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Antimicrobial drug use in the first decade
of life influences saliva microbiota diversity
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Abstract

Background: The human microbiota contributes to health and well-being. Antimicrobials (AM) have an immediate
effect on microbial diversity and composition in the gut, but next to nothing is known about their long-term
contribution to saliva microbiota. Our objectives were to investigate the long-term impact of AM use on saliva
microbiota diversity and composition in preadolescents. We compared the lifetime effects by gender and AMs. We
used data from 808 randomly selected children in the Finnish Health In Teens (Fin-HIT) cohort with register-based
data on AM purchases from the Social Insurance Institution of Finland. Saliva microbiota was assessed with 16S
rRNA (V3-V4) sequencing. The sequences were aligned to the SILVA ribosomal RNA database and classified and
counted using the mothur pipeline. Associations between AM use and alpha-diversity (Shannon index) were
identified with linear regression, while associations between beta-diversity (Bray-Curtis dissimilarity) and low,
medium or high AM use were identified with PERMANOVA.

Results: Of the children, 53.6% were girls and their mean age was 11.7 (0.4) years. On average, the children had 7.4
(ranging from 0 to 41) AM prescriptions during their lifespan. The four most commonly used AMs were amoxicillin
(n = 2622, 43.7%), azithromycin (n = 1495, 24.9%), amoxicillin-clavulanate (n = 1123, 18.7%) and
phenoxymethylpenicillin (n = 408, 6.8%). A linear inverse association was observed between the use of azithromycin
and Shannon index (b − 0.015, p value = 0.002) in all children, the effect was driven by girls (b − 0.032, p value =
0.001), while not present in boys. Dissimilarities were marked between high, medium and low users of all AMs
combined, in azithromycin users specifically, and in boys with amoxicillin use. Amoxicillin and amoxicillin-
clavulanate use was associated with the largest decrease in abundance of Rikenellaceae. AM use in general and
phenoxymethylpenicillin specifically were associated with a decrease of Paludibacter and pathways related to amino
acid degradations differed in proportion between high and low AM users.
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Conclusions: A systematic approach utilising reliable registry data on lifetime use of AMs demonstrated long-term
effects on saliva microbiota diversity and composition. These effects are gender- and AM-dependent. We found that
frequent lifelong use of AMs shifts bacterial profiles years later, which might have unforeseen health impacts in the
future. Our findings emphasise a concern for high azithromycin use, which substantially decreases bacterial diversity
and affects composition as well. Further studies are needed to determine the clinical implications of our findings.
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Background
Humans depend on colonised microbes to assist in diges-
tion, produce vitamins and nutrients, resist invading patho-
gens and regulate metabolism and the immune system, as
reviewed previously [1]. Because of the microbiome’s vast
impacts, it is considered the largest organ of the human
body [2, 3]. Although many studies have focused on gut
microbiota, since it is the most densely populated bacterial
community on Earth [4], microbiota in other niches of the
body have also demonstrated importance for human health
and well-being.
The saliva microbiome is associated with oral health

and hygiene, but previous findings suggest connections
with human health beyond the oral cavity, including in-
flammatory bowel disease [5], metabolic syndrome [6],
atherosclerosis [7], cirrhosis with hepatic encephalopathy
[8], certain cancers [9, 10] and obesity [11, 12]. There are
several advantages in using saliva instead of faecal samples
in studies of human health, such as the temporal stability
of saliva microbiota [13] due to robustness against
changes in diet [14] and other exposures in the environ-
ment [13, 14], as well as the ease for people of all ages to
donate. For these reasons, saliva provides several advan-
tages over faecal samples for the development and meas-
urement of biomarkers. Saliva microbiota has the same
richness of species as elsewhere in the gastrointestinal
tract, while the bacterial composition is similar to stomach
fluids and placentas [15, 16].
Exposure to antimicrobial (AM) agents has been reported

to cause dysbiosis in gut microbiota, which is linked to sev-
eral adverse health outcomes in human and animal models
[17, 18]. The short-term consequences of AMs on the gut
microbiota ecology are well-established [19–23], but less is
known about saliva microbiota and long-term effects. Stud-
ies have addressed the effect of a single AM dose [24], a
short-term AM therapy [25] and a 10-day treatment with
AM [26] on saliva microbiota diversity and composition,
mainly in adults. A single dose of the most commonly used
AMs (ciprofloxacin, clindamycin, amoxicillin) caused minor
and short-term changes in saliva microbial profiles and
metagenomes, while dissimilarities in microbiomes were
still observed 1week and 1month after the dose of amoxi-
cillin and clindamycin, respectively [24]. Compared with
alterations in gut microbiota, these were considered short-

term and superficial [24]. Similarly, saliva diversity de-
creased with a 3-day treatment of azithromycin in adults
[25] but was recovered within the next 8 weeks, while these
effects were more profound and long-lasting in the gut. On
the other hand, a 10-day treatment with amoxicillin caused
a decrease in saliva microbial diversity, which was not re-
covered within 3 weeks in children [26].
AMs are typically the first and most widely used drugs

in paediatric populations [27, 28]. In fact, the highest
prevalence of AM use is observed during infancy [29,
30]. AMs are suspected to modify the development of
our immune system [31] and affect susceptibility to vari-
ous non-communicable diseases later in life, likely
through the microbiota [32]. Data on the long-term con-
sequences of lifetime AM use on saliva microbiota in
children are very sparse. The objectives of this initial
study on this topic were to explore the effect of lifetime
AM use on saliva microbiota diversity and composition
in 11–12-year-old Finnish children. To get a better un-
derstanding, the effects are compared between four com-
monly used AMs and between genders. We hypothesise
that with repeated AM use and despite re-establishment,
small alterations will accumulate, resulting in notable,
long-term changes in the microbiota.

Results
The 16S rRNA amplicons sequencing generated ~ 148
million reads for 973 samples. The samples had a me-
dian read count of 113,345, mean read count of 148,508
and a range between 29 and 1,316,321 sequences. After
filtering and alignment, an average of 48,248 assembled
reads/sample were assigned to 6536 OTUs. OTUs were
classified using the SILVA bacteria taxonomy. There
were no significant associations between AM use up to
three months prior to sampling and alpha-diversity (p
value: Shannon 0.397; inverse Simpson 0.476) (Supple-
mentary Figure S1). Diversity, defined by the Shannon
index and inverse Simpson index, did not vary by age,
gender or child’s language and between medium and
high sequencing depths (Table 1). However, saliva
microbiota richness differed by sequencing depth when
low depth samples were included, regardless of rarefac-
tion (p < 0.05). Therefore, participants with low se-
quence depth (n = 112) and missing background
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information (n = 7) were excluded. In total, microbiota
profiles of 808 children were included in further
analyses.
The distribution of children by the frequency of all

AM use and separated by the four most commonly used
AMs in the cohort—amoxicillin, azithromycin,
amoxicillin-clavulanate and phenoxymethylpenicillin—
are described in Fig. 1. The average number of any AM
purchases was 7.4 (SD = 5.8) per child during a mean
follow-up time of 11.7 (0.4) years. We did not observe
gender differences in average AM use (Supplementary
Figure S2). The purchases of any AMs demonstrate a de-
crease with age (Supplementary Figure S3). Similarly, the
use of amoxicillin, azithromycin and amoxicillin-
clavulanate decreased with age, while the use of phenox-
ymethylpenicillin peaked at the age of 7 years. Of pread-
olescents, 51 were AM naïve (no AM purchases) or had
no registry data available. In our data, 4 participants had
used any AM over 30 times.

Antimicrobial (AM) drugs and saliva microbiota
In summary, there were 5996 AM drug regimens pre-
scribed to 808 children during their first 12 years of life
(denoted here as lifetime). The four most commonly pre-
scribed AMs were amoxicillin (n = 2622, 43.7%), azithro-
mycin (n = 1495, 24.9%), amoxicillin-clavulanate (n =
1123, 18.7%) and phenoxymethylpenicillin (n = 408, 6.8%).

Alpha-diversity and lifetime AM prescriptions
With linear regression, we observed no association be-
tween prescriptions of all AMs combined and alpha-
diversity assessed by the Shannon index or inverse

Simpson index in all children (Table 2). We also tested
the associations for the most common AM prescriptions.
The models were adjusted for age, gender, language and
other AM use. An inverse association of azithromycin
with the Shannon index (p = 0.002) was observed, but
no associations observed for the other three AM pre-
scriptions. In gender-specific analyses, boys presented
with an inverse association of all AMs with the Shannon
index, while this was not marked in girls. Correspond-
ingly, in girls the use of azithromycin was strongly asso-
ciated with the Shannon index (p < 0.001): a 0.032
decrease per azithromycin course was observed, while
not in boys.
Regardless of observed gender-specific associations be-

tween AM use and the Shannon index, the AM purchase
pattern for all AMs, and amoxicillin, azithromycin,
amoxicillin-clavulanate and phenoxymethylpenicillin
separately, by age were similar in boys and girls (Supple-
mentary Figure S4).
In a groupwise comparison, naïve AM users (n = 51)

showed similar diversity with the low AM group when
comparing alpha-diversity between the four AM groups
(naïve, low, medium and high). Thus, naïve and low AM
users were combined for further analyses (Fig. 2).

Beta-diversity and lifetime AM use
When comparing microbiota composition between low,
medium and high users of all AMs combined, we found
that beta-diversity differed between the groups (p =
0.033) (Table 3). Similar analyses were conducted for the
most common AMs. Of these, beta-diversity differed be-
tween azithromycin groups (p = 0.006), especially

Table 1 Descriptive characteristics of the study participants

Groups # children Shannon index Inverse Simpson

N % Mean (SD) p Mean (SD) p

Age, years 0.191a 0.125a

11 (≤ 11.4) 223 27.6 2.96 (0.28) 10.58 (3.09)

12+ (≥ 11.5) 585 72.4 2.93 (0.29) 10.20 (3.30)

Gender 0.339a 0.519a

Boy 375 46.4 2.95 (0.27) 10.38 (2.97)

Girl 433 53.6 2.93 (0.31) 10.24 (3.47)

Language 0.189b 0.430b

Finnish 687 85.0 2.93 (0.29) 10.24 (3.28)

Swedish 88 10.9 2.97 (0.26) 10.56 (3.12)

Other 33 4.1 3.01 (0.28) 10.85 (2.92)

Sequence depth 0.461a 0.798a

Medium (10,000–100,000) 553 66.1 2.95 (0.28) 10.29 (3.07)

High (> 100,000) 255 30.5 2.93 (0.33) 10.35 (3.62)
at test
bANOVA test
Excluded 112 samples with low sequence depth (< 10,000)
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Table 2 Associations of antimicrobial (AM) prescriptions (all AMs, and for amoxicillin, azithromycin, amoxicillin-clavulanate and
phenoxymethylpenicillin AMs separately) with alpha-diversity, using the Shannon index and inverse Simpson index, in all the
participants and separately in boys and girls using linear regression analysis

Prescriptions of All participants Boys Girls

n Estimate SE p n Estimate SE p n Estimate SE p

Shannon All AMs 5996 − 0.003 0.002 0.137 2957 − 0.005 0.002 0.045 3039 − 0.001 0.003 0.648

Amoxicillin 2622 0.002 0.004 0.685 1280 − 0.007 0.005 0.186 1342 0.011 0.006 0.079

Azithromycin 1495 − 0.015 0.005 0.002 783 − 0.003 0.006 0.623 712 − 0.032 0.008 < 0.001

Amoxicillin-clavulanate 1123 0.003 0.005 0.471 531 − 0.005 0.007 0.509 592 0.011 0.007 0.093

Phenoxymethylpenicillin 408 0.004 0.011 0.673 199 − 0.002 0.014 0.895 209 0.014 0.015 0.378

Inverse Simpson All AMs 5996 − 0.013 0.020 0.500 2957 − 0.038 0.026 0.147 3039 0.006 0.029 0.848

Amoxicillin 2622 0.007 0.045 0.876 1280 − 0.053 0.060 0.379 1342 0.066 0.068 0.328

Azithromycin 1495 − 0.077 0.052 0.143 783 − 0.024 0.063 0.705 712 − 0.159 0.087 0.067

Amoxicillin-clavulanate 1123 0.016 0.054 0.770 531 − 0.066 0.078 0.393 592 0.080 0.075 0.282

Phenoxymethylpenicillin 408 0.077 0.118 0.513 199 0.042 0.158 0.791 209 0.135 0.174 0.439

Significant results in bold
Adjusted for age, gender (not in gender-specific analysis) and language. SE Std. error, n number of AM prescriptions

Fig. 1 Distribution of children with purchases for a all antimicrobials (AMs) combined, and separately for b amoxicillin, c azithromycin, d
amoxicillin-clavulanate and e phenoxymethylpenicillin during a mean follow-up time of 11.7 years. Mean and SD for the AM purchases are
included in the figure
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between low and medium azithromycin users (p =
0.067) (Table 3). Gender-specific analysis identified a dif-
ference in microbiota composition between the groups
of all AMs combined (p = 0.034), amoxicillin (p = 0.001)
and azithromycin (p = 0.0024) in boys (Fig. 3), but no
overall differences in girls (Additional file 2: Figure S5).

Differentially abundant bacteria according to lifetime use
of all AMs
The six most abundant bacteria phyla in the saliva micro-
biota for all participants were Firmicutes (51.9%, SD ±
11.5), Bacteroidetes (17.6%, SD ± 7.3), Proteobacteria
(16.5%, SD ± 11.5), Actinobacteria (7.5%, SD ± 6.0), Can-
didate division TM7 (3.5%, SD ± 3.04) and Fusobacteria
(2.8%, SD ± 2.1). We identified changes in abundance at
the OTU level with respect to each increment in AM use
(Table 4). When considering the use of all AMs combined,
we identified two OTUs with significantly lower abun-
dance: Paludibacter and unclassified bacteria Incertae
Sedis from the family Peptostreptococcaceae.
For the most commonly purchased AMs, Rikenella-

ceae substantially decreased with increasing use of
amoxicillin (log2FC = − 2.4) and amoxicillin-clavulanate
(log2FC = − 4.9). The use of phenoxymethylpenicillin
was associated with a decrease in abundancy of Paludi-
bacter (Table 4).

Functional prediction by PICRUSt2
Functional predictions identified 21 differentially present
metaCyc pathways between the low and high AM users
when all AM use were combined (Fig. 4a). All of the path-
ways had higher proportions in the low AM use group.
The largest significant differences were pathways for L-
arginine degradation, L-glutamate degradation V, super-
pathway of polyamine biosynthesis II and purine nucleo-
tides degradation II. Ten pathways differed between low
and high azithromycin use (Fig. 4b). Methanol oxidation
to carbon monoxide pathway, L-arginine degradation and
GDP-mannose biosynthesis pathways showed higher pro-
portions in the low azithromycin group, while Kdo trans-
fer to lipid IVA III, (5Z)-dodecenoate biosynthesis and
peptidoglycan maturation pathways showed higher pro-
portions in the high azithromycin group.

Discussion
Here, we describe an association of lifetime AM use with
saliva microbiota richness, diversity composition and func-
tional capacity in Finnish adolescents. AM use was obtained
reliably and objectively from the medical purchase registry
held by the Social Insurance Institution of Finland (www.
kela.fi), which contains information on all medical expendi-
tures and purchases requiring prescriptions. The data
covers the whole lifespan of the adolescents for each of the

Fig. 2 Violin plot showing the distribution of alpha-diversity as measured by a Shannon index and b inverse Simpson index for the four groups
of AM use. Triangle inside the violin indicates the mean diversity
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808 children individually. Our key findings are (i) lifelong
exposure to AMs is associated with alterations of the saliva
microbiota, (ii) the long-term effect of azithromycin use
was the most noticeable and (iii) re-establishment of saliva
microbiota occurs rapidly after AM exposure. More diverse
microbiota communities are believed to be more stable and
resistant towards invasion and other disturbances [33] and
to sustain health. Evidently, high lifespan exposure to AMs
perturbs saliva microbiota. Microbial diversity significantly
differed in boys with the use of all AMs combined in their
12-year lifespan. Only azithromycin use impairs/reduces
microbial richness, and this effect was driven by girls, while
not seen in boys. Lifetime use of all AMs combined and
azithromycin contributed with dissimilarities in microbiota
composition reflected by beta-diversity, in all children. Cor-
responding was seen in boys only, despite a similar pattern
of use in both genders, illuminating that the AMs affect
microbiota composition in boys, but not in girls. A similar
trend was observed for amoxicillin groups in all children,
but a significant difference in microbial composition was
only seen in boys.

To our knowledge, we are the first to evaluate the con-
sequences of lifetime AM exposure on saliva microbiota
in a large cohort of adolescents. Previous studies have
addressed short-term or acute/immediate effects of AM
use on saliva microbiota [24–26]. These studies showed
the robustness and speedy recovery of saliva microbiota
after perturbation caused by AMs, compared with gut
microbiota. Similarly to [24], we observed saliva micro-
biota to reach the same bacterial richness three months
after AM use as in naïve users. To us, this indicates re-
establishment of the microbiota. Re-establishment de-
pends on the growth potential of AM unaffected taxa,
the introduction of taxa requiring re-seeding and their
interconnections [34]. With frequent AM use, each re-
establishment event after AM-induced dysbiosis might
cause minute but accumulating compositional changes.
These changes might in turn have long-term health con-
sequences [35, 36]. The same processes likely also occur
for other diverse microbial communities, such as in the
gut, although further analyses are needed to confirm
this.

Table 3 Differences in beta-diversity, using the Bray-Curtis dissimilarity matrix, between groups of low, medium and high use of
antimicrobials (AM) for all AMs combined, and separately for amoxicillin, azithromycin, amoxicillin-clavulanate and
phenoxymethylpenicillin, in all children and separately for boys and girls with PERMANOVA

Prescriptions Pairwise (n) All children Boys (n = 375) Girls (n = 433)

P P P

All AM 0.033a 0.034a 0.416a

Low (291)–Medium (392) 0.174 0.110 0.607

Low (291)–High (125) 0.366 0.263 0.415

Medium (392)–High (125) 0.569 0.808 0.325

Amoxicillin 0.094a 0.001a 0.487a

Low (252)–Medium (402) 0.802 0.092 0.944

Low (252)–High (154) 0.352 0.011 0.375

Medium (402)–High (154) 0.757 0.288 0.569

Azithromycin 0.006a 0.024a 0.273a

Low (278)–Medium (399) 0.067 0.075 0.092

Low (278)–High (131) 0.219 0.252 0.256

Medium (399)–High (131) 0.370 0.562 0.713

Amoxicillin-clavulanate 0.256a 0.877a 0.304a

Low (389)–Medium (267) 0.897 0.778 0.876

Low (389)–High (152) 0.202 0.281 0.633

Medium (267)–High (152) 0.455 0.421 0.437

Phenoxymethylpenicillin 0.197a 0.504a 0.574a

Low (568)–Medium (135) 0.655 0.710 0.708

Low (568)–High (105) 0.187 0.410 0.276

Medium (135)–High (105) 0.738 0.802 0.347

Significant results in bold
Adjusted for age, gender (not in gender-specific analysis), language and depth
p values adjusted for all pairwise PERMANOVA analyses with Benjamini-Hochberg method
aPERMANOVA analysis with all (low, medium and high) AM groups
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Our study was conducted in apparently healthy chil-
dren. In this cohort, nearly half of the AM use occurred
between ages 0 and 3 years, which is line with previous
reports across Europe stating high use of AMs in paedi-
atric populations [27–30]. Children, in whom the micro-
biota colonisation is still ongoing, are likely more
vulnerable to AM perturbation than adults with an
established microbiota [37], but we did not address the
timing of the first exposure to AM, nor its effects on sal-
iva microbiota. The effect of repeated or recurrent AM
use on microbiota was not evaluated either, but we
can assume it to have a more vast effect if the micro-
biota has not yet recovered from the previous per-
turbation [37].

Fig. 3 Analysis, showing the beta-dispersion, based on Bray-Curtis dissimilarity between low, medium and high groups in a all AMs in all children,
b all AMs in boys, c amoxicillin use in all children, d amoxicillin use in boys, e azithromycin use in all children and f azithromycin use in boys.
Permutational analysis of variance (PERMANOVA) test adjusted for age, gender (not in gender-specific analysis), language and other AMs

Table 4 Differentially abundant bacteria at the OTU level per
increment in AM use of (a) all antimicrobials (AMs) combined
and for (b) amoxicillin, (c) amoxicillin-clavulanate and (d)
phenoxymethylpenicillin, adjusted for age, gender, language
and other AMs (for individual AMs)

OTUs baseMean log2FC lfcSE padj Nearest taxa

a Otu000108 10.588 − 0.070 ↓ 0.015 0.010 Incertae Sedis

Otu000130 4.859 − 0.095 ↓ 0.021 0.026 Paludibacter

b Otu000257 0.579 − 2.378 ↓ 0.360 0.001 Rikenellaceae

c Otu000257 0.579 − 4.852 ↓ 0.678 0.001 Rikenellaceae

d Otu000130 4.859 − 0.216 ↓ 0.045 0.008 Paludibacter

The log2fold changes reported are per increment unit AM
baseMean mean of normalised counts of all samples, lfcSE standard error, padj
adjusted p value
“↓” symbolises the abundances decrease per use of AM
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In apparently healthy children, only the lifetime use of
azithromycin was associated with lower bacterial richness
in saliva and enrichment of potentially pathogenic taxa,
which fulfils the criteria for microbiota dysbiosis [38]. How-
ever, this did not apply to all AMs combined or separately
to any other common AM in this age group. The effects of
azithromycin on microbiota could be explained by its phar-
macokinetic properties. Azithromycin has a very large ap-
parent volume of distribution of 23 l/kg, which indicates
extensive penetration to and accumulation in tissues. As a
lipophilic drug, it penetrates freely through cell membranes
and is also active against intracellular microbes. Due to its
long half-life up to 5 days, its bacteriostatic effect is well
sustained by once-daily dosing and continues for several

days after cessation of its use [39]. Furthermore, the bio-
availability after oral dosing is about 40% (i.e., a significant
fraction of its oral dose may remain in the gastrointestinal
tract). This could explain some of its effects on the gut
microbiota. A previous Finnish study has described macro-
lides to induce long-term distortions for up to 24months
in the composition and function of gut microbiota [40].
Furthermore, groups with low and medium use of azithro-
mycin showed dissimilar bacterial composition, suggesting
that the composition of saliva microbiota is also affected,
not only the richness. It has been shown that macrolide use
enhances an increase in antibiotic resistance in the gut
microbiota, which can be resolved 6–12months after cessa-
tion of the use [40].

Fig. 4 Functionally predicted MetaCyc pathways differing in proportions in high and low user groups of a all AMs and in b azithromycin. The bar
plot shows mean proportions of differential MetaCyc pathways predicted using PICRUSt2. The difference in proportions between the groups is
shown with 95% confidence intervals. Only p value < 0.05 (Welch’s t test, FDR adjusted), are shown
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Amoxicillin and phenoxymethylpenicillin are the two
other commonly used AMs. Both of them are bacterioci-
dic and have a short half-life, but as hydrophilic drugs,
they are unable to passively diffuse through plasma
membranes of eukaryotic cells and are inactive against
intracellular microbes. Their lifetime use did not affect
the richness of saliva microbiota, while groups with low
and high amoxicillin use had dissimilar microbiota com-
positions. Characteristic for amoxicillin use was a ten-
dency for a lower abundance of Paludibacter, which is
reported to possess antibiotic-resistant genes [41].
One could assume that the effects of amoxicillin-

clavulanate are similar to those of amoxicillin, but in
fact, the lifetime use of amoxicillin-clavulanate was not
related to saliva microbiota richness or diversity at ado-
lescence. Clavulanate (clavulanic acid, an inhibitor of the
beta-lactamase enzyme) prevents bacterial inactivation
of amoxicillin in this combination, but the antimicrobial
effect is mediated by amoxicillin. Bacteria belonging to
the Rikenellaceae family were enriched in children with
a high lifetime use of amoxicillin-clavulanate. The only
narrow-spectrum agent evaluated here was phenoxy-
methylpenicillin, which was not associated with richness
or diversity of saliva microbiota in adolescents.
Associations of lifetime AM use with saliva microbiota

varied by gender: especially the richness was affected in
girls, while boys were more prone to dissimilar micro-
biota compositions. Previously, AMs have been associ-
ated with higher growth and weight gain in boys than in
girls [42]. In addition, we have previously shown that
gender differences over-rule associations between BMI
and saliva microbiota [11]. In that study, alpha-diversity
was dissimilar between normal-weight and obese boys
and between normal- and overweight girls. The beta-
diversity differed between normal-weight and obese girls,
but not in boys. Our results point out that high lifelong
exposure to AMs perturbs microbiota in saliva and pos-
sibly in other niches of the body and most likely contrib-
utes to the development of obesity.
We found that several pathways differed in all AM

users, notably, arginine and glutamate degradation, poly-
amine biosynthesis pathway, methyl catechol, salicylate
and hydroxy phenylacetate degradation. Children with
high lifetime AM use had lower proportions of the path-
ways reducing L-arginine. It has been suggested that the
amino acid L-arginine can inhibit the bacterial coaggre-
gation and modify the bacterial metabolism and drug re-
sistance in the oral cavity [43]. Glutamate plays a vital
role in metabolic processes in bacterial cells and has
been shown to be an important virulent factor [44].
When we considered high and low users of azithromy-
cin, we found mannose biosynthesis, peptidoglycan mat-
uration, dodecenoate biosynthesis and arginine
degradation pathways to differ in proportion. To note,

cell wall peptidoglycan is essential for the maintenance
of cellular viability [45]. Moreover, it has been shown
that the peptidoglycan maturation enzymes may affect
the flagellar functionality [46].
Our study has several strengths, but also limitations.

Our study utilises validated national registers that were
available from a large cohort of children and allowed us
to explore lifetime exposure to AMs objectively. How-
ever, we could not confirm that the AMs were actually
taken. Diagnoses were unknown, but similar patterns of
use were observed in boys and girls. Dental status was
not assessed. Dentition and active or recurrent caries
might confound our results [47]. Here, we were inter-
ested in lifetime use of AMs, and the timing of AM use
was not incorporated in the models, but only used as de-
scriptive data. Both early and recent use (within the last
12 months) cause alterations in the gut microbiota [48];
thus, our decision to exclude recent users was justified
and an even more conservative approach could be used.
The majority of children (85%) in our study were ex-
posed to AMs during the first three years of life. To
study early vs later life AM exposure would require new
sampling in our study. Timing of use, and especially re-
peated or recurrent use, was not fully addressed here,
and these warrant further studies.

Conclusions
We have utilised reliable national registry data to dem-
onstrate the long-term effect of AM use on saliva micro-
biota diversity and composition. These effects are
gender- and AM-dependent. We observed that saliva
microbiota diversity was inversely associated with the
lifetime use of azithromycin in all children, more
strongly in girls than boys. Microbiota composition dif-
fered significantly after lifetime use of all AMs combined
and azithromycin in all children and a similar trend was
seen in amoxicillin. Regardless of the similar pattern of
AM use in both genders, differences in microbiota com-
position were profoundly seen in boys only. We proved
that a frequent lifelong use of AM shifts bacterial pro-
files in saliva, which might have unforeseen health im-
pacts in the future. Further studies are needed to
confirm the clinical implications of our findings.

Methods
Study design and sampling
We randomly selected 973 children from the prospective
Finnish Health in Teens (Fin-HIT) cohort [49] using a
function written in the PHP programming language on
the SQL database study database. The function selected
participants and samples randomly among the list of
Fin-HIT participants who took part in the school assess-
ment, with sample delivered to the biobank and had
completed the consent form at the time of recruitment.
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We did not include the participants from the pilot re-
cruitment that was done at home. This cohort consists
of approximately 11,000 9–14-year-old children and
6500 of their mothers or other legal guardians that were
recruited in densely populated areas across Finland. Dur-
ing the baseline data collection, subjects filled in an on-
line questionnaire on lifestyle factors, provided a saliva
sample and had their anthropometric measures mea-
sured in a standardised way [50]. Topics covered by the
child and parental questionnaires are listed in the cohort
profile [49]. Unstimulated saliva samples were collected
using Oragene® DNA self-collection kits (OG-500, DNA
Genotek Inc., Canada) [51]. Participants mixed the saliva
specimens with a stabilising reagent within the collection
tube according to the manufacturer’s instructions. The
samples were stored at room temperature until analyses.
The samples without information on age or AM pre-
scriptions, or withdrew consent (n = 7) were omitted
from the analysis. Information on the child’s language or
mother tongue (Finnish, Swedish, or other) was obtained
from the consent forms or questionnaires and confirmed
by linkage with the National Population Information
System at the Population Register Centre. The language
is considered to reflect the socio-economic status and
ethnic background of the participant [52].
In Finland, AM agents for systemic use are available by

prescription and sold solely in registered pharmacies. All
drug purchases based on prescriptions are registered in
the Drug Prescription Register held by the Social Insur-
ance Institution of Finland (KELA, www.kela.fi). Informa-
tion on drug purchases during the entire lifespan was
linked to the Fin-HIT study database. We extracted infor-
mation on all systemic antibiotics based on anatomic-
therapeutic chemical (ATC) codes (WHO Collaborating
Centre for Drug Statistics Methodology; https://www.
whocc.no/atc_ddd_index). Information on antibiotics ad-
ministered in hospitals was not collected. In this study, we
use data on AM purchases from the date of birth to the
date of saliva sampling as a proxy of AM use. Among all
the AMs, amoxicillin (ATC-code, J01CA04), azithromycin
(J01FA10), amoxicillin-clavulanate (enzyme inhibitor)
(J01CR02) and phenoxymethylpenicillin (J01CE02) were
the four most commonly prescribed AMs in this study
population.

Ethical aspects
The Coordinating Ethics Committee of the Hospital Dis-
trict of Helsinki and Uusimaa has approved the Fin-HIT
study protocol (169/13/03/00/10). Subjects and one of
their parents have given written informed consent,
which allows us to integrate the national health register
data as a part of the research material. Participants may
withdraw their consent whenever they wish to.

Amplification and sequencing
A DNA extraction protocol that contained an intensive
lysis step using a cocktail of lysozyme and mechanical dis-
ruption of the bacterial cells using bead-beating was con-
ducted at the Technology Centre, Sequencing Unit, in the
Institute for Molecular Medicine Finland (FIMM), as de-
scribed previously [53]. Sample amplification and sequen-
cing libraries were prepared according to an in-house 16S
PCR amplification protocol [53]. 16S primers S-D-Bact-
0341-b-S-17 (5′CCTACGGGNGGCWGCAG′3) and S-D-
Bact-0785-a-A-21 (5′GACTACHVGGGTATCTAATCC′
3) were used to amplify the V3-V4 regions [54]. Amplifica-
tion was performed using the Truseq (TS)-tailed1-step
amplification protocol [53]. The sequencing of PCR
amplicons was performed using the 2 × 270 bp se-
quencing on the Illumina HiSeq1500 instrument (Illu-
mina, Inc., San Diego, CA, USA) at FIMM. Samples,
together with nine blank samples (negative control)
[53] and two water samples, were sequenced at 270-
bp paired-end reads, providing sufficient overlap of
high-quality sequences between the forward and re-
verse reads, thus reducing the error rates and provid-
ing reproducible results.

Bioinformatics analysis
Sequencing quality filtering was carried out and se-
quences were processed using the MiSeq SOP in the
mothur pipeline (Version v.1.35.1) [55], as previously de-
scribed [53]. We used the SILVA 16S rRNA database
(Version V119) and taxonomy for the alignment and
classification of the sequences [56]. To ensure high-
quality data for the analysis, sequence reads containing
ambiguous bases, homopolymers > 8 bp, more than one
mismatch in the primer sequence, less than 10 base pair
assembly overlap or sequences under the default per
base quality score in mothur were removed. Assembled
reads > 460 bp in length and singletons were excluded
from the analysis. This reduced the number of assem-
bled reads, ensuring high-quality data [11].
The high-quality assembled reads were aligned to the

SILVA 16S rRNA database, clustered into operational
taxonomic units (OTUs) at a cut-off value > 98% and
assigned taxonomy to OTUs using the SILVA bacteria
taxonomy. OTUs were normalised by subsampling with
a threshold of 2000 OTU counts excluding the mini-
mum number of samples (n = 83). Low sequencing
depth samples (< 10,000) were omitted from the analysis
(n = 29). Alpha-diversity (Shannon index and inverse
Simpson index) was calculated per sample. Beta-
diversity (i.e., the variation in community composition
between microbiota samples) was calculated and com-
pared between the AM user groups (low, medium, high)
using the Bray-Curtis dissimilarity matrix.
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Statistical analysis
All statistical analyses were conducted in R (Version
3.4.2) using the stats4 (Version 3.4.2), vegan (version
2.5-4) and phyloseq (version 1.25.2) packages. We also
identified potential confounding with age and gender
using t test and between child languages (Finnish, Swed-
ish and other); sequence depth groups (medium and
high) with ANOVA. Differences in the microbial alpha-
diversity between the four groups (AM naïve (n = 48),
used AMs 1-month (n = 15), 2-months (n = 13) and 3-
months (n = 13) prior to saliva sampling) were evaluated
using ANCOVA (adjusted for depth). Based on this re-
sult, we excluded recent (3-months) AM users from the
main analysis. We also excluded participants with low
sequence depth (n = 112) and missing background infor-
mation (n = 7). For all further analysis, the study group
consists of 808 children. Our cohort does not consist of
adults, to emphasise that we use boy and girl than male
and female in gender.
To study the burden of AM use in the first decade of

life, we used an increment in AM purchases as a con-
tinuous variable. Association of this increment in AM
purchases with alpha-diversity was evaluated using linear
regression analysis. We carried out models evaluating all
AMs combined and the four most common AMs separ-
ately. All models were adjusted for age, gender and lan-
guage. This was performed for the whole cohort and
separately for boys and girls.
Comparisons of composition were done groupwise with

the Bray-Curtis dissimilarity index. Prescriptions of all
AMs were divided into quartiles: the first quartile as low
(≤ 4 use), second and third quartiles combined as medium
(5–13 use) and fourth quartile as high (≥ 14 use) prescrip-
tion groups. Similarly, the corresponding cut-offs for
amoxicillin use were (< 1; 2–5; > 6), for azithromycin (0;
1–3; > 4), for phenoxymethylpenicillin (< 0; 1; > 2) and for
amoxicillin-clavulanate (0; 1–2; > 3). Beta-diversity was
analysed with the permutational multivariate analysis of
variance test (PERMANOVA) using the adonis function
in the vegan package with 999 permutations. The analysis
adjusted for age, gender, language and other AMs. PERM
ANOVA was run for all AMs combined and for the four
most common AMs separately, as defined previously.
Pairwise PERMANOVA was used for multiple compari-
sons between prescription groups (low-medium, low-high
and medium-high) and p values were adjusted with the
Benjamini-Hochberg method.
The association of bacteria abundance at the oper-

ational taxonomic level (OTUs) was tested using General
Linear models (GLM) with a Negative Binomial distribu-
tion, implemented in the DESeq2 package [57] with AM
use as a continuous variable and the resulted log2fold
change is per increment unit AM. Analyses were evalu-
ated by (a) all AMs, (b) amoxicillin, (c) azithromycin, (d)

amoxicillin-clavulanate and (e) phenoxymethylpenicillin.
Rare OTUs (summarised to < 20 counts in all samples)
were filtered out in DESeq2 analysis. Analyses were ad-
justed for age, gender, language and other AMs. We re-
port log2fold change per unit of change of AM purchase,
i.e., per increment unit AM. The metagenome functional
profiling was predicted using Phylogenetic Investigation
of Communities by Reconstruction of Unobserved
States—PICRUSt2 (v2.0.0-b.2) [58], with sequences and
count file after preclustering from the mothur pipeline
as input. Pathways were predicted using the MetaCyc
database. Differentially present pathways between low
and high AM groups were analysed with welch test
using STAMP (Version 2.1.3) [59]. Differentially present
pathways with FDR adjusted p value < 0.05 was
presented.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00893-y.

Additional file 1: Figure S1: Violin plot showing the distribution of
alpha-diversity as measured by a) Shannon index and b) inverse Simpson
index for recent antimicrobial (AM) users: 1 month, 2 months and 3
months prior to saliva sampling and in children who have never used
AMs. Triangles inside the plots shows the mean diversity in the group,
and these did not differ between months (ANOVA p = 0.397 and 0.476
for Shannon and Inverse Simpson, respectively). Figure S2: Bar plot
showing the use of a) all Antimicrobials (AM) combined and separately
for b) Amoxicillin, c) Azithromycin, d) Amoxicillin-clavulanate and e) Phe-
noxymethylpenicillin in boys and girls. Figure S3. Histogram showing
the use of a) all antimicrobials (AMs) combined, and separately for b)
Amoxicillin, c) Azithromycin, d) Amoxicillin-clavulanate, and e) Phenoxy-
methylpenicillin by age in all 837 children. Figure S4. Histogram show-
ing the use of a) all antimicrobials (AMs) combined and separately for b)
Amoxicillin, c) Azithromycin, d) Amoxicillin-clavulanate, and e) Phenoxy-
methylpenicillin with age separated by gender.

Additional file 2: Figure S5. Analysis showing the distance to centroid
and beta-dispersion, based on Bray-Curtis dissimilarity between all AMs in
a) all children and four AMs separately; and in b) boys and c) girls separ-
ately. Permutational analysis of variance (PERMANOVA) test adjusted for
age, gender (not in gender-specific analysis) and language.
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