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Direct observation of the momentum distribution and renormalization factor in lithium
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We have measured the momentum distribution and renormalization factor ZkF in liquid and solid lithium
by high-resolution Compton scattering. High-resolution data over a wide momentum range exhibit a clear
feature of the renormalization and a sharp drop of momentum densities at the Fermi momentum kF . These
results are compared with those computed by quantum Monte Carlo simulation performed both on a disordered
crystal and a liquid exhibiting very good agreement. Asymptotic behavior of the experimental and theoretical
momentum distributions are examined to estimate ZkF . The experimentally obtained ZkF = 0.43+0.11

−0.01 for liquid
Li and 0.54+0.11

−0.02 for solid Li are in good agreement with theoretical results of 0.54 ± 0.01 and 0.64 ± 0.01,
respectively.

DOI: 10.1103/PhysRevB.101.165124

I. INTRODUCTION

A free Fermi gas has fully occupied momentum states be-
low the Fermi surface and unoccupied ones above. However,
the electrons in an actual metal have a continuous occupation
number between zero and one for all values of momentum
because electron-electron interactions causes electrons to be
scattered from below the Fermi surface to above the Fermi
surface [1–3]. This reduces the discontinuity of the occupa-
tion number at the Fermi surface though it still exists; the
remaining discontinuity is proportional to the renormaliza-
tion factor ZkF [4,5]. The electron-ion interaction leads to
secondary Fermi surfaces in higher Brillouin zones, so the
discontinuity can be further reduced but still remains. The
renormalization factor may be considered as a quantity that
defines how correlated electrons are in a given material. For
example, in strongly correlated systems such as heavy fermion
meterials, a substantially reduced ZkF (or similar features) is
reported [6–8]. Nonetheless, there is very little opportunity to
directly measure the momentum distribution since very few
experimental techniques allow us to estimate the ZkF in a
quantitative manner. In fact, even for the simplest metals like
Li and Na, an exact agreement has not been achieved between
experiment and theory so far.

The energy spectrum of Compton-scattered photons pro-
vides information on the electron momentum density (EMDs)
[9]. Under the impulse approximation [10,11], the differential
scattering cross-section is proportional to the Compton profile
(CP), defined as

d2σ

d�dE
∝ J (pz ) =

∫ ∫
n(kx, ky, kz = pz ) dkxdky. (1)
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Because of energy and momentum conservation, pz can be
determined from the scattered photon energy E once the
incident photon energy Eo and the scattering angle θ are given.
To determine the momentum density n(k), a tomographic
reconstruction is generally necessary from the CPs measured
in various directions. For an isotropic sample, n(k) can be
obtained from the derivative

n(k) = − 1

2π p

dJ (p)

d p

∣∣∣∣
p=k

. (2)

Note that n(k) obtained in this way has very large errors at
small values of k because of the small phase space there. An
advantage of Compton scattering is that a sum rule is available
so the CP can be normalized by the known electron density,
allowing an absolute quantitative comparison between theory
and experiment. Though the observation of n(k) and ZkF is
straightforward in principle, reports of direct measurements
are extremely rare because the resolution of the experiments
is usually not high enough. To our knowledge, a report on Na
a decade ago is the only successful example [12]. Even in this
case, n(k) was only shown in a limited region near kF , not
permitting comparison of the overall shape of n(k).

Lithium has been investigated as a case in which the homo-
geneous electron gas (HEG) model is applicable. However,
there has been discrepancy for several decades. Interacting
HEG models generally predict ZkF in the range 0.6–0.7 at Li
valence density rs = 3.25. The first experimental determina-
tion performed by Schülke et al. provided 0.1 ± 0.1 along
the [100] axis based on a model analysis on n(k) obtained
via a reconstruction on a single crystal [13]. In fact, there
is a tendency for theory to predict higher CPs in p < pF

while lower in p > pF [14]. Kubo [15,16] ascribed this to
electron correlation effects, showing that his GW calcula-
tion agreed well with experiments and had a lower ZkF . He
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found a variation in ZkF between 0.15–0.35 along several
crystallographic axes. Filippi and Ceperley calculated CPs
by quantum Monte Carlo (QMC) simulation that explicitly
included electron-ion and electron-electron interactions, and
concluded that electron correlation only partly accounted for
the difference between theory and experiment [17]. Disorder
[18] and temperature [19] were discussed as contributing to
the difference but their analysis was not conclusive, leaving
the puzzle unsolved. Recently, Klevak et al. [20] calculated
EMD by a real-space multiple-scattering Green’s function
approach including disorder and found a smooth drop of
n(k) at kF without a finite ZkF . We note that the conduction
electrons in Li have a strong electron-ion interaction. This
renders the Fermi surface anisotropic and generates secondary
Fermi surfaces in higher Brillouin zones due to the umklapp
process. This fact makes quantitative comparisons between
theory and experiment difficult. This is probably the source
for the discrepancy existing for several decades even though
Li is one of the simplest elements.

In this paper, we estimate ZkF in Li using ultrahigh-
resolution Compton scattering. A 0.016 atomic unit (a.u.)
instrumental resolution and a 0.024 a.u. overall resolution
were achieved. A tomographic reconstruction of the EMD
is required for solid Li because it has an anisotropic Fermi
surface. However, this reconstruction produces artifacts, mak-
ing a quantitative analysis difficult. To avoid this procedure,
we measured Li above the melting point. The liquid sample
is isotropic and thus a straightforward estimation of n(k) is
possible from Eq. (2). As a reference, we also measured
a polycrystalline sample before melting the sample. Both
samples exhibit a clear break of n(k) at kF allowing determi-
nation of the renormalization and the generic behavior of the
momentum distribution of the HEG [4].

II. EXPERIMENT AND THEORY

The experiment was performed at Taiwan IXS beamline
at SPring-8 (BL12XU). The most critical parameter in de-
termining ZkF is the momentum resolution. Since a typical
radius of the Fermi sphere is 0.5–1.0 a.u., a resolution of
an order of 0.01 a.u. is needed to estimate ZkF , which is a
technical challenge. One can easily improve the instrumental
resolution if low-energy photons are used but the spectrum
is then substantially broadened by final-state effects [21,22].
We have chosen Eo = 25.54 keV to obtain dE = 5 eV
(instrumental), corresponding to d p = 0.016 a.u.

Synchrotron radiation from the undulator light source was
monochromatized at 25.54 keV by Si 111 double crystals.
Then the beam was focused into a 80 × 120 μm2 (V × H)
spot on the sample by a Pt toroidal mirror. The energy
spectrum of the scattered photons were measured by a bent
Laue spectrometer [23]. The analyzer was a 170-mm long,
80-mm wide (base), and 0.5-mm thick triangular Si crystal
having a 1.27-m bending radius. The 660 reflection was
used. The detector was a NaI scintillator equipped with a
8 × 16 channel photomultiplier tube. A 6×6 mm2 pixel size
makes an uncertainty of the scattering angle, affecting the
momentum resolution in the experiment. Nonetheless, this
effect only contributes to an additional broadening as small
as 0.001 a.u. in the present setup.
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FIG. 1. (a) CPs for liquid Li. The inset shows the geometry of the
experiment. (b) Elastic line, monitoring the instrumental resolution,
(c) spectral density function, indicating the final-state broadening,
(d) convolution of (b) and (c), providing the broadening function for
a comparison with theory. O is the optimally fitted function while G
and L denote Gaussian and Lorentzian, respectively.

A 99.9% purity polycrystalline Li sample having a cylin-
drical shape of 9-mm diameter and 10-mm height was placed
in a furnace made of stainless steel (SUS) equipped with a
heater at the bottom [see, Fig. 1(a), inset]. The experiment
was first performed at 297 K on solid Li and then at 493 K
on liquid Li. The furnace had openings along the directions
of the incident and the scattered photons. To avoid the sample
leaking out of the openings on the furnace when melted, the
Li cylinder was first surrounded by a 10-μm-thick SUS foil in
a glovebox and then it was placed in the furnace. As seen in
the figure, the scattered photons from the foil were blocked by
the thick part of the furnace so they were not detected.

The obtained CPs were corrected for self-absorption, back-
ground, multiple scattering, and the energy dependence of
the detection system [Fig. 1(a)]. The background curve was
determined by an E scan with a 2◦ offset of the analyzer angle.
In such a geometry, the detector does not accept photons
reflected from the analyzer due to Soller slits in front. Multiple
scattering events were simulated up to the triple scattering
process on a polycrystalline Li cylinder for the correction
[24]. The energy dependence of the detection system is de-
termined by the absorption coefficients of the sample, the
air path, the analyzer, and the detector material (scintillator).
Also, the reflectivity of the analyzer crystal smoothly varies
as a function of the energy. Both effects were theoretically
calculated and applied to the correction.

Diffusion Monte Carlo calculations were performed on
molecular dynamics (MD) configurations of the ions sampled
at 330 K and 500 K for the solid and the liquid phases,
respectively. The classical MD temperatures were elevated
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by 33 K in the solid and 7 K in the liquid phase to account
for quantum fluctuations of the nuclei by matching kinetic
energy following Ref. [25]. We used the Slater-Jastrow wave
function with local density approximation (LDA) orbitals on
simulation cells containing 432 lithium atoms. The finite-size
error of the momentum distribution was corrected using the
leading-order correction from Ref. [26]. The pseudopotential
error was corrected using an all-electron calculation for the
perfect crystal. All calculations were performed at rs = 3.25.
After the QMC calculation, we rescaled k and n(k) to the
kF s corresponding to the actual experimental densities (rs =
3.265 for the solid and rs = 3.31 for the liquid). We used
LAMMPS [27] for the MD simulations, QUANTUM ESPRESSO

[28,29] for the DFT calculations, and QMCPACK [30] for the
QMC calculations. The disordered calculations have been
automated using the NEXUS suite of tools [31]. More compu-
tational details will be described elsewhere [32].

Finally, theoretical CPs were convoluted by the broadening
function due to the instrumental resolution and the final-state
effect. The former was monitored by a line profile of the
elastic scattering [Fig. 1(b)], which had a width of 0.016 a.u.
For the latter, we calculated a spectral density function (SDF)
for HEG based on Soininnen’s form [22]. The SDF consists
of the main feature having a width of ∼0.013 a.u. and a small
satellite associated with a plasmon excitation. The broadening
function given by a convolution of those functions showed
a shape between Gaussian and Lorentzian. We fit this pro-
file with a broadening function b(p) = 1/[�2

n=0 an (2p/�)2n]
and obtained (a0, a1, a2) = (1.0, 0.85, 0.15) with � =
0.024 a.u. [Fig. 1(d)]. Note this function becomes Lorentzian
using the parameters (1, 1, 0) while effectively Gaussian using
the parameters (0.6, 0.3, 0.1).

III. RESULTS AND DISCUSSIONS

Figures 2(a) and 2(b) compare the experimental valence
CPs J (p) to (convoluted) theory while Figs. 2(c) and 2(d) the
experimental n(k) to theory with and without convolutions.
As a reference, another n(k) convoluted by Lorentzian having
longer tails is also shown. We first computed J (p) with
Eq. (1), then convoluted, and finally transformed back to n(k)
with Eq. (2). The n(k) of the liquid and solid Li are similar and
clear features of the momentum distribution renormalization
can be seen. Theory seems to match the experiment better with
the Lorentzian-type broadening function, especially the height
of n(k) and the curvature near kF , perhaps implying that SDF
could have a larger tail than expected. This possibility will be
discussed later. Liquid Li has a slightly lower density, thus
a smaller kF , making J (p) higher for k < kF . Furthermore,
n(k) in the liquid shows a slightly smaller drop at kF possibly
because of more disorder effect and larger electron correlation
effect in the expanded system. As mentioned above, solid
Li has an anisotropic Fermi surface; its radius varies by
several percent depending on the directions [13,14]. Hence a
simple comparison is problematic. Nonetheless, the compar-
ison across the melting point is consistent with expectations,
indicating that the solid sample consists of randomly oriented
domains. A sharp drop at kF persists even after the spherical
averaging, as we verified with band theory calculations based
on the LDA [see inset in Fig. 2(d)].
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FIG. 2. Valance CPs of liquid (a) and solid Li (b), compared with
theory convoluted by the broadening function. The insets show the
difference between the experimental and theoretical CPs. EMDs in
liquid (c) and solid Li (d), compared to theory with or without the
convolutions. The insets show EMD for HEG and the spherically
averaged EMD from band theory (LDA). The ♦’s in (c) and (d) show
the n(kF ) obtained by RPA fits near kF .

ZkF is defined in the limit of k → kF . Therefore a model to
extrapolate n(k) is required to obtain ZkF . Schülke et al. con-
structed a model where n(k) decreases as −(k/kF )8 or
(k/kF )−8 with increasing k [13]. The (k/kF )−8 behavior is
theoretically justified at the limit of large k while it is not
otherwise as mentioned in their report. Thus, we adopt a more
general power-law model to examine the asymptotic behavior:

n(k) = n0 − α−(k/kF )β
−

(k � kF )

= α+(k/kF )β
+

(k > kF ). (3)

The − (or +) sign represents the extrapolation from below (or
above) kF .

Figure 3 shows the log-log plots for n(k) vs (k/kF ). Table I
summarizes the fit results. We find that the theoretical n(k) has
exponents β ∼ ±4, depending on the broadening functions.
The HEG would have β = −8 at k � kF , which is very
different from the results for Li. The reasons for the difference
are (i) that HEG can have a different behavior as k approaches
kF and (ii) that umklapp process may significantly influence
the asymptotic behavior. The experiments, on the other hand,
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FIG. 3. Momentum densities vs wave vector: Theories for liquid
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Experiments on liquid and solid are shown in (c) and (d). Those for
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pow − n±
RPA|, where n±

pows are given by power fits
for three cases, QMC, QMC-C, and QMC-CL.

show β+ ∼ 3 and β− ∼ −5. The difference between theory
and experiment may be due to umklapp features that appear
more prominent in theory. The extrapolated densities α−
and α+ give no − n− and n+, respectively. ZkF is given by
ζkF (n FFG

kF
/n DFT

kF
), where ζkF = n− − n+. We adopt n FFG

kF
= 1

in free Fermi gas while n DFT
kF

= 0.83 in LDA band theory. The
renormalization factors ZkF are summarized in Table II.

The power model fits given as Eq. (3) tend to overestimate
ZkF because the momentum distribution is expected to have
a divergent slope at kF [33]. This effect is significant in
Li though such a deviation is much smaller in HEG [see
Fig. 3(c)]. To account for the slope, we fit the QMC n(k) to
the RPA form Eq. (4),

ñ(x) = n1 + A|1 − x|log(|1 − x|), (4)

where x ≡ k/kF , ñ ∈ [0, 1]. n1 and A are fitting parameters.
The fitted n1 corresponds to n− in the range x ∈ (0.8, 0.97)
and n+ in the range x ∈ (1.02, 1.2). Points too close to kF

were excluded because spherical average of anisotropic n(k)
smears out the Fermi break. kF of the MD configurations

TABLE I. Outputs from “power fit” or linear fit to log n(k) vs
log(|k − kF |) plot: Superscripts (a)–(d) indicate correspondences to
Figs. 3(a)–3(d).

Theory α− β− no α+ β+

QMC 0.145 4.20 0.89 0.091 −4.19
Liquid (a) QMC-C 0.159 4.14 0.89 0.091 −4.20

QMC-CL 0.204 4.00 0.87 0.120 −4.46

QMC 0.116 4.99 0.90 0.062 −3.72
Solid (b) QMC-C 0.143 5.35 0.90 0.065 −3.85

QMC-CL 0.188 4.66 0.88 0.097 −4.28

HEG (c) QMC 0.111 3.13 0.97 0.111 −6.61

Exp.

Liquid (c) 0.169 2.95 0.85 0.142 −5.39
Solid (d) 0.134 3.24 0.85 0.144 −6.21

were determined by unfolding the LDA bands from the 432-
atom supercell to the primitive cell Brillouin zone using
the BANDUP code [34,35]. ZkF = 〈ζkF 〉/n LDA

kF
, where 〈· · ·〉

indicates average over MD configurations and n LDA
kF

≈ 0.83.
The QMC ZkF obtained in this way are 0.64 ± 0.01 and
0.54 ± 0.01 for the solid and liquid, respectively. Further, we
expect the addition of back flow correlation will reduce QMC
ZkF by ∼5% [26].

The RPA form Eq. (4) cannot be directly fit to the experi-
mental data because of the resolution and final-state smearing

TABLE II. ZkF and related parameters: Power fit results are
from a linear fit to log n(k) vs log(|k − kF |). RPA fit means n(k) is
fitted to RPA form Eq. (4). RPA correction applies the correction
n±

cor = n±
pow(Exp.)+
n±, where 
n± = n±

RPA(Theo.)-n±
pow(Theo.).

Theory QMC are the raw QMC n(k) values, QMC-C values are
corrected with the optimally fit convolution, and QMC-CL are from
the Lorentzian convolution having long tails. The bold values are our
best estimates.

Power fit n−
pow n+

pow ζkF ZkF

Theo. QMC 0.74 0.091 0.65 0.78
Liquid QMC-C 0.73 0.091 0.64 0.77

QMC-CL 0.67 0.120 0.55 0.66
Exp. 0.69 0.142 0.54 0.62

Theo. QMC 0.75 0.082 0.67 0.81
Solid QMC-C 0.74 0.084 0.66 0.80

QMC-CL 0.68 0.113 0.57 0.68
Exp. 0.72 0.144 0.57 0.65

RPA fit n−
RPA n+

RPA

Liquid Theo. QMC 0.61 0.155 0.45 0.54
Solid Theo. QMC 0.66 0.125 0.53 0.64

RPA correction n−
cor n+

cor

Exp. QMC 0.56 0.206 0.35 0.42
Liquid QMC-C 0.57 0.206 0.36 0.43

QMC-CL 0.63 0.178 0.45 0.54

Exp. QMC 0.62 0.187 0.44 0.53
Solid QMC-C 0.63 0.185 0.45 0.54

QMC-CL 0.69 0.156 0.54 0.65
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effects at kF . Therefore, we use theory to determine the slope
near kF and attempt to correct the experimental ζkF and ZkF .
The difference between the extrapolated densities in the two
models 
n± = n±

RPA(Theo.) − n±
pow(Theo.) are used for the

corrections to the experiments. 
n± depends on a shape of
the broadening function b(p), which involves the SDF. The
shape is not exactly known (see Table II) and it leads to
an uncertainly for determining ZkF . Experimental values for
n±, ζkF , and ZkF after the corrections are shown in Table II.
Assuming the behavior of the QMC determined n(k) for k
near kF , an upper estimate for experimental ZkF is 0.54 (liquid)
and 0.65 (solid) by the broadest, Lorentzian-type b(p) while
the lower estimates are 0.42 (liquid) and 0.53 (solid) by the
narrowest b(p).

IV. CONCLUSION

In summary, we obtained in experiment ZkF = 0.43+0.11
−0.01

for liquid Li and 0.54+0.11
−0.02 for solid Li, while using QMC we

obtained 0.54 ± 0.01 for the liquid and 0.64 ± 0.01 for the

solid. The agreement is much better than in previous studies.
To reduce the experimental errors further, the broadening due
to final state effects needs to be made smaller. It is possible
if Compton scattering is performed at higher energies, e.g., at
�50 keV while keeping an instrumental resolution of ∼0.01
a.u. Such an experiment is a technical challenge at present but
we believe it will be available in the near future since the syn-
chrotron radiation techniques are being advanced day to day.
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