
This article has been accepted for publication and undergone full peer review but has not been through the 
copyediting, typesetting, pagination and proofreading process, which may lead to differences between this 
version and the Version of Record. Please cite this article as doi: 10.1111/1365-2745.13301

This article is protected by copyright. All rights reserved

MR ØYSTEIN  OPEDAL (Orcid ID : 0000-0002-7841-6933)

Article type      : Research Article

Editor               : Ignasi Bartomeus

Using hierarchical joint models to study reproductive interactions in plant 

communities

Øystein H. Opedal1,* & Stein Joar Hegland2

1Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, 

University of Helsinki, Helsinki, Finland.

2Department of Environmental Sciences, Western Norway University of Applied Sciences, P.O. 

Box 133, N-5801 Sogndal, Norway.

*Corresponding author e-mail: ohopedal@gmail.com

Running head: Studying reproductive interactions with joint models

A
cc

ep
te

d 
A

rt
ic

le

 

Journal of Ecology 
 

 
 
 
 

https://doi.org/10.1111/1365-2745.13301
https://doi.org/10.1111/1365-2745.13301
mailto:ohopedal@gmail.com


This article is protected by copyright. All rights reserved

Abstract

1. Pollinator-mediated reproductive interactions among coflowering plant species are prime 

examples of how species interactions may affect fitness and community assembly. Despite 

considerable interest in these issues, statistical methods for assessing signal of reproductive 

interactions in observational data on coflowering species are currently lacking.

2. We propose a flexible method for quantifying potential reproductive interactions among 

coflowering plant species using the hierarchical latent-variable joint models implemented in the 

Hierarchical Modelling of Species Communities (HMSC) framework. The method accommodates 

any measure of reproductive success, including pollinator visitation, stigma pollen loads, and seed 

set. We demonstrate the method by analysing a dataset on bumblebee visitation to a set of 

coflowering plant species in a species-rich meadow in Norway, and provide R tutorials for this and 

additional data types.

3. The example analysis revealed both positive and negative effects of heterospecific flower 

abundances on visitation to coflowering species, which we interpret as potential reproductive 

interactions.

4. Hierarchical joint models provide a flexible approach to analysing patterns of covariation in the 

reproductive success of coflowering species, thus identifying potential species interactions. 

Important strengths include explicit consideration of community-level effects and the assessment 

of residual fitness correlations after controlling for covariates such as flower abundances and 

phenotypic traits, yielding more complete insights into pollinator-mediated reproductive 

interactions.

Key-words: competition, facilitation, hierarchical modelling of species communities, natural 

selection, plant-pollinator interactions, selection gradient
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Introduction
Species interactions within and among trophic levels play key roles in the assembly and dynamics 

of plant and insect communities. Most research addressing species interactions and coexistence in 

plant communities has focused on vegetative processes such as competition for light or nutrients, 

yet several authors have pointed out that plant coexistence may also depend on partitioning of 

biotic resources such as pollinators (Armbruster 1995; Sargent & Ackerly 2008; Pauw 2013; 

Bartomeus, Godoy & Rees 2018 and references therein). Variation in pollinator visitation can 

directly affect plant fitness, and access to pollination services can be seen as a limiting resource 

for animal-pollinated plants (the vast majority of flowering plants; Ollerton, Winfree & Tarrant 

2011). Consequently, competition for access to pollinators may play an important role in long-

term species coexistence in plant communities (Pauw 2013), and can also affect the probability of 

rare immigrants establishing in a community (Runquist & Stanton 2013). Understanding the role 

of pollinators in community assembly and species coexistence is key to predicting the 

consequences of ongoing changes in biotic communities, including the impact of species invasions 

(Schweiger et al. 2010) and declines in pollinator populations (Potts et al. 2010). As a step in this 

direction, we here propose and demonstrate how to use recently developed hierarchical joint 

models to probe data on the reproductive success of coflowering species with the aim of detecting 

potential reproductive interactions.

Pollination ecologists have long recognized that coflowering species may affect each 

other’s reproductive success negatively if they compete for the same limiting pollinator resource, 

and positively if larger total floral abundances attract proportionally more pollinators (e.g. Waser 

1978; Feinsinger 1987; Moeller 2004; Hegland, Grytnes & Totland 2009; Mitchell et al. 2009). 

We will refer to these interactions as reproductive interactions, to keep them separate from those 

interactions mediated e.g. by competition for access to nutrients (Armbruster 1995). Most 

flowering plants are visited by multiple pollinator species, and most pollinator species visit 

multiple plant species (e.g. Waser et al. 1996; Bascompte & Jordano 2007; Lázaro, Lundgren & 

Totland 2009). Negative reproductive interactions (competition) may therefore arise, for example, 

if coflowering species differ in abundance and shared pollinators prefer the more abundant 

species, or if flowers of different species differ in attractiveness. Positive (facilitative) 

reproductive interactions may arise through joint attraction of shared pollinators when the flower 

density of each individual species is too low to efficiently attract pollinators (Schemske 1981; 

Moeller 2004; Mesgaran et al. 2017; Losapio et al. 2019), or more generally when plant species A
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have mechanisms in place that alleviate the negative effects of pollinator sharing through 

avoidance or tolerance of heterospecific pollination (Hegland, Grytnes & Totland 2009; Hegland 

& Totland 2012; Ashman & Arceo-Gomez 2013).

If pollinator-mediated reproductive interactions affect plant fitness and the assembly of 

communities, their signatures should be detectable in patterns of reproductive success among 

coflowering plant species. Despite the long-standing interest in these issues, there have been 

relatively few attempts at detecting a signal of reproductive interactions in observational data from 

coflowering plant communities (but see Hegland, Grytnes & Totland 2009; Benadi & Pauw 2018). 

Here, we suggest that methods recently developed for analysing patterns of species cooccurrence 

can also be used to quantify potential reproductive interactions among coflowering plant species. 

Such approaches can enhance our understanding of general patterns of, and explanations for, 

ecological interactions. In the following, we first introduce the principles of the modelling 

approach, and discusses its advantages in studies of pollinator-mediated plant-plant interactions. 

We then demonstrate a specific application of the method by analysing a dataset on bumblebee 

visitation to a set of coflowering plant species in a species-rich meadow in Norway. Note that 

applications of the proposed methods are not limited to this data type, and we therefore provide 

tutorials for this and additional data types (Fig. 1) in the appendices. Finally, while our focus here 

is on pollinator-mediated interactions in plant communities, we note that our approaches can 

equally well be applied to analysing fitness data for other organisms.

Materials and Methods
Statistical analyses of reproductive interactions among coflowering plant species

Community ecologists have long sought to infer patterns of species interactions from 

observational data on species cooccurrence patterns (e.g. Diamond 1975; Connor & Simberloff 

1979). One of the core ideas of these analyses is that if two species occur together more, or less, 

often than would be expected from their shared response to the abiotic environment, this can be 

taken as an indication of a facilitative or competitive process. Several model-based approaches 

have recently been developed to facilitate such analyses (e.g. Pollock et al. 2014; Hui 2016; 

Ovaskainen et al. 2017b). Following a similar logic, we can use data on the reproductive 

performance (fitness) of several species to ask whether their performance when occurring together 

differ from expectations. In the following, we will demonstrate the use of a recently developed 

statistical framework, Hierarchical Modelling of Species Communities (HMSC; Ovaskainen et al. A
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2017b), to analyze data on the reproductive success of coflowering species with the aim of 

detecting potential pollinator-mediated reproductive interactions.

The minimum data requirement for applying these methods is some measure of 

reproductive performance of at least two species occurring together in a set of observation units 

(e.g. study plots or pollinator-observation periods). Measures of reproductive performance may 

include number of pollinator visits, number of conspecific pollen grains deposited onto stigmas, 

and number of fruits or seeds set. The kind of data available will naturally dictate the kinds of 

questions that can be asked, and the kinds of inferences that can be made (see further discussion 

below).

The Hierarchical Modelling of Species Communities framework

The Hierarchical Modelling of Species Communities (HMSC) framework belongs to the class of 

‘joint models’ (Warton et al. 2015), and allows modelling the effects of a set of covariates on 

multiple response variables. An advantage of these models is that they allow estimating shared 

responses to covariates among response variables, and to leverage this information to refine 

parameter estimation. In analyses of pollinator-mediated reproductive interactions, this allows 

asking, for example, whether plant species respond similarly to the abundance of a specific 

coflowering species, or whether pollinators systematically prefer specific phenotypic traits (e.g. 

larger flowers). Furthermore, joint models can be used to assess and quantify residual covariance 

among response variables after accounting for the effects of covariates (Ovaskainen et al. 2016a; 

Ovaskainen et al. 2017b). In the context of community analyses these residual associations may 

represent potential reproductive interactions among species, such as greater attractiveness of the 

flowers of some species over others.

In HMSC, the response to covariates (fixed part of linear predictor, ) is modelled as the 𝐿𝐹
𝑖𝑗

regression , where  is the value of covariate k for observation i, and  is the 𝐿𝐹
𝑖𝑗 = ∑

𝑘𝑥𝑖𝑘β𝑘𝑗 𝑥𝑖𝑘 β𝑘𝑗

regression slope of response variable j on covariate k. To explicitly model joint responses to the 

covariates, the vector of regression coefficients for each response variable is assumed to adhere to 

a multivariate normal distribution as , where μ is a column vector of mean (expected) 𝛃j~Ɲ(𝛍, 𝐕)

regression coefficients and V is a variance-covariance matrix describing covariation in regression 

coefficients among response variables (Ovaskainen & Soininen 2011). The diagonal of the matrix 

V thus describes variation among species in their response to the covariates.A
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Residual associations among response variables are quantified through a latent-variable 

approach, where latent variables (random part of linear predictor, ) can be specified at multiple 𝐿𝑅
𝑖𝑗

hierarchical levels, e.g. observations within plots within sites (Ovaskainen et al. 2016a). The latent 

variables can be thought about as unobserved variables representing either unmeasured 

environmental variation or the influence of species interactions, and are modelled as 𝐿𝑅
𝑖𝑗 = ∑

ℎ𝜂𝑖ℎλℎ𝑗

, where  is the value of the unmeasured latent factor h for observation i, and  is the loading of 𝜂𝑖ℎ λℎ𝑗

response variable j onto latent factor h. The residual associations are quantified by variance-

covariance matrices, which for latent variable R is denoted as , where  represents 𝛀𝑅 = (𝝀𝑅)𝑇𝝀𝑅 𝝀𝑅

the loadings of each response variable onto the latent variable R, and T denotes transposition. The 

strength of the associations among response variables (species in the analyses that follow) can be 

quantified by translating the covariances into correlations.

The HMSC model has been implemented in a Bayesian framework, has been shown to 

perform well in terms of parameter estimation and prediction (Tikhonov et al. 2019), and was 

ranked first in a recent comparison among similar models (Norberg et al. 2019). In the following 

we will demonstrate applications of the HMSC framework to data on flower visitation to a set of 

plant species at a plot level recorded during multiple censuses at each plot (Fig. 1a). We 

implemented the analyses with the HMSC-R 3.0 R package (Tikhonov et al. 2019) in R 3.5.0 (R 

Core Team 2018). A detailed tutorial including the R code reproducing the analyses reported in 

the main text, along with additional details, is available in Appendix S1. In Appendix S2 we use 

simulated data to demonstrate how to set up a HMSC model for data collected at the level of 

individual plants, including the measurement of phenotypic selection gradients (covariance of 

phenotypic traits and relative fitness; Lande & Arnold 1983) for multiple species simultaneously 

(Fig. 1b).

Case study: Plot-level analysis of pollinator visitation

As an example of an application of HMSC to data on pollinator visitation at a plot level, we 

reanalysed the data collected by Hegland, Grytnes and Totland (2009). Pollinator observations 

were made at 1.5 × 1.5 m plots during 10-min censuses (n = 201 censuses in 20 plots) in a species-

rich meadow in Norway. During each census, an observer recorded the number of pollinator visits 

to each plant species flowering in the plot, and counted the total number of flowers of each 

species. Observations were made during a single growing-season (late May to August) largely 

under good weather conditions (no rain, little wind). Temperature measurements were made at the A
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beginning of each census. We focus here on visits by bumblebees to those species visited 

primarily (>50% of visits, often >80%) by bumblebees (9 species).

In these data, pollinator-mediated reproductive interactions may arise via an abundance 

effect, where more abundant species are more attractive to pollinators, or via a preference effect, 

where individual flowers of some species are more attractive to pollinators than are flowers of 

other species. A simple correlation analysis of pollinator visitation to each species would confound 

these processes. As an attempt to disentangle these mechanisms, we will fit a series of models 

analysing both the direct effect of the flower abundance of each species (including the focal 

species) on the number of pollinator visits to the focal species, and the residual covariance of 

pollinator visitation among species after controlling for any effects of flower abundances and other 

covariates. The residual covariances should capture covariation in pollinator visitation after 

controlling for the floral abundance of each species, and could represent, for example, differential 

attractiveness of individual flowers to pollinators.

We will consider two kinds of matrices describing species-to-species associations (Fig. 1a). 

The first, denoted in HMSC as Ω, is a symmetrical matrix describing the residual correlations of 

pollinator visitation to each species. Positive residual correlations indicate that both species tend to 

be visited within the same sampling units (pollinator censuses or plots), after accounting for the 

effects of covariates included in the model. The second, which we denote as A, is a square matrix 

with elements Aij describing the effect of the floral abundance of species j on the reproductive 

success of species i, with intraspecific effects on the diagonal, and interspecific effects on the off-

diagonals.

Model 1: Latent variables and environmental covariates only

To illustrate the meaning of the latent variables in joint models, we started by fitting a model with 

temperature as the only covariate (X, Fig. 1) so that the latent variables represent associations 

among species after controlling for effects of temperature on insect activity. In the HMSC model, 

we included in the response matrix (Y, Fig. 1) the number of pollinator visits to each species, with 

NA for species not flowering in the focal plot during a census. We loge(x+1)-transformed the 

number of pollinator visits to place the response variables on a proportional scale and to reduce the 

leverage of large values. Plot (n = 20) and census (n = 176) were treated as hierarchical random 

levels represented by latent variables, allowing us to assess residual species associations at each of 
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these scales. In addition to potential reproductive interactions, these associations include, for 

example, any tendency for species to flower in the same plots or during the same censuses.

For this and the following models, we assumed the default priors in HMSC (Ovaskainen et 

al. 2017b). We sampled the posterior distribution with 2 replicate chains of 300,000 iterations 

each with the first 100,000 discarded as burnin, and confirmed convergence by computing 

effective sample sizes, potential scale reduction factors, and by visual assessment of posterior 

trace plots (see Appendix 1 for details). Even though the number of pollinator visits is a count 

variable, the residuals of the Gaussian models conformed to the assumption of normality.

Model 2: Conspecific flower abundances

Here, we assessed to what extent the number of conspecific flowers in a plot during a census 

predicts the overall number of visits to those flowers. To do so, we added to the model the number 

of flowers of the focal species in each plot during each census as a species-specific covariate. This 

corresponds to estimating the diagonal of the matrix A (Fig. 1a). We loge(x+1)-transformed the 

flower abundances so that, because pollinator visits are also on a natural log scale, the regression 

parameters are on a proportional scale and are interpretable roughly as elasticities describing the 

percent change in pollinator visitation per percent change in flower abundance.

Model 3: Conspecific + heterospecific flower abundances

To assess whether and how the number of pollinator visits to a focal species depends on the flower 

abundances of the focal species as well as all coflowering species, and thus estimate the full 

matrix A (Fig. 1a), we included the loge(x+1)-transformed flower abundances of all species as 

covariates. To assess to what extent including all flower abundances led to overfitting of the 

model, we performed ten-fold cross-validation by sequentially re-training the model on 90% of the 

data, and making predictions for the remaining 10% of the data.

Model 4: Visitation rates, conspecific + heterospecific flower abundances

Finally, plant-level fitness may depend on the number of visits per individual flower, and it may 

therefore be of interest to know whether the number of visits to individual flowers depends on the 

abundances of conspecific and heterospecific flowers. Thus, we fitted a model similar to Model 3, 

but with the number of visits translated into visitation rates (i.e. number of visits divided by 

number of flowers). The intraspecific effects in this model represent changes in the per-flower 

visitation rate with increasing flower abundance, thus positive effects can be interpreted as 

positive density dependence, and negative effects as negative density dependence.A
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Results
Model 1: Latent variables and environmental covariates only

On average across species, the temperature-only model explained 27% of the variation in 

pollinator visitation, of which temperature explained 41%, and more variation was explained by 

the plot-level latent variable than by the census-level latent variable (Fig. 2). We detected both 

positive and negative associations for pollinator visitation at the plot level (Fig. 3a), but not at the 

census level (Fig. 3b). For example, pollinator visitation to Campanula rotundifolia was positively 

associated with pollinator visitation to Euphrasia stricta and Prunella vulgaris, and negatively 

associated with pollinator visitation to Hypericum maculatum.

Model 2: Conspecific flower abundances

Adding the conspecific flower abundances as covariates led to a limited increase in the 

explanatory power of the model (r2 = 0.34 vs. 0.27, Fig. 2), indicating that the latent factors in the 

temperature-only model (Model 1) explained a substantial amount of the variance attributed to 

conspecific flower abundances. Pollinator visitation to all species increased with increasing 

conspecific flower abundance (Fig. 4), with the strongest effect for Centaurea jacea (beta = 0.74 

log visits per log flower, 95% CI  = 0.28 – 1.25), and the weakest effect for E. stricta (beta = 0.27 

log visits per log flower, 95% CI = 0.16 – 0.40).

When controlling for conspecific flower abundances as well as temperature we detected no 

strong residual associations for pollinator visitation. This is also evident from the limited variation 

in pollinator visitation explained by the latent variables in Model 2 (Fig. 2).

Model 3: Conspecific + heterospecific flower abundances

The full model explained 43% of the variation in pollinator visitation, of which heterospecific 

flower abundances explained 33.8% (Fig. 2). The relative contributions of conspecific vs. 

heterospecific flower abundances differed among species, with the greatest contribution of 

heterospecific flower abundances observed for Knautia arvensis. As expected for models 

including many explanatory variables, predictive power as quantified by ten-fold cross-validation 

was lower than the explanatory power (mean r2
CV = 0.19).

While the covariance matrix Ω is symmetrical the A matrix is not, allowing some insights 

into the directionality of observed associations. Among the nine focal species, we detected cases 

of mutual positive or negative effects, unidirectional effects, and opposite effects (Fig. 5). 

Importantly, while we have chosen for visual clarity to plot a subset of well-supported parameters, A
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the interpretation of potential interactions for specific species pairs should be based on the 

parameter estimates with their associated uncertainty (Table 1). The previously observed 

associations of pollinator visitation involving C. rotundifolia appears to occur in both directions at 

similar strength. For example, visitation to H. maculatum tended to decrease with greater C. 

rotundifolia flower abundance (beta = -0.10 log visits per log flower, 95% CI  = -0.30 – 0.09), and 

vice versa (beta = -0.11 log visits per log flower, 95% CI  = -0.27 – 0.06). In contrast, visitation to 

E. stricta tended to decrease with greater H. maculatum abundance (beta = -0.11 log visits per log 

flower, 95% CI  = -0.26 – 0.05), but the opposite was not true. At the community level, co-

flowering species responded rather similarly to variation in the flower abundance of Euphrasia 

stricta, while responses to variation in the flower abundance of Knautia arvensis were the most 

variable (Table 1). Visitation to all species but one tended to decrease when Trifolium repens was 

more abundant.

Model 4: Visitation rates, conspecific + heterospecific flower abundances

The visitation-rate model explained 26% of the variance in visitation rates, of which 62.2% was 

explained by heterospecific flower abundances, and 11.2% by conspecific flower abundances. 

Compared to Model 3, the effects of conspecific flower abundances largely disappeared for seven 

species, remained positive for C. rotundifolia (suggesting positive density dependence), and 

became negative for Trifolium pratense (suggesting negative density dependence; Fig. 6).

Interspecific effects remained qualitatively similar (i.e. had the same sign) between the two 

models in most cases (79.2%), and the parameter estimates were strongly correlated between 

models (r = 0.82). However, the posterior support for individual parameters (i.e. the proportion of 

posterior samples that were positive, or negative in the case of negative parameter estimates) 

changed in some cases, qualitatively supporting a partly different set of potential interactions (Fig. 

6). This underlines the importance of interpreting parameter estimates rather than assigning 

positive and negative interactions based on qualitative criteria.

Discussion
Detecting reproductive interactions from observational data

Pollinator-mediated reproductive interactions among coflowering plant species are challenging to 

detect from observational data. An important reason for this is that the effect of one species on 

another may depend in complex ways on the entire coflowering community. While most analyses 

of pollinator-mediated reproductive interactions have focused on individual focal species or A
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species pairs (e.g. Waser 1978; Armbruster & McGuire 1991; Moeller 2004; Ghazoul 2006; 

Runquist & Stanton 2013), the complex nature of plant-pollinator interactions suggests that deeper 

insights may arise from joint analyses of multiple interacting species (Hegland, Grytnes & Totland 

2009). Importantly, variation in the flower abundance of a species favoured by pollinators may 

affect multiple coflowering species in a similar way. One advantage of hierarchical joint models 

when analysing potential reproductive interactions among multiple species is that joint models 

explicitly consider similarity among species in their responses to covariates, thus improving 

parameter estimation and predictive power especially for less common species (Ovaskainen & 

Soininen 2011; Warton et al. 2015; Ovaskainen et al. 2017b; Norberg et al. 2019). Explicit 

modelling of species’ joint responses to their coflowering community can therefore increase the 

power to detect community-wide patterns of reproductive interactions by leveraging information 

across all species, such as the consistent negative effect of Trifolium repens on most co-flowering 

species observed in the case study. Conversely, some species may have variable, species-specific 

effects on coflowering species, as observed for Knautia arvensis, suggesting additional factors 

affecting pollinator behaviour (e.g. differences in floral traits). Finally, we note that while joint 

models generally perform well for detecting community-level patterns, they do not necessarily 

increase the power to detect particular associations for particular species (see Norberg et al. 2019 

for a similar discussion of single vs. joint species distribution models).

Hegland, Grytnes and Totland (2009) analysed the data used in the case study by fitting 

univariate models to visitation rates of each species separately. Quantitative comparison between 

the two studies is difficult due to several differences in the modelling approach and pre-treatment 

of data, yet we can compare qualitatively the results obtained for the effects of flower abundances 

on visitation rates (Model 4 in the case study). Of the 17 detectable associations reported by 

Hegland, Grytnes and Totland (2009), 13 (76.5%) were positive. In the present analysis, eight of 

the 14 associations (57.1%) with at least 85% posterior support were positive. There are also some 

differences in the identities of the associated species (compare Fig. 6 vs. Table 1 in Hegland, 

Grytnes and Totland 2009). However, our reanalysis supports the original conclusion that not only 

negative but also positive reproductive interactions through pollinator attraction may be rather 

common among coflowering plant species.

A second advantage of joint models over multiple single-species analyses of reproductive 

performance is that these models allow estimating residual covariances after controlling for 

covariates such as flower abundances or floral traits (see Appendix S2). Residual covariation in A
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pollinator visitation may arise, for example, if pollinators prefer some species over others due to 

differences in floral advertisements and rewards. In the case study, the residual associations 

observed in the simple temperature-only model largely disappeared when adding conspecific and 

heterospecific flower abundances to the model, suggesting that such mechanisms are of limited 

importance in the focal community. However, this insight could not have been directly obtained 

from univariate analyses.

Residual species associations such as those quantified by the Ω matrix of HMSC are 

essentially correlations and cannot directly be interpreted as causal. For example, a positive 

residual association may represent a joint response to unmeasured aspects of the environment, 

such as variation in soil nutrients affecting nectar production and quality. Our A matrix is based on 

regressions rather than correlations and therefore goes some way towards disentangling the 

directionality of raw associations, as demonstrated in the case study. However, the input data is 

still observational, and we urge researchers to consider any associations detected using these 

methods as hypotheses to be tested, rather than strong causal results. A natural next step will be to 

test these hypotheses using experimental approaches. For example, a hypothesized negative 

association could be tested by generating experimental arrays containing various proportions of 

two species (Ghazoul 2006; Runquist & Stanton 2013), or by experimentally removing species 

and assessing how patterns of species associations change (Hegland & Totland 2012; Biella et al. 

2019; Losapio et al. 2019).

Community-level phenotypic-selection analyses

The case study illustrates one application of joint models to study reproductive interactions, yet 

the approach is not limited to this specific data type. Data on reproductive success (e.g. number of 

seeds produced) combined with data on phenotypic traits are commonly used to estimate 

phenotypic selection gradients following the methods of Lande and Arnold (1983). A few studies 

have assessed how the presence of coflowering species affects pollinator-mediated selection on a 

focal species (Caruso 2000; Wassink & Caruso 2013; Parachnowitsch, Cook-Patton & McArt 

2014). By similar arguments as those made above, we suggest that joint models provide a 

powerful approach for studying selection on multiple species simultaneously. In Appendix S2, we 

demonstrate how to set up a HMSC model to simulated data on the fitness of individual plants of 

multiple species (Fig. 1b). This method allows estimating selection gradients for each species in 
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addition to species-to-species associations, and would be a promising approach towards 

understanding patterns of selection at the community level.

Considerations for choice of response variable type

Data on visitation to the flowers of coflowering species such as those analysed in the case study 

are relatively easy to collect in many systems. However, while visitation data allow analyses of 

interactions mediated by floral-visitor attraction, they do not necessarily yield insights into 

consequences for reproductive success. A crucial point here is the separation between visitation 

and pollination, or floral visitors and pollinators, where pollinators are only those visitors that 

effect pollen transfer (e.g. Armbruster 1988).

Data on pollen arrival onto stigmas allows further insights into the dynamics of pollen 

transfer, thus overcoming uncertainty in the efficiency of pollen transfer. Such analyses can also 

be informative about the possible consequences of heterospecific pollination, that may 

substantially reduce the fitness advantage of joint pollinator attraction (Ashman & Arceo-Gomez 

2013; Arceo-Gomez et al. 2019). For example, a rare species may benefit from large 

heterospecific flower displays in its surroundings in terms of number of pollinator visits, but this 

advantage may be greatly reduced if most pollen grains arriving onto stigmas are heterospecific 

('quality' component of competition for pollination, see Mitchell et al. 2009). Analyses of stigma 

pollen loads may become increasingly feasible through the ongoing development of state-of-the-

art approaches such as pollen metabarcoding (Bell et al. 2016) and labelling of pollen grains with 

quantum dots (Minnaar & Anderson 2019).

Finally, data on fruit or seed set might yield even deeper insights into the fitness 

consequences of pollinator sharing. Note, however, that interactions detected from fruit- or seed-

set data alone cannot necessarily be attributed to pollination processes, because differences in seed 

set can arise from other processes such as variation in maternal resource levels and thus represent 

e.g. species interactions through vegetative processes. This problem is analogous to the issue of 

separating  pollinator-mediated phenotypic selection from other sources of variation in seed set, 

and can be resolved by combining the analytical approaches demonstrated here with experimental 

approaches such as hand-pollination treatments (e.g. Sletvold & Ågren 2014), or by combining 

analyses of pollinator visitation, pollen loads, and seed set (e.g. Pérez-Barrales et al. 2013).
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The flexible HMSC framework makes it straightforward to extend the methods demonstrated here 

by, for example, adding additional hierarchical random levels (say, plots nested within sites nested 

with landscapes). Such analyses can be informative about the spatial scale of reproductive 

interactions, because a given species pair could, for example, be positively associated at the level 

of sites due to joint attraction of more pollinators, but negatively associated at the plot-scale due to 

pollinator preference for one species over the other (see also Albor et al. 2019). If geographic 

coordinates of plots are available, the model can be fitted with spatially explicit latent factors (see 

Ovaskainen et al. 2016b for discussion and technical details), which would allow asking whether 

species associations are scale-dependent (Hegland 2014). If data are collected in several 

environments, such as along altitudinal gradients, HMSC includes methods for estimating how 

residual associations vary along environmental gradients (Tikhonov et al. 2017). Finally, it is 

technically straightforward to include multiple fitness proxies for each plant species, e.g. both 

pollinator visitation and seed set, or visitation frequencies by multiple pollinator taxa. 

Error distributions, link functions and regression equations can be easily adjusted to 

accommodate more complex relationships between covariates (e.g. flower abundances or 

phenotypic traits) and response variables. For example, adding square terms would allow assessing 

frequency-dependent effects of flower abundances on pollinator visitation (Feinsinger 1987; 

Benadi & Pauw 2018), and estimating quadratic selection gradients (Lande & Arnold 1983). 

Similarly, adding interaction terms could allow assessing more complex patterns of multispecies 

interactions, and estimating correlational selection. Because our method for estimating the A 

matrix is based on multiple-regressions with all species included as predictors, complex models 

fitted to limited data from large communities may suffer from overfitting. While the main aim in 

many cases may be to explain patterns of reproductive interactions, predictions based on such 

models will be less accurate, as demonstrated by cross-validating Model 3 in the case study. The 

number of species and covariates included in the model should therefore be limited in analyses of 

small data sets if a main aim of the analysis is to make predictions for novel sites. Note that 

parameter estimation for the species associations (Ω matrix) are based on dimension-reduction 

implemented through a latent-variable approach (Ovaskainen et al. 2016a), and overfitting should 

not be an issue for simpler models such as Model 1 and 2 in the case study. When modelling large 

communities, a similar approach could be taken for the fixed covariates. Dimension reduction for 

fixed covariates (reduced-rank regression) in HMSC has been developed in the context of time-

series analyses (Ovaskainen et al. 2017a), and could also be applied to the kinds of analyses A
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discussed here. Such techniques could also be useful for measuring phenotypic selection on high-

dimensional phenotypes (Chong, Fung & Stinchcombe 2018).

Conclusions

Ongoing development of statistical methods in community ecology now allows students of biotic 

communities to ask more nuanced questions than have been possible in the past. Here we have 

shown how community-level analyses can yield a more complete understanding of pollinator-

mediated reproductive interactions through explicit consideration of community-level responses to 

coflowering communities, and through assessment of residual fitness correlations. The flexible 

nature of these methods makes them widely applicable to related questions in other study systems 

and to different data types.
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Table 1. Parameter estimates with posterior support values in parentheses for the effect of the log(flower 

abundance) of the species given in rows on the log(pollinator visits) to the species given in columns. Posterior 

support is the proportion of posterior samples that are positive or negative (for positive and negative parameter 

estimates, respectively).

 S1 S2 S3 S4 S5 S6 S7 S8 S9

Campanula rotundifolia (S1) 0.51 

(1.00)

0.01 

(0.50)

-0.02 

(0.60)

0.11 

(0.93)

-0.1 

(0.86)

0.08 

(0.74)

0.11 

(0.86)

0.12 

(0.94)

0.09 

(0.77)

Centaurea jacea (S2) -0.05 

(0.66)

0.70 

(1.00)

-0.13 

(0.75)

-0.01 

(0.54)

-0.03 

(0.57)

0.53 

(0.98)

0.17 

(0.78)

0.08 

(0.70)

0.11 

(0.63)

Clinopodium vulgare (S3) 0.07 

(0.85)

-0.06 

(0.70)

0.63 

(1.00)

0.00 

(0.52)

-0.04 

(0.69)

-0.04 

(0.65)

-0.01 

(0.56)

0.00 

(0.50)

-0.05 

(0.67)

Euphrasia stricta (S4) 0.07 

(0.93)

0.02 

(0.59)

-0.07 

(0.92)

0.31 

(1.00)

0.01 

(0.60)

0.06 

(0.74)

0.01 

(0.54)

0.06 

(0.90)

0.03 

(0.63)

Hypericum maculatum (S5) -0.11 

(0.91)

-0.17 

(0.89)

0.00 

(0.52)

-0.11 

(0.91)

0.49 

(1.00)

-0.09 

(0.73)

-0.05 

(0.66)

0.03 

(0.67)

0.07 

(0.72)

Knautia arvensis (S6) 0.04 

(0.59)

-0.41 

(0.85)

-0.31 

(0.84)

0.10 

(0.65)

-0.10 

(0.62)

0.47 

(0.98)

-0.33 

(0.82)

-0.25 

(0.88)

-0.11 

(0.64)

Prunella vulgaris (S7) 0.11 

(0.95)

-0.14 

(0.78)

0.10 

(0.90)

0.07 

(0.82)

-0.07 

(0.78)

0.06 

(0.62)

0.52 

(1.00)

-0.01 

(0.58)

0.02 

(0.58)

Trifolium pratense (S8) -0.03 

(0.66)

0.08 

(0.68)

0.16 

(0.96)

-0.10 

(0.89)

-0.04 

(0.68)

0.05 

(0.65)

0.10 

(0.81)

0.45 

(1.00)

-0.04 

(0.63)

Trifolium repens (S9) 0.00 

(0.51)

-0.38 

(0.90)

-0.04 

(0.63)

-0.11 

(0.87)

-0.03 

(0.59)

-0.12 

(0.78)

-0.09 

(0.82)

-0.03 

(0.63)

0.34 

(1.00)
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Figure legends

Fig. 1. Examples of how hierarchical joint models can be applied to study pollinator-mediated 

reproductive interactions among coflowering plant species. Pollinator foraging choices will often 

depend on the relative abundances of plant species (a). These effects can be studied by modelling 

the reproductive success (‘fitness’, as measured e.g. by the number of pollinator visits, pollen 

deposition onto stigmas, or seed set) of multiple species as a function of the flower abundances of 

coflowering species within an observation unit such as a plot. Here, direct effects of flower 

abundances can be quantified by regression coefficients summarized in matrix A, and residual 

effects through e.g. differential attractiveness of individual flowers through the residual 

association matrix Ω. Pollinator foraging choices can also depend on the phenotypic traits of 

individuals, such as plant height and flower size (b). These effects can be studied by modelling 

fitness as a function of the phenotypic traits of individual plants, thus estimating phenotypic 

selection gradients (β). In this case, residual correlations quantify potential effects of coflowering 

species on the fitness of the focal species, after controlling for any selection acting on traits 

included in the model.

Fig. 2. Variance partitioning for bumblebee visitation to each of nine coflowering plant species. 

The contribution of each variance component is given as a proportion of the total variance 

explained by the model, given by r2 values. Model 1 (mean r2 = 27%) includes only the linear and 

square terms for temperature as fixed effects, model 2 (mean r2 = 34%) includes in addition the 

number of conspecific flowers in each observation unit (census), and model 3  (mean r2 = 43%) 

includes also the number of flowers of all coflowering species.

Fig. 3: Residual correlations for bumblebee visitation to nine coflowering plant species after 

controlling for the effect of temperature. Redder colours indicate positive associations, i.e. that 

species tend to be visited in the same plots, and bluer colours indicate negative associations, i.e. 

that species tend to be visited in different plots. For visual clarity, associations with less than 75% 

posterior support are set to zero.

Fig. 4: Effects of conspecific flower abundance on bumblebee visitation. Colours indicate effect 

sizes interpretable roughly as elasticities, where a value of 1 means that an increase in flower 

abundance of 1% increases pollinator visitation by 1%. All parameter estimates have >95% 

posterior support.A
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Fig. 5. Summary of inferred effects of intra- (diagonal) and interspecific (off-diagonals) flower 

abundances on bumblebee visitation, as indicated by posterior support for positive or negative 

effects. Colours indicate the posterior support for effects of flower abundance of the species on the 

x-axis on bumblebee visitation to the species on the y-axis. For visual clarity, effects with less than 

85% posterior support are set to zero. See Table 1 for parameter estimates.

Fig. 6. Summary of inferred effects of intra- (diagonal) and interspecific (off-diagonals) flower 

abundances on bumblebee visitation rate, as indicated by posterior support for positive or negative 

effects. Colours indicate the posterior support for effects of flower abundance of the species on the 

x-axis on the rate of bumblebee visitation to flowers of the species on the y-axis. For visual clarity, 

effects with less than 85% posterior support are set to zero.

Supporting information

Appendix 1. R tutorial including code for reproducing the analyses of plot-level visitation data 

reported in the main text of the paper.

Appendix 2. R tutorial including example analysis of simulated data on individual fitness of 

coflowering plants.

A
cc

ep
te

d 
A

rt
ic

le



Focal species fitness
O

b
se

rv
a

ti
o

n
 u

n
it

Y

O
b

se
rv

a
ti

o
n

 u
n

it

Flower abundances

X

Ecological context

HMSC input data

HMSC output

A Ω

(a) Variation in coflowering community

Response matrix Covariate matrix

Regression coefficients Residual correlations Ω

(b) Variation in phenotypic traits

Response matrix Covariate matrix

Regression coefficients Residual correlations

Fitness

F
o

ca
l 

in
d

iv
id

u
a

l

Y

F
o

ca
l 

in
d

iv
id

u
a

l

Phenotypic trait

X

β

F
lo

w
e

r 
a

b
u

n
d

.

Focal species fitness

P
h

e
n

o
ty

p
ic

 t
ra

it

Fitness

jec_13301_f1.pdf



Random: Census (mean = 24)
Random: Plot (mean = 35)
Temperature (mean = 41)

Model 1: Temperature only
V

ar
ia

nc
e 

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Cam
pa

nu
la 

ro
tu

nd
ifo

lia

Cen
ta

ur
ea

 ja
ce

a

Clin
op

od
ium

 vu
lga

re

Eup
hr

as
ia 

str
ict

a

Hyp
er

icu
m

 m
ac

ula
tu

m

Kna
ut

ia 
ar

ve
ns

is

Pru
ne

lla
 vu

lga
ris

Tr
ifo

liu
m

 p
ra

te
ns

e

Tr
ifo

liu
m

 re
pe

ns

Random: Census (mean = 7.3)
Random: Plot (mean = 6.6)
Temperature (mean = 12)
Conspecific flowers (mean = 74.1)

Model 2: + Conspecific flowers

V
ar

ia
nc

e 
pr

op
or

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

Cam
pa

nu
la 

ro
tu

nd
ifo

lia

Cen
ta

ur
ea

 ja
ce

a

Clin
op

od
ium

 vu
lga

re

Eup
hr

as
ia 

str
ict

a

Hyp
er

icu
m

 m
ac

ula
tu

m

Kna
ut

ia 
ar

ve
ns

is

Pru
ne

lla
 vu

lga
ris

Tr
ifo

liu
m

 p
ra

te
ns

e

Tr
ifo

liu
m

 re
pe

ns

Random: Census (mean = 4.1)
Random: Plot (mean = 3.9)
Temperature (mean = 6.5)
Conspecific flowers (mean = 51.7)
Heterospecific flowers (mean = 33.8)

Model 3: + Heterospecific flowers

V
ar

ia
nc

e 
pr

op
or

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

Cam
pa

nu
la 

ro
tu

nd
ifo

lia

Cen
ta

ur
ea

 ja
ce

a

Clin
op

od
ium

 vu
lga

re

Eup
hr

as
ia 

str
ict

a

Hyp
er

icu
m

 m
ac

ula
tu

m

Kna
ut

ia 
ar

ve
ns

is

Pru
ne

lla
 vu

lga
ris

Tr
ifo

liu
m

 p
ra

te
ns

e

Tr
ifo

liu
m

 re
pe

ns

A
cc

ep
te

d 
A

rt
ic

le



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Cam
pa

nu
la 

ro
tu

nd
ifo

lia

Cen
ta

ur
ea

 ja
ce

a

Clin
op

od
ium

 vu
lga

re

Eup
hr

as
ia 

str
ict

a

Hyp
er

icu
m

 m
ac

ula
tu

m

Kna
ut

ia 
ar

ve
ns

is

Pru
ne

lla
 vu

lga
ris

Tr
ifo

liu
m

 p
ra

te
ns

e

Tr
ifo

liu
m

 re
pe

ns

Campanula rotundifolia

Centaurea jacea

Clinopodium vulgare

Euphrasia stricta

Hypericum maculatum

Knautia arvensis

Prunella vulgaris

Trifolium pratense

Trifolium repens

Plot level

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Cam
pa

nu
la 

ro
tu

nd
ifo

lia

Cen
ta

ur
ea

 ja
ce

a

Clin
op

od
ium

 vu
lga

re

Eup
hr

as
ia 

str
ict

a

Hyp
er

icu
m

 m
ac

ula
tu

m

Kna
ut

ia 
ar

ve
ns

is

Pru
ne

lla
 vu

lga
ris

Tr
ifo

liu
m

 p
ra

te
ns

e

Tr
ifo

liu
m

 re
pe

ns

Campanula rotundifolia

Centaurea jacea

Clinopodium vulgare

Euphrasia stricta

Hypericum maculatum

Knautia arvensis

Prunella vulgaris

Trifolium pratense

Trifolium repens

Census level
jec_13301_f3.pdf

This	article	is	protected	by	copyright.	All	rights	reservedA
cc

ep
te

d 
A

rt
ic

le



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cam
pa

nu
la 

ro
tu

nd
ifo

lia

Cen
ta

ur
ea

 ja
ce

a

Clin
op

od
ium

 vu
lga

re

Eup
hr

as
ia 

str
ict

a

Hyp
er

icu
m

 m
ac

ula
tu

m

Kna
ut

ia 
ar

ve
ns

is

Pru
ne

lla
 vu

lga
ris

Tr
ifo

liu
m

 p
ra

te
ns

e

Tr
ifo

liu
m

 re
pe

ns

Trifolium repens

Trifolium pratense

Prunella vulgaris

Knautia arvensis

Hypericum maculatum

Euphrasia stricta

Clinopodium vulgare

Centaurea jacea

Campanula rotundifolia



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Cam
pa

nu
la 

ro
tu

nd
ifo

lia

Cen
ta

ur
ea

 ja
ce

a

Clin
op

od
ium

 vu
lga

re

Eup
hr

as
ia 

str
ict

a

Hyp
er

icu
m

 m
ac

ula
tu

m

Kna
ut

ia 
ar

ve
ns

is

Pru
ne

lla
 vu

lga
ris

Tr
ifo

liu
m

 p
ra

te
ns

e

Tr
ifo

liu
m

 re
pe

ns

Trifolium repens

Trifolium pratense

Prunella vulgaris

Knautia arvensis

Hypericum maculatum

Euphrasia stricta

Clinopodium vulgare

Centaurea jacea

Campanula rotundifolia



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Cam
pa

nu
la 

ro
tu

nd
ifo

lia

Cen
ta

ur
ea

 ja
ce

a

Clin
op

od
ium

 vu
lga

re

Eup
hr

as
ia 

str
ict

a

Hyp
er

icu
m

 m
ac

ula
tu

m

Kna
ut

ia 
ar

ve
ns

is

Pru
ne

lla
 vu

lga
ris

Tr
ifo

liu
m

 p
ra

te
ns

e

Tr
ifo

liu
m

 re
pe

ns

Trifolium repens

Trifolium pratense

Prunella vulgaris

Knautia arvensis

Hypericum maculatum

Euphrasia stricta

Clinopodium vulgare

Centaurea jacea

Campanula rotundifolia




