing the state, so that network operators can change the
data store being used without the need for refactoring the network func-
tions. To this end, we propose FlexState?, a state management system
that realizes this decomposition. FlexState exposes a single API, which de-
velopers use to build the network functions, while offering to the network
operators an easy mechanism for changing the data store adopted for state
management. Crucially, FlexState decomposes the network functions while
preserving their scalability.

3.3.1 Key Enablers

To realize the decoupling between the state management and the data store
adopted, FlexState leverages two key enablers, i) the API exposed to the
packet processing logic of the network functions, and ii) a range of data
store drivers, which translate the API calls using the query language of
the data store. The main objective in designing the FlexState API is to
fulfill the needs network functions have in terms of accessing and modifying

“https://version.helsinki.fi/matteo.pozza/flexstate
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Figure 3.5: A change in the data store used for state management requires
significant refactoring efforts on the network functions. The proposed sys-
tem, FlexState, exposes a single Application Programming Interface (API)
to the network functions and it allows network operators to easily change
the data store adopted. Illustration from Manuscript 1.

state information, so that the packet processing logic does not need to be
refactored when a new data store is released. As shown in Table 3.3, we
examined the APIs of the state management systems to identify the set
of features to include in the FlexState APIL. In the following, we present
how the FlexState API supports the two most widely used features, namely
name-value pairs and collections. A discussion on how to support the re-
maining features can be found in Manuscript 1.

Name-Value Pairs. The API allows storing a generic blob of bytes using
a string as an identifier, i.e., a name-value pair. The operations supported
by the pair correspond to the operations prescribed by a Create, Read,
Update, Delete (CRUD) interface. A special type of name-value pair is the
counter, i.e., a name-value pair whose value is an integer. Counters are
widely used in network functions for implementing functionalities such as
counting the total number of packets traversing the network function. In
addition to the CRUD operations, the counter also supports an additional
call, add(value), which increments the counter by value directly in the
data store.

Collections. The API supports collections, such as lists, sets, and maps.
These data structures are used in a variety of network function tasks, such
as associating an (IP address, port) pair to each flow going through a NAT.
In addition to the CRUD operations, the calls supported by the collections
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API Features
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StatelessNF 371 | v o o o Vv o
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CHC[60] | v vV o o o o

Table 3.3: Supported features of the APIs of state management systems.
Note that v'indicates a supported feature, and o indicates an unsupported
feature. The variability in the supported features results in customized
APIs which are incompatible with each other. Table from Manuscript 1.

are inspired to the calls offered by the collections in the C++ standard
container library [6]. Similarly to name-value pairs, we offer a special col-
lection, a countermap, i.e., a set of pairs where each pair has a unique key
and a counter. The countermap exposes an additional addTo (key, value)
call, which increments by value the counter of the pair identified by key.

When receiving the calls from the API, FlexState leverages a range
of data store drivers, which translate the calls using the query language
of the data store. Table 3.4 shows an example of translation considering
two carrier-grade data stores. The network operator provides in input to
FlexState a configuration file, which specifies the data store driver to be
used and the parameters to connect to the data store, i.e., IP address and
port. It is thus enough to modify the configuration file to have FlexState
adopting a different data store for state management. Moreover, when
a new data store is released, it is enough to develop the corresponding
driver following the specifications of the FlexState API and integrate the
driver within FlexState, after which the network operator can modify the
configuration file to instruct FlexState to use the new driver.

While decoupling the state management of the network functions from
the data store adopted, FlexState must make sure that the scalability of
network functions is not affected. For this reason, we designed FlexState
by leveraging the principles of partitioning [10], also called sharding, ac-
cording to which each CPU core running a network function instance has
exclusive handling of a part of the state information. In other words, the
entire state of a network function is divided among the NF instances first,


https://arxiv.org/abs/2003.10869

3.3 Decoupling State Management from Data

Store 43
Type & Call | Redis Cassandra
Counter INCRBY counter_id n UPDATE CounterTable SET
add(n) value = value + n WHERE
key=counter_id
Map HSET map_id k n INSERT INTO MapTable (keyl,
insert(k,n) key2, value) VALUES (map_id, k,

n)

Countermap HINCRBY cmap_id k n | UPDATE CountermapTable SET
addTo(k,n) value = value + n WHERE
keyl=cmap_id AND key2=k

Table 3.4: Example of translating the FlexState API calls using the query
language of Redis [9] and Cassandra [3]. Table from Manuscript 1.

and then each instance-specific portion is divided among the CPU cores of
the server on which the instance is running. The advantage of this approach
is that CPU cores do not need to communicate between each other because
they have no shared data, thus avoiding the slowdowns of inter-CPU syn-
chronization. Consequently, scalability is improved because the more CPU
cores are assigned to a NF instance, the better the instance performs as
more packets are processed in parallel. A challenge in adopting partition-
ing is the need for designing network function state in a partitioning-aware
manner. For example, considering the NAT example, the pool of (IP ad-
dress, port) pairs need to be carefully partitioned among the NF instances
and the CPU cores of each NF instance. We discuss this aspect in more
detail in Manuscript 1.

3.3.2 Implementation and Evaluation

To assess the feasibility of the system and to evaluate its performance, we
implemented FlexState in our testbed. Our implementation of FlexState al-
lows substituting the data store adopted for state management by changing
just a configuration file in json format. We evaluated our implementation
with the objective of showing that it is indeed possible to change the data
store adopted without refactoring the network functions while preserving
the scalability of the network functions. We configured the testbed to send
to FlexState 50K random TCP flows saturating a 10 Gbps link, i.e., at
14.88 Mpps [34], for a time interval of 15 seconds, and we repeated each
test 10 times. We implemented two of the most commonly deployed net-
work functions atop of FlexState, i.e., a NAT and a load balancer [93],
and the drivers for two data stores, i.e., Redis [9] and Cassandra [3]. We
chose Redis and Cassandra because they are designed to meet different
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requirements, i.e., Redis offers strong consistency [73] while Cassandra of-
fers high availability [63]. We also implemented the driver for a custom
in-memory hashmap, which is used for benchmarking purposes only. Note
that a network operator might run the network function and the data store
used for state management in different computing nodes to meet strict re-
liability requirements. To measure the impact that this choice has on the
performance, we run Redis and Cassandra both locally, i.e., in the same
computing node running the NF instance, and remotely, i.e., in a different
computing node.

Figure 3.6 shows the rate of packets processed by the network functions
using FlexState when varying the data store adopted and the number of
CPU cores assigned to FlexState. We can see that the performance of
the network functions improve with the number of CPU cores assigned
to FlexState, so we can thus conclude that the network functions using
FlexState are indeed able to scale with the resources assigned. We can
also see that FlexState allows the network functions to process packets
at 10 Mpps, which is in line with the packet processing rate recorded by
other state management systems [34,57]. Note that the network functions
are capable of recording this packet processing rate thanks also to specific
performance optimizations that we designed and implemented in FlexState.
These performance optimizations are discussed in Section 4.1.

We observe that the performance of both network functions drop when
we assign more than 24 CPU cores to FlexState. The reason behind this
behavior lays in the architecture of the testbed in which we ran out tests.
The computing nodes of the testbed are equipped with 24 physical cores,
and hyperthreading is enabled on the nodes, so the nodes are equipped
with 24 additional virtual cores multiplexed over the physical cores. In our
test, we have configured the nodes to make use of the physical cores first,
and to use the virtual cores only when there are no spare physical cores
anymore. Nevertheless, using a virtual core is sub-optimal for a network
function because the processing of the packets of the corresponding physical
core needs to be interrupted regularly, hence the drop in performance.

We can also see that there are no significant differences in performance
between running the data store locally or remotely, and in a few cases run-
ning the data store remotely is even advantageous. This counter-intuitive
behavior can be explained as follows. The design of FlexState decouples
the packet processing loop from the communication with the data store,
and thus the packet processing rate should not be affected by the location
of the data store (Section 4.1). However, running the data store locally can
lead the operating system to interleave the execution of FlexState with the
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execution of the data store on the same CPU cores, thus possibly worsening
the performance.

To conclude, FlexState demonstrates that it is indeed possible to de-
couple the state management in network functions from the data store used
for storing state information. The decoupling allows network operators i)
to substitute the data store used for state management without the need
for refactoring the network functions and ii) to preserve the scalability of
the network functions.

3.4 Summary

We have described three different ways in which we can decompose network
functions: using the three identified networking planes, using the sources
and the destinations of the traffic, and decoupling the state management
from the data store used for storing state information. We have shown
that each of these decompositions enables network operators to address the
inefficiencies that limit network flexibility. The techniques illustrated in this
chapter are thus key enablers to make networks ready for the challenges
brought by 5G use cases.
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Figure 3.6: The network functions perform better when the number of CPU
cores assigned to FlexState increases, i.e., the network functions are indeed
able to scale. The drop in performance recorded when adopting more than
24 cores is due to the usage of virtual cores. Illustrations from Manuscript
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Chapter 4

Addressing Limitations of
Network Function Decomposition

So far we have seen how the proposed ways of decomposing network func-
tions improve network flexibility. Network function decomposition is, none-
theless, a double-edged sword: on one hand, it helps in addressing several
inefficiencies, and on the other hand it brings drawbacks. For example,
the increase in the number of the network functions brought by network
function decomposition can make network management tasks more cum-
bersome. In the following, we illustrate two key problems that stem from,
or are exacerbated by, network function decomposition. We also illustrate
the methods we designed to mitigate these problems and we demonstrate
their effectiveness, showing that it is indeed possible to enjoy the benefits
of network function decomposition without passively undergoing its draw-
backs.

4.1 Overheads of Decoupling State Management
from Data Store

In Section 3.3 we described FlexState, a system that realizes a strong de-
coupling between the state management in network functions and the data
store used to keep their state. To achieve the decoupling, FlexState lever-
ages an Application Programming Interface (API) and a range of data store
drivers. The API is used by the packet processing logic of the network func-
tions to issue operations on the state, while the data store drivers perform
the API calls on the data stores. The abstractions provided by FlexState,
i.e., the API and the data store drivers, communicate synchronously with
the data store by default. In other words, when an API call is issued, the

47
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driver performs the corresponding operation on the data store, and the re-
sult obtained from the data store is returned to the caller. Nevertheless,
there are two aspects of this workflow which compromise the performance
of network functions. First, the caller always waits for the response to an
API call to come back even when the result is not essential for the caller,
e.g., an update call only returns an acknowledgement about the completion
of the operation. For these calls, the caller could continue its work without
waiting synchronously for the response from the data store. Second, the
rate at which network functions process packets is different from the rate at
which data stores perform operations, but the two operations are normally
coupled together, i.e., FlexState issues an operation to the data store as
soon as the packet processing logic asks for it. As a consequence, the rate
at which the network function operates corresponds to the lowest between
the packet processing rate and the rate of operations the data store sup-
ports. The combined effect of these two aspects is that network functions
whose state management is decoupled from the data store experience a sig-
nificant drop in performance, i.e., they are unable to process packets at line
rate.

4.1.1 Addressing the Drop in Performance

To address the two issues identified, we propose to use no_wait calls and
asynchronous updates, respectively.

no_wait calls. We extend FlexState API by introducing no_wait calls,
whose semantic prescribes to ignore any result returned by the call. When
using a no_wait call, the caller continues its work normally, while the oper-
ation associated with the call is scheduled on a different thread in the back-
ground. For example, a network function can leverage the no_wait version
of the Update call to continue to process packets right after scheduling an
update to a state information while the update is performed in background.
In case the network function performs state operations for every processed
packet, no_wait calls become essential for keeping a high packet processing
rate, but some API calls are not suitable for a no_wait variant. For ex-
ample, a network function issues a read call when the result of the call is
needed to perform a certain task, thus there is little usefulness in providing
a corresponding no_wait call. Consequently, network function developers
should avoid issuing this type of calls within the packet processing loop.

Asynchronous updates. We complement FlexState with two additions,
i) a per-CPU-core local cache for state information, and ii) a timer that
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regulates the frequency with which the changes in the local cache are pushed
to the data store. Instead of issuing the operations immediately to the data
store, FlexState performs the operations on a local copy of the state, thus
allowing fast processing of the packets. Simultaneously, a timer regulates
the frequency with which a background thread commits the changes to
the local copy of the state to the data store. The network operator sets
the frequency with which the state is synchronized on the data store in
a dedicated field of the configuration file fed in input to FlexState. In
this way, the network operator can adjust FlexState to the requirements of
the use case, e.g., achieving high availability with a high synchronization
frequency, and to the rate of operations supported by the chosen data store.

4.1.2 Assessing the Improvements

To quantify the benefits of the proposed optimizations, we built on top
of FlexState a simple “counter” network function, i.e., a network function
which counts the number of packets going through it. In particular, we
built two versions of the network function. The first version always waits
for the API calls to return before proceeding further and it communicates
synchronously with the data store (sync counter). Instead, the second ver-
sion implements the two optimizations, thus it does not wait for the API
call to return when scheduling increments to its internal counter, and the
packet processing rate is decoupled from the rate of operations of the data
store (async counter). We evaluated the two versions of the network func-
tion using the same inputs described in Subsection 3.3.2. In the evaluation,
we configured both versions of the network function to use the in-memory
hashmap, i.e., the scenario in which the sync counter performs best be-
cause the state management incurs no network latency. Figure 4.1 shows
how the two versions perform when changing the number of CPU cores as-
signed to FlexState. We can see that the async version clearly outperforms
the sync version. While the async version achieves packet processing rates
that are in line with the performance of state-of-the-art network functions,
i.e., 12 Mpps, the sync version is not capable of processing packets faster
than 2 Mpps.

We conducted additional tests to showcase the capability of the opti-
mizations to i) enable network functions to process packets at line rate,
and ii) make the packet processing rate of the network function indepen-
dent from the data store adopted and from the location of the data store
adopted. We considered three network functions, i.e., the async version of
the counter network function, a NAT, and a load balancer, and we con-
figured FlexState to perform the tests with each one of the data stores
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Figure 4.1: We implemented a simple network function that counts the
packets flowing through it, without optimizations (sync) and with opti-
mizations (async). To avoid any effect on the performance due to net-
work latency, we configured the network function to use a local, in-memory
hashmap. The async version reaches a packet processing rate of 12 Mpps,
while the sync version never records a rate higher than 2 Mpps. Illustration
from Manuscript 1.

available, i.e., hashmap, Redis, and Cassandra. Moreover, we consider each
location for the data stores, i.e., local and remote. Figure 4.2 illustrates the
results from our tests. Each bar represents the best rate we recorded by
varying the number of CPU cores assigned to FlexState when considering
the specific (network function, data store, data store location) tuple. We
can observe that all network functions approach a packet processing rate
of 10 Mpps, which is in line with the performance recorded adopting other
state management systems [34,57]. We can also note that varying the data
store and its location does not significantly affect the performance recorded
by the network functions. These results thus confirm that the optimizations
are indeed effective in mitigating the performance drawbacks introduced by
decoupling the state management in network functions from the data store
used to keep their state.

We are not the first to advocate for no_wait calls and caching mecha-
nisms, and previous works have also highlighted their benefits [60,101]. We
show that they are also effective when the state management of network
functions is decoupled from the data store adopted. Moreover, we intro-
duce a configurable timer, which the network operator can set depending
on the use case and the capabilities of the data store adopted.
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Figure 4.2: Adopting the optimizations enables the network functions to
process packets at line rate, i.e., 10 Mpps, regardless of the data store
adopted and the location chosen for the data store. Illustration from
Manuscript 1.

4.2 Reconfiguring Networks with a High Number
of Network Functions

Network Function Virtualization (NFV) enables network operators to in-
stantiate and migrate the network functions in the network according to
the requirements from the use cases and optimization policies, i.e., saving
bandwidth. In other words, NF'V allows network operators to customize the
network configuration, i.e., where the Virtual Network Functions (VNFs)
are instantiated in the network!'. The variability in the traffic load, as well
as the addition or the removal of use cases being served, are examples of
factors that trigger the need for reconfiguring the network, i.e., migrating
the VNFs in the network to obtain a more desirable configuration. Fig-
ure 4.3 exemplifies the process of reconfiguring a network, which entails a
sequence of VNF migrations from the initial configuration, called source,
to obtain a new configuration, called target.

The stringent requirements coming from 5G use cases, as well as the
introduction of network slicing, bring a set of non-trivial challenges to the
network reconfiguration process:

In Section 3.2 we use the expression network slice instantiation, which describes
where the virtual resources of the network slice are mapped on the physical resources
of the substrate network. The network configuration describes the instantiations of the
network slices altogether.
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Figure 4.3: Reconfiguring a network involves migrating the VNFs, which
are initially instantiated according to a source configuration, to obtain a
different configuration, called target. Illustration from Publication 4.

1. Due to the diverse set of requirements of the use cases, networks are
expected to undergo reconfigurations more and more often. The time
budget for planning and actuating the reconfiguration is therefore
very limited [98].2

2. The Service-Level Objectives (SLOs) that network operators agree
upon are characterized by extremely limited tolerance on their vio-
lation [67]. Therefore, the configurations traversed during the recon-
figuration process must satisfy all the requirements of the use cases,
i.e., they must correspond to feasible configurations.

3. Network slicing introduces dedicated network functions for each use
case (Section 3.2). The increasing number of network functions to

In this thesis, we focus only on the planning of the network reconfiguration, i.e.,
finding the sequence of migrations to reconfigure the network according to the target
configuration, and not on the actuation of the reconfiguration plan, i.e., performing the
migrations to obtain the target configuration.
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handle during the reconfiguration process therefore makes the prob-
lem more cumbersome. This is exacerbated by network function de-
composition, which can increase further the number of network func-
tions.

We can study the network reconfiguration problem by abstracting it us-
ing a migration graph, as shown in Figure 4.4. In a migration graph, each
node represents a network configuration, i.e., a placement of the virtual re-
sources in the network, and each edge represents a migration of a VNF from
one node in the network to another one. In the migration graph, the initial
configuration (source) and the desired configuration (target) correspond
to two distinct nodes. Therefore, the reconfiguration problem corresponds
to identifying a path between the source node and the target node in the
migration graph so that i) each node in the path represents a feasible config-
uration, and ii) the path is minimal, i.e., involving a number of migrations
as low as possible.

Researchers have successfully used A* search to solve network reconfig-
uration problems in the past [33], i.e., to find the shortest path between
source and target nodes in the migration graph. Nevertheless, the algo-
rithm in its original form fails in providing solutions to the reconfiguration
problem in 5G networks, especially considering the limited time budget
available. The worst-case time complexity of A* search is indeed O(b?),
where b is the branching factor, i.e., the maximum number of successors of
any node, and d is the depth at which the target node is found [87]. In
common artificial intelligence problems, such as traversing the game tree of
a chess game, b can be as high as 35 while the value of d is around 100 [44].
Considering the migration graph, at each configuration we can migrate any
VNF in any computing node in the network, so the branching factor of each
node in the migration graph is V * N, where V is the total number of VNFs
in the network and N is the total number of computing nodes. Network
slicing and network function decomposition increase V significantly, thus
affecting the complexity of the problem and making it even more hard to
solve within the limited time budget available.

4.2.1 Tackling the Problem

We propose Matryoshka, an algorithmic approach to solve the reconfigura-
tion problem in 5G networks. Matryoshka consists of three parts, i) a set
of optimizations for A* search, which reduce the width of the migration
graph and speed up the search, ii) a divide-and-conquer approach to per-
form A* search, and iii) a method to run several A* searches in parallel.
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Figure 4.4: The reconfiguration problem can be studied using a migra-
tion graph, whose nodes represent configurations of the network and edges
represent migrations of VNFs. Green nodes with vertical hatching corre-
spond to feasible configurations, while red nodes with horizontal hatching
correspond to infeasible configurations. Illustration from Publication 4.

We present here the last two parts, which correspond to the design pillars of
Matryoshka, while a detailed description of the A* search optimizations can
be found in Publication 4. Our implementation of Matryoshka is publicly
available at https://version.helsinki.fi/matteo.pozza/matryoshka.

Divide-and-conquer approach. As shown in Figure 4.4, we can de-
scribe each configuration as a set of mappings, where each mapping indi-
cates the computing node where a VNF is hosted. For example, we use the
mapping v2 — n2 to indicate that VNF v2 is hosted at the computing node
n2. When running A* search on the migration graph, the algorithm starts
from the source configuration S, and it stops only when it finds a node
whose configuration has all the mappings equal to the ones of the target
configuration T. Instead of considering the mappings of T all at once, we
create a chain of subsets of the mappings of T 51, Sa, ... Sy = T such that
Vi < 3,8 C Sj.?’ We run A* search starting from S and considering only
the mappings in S;. When we find a configuration Z; which contains all
the mappings in S7, i) we record the sequence of migrations from S to 7,
ii) we set the new source configuration to Z, and iii) we run A* search

3We elaborate on the strategy for the creation of the chain of subsets when we discuss
how Matryoshka runs several A* searches in parallel.
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Figure 4.5: Using the divide-and-conquer approach, Matryoshka runs A*
search focusing at every step only on a subset of the VNF migrations to
perform. Matryoshka also boosts the chances of finding a solution to the
problem by running multiple A* searches in parallel. Illustrations from
Publication 4.

considering the mappings in So. The approach, which is described in Fig-
ure 4.5(a), continues considering the subsets in the chain till the target T is
reached. Following this approach, we reduce the search scope of A* search
by prioritizing the configurations containing one or more of the mappings in
the subset over the multitude of configurations available, thus simplifying
the task of the A* search at each step.

Parallelization. There is no single way of creating the chain of subsets
S1, S2, ... Sk because one has the freedom of deciding i) the criterion used
in selecting the mappings for each subset, and ii) the number of mappings
included in each subset. For example, we can decide to sort the mappings
using the target computing nodes, so that we reconfigure the network one
computing node at a time. Nevertheless, there is no clear indication on why
one strategy in selecting the mappings is better than another. Therefore,
Matryoshka leverages the available CPU cores to run several A* searches in
parallel, each one adopting a different strategy in the creation of the chain
of subsets, as shown in Figure 4.5(b). There is not a minimum number of
strategies to try, but the more strategies are tried in parallel, the higher the
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chances of finding a solution quickly. The A* search running in parallel can
be configured in independent and sharing modes. In independent mode,
each A* search runs independently, and Matryoshka stops as soon as one of
the A* searches finds a complete sequence of migrations to reconfigure the
network from S to T. In sharing mode, Matryoshka stops as soon as one
of the A* searches finds a partial solution, i.e., a configuration containing
a subset of the mappings of T, then it sets all the A* searches to consider
the partial solution as the new S, and the A* searches are restarted again.
The cycle is repeated till configuration T is reached.

4.2.2 Evaluating the Approach

To evaluate the effectiveness of Matryoshka, we need a set of problem in-
stances, i.e., pairs of source-target configurations for which we need to
find a sequence of VNF migrations. We created a dataset of 241 prob-
lem instances 4 using the inputs provided by the 5G-based Model, which
is described in Subsection 2.2.2.> For each problem instance, we run Ma-
tryoshka, both in independent mode (MAT-I) and in sharing mode (MAT-
S), and the state-of-the-art A* search (SOTA) described in the work of Dow
et al. [33], allowing up to 60 minutes of running time. Figure 4.6 shows
the Cumulative Distribution Function (CDF) of the percentage of problem
instances solved over time. We can see that Matryoshka outperforms the
state-of-the-art A* search because it solves around 10 times more prob-
lem instances considering the whole 60-minute time window. Moreover,
Matryoshka is much faster because it solves around 8 times more problem
instances already within the first 10 minutes of execution.

In Figure 4.6 we observe that although Matryoshka outperforms the
state of the art, there are still around 50% of the problem instances which
are not solved, even when considering 60 minutes of solving time. While
Matryoshka corresponds to a good starting point, additional work is re-
quired to completely master the network reconfiguration problem. We dis-
cuss about future work in this direction in Section 5.3.

‘https://version.helsinki.fi/matteo.pozza/matryoshkadata

5The 5G-based model also considers the NF instances composing each network func-
tion. When performing migrations using the inputs of the 5G-based model, we do not
migrate an entire network function with all its NF instances, but we migrate single NF
instances, thus allowing the NF instances of the same network function to be potentially
running in different computing nodes.
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Figure 4.6: Cumulative Distribution Function (CDF) of the number of
problem instances solved over time. Matryoshka (MAT-I and MAT-S) out-
performs the state of the art (SOTA) by finding solutions to 8 times more
problem instances compared to SOTA within the first 10 minutes. Illustra-
tion from Publication 4.

4.3 Summary

This chapter pursued a two-fold aim. First, the chapter provided evidence
that decomposing network functions can also bring disadvantages. For
example, the increase in the number of network functions in the network
can make network management tasks more challenging. Second, the chapter
shows that it is indeed possible to enjoy the benefits brought by network
function decomposition and mitigate the drawbacks coming along at the
same time. We illustrated the techniques we designed to mitigate two key
drawbacks that we identified and we demonstrated their effectiveness.


https://doi.org/10.1109/JSAC.2020.2986898
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Chapter 5

Conclusion

In this chapter, we summarize the outcomes from the work presented in
this thesis. First, we examine again the research question and we assess
the achievement of the objectives that we formulated in the beginning of
the thesis (Section 5.1). We then provide a unified view of the several
improvements to the state of the art we presented, highlighting the over-
all scientific contribution brought by the thesis (Section 5.2). Finally, we
discuss the directions we envision for future work (Section 5.3).

5.1 Research Questions Revisited

RQ1. What are the state-of-the-art techniques to improve network flex-
ibility?

We have examined the scientific literature, and we have identified a
set of use cases that are known for triggering a need for flexibility in the
network, e.g., providing connectivity services to the survivors of a natural
disaster. Among the solutions that have been proposed for these use cases,
we identified Networks-In-a-Box (NIBs) as the most suitable solution to
meet the flexibility requirements of the 5G use cases as well. NIBs enclose
all the network functions required to run a fully fledged network, and they
are capable of self-organizing to work alone as well as with other network
functions. Thanks to these design features, NIBs are able to meet the
requirements of use cases such as after-disaster scenarios and provisioning
of Internet access in developing countries. In our analysis, we found that
NIBs are nevertheless insufficient to meet the flexibility required by 5G use
cases, especially when considering aspects such as the granularity of the
network functions and scalability. We conclude that the state of the art
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lacks solutions to provide the flexibility required by 5G use cases, which
motivates the work conducted to address the remaining research questions.

RQ2. How can we faithfully represent a mobile network and the require-
ments of the 5G use cases?

In Section 2.2 we have illustrated the approach we followed to create
mobile network models for our experiments. The approach consists in com-
bining the information coming from i) technical and scientific documenta-
tion, such as 3GPP specifications, ii) interviews with experts in the field,
and iii) measurements performed in our testbed. We showcase our approach
by presenting two models we built. The first model, i.e., LTE-based, uses
information from current LTE networks to represent 5G-enabled scenar-
ios, for example by representing the network slices as disjoint sets of LTE
network functions. The LTE-based model is thus more suited to represent
the networks during the early steps in the transition from LTE to 5G. The
second model, i.e., 5G-based, represents 5G networks by leveraging fore-
casts about the traffic in the years to come and information from technical
specifications. The 5G-based model is more indicated for representing 5G
networks which are built from scratch.

RQ3. Can we efficiently mitigate signaling overheads by decomposing
the network functions using the networking planes?

In Section 3.1 we have presented a methodology to decompose the net-
work functions using the networking planes. Specifically, we identified three
networking planes a network function can participate in, i.e., data forward-
ing, network control, and storing services. We then split each network
function into fine-grained network functions, where each network function
provides the functionalities for a single plane. We have shown that the
obtained architecture enables network operators to tailor the network for a
variety of use cases. As an example, we have shown that coalescing the con-
trol NF's at the edge of the network allows reducing significantly the number
of signals exchanged in the network. We thus answer to RQ3 positively.

RQ4. Can we optimize the usage of network resources by decomposing
the network functions using sources and destinations of the traffic?

The uplink traffic of a network slice originates at several base stations,
then it is conveyed through a small set of network functions, and then it
flows out towards several gateways, while the downlink traffic follows the
same path, but in the opposite direction. Conveying the traffic from several



5.1 Research Questions Revisited 61

sources to a few network functions makes the network functions resource-
hungry and therefore difficult to migrate. In addition, in Section 3.2 we
have shown that this architecture results in high bandwidth consumption,
ultimately leading to the network being unable to host additional network
slices. We propose to decompose each network function in a set of network
functions, each of which processes the traffic flowing between a specific
pair of source and target nodes. Given the smaller workload, the obtained
network functions are less resource-hungry and they are easier to migrate
in the network, thus enabling network operators to instantiate them more
efficiently. In our evaluation, we observed that the obtained architecture
allows saving around two times more of the bandwidth than normal network
slicing, thus answering RQ4 positively.

RQ5. Can we adapt the network functions to different use cases by
changing the data store used for managing the state in an effi-
cient manner?

To meet the different requirements from 5G use cases, network oper-
ators need to change the data store used for managing the state of the
network functions, but this operation currently involves refactoring heavily
the network functions. In Section 3.3 we propose FlexState, a system that
decouples the state management from the data store adopted, thus making
the packet processing logic independent from the data store chosen for state
management. Crucially, our system is designed so that network functions
can scale with the resources available. We have successfully tested FlexS-
tate with two of the most commonly deployed network functions, namely
a NAT and a load balancer. More specifically, we were able to connect
the network functions with a variety of data stores by just changing a con-
figuration file. We also verified that the network functions improve their
performance when we increase the amount of resources assigned to them,
i.e., they are indeed able to scale. Therefore, we can answer RQJ5 positively.

RQ6. Can we decouple the state management in network functions from
the data store adopted and preserve line-rate performance?

Network functions incur severe performance drawbacks due to the in-
direction introduced by decoupling the state management from the data
store used to keep the state information. In designing FlexState, we have
included two key performance optimizations to address this issue, namely
no_wait calls and asynchronous updates (Section 4.1). When issuing a
no_wait call, the caller does not wait for the response from the state man-
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agement to come back, but instead it continues with the subsequent oper-
ations. no_wait calls are thus useful for speeding up the packet processing
loop because the state management operations are scheduled in a thread in
the background. Asynchronous updates enable decoupling the packet pro-
cessing loop from the interactions with the data store, so that the network
function and the data store can operate at different rates. Our tests show
that network functions are able to process packets at line rate thanks to
the described optimizations, so the answer to RQG6 is positive.

RQ7. How can we reconfigure networks with a high number of network
functions?

Traditional approaches for planning network reconfiguration fail when
dealing with the massive amount of network functions in 5G networks. The
problem is exacerbated by the increase in the number of network functions
to handle due to network function decomposition. In Section 4.2 we propose
Matryoshka, an algorithmic technique that adopts a divide-and-conquer
approach and uses multiple CPU cores to speed up the process of finding
a solution. Our results show that i) Matryoshka outperforms the state of
the art in terms of number of problem instances solved, and ii) there is
still a significant number of problem instances for which Matryoshka is not
able to identify a solution within the given time budget. We can conclude
that Matryoshka does not completely address the problem, but it rather
corresponds to a first step in the pursuit of a definitive solution.

5.2 Scientific Contribution

This thesis provides a number of contributions in the field of network plan-
ning and design, which are detailed in the publications appended to the
thesis and they are now available to the scientific community. Among
them, we highlight the ones we believe to be the two key contributions.
The first one consists of a methodology to build realistic models for mo-
bile networks, which can then be used in experiments. The methodology
prescribes to define a mobile network by detailing out two components, 1)
the substrate network, and ii) the virtual network. Each of the two compo-
nents can be abstracted as a graph: in the substrate network, the vertexes
are computing nodes and the edges are links, while in the virtual network
the vertexes correspond to network functions and the edges correspond to
virtual links. The entities in the substrate network are labeled with ca-
pacities, i.e., amount of resources available. Conversely, the entities in the
virtual network are labeled with demands. To dimension both capacities
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and demands, as well as to choose the topology of the graphs, we prescribe
consulting three sources, i) technical and scientific documentation, such
as 3GPP specifications, ii) interviews with experts in the domain, and iii)
measurements on testbeds. We exemplify how to apply the methodology
in Section 2.2 by describing two models we used in our experiments.

As the second key contribution, the thesis provides a range of tools that
can be used for future work in studying how to improve network flexibility.
In addition to the already-discussed models of mobile network, which can
be used in other experiments, researchers can leverage the techniques we
proposed to decompose network functions in different contexts, such as with
application-layer network functions, as well as look for alternative ways to
improve network flexibility. We also illustrated two of the key problems that
arise with improved network flexibility, namely drops in performance and
increased complexity of network management tasks. Researchers can now
leverage this knowledge to propose new techniques of improving network
flexibility which are explicitly designed to avoid or mitigate these drawbacks
in a preventive manner.

5.3 Future Work

While the work described in this thesis certainly improves the flexibility of
networks, there is still a long path to walk before achieving full network
flexibility. Figure 5.1 shows what we envision to be the end of the path,
i.e., the architecture of a fully flexible network. The central element is the
network Artificial Intelligence (AI), which receives three types of input.
First, the use cases being served by the network are described by a set of
requirements, which are fed to the network AI. Second, the network oper-
ator provides a set of objectives, e.g., minimizing the bandwidth usage, or
minimizing the usage of the resources in the computing nodes. Finally, the
network itself provides information about its resources, in terms of both
maximum capacity and current usage. The network Al uses the received
input to decide for each network function the granularity, i.e., how much
it should be decomposed, the scale, i.e., how many NF instances should be
active, and the location, i.e., if the network function should be migrated
in the network. Once the new best configuration of the network has been
identified, the network Al generates the instructions to reconfigure the net-
work accordingly. Depending on the context, the network operator decides
the frequency of the iterations of the described feedback loop, e.g., a couple
of times per day as well as every few minutes.



64 5 CONCLUSION

\

Use Network
(] t
[ I I
Requirements l
Constraints + Statistics O Objectives
A *.

Network Al

Network

Figure 5.1: A vision of a flexible network. The Artificial Intelligence (AI)
receives in input i) the requirements from the use cases, ii) the objectives
from the network operator, and iii) the constraints of the physical resources
in the network, together with the statistics describing the usage of the
network. Based on the inputs, the network AI decides granularity, scale,
and location of the network functions, then it issues the instructions to
reconfigure the network accordingly.

The work in this thesis takes only a first step in realizing the compo-
nents of the described network architecture. For example, in Section 3.1
we proposed three ways of configuring the network functions to achieve
specific objectives, e.g., reducing the signaling overheads. From the expe-
rience we accrued, we provide researchers with two recommendations. The
first one is to invest time in identifying additional objectives that network
operators might pursue. The second one is to design preventatively the
configurations to meet such objectives, thus creating a portfolio of ready-
to-use configurations for the network functions. The advantage is two-fold.
First, the increase in the number of network functions to manage due to
the decomposition of network functions makes it more difficult to identify
the best configuration. Therefore, a set of pre-tested configurations facil-
itates the work of the network AI, which can use these configurations as
starting points in the lookup for better configurations. Secondly, in the
absence of the network AI, network operators could experience difficulties
in managing a network involving a high number of network functions. The
portfolio would thus correspond to a set of general guidelines that network
operators can follow for configuring the network.
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We would also like to raise a call for additional work in the genera-
tion of the reconfiguration instructions. In Section 4.2 we have described
Matryoshka, a system we designed for this purpose. While Matryoshka
certainly improves the state of the art, the results we obtain indicate that
Matryoshka is not able to generate reconfiguration instructions for roughly
half of the problem instances in our dataset. On the lines drawn by this the-
sis, we expect researchers soon to start developing new ways to decompose
network functions further, which will exacerbate the problem of generating
reconfiguration instructions. We recommend researchers to invest time and
resources in designing techniques to tackle this problem more effectively.

To summarize, 5G use cases call for networks that are capable of adapt-
ing to different requirements. To achieve the flexibility that networks will
require, we believe that decomposing the network functions is necessary
but not sufficient. Networks need to be complemented with tools to fully
automatize the decisions on the granularity, the scale, and the location of
the network functions. Developing and making available such tools leads to
a win-win situation for both the network users and the network operators.
Thanks to network function decomposition, the requirements of the use
cases can be met, and the network operators are relieved from the burden
of managing a high number of network functions.
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Appendix A

Size of Signals of LTE Procedures

We report here the size of the signals of LTE procedures we have measured

in our mobile network testbed. Please note the following aspects:

e All sizes are reported in bytes.

e We do not report the size of the signals exchanged between UE and

eNB.

e In our testbed, each signal between MME and HSS corresponded to
two database queries, so we use the sum of the size of the two queries

to model the size of the signal.

e In our testbed, some network functions are run together ,e.g., S-GW
and P-GW, and it is not possible to measure the size of the signals
exchanged between them. For such signals, we used the average size

of a signal across all procedures, i.e., 251.03 bytes.

Initial Attach

Name Direction Size (B)
Initial UE Message eNB — MME 214
Authentication Information Request MME — HSS 923
Authentication Information Answer HSS — MME 624
Authentication Request MME — eNB 138
Authentication Response eNB — MME 138
Security Mode Command MME — eNB 122
Security Mode Complete eNB — MME 146
Update Location Request MME — HSS 917
Update Location Answer HSS — MME 2009
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Create Session Request MME — S-GW 262
Create Session Request S-GW — P-GW 251.03
EPS Session Establishment Notification | P-GW — PCRF 251.03
Profile Request PCRF — SPR 251.03
Profile Response SPR — PCRF 251.03
EPS Session Establishment Ack PCRF — P-GW 251.03
Create Session Response P-GW — S-GW 251.03
Create Session Response S-GW — MME 141
Initial Context Setup Request MME — eNB 306
Initial Context Setup Response eNB — MME 118
UE Capability Info Indication eNB — MME 166
Attach Complete eNB — MME 122
Modify Bearer Request MME — S-GW 89
Modify Bearer Response S-GW — MME 88

Idle-to-Active Transition
Name Direction Size (B)
Downlink Data Notification S-GW — MME 251.03
Downlink Data Notification Ack | MME — S-GW 251.03
Paging MME — eNB 251.03
Initial UE Message eNB — MME 122
Initial Context Setup Request MME — eNB 182
Initial Context Setup Response eNB — MME 118
UE Capability Info Indication eNB — MME 166
Modify Bearer Request MME — S-GW 89
Modify Bearer Response S-GW — MME 88

X2 Handover
Name Direction Size (B)
Handover Request SeNB — TeNB 466
Handover Request Ack TeNB — SeNB 174
Sequence Number Status Transfer SeNB — TeNB 122
Path Switch Request TeNB — MME 134
Modify Bearer Request MME — S-GW 89
Modify Bearer Request S-GW — P-GW 251.03
EPS Session Modification Notification | P-GW — PCRF 251.03
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EPS Session Modification Ack PCRF — P-GW 251.03
Modify Bearer Response P-GW — S-GW 251.03
Modify Bearer Response S-GW — MME 88
Path Switch Request Ack MME — TeNB 170
UE Context Release TeNB — SeNB 102
Downlink Procedure
Name Direction Size (B)
Downlink Packet | P-GW — S-GW 1494
Downlink Packet S-GW — eNB 1494
Uplink Procedure
Name Direction Size (B)
Uplink Packet | eNB — S-GW 1494
Uplink Packet | S-GW — P-GW 1494
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Appendix B

Improvements to the ILP Model

We designed the ILP model described in Publication 3 to consider latency
constraints as well. In particular, the model ensures that procedures, such
as initial attach and handovers, are carried out within the latency bud-
gets prescribed by the use cases. To do so, we formulated the following
constraints:

ZpathDelmm - TvcomPy 4, v, - locV Pairni,su

n2,s,v2
ni,ne€N
v1,v2€V
+ Z:pathDelmm2 - TvcomPy 4 4 - locV Pair n s, (B.1)

n2,52,V
s2,n1,n2EN
veV

<mdelP,, Vs& N, pecP,
where

e N is the set of the computing nodes, V is the set of VNFs, and P is
the set of procedures;

e pathDel,, ., is the latency incurred in traversing the path between
nodes ny and no;

o ITvcomP, 4, v, is a binary flag that indicates if VNFs v; and vo com-
municate to carry out procedure p or not;

e locV Pairni,s1,v1 is a binary flag that indicates if i) VNF vy serving
n2,52,v2

uslice s is instantiated at node ny and ii) VNF vq serving uslice so
is instantiated at node ns;

e mdel P, is the latency budget for completing procedure p.
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The constraints contains the sum of two terms in the left-hand side.
Given a certain procedure p and a pslice s,' the first term accounts for the
delay incurred in carrying out the procedure by VNFs that are different,
e.g., S-GW and MME exchanging signals during an initial attach. The
second term accounts for any delay incurred in carrying out the procedure
by instances of the same VNF, e.g., eNBs transferring user data during a
X2 handover. Note that normal procedures do not incur any delay due
to communication between instances of the same VNF, the only exception
being the X2 handover, during which the Source eNB transmits user data
to the Target eNB.

Focusing on the second term of the sum in the left-hand side of the con-
straints B.1, we can note that the summation encompasses all the uslices of
the original network slice, i.e., the summation considers all s2 € N. When
considering the X2 handover procedures requested by uslice s, this term
therefore accounts for the delay incurred between the eNB serving s and
all the other eNBs serving the other uslices. In this form, the current for-
mulation of the constraint is thus too stringent. Instead, when considering
the X2 handover procedure, the constraint should consider every pair of
pslices separately, so that only the latency incurred by the pair of eNBs of
the two puslices is taken into account. The formulation of the constraints
can be easily fixed as follows:

ZpathDelmm - Tvcom Py 4, o, - locV Pairny,si,v

n2,51,v2
ni,n2€N
v1,v2€V
+ E pathDely, n, - IvcomPy 4 - locVPaier,gl,g (B.2)
2,52
ni,ne€N s
veV

< mdelP,, Vsl,s2€ N, peP.

Note that the new formulation does not affect the delay constraints
for the other procedures because they do not incur any delay due to the
communication of VNFs of the same type, i.e., the contribution of the
second term of the sum in the left-hand side is always 0. The only drawback
of the formulation is the increase in the number of constraints because we
are iterating over and additional index, i.e., s2 € N. Nevertheless, given
that the contribution of such second term is null for the majority of the
procedures, this results in duplicate constraints, i.e., | V| constraints equal
to each other for each pair s1 € N, p € P, which are easily identified and
discarded by modern solvers [7].

'Note that each pslice s is identified by its ingress node, therefore s € N.
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Note also that the usage of the formulation of the constraints B.1 is
unlikely to have affected the validity of the results presented in Section 3.2
for the following reasons. The delay incurred by the links in the physical
network is 1 ms, while the delay budget assigned to X2 handover proce-
dures is around 500 ms [91]. Given that in our evaluation the considered
topologies have a limited number of edges, i.e., always less than 50 edges,
and the number of uslices for each network slice is 5, we can conclude
that the impact of the delay constraints in the problem instances studied
is minimal.
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