1	Manuscrip	t submission	to Journal	of Ornithology

2 Manuscript type: Original research

3

4 The effects of climate change on the distribution of South American antbirds (Thamnophilus

- 5 *punctatus* complex) as affected by niche divergences and contact zone interactions between species.
- 6
- 7

8 Erasmo Andrade da Silva¹, Helder Farias Pereira de Araujo², Alexandre Aleixo³, Alexandre Antonelli^{3,4,5},

- 9 Alexandre M. Fernandes^{1,7}
- 10 ¹Rural Federal University of Pernambuco Serra Talhada Campus, Pernambuco, Brazil
- 11 ²Department of Biological Sciences, CCA/Federal University of Paraíba Areia Campus, Paraíba, Brazil
- 12 ³Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- ⁴Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30,
- 14 Göteborg, Sweden
- ⁵Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.

16 ⁶Royal Botanical Gardens Kew, TW9 3AE Richmond, United Kingdom

- 17 ⁷Correspondence author email: <u>fernandesornito@gmail.com</u>
- 18
- 19
- 20

21 Abstract

22 Several studies have shown that climatic change has been accelerating due to human activities, leading to 23 dramatic effects on biodiversity. Modeling studies describe how species have reacted in the past to 24 climatic change, and this information can help us to understand the degree of biotic susceptibility to 25 current and future climatic change. This work aims to determine the effects of past, current and future 26 climatic changes on the geographic distribution of the species complex Thamnophilus punctatus, a bird 27 clade widely distributed across Neotropical dry forests. We also investigate if species that are 28 phylogenetically similar have comparable climatic niches and, consequently, can be expected to respond 29 similarly to climatic change. For this purpose, we calculated similarity, niche overlap, equivalence and 30 genetic distance between all species, modeling their geographic distributions during the Last Glacial 31 Maximum (LGM) as well as under current conditions and future (2050-2080) scenarios. Our results 32 indicate that there are differences in responses to climatic changes from the LGM to the present among 33 the five species of the T. punctatus complex and that the niches in the measured dimensions are not 34 conserved among the studied species. We therefore suggest that the adequate environmental space of taxa 35 of a widely distributed lineage can be shaped in distinct way, regardless of how closely related their 36 species are or how much their niches overlap. Competitive exclusion in zones of contact is an important 37 factor determining the geographical range of the species of the *Thamnophilus punctatus* complex, 38 particularly for the very closely related species T. sticturus, T. pelzelni and T. ambiguus.

39

40 **Key words:** Birds, Climate change, Niche conservatism, South America.

41

42 INTRODUCTION

43 The ecological niche is the combined requirements of food, breeding sites, suitable climate 44 parameters and other factors that individuals of a particular species need in order to survive and thrive. 45 However, species are not static and may over time expand, contract, or shift niche. Closely related species 46 may retain the niches of their ancestral species to some degree and tend to occupy similar if not identical 47 niches (Warren et al. 2008). In other words, the abiotic factors and ecological requirements of lineages are 48 frequently conserved, and the species maintain traces of their ancestral niche, a pattern known as niche 49 conservatism (Medeiros et al. 2015; Warren et al. 2008; Wiens et al. 2010). Environmental niches change 50 in space and time due to different climatic conditions (and the resulting change in selection pressure) 51 faced by organisms over time (Broennimann et al. 2012). These climatic conditions can be driven by 52 various geological events and thus these events can shape the various distribution patterns and influence 53 the process of species diversification.

The biomes that make up the Neotropical region have undergone several cycles of expansion and contraction of forests (Arruda et al. 2018), driven by climatic fluctuations with periods of warming and cooling. These cycles have had significant impacts onr the distribution, migration, speciation, geographic isolation and extinction of organisms (Antonelli et al. 2018; Arruda et al. 2008; Costa et al. 2017; Hoorn et al. 2010; Ledru et al. 2009; Zachos et al. 2001). Some biomes in this region have remained more stable over time than others, one such biome being the Amazonian Rainforest (Arruda et al. 2018).

61 Recently, rainforests and South American savannahs have been experiencing significant and 62 increasing human interference that has altered the landscape of several biomes and changed their climate. 63 For example, deforestation and agricultural expansion have threatened the climatic and ecological stability 64 of Amazonia and Cerrado, which may become even more threatened in the future (Nobre et al. 2007; 65 Fernandes 2013). In the Atlantic Forest (but increasingly so also in Amazonia), the main problem 66 currently is the loss of forest area due to biome fragmentation, because this biome coincides with the 67 primary urban development area in Brazil where human exploitation is extensive (Collevatti et al. 2011). 68 Forest fragmentation has also affected the mechanism of transferring moist air from the ocean, reducing 69 rainfall (Makarieva and Gorshkov 2007). Low-level air moves from areas with weak evaporation to areas 70 with more intense evaporation, such as Amazonia, and this mechanism plays an important role in the 71 maintenance of optimal moisture stores in the soil, compensating the gravitational water runoff. In the 72 Brazilian semi-arid region, the main problem is desertification attributed to the historical and 73 unsustainable use of the Caatinga, including the clear-cutting of vegetation and the removal of other 74 resources. In expected climate change scenarios, these areas will have an even drier climate, with reduced 75 rainfall and increasing water shortages as a result of the expected increase in air temperature, increasing 76 the aridity across Caatinga environments (Marengo et al. 2011). According to Marengo et al. (2009), 77 different South American regions may experience different responses to future climate change scenarios: 78 regions such as northeastern Brazil and central-eastern Amazonia may experience further rainfall deficits, 79 whereas warming may lead to excessive rainfall along the northwest coast of Peru-Ecuador.

80 In a scenario of climatic changes triggered by human activity, the ability of many organisms 81 to adapt and survive is reduced and the species that are unable to rapidly adapt or move can suffer drastic 82 population losses or even extinction (Bickford et al. 2010). Within this scenario, some authors suggest 83 that phylogenetically similar species would tend to have similar ecological responses to climatic change, 84 since they will tend to retain some degree of their ancestral niche (e.g. Peterson et al. 1999). Other authors 85 suggest that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic 86 distances (e.g. Warren et al. 2008) and, consequently, responses to climatic change are independent of the 87 phylogenetic distance between species. Additionally, widely distributed species are more likely to vary 88 their niches and have a wider range of environmental tolerance, both in the known cases of past climatic 89 change and the expected changes in the future (Marengo et al. 2009; Hoorn et al. 2010; Collevatti et al. 90 2011; Marengo et al. 2011; IPCC 2014).

91 We focus on three general hypotheses related to niche conservatism and niche shifting 92 caused by climatic change: H0 – There is niche conservatism among bird species (i.e., the niches are 93 phylogenetically constrained). An outcome of this is that climatic change will have the same effect on the 94 distribution of closely related species. H1 – A rejection of H0 means that the niches are not conserved 95 (not phylogenetically constrained) and might imply that birds with a large niche overlap will be affected 96 in the same way by climatic changes, independently of their phylogenetic relationships. H2 – A rejection 97 of H0 and H1 means that climatic changes might influence the niche of taxa of a widely distributed 98 lineage, regardless of the phylogenetic relationships or the niche overlap between the species considered.

99 We tested the three hypotheses described above using the *Thamnophilus punctatus* species 100 complex (Thamnophilidae), which has a wide distribution in the Neotropical region. Species belonging to 101 this clade have vocal, morphological and molecular differences with respect to more distant relatives in 102 the genus (Isler et al. 1997; Peters 1951; Zimmer and Isler 2003). This species complex is a suitable 103 model for inferring changes in geographic distributions because it has a wide distribution across the 104 Neotropical region (Fig. 1). Its constituent species occur in various distinct biomes and environments, 105 such as deciduous, semi-deciduous and gallery forests in open biomes, border zones, secondary forests, 106 semi-deciduous forests of the Atlantic Forest domain, and campinas and campinaranas (sandy soil 107 vegetation) of the Amazonian Forest (Isler et al. 1997; Peters 1951; Zimmer and Isler 2003). Thus, the 108 geographic distribution pattern of this bird clade makes it possible to compare species responses to 109 climatic change in the different biomes in which it occurs.

110

The overall aim of this study is to model the past, present and future potential distribution of 111 the Thamnophilus punctatus species complex and test the three hypotheses mentioned above in order to 112 identify species-specific responses to climatic change in different South American biomes.

113

114 MATERIALS AND METHODS

115

116 Environmental variables

117 We used a total of 19 variables composed of temperature and precipitation in various 118 combinations, with maximum and minimum extremes, seasonality, annual variation, and daily and 119 monthly averages with a pixel resolution of 30", about 0.9 km² per pixel. The selection of environmental variables used in the models was determined using the Jackknife test (Phillips and Dudik 2008) to estimate the level of significance of an environmental variable individually in the analysis of species distribution and to select the variables with the highest model gain (Phillips et al. 2006; Phillips and Dudik 2008). The variables used in this study are available through Worldclim (Hijmans et al. 2005) and each one consists of a bioclimatic map (Global Climate Models-GCMs, MIROC).

125 A correlation matrix was generated independently for three scenarios: Last Glacial Maximum 126 (LGM; approximately 20,000 years ago), present (1960-1990), and future (2050-2080), all of them in 127 South America. From this matrix, we excluded highly correlated variables, taking into account values 128 greater than 0.8, resulting in the predictive variables that were used for modeling. Uncorrelated variables 129 were selected in order to generate distribution models via the Maxent algorithm (Phillips et al. 2006). A 130 total of 11 variables were selected: altitude; mean diurnal range, mean of monthly (max temp - min 131 temp); min temperature of coldest month; mean temperature of driest quarter; mean temperature of 132 coldest quarter, precipitation of wettest month; precipitation of driest month; precipitation of driest 133 quarter; precipitation of warmest quarter and precipitation of coldest quarter. For the data treatment, we 134 used the Qgis Program 2.18 and R Studio, and the results were then treated in the Qgis Program 2.18 for 135 further analysis.

The occurrence data of the five species of the *T. punctatus* complex were obtained from the Emílio Goeldi Museum (MPEG) of Pará-Brasil, Species Link and the Global Biodiversity Information Facilit (GBIF) (Fig. 1). The software Qgis 2.18 was used to clean and validate the georeferencing data, eliminating repetitions, points outside the distribution of each species, and coordinates in the same grid cell. The occurrence points of each species were combined with data from the environmental databases to generate potential distribution models through Maxent (Phillips et al. 2006).

142

143 Similarity, equivalence and niche overlap

144 Niche overlap is a metric that evaluates whether two environmental niches are superimposed 145 and ranges from 0 (no overlap) to 1 (full overlap). The niche equivalency test assesses if the overlap 146 between niches of two species is less than would be expected if niches were identical. The niche 147 similarity test differs from the equivalency test by addressing whether the environmental niche occupied 148 in one range is more similar to the one occupied in the other range than would be expected by chance 149 (Warren et al. 2008; Broennimam et al. 2012).

We compared the performance of the niche variables of different species using univariate analyses of each of the 11 remaining bioclimatic variables in our models, grouped by species pairs. For this we used the Kruskall-Wallis test (Hollander and Wolfe 1973) and subsequently the Dunn test (Dunn 1964) where density graphs are generated through the 5.4 sm package (Bowman and Azzalini 2014).

Multivariate comparisons between the disjunct populations of the two species were also performed. In these comparisons, niche overlap was quantified using Principal Component Analysis (PCA), following the approach proposed by Broennimann et al. (2012), using ecospat functions (Broennimann et al. 2016) in R. We used the first two axes of the PCA calibrated for the entire climatic space of the study area, which includes all occurrences of disjunct populations (Broennimann et al. 2012). 159 The climatic space delimited by the axes was defined for 100 x 100 cells, with the overlap estimated160 using Schoener's D metric (1970) as revised by Warren et al. (2008).

161 Subsequently, we performed the niche equivalence test, which determines if the niche 162 overlap is constant when randomly relocated in the distribution of disjunct populations. Lastly, we 163 evaluated niche similarity, which addresses whether the environmental niche occupied by a population at 164 one interval is more similar to the other than would be found at random. This test was based on 100 165 replicates, where, if the observed overlap includes up to 95% of the simulated values, the taxon is 166 considered to occupy similar niches in both of the analyzed distributions. In order words, the niches of the 167 two compared species are more similar than would be expected at random (Warren et al. 2008; 168 Broennimann et al. 2012).

169

170 Geographic distribution modeling

There are a number of methods available that can be used to model species distributions. Among these, the Maxent algorithm in the R platform has been shown to be a reliable methodology for predicting distribution scenarios (Phillips et al. 2006; Phillips 2008; Anderson and Raza 2010; Guisan et al. 2017) and was the one we chose to use.

A total of 15 climate suitability maps were used, one model for each of the five species of the *T. punctatus* complex in past, present and future conditions. We took into account three different climatic scenarios, and generated five models with the bioclimatic variables from the Last Glacial Maximum (approximately 20,000 years ago), five models using values of baseline (current) bioclimatic variables (WorldClim 1960–1990) and five models with the bioclimatic variables from the estimated future conditions (2050–2080) available in Worldclim (Hijmans et al., 2005). As each map was made from a total of 10 replicates, each model reflects the mean value of replicates for each species.

182 We calculated the variation of climatically suitable areas between the climatic scenarios for 183 each species using binary maps with and without the climatic suitability obtained by Maxent (values of 184 minimum probability of representing an adequate habitat). As such, six different values for prediction 185 thresholds from the present day distribution model were compared with the known current distribution: 1-186 Minimum training presence logistic threshold, 10 percentile training presence logistic threshold, 2- Equal 187 training sensitivity and specificity logistic threshold, 3- Equal test sensitivity and specificity logistic 188 threshold, 4- Balance training omission, 5- Predicted area and threshold value logistic threshold, and 189 finally 6- Equate entropy of threshold and original distributions logistic threshold. The threshold that 190 matched best with the known current distribution was then used to produce binary species distribution 191 maps under each chronological scenario.

192

193 DNA extraction, amplification and sequencing

We sampled 41 individuals covering almost the entire distribution of the *T. punctatus* species complex. All tissues sequenced were derived from voucher specimens deposited in the ornithological collections of the Museu Paraense Emílio Goeldi (MPEG) in Brazil and the Louisiana Museum of Natural History (LSU) in the USA. The following taxa were sampled: *Thamnophilus punctatus*, *Thamnophilus* stictocephalus, Thamnophilus pelzelni, Thamnophilus sticturus and Thamnophilus ambiguus(Supplementary material S1).

DNA was extracted and sequenced at the Department of Biological and Environmental Sciences, University of Gothenburg, Sweden. We used the DNeasy kit (Qiagen Inc.) following the manufacturer's protocol and published DNA primers (Sorenson et al. 1999) to amplify and sequence one mitochondrial gene (NADAH subunit 2 [ND2]) following standard PCR protocols.

Genetic distances (P- distance) between all pairs of species in the complex were estimated using the MEGA6 software package (Table 2). We used Mantel test to investigate the relationships among the matrices of genetic distance, niche overlapping and differences among the variations within the given scenarios (LGM/present, and present/future). This test was performed with the vegan package in R (Oksanen et al. 2019).

209

210 RESULTS

211 Geographic distribution modeling

212 Fifteen climate suitability maps were generated with AUC (Area Under the Curve) training 213 values > 0.9, under each of the past, current and future climate scenarios, with a standard deviation of 214 0.003. These results indicate that the models had a clearly improved performance over that of a random 215 prediction. Therefore, they reflect a biologically more realistic scenario of climatic suitability for each 216 species, with higher precision and better discrimination of suitability. The primary output of most models 217 is a raster representing the probability of species occurrence. For most applications, it is often necessary 218 to select a threshold of probability to classify each pixel into two categories, 'suitable' or 'present', and 219 unsuitable' or 'absent' (Bean et. al 2012). All generated distribution models were adjusted to minimum 220 probability of occurrence, generating 15 binary maps with both absence and presence of climatic 221 suitability for each studied species in the three scenarios. The Equate entropy threshold and original 222 distributions logistic threshold allowed a distribution scenario similar to the known current distribution of 223 each species, with only a few areas that extend beyond this distribution. These additions could be 224 climatically suitable areas that the species do not currently occupy, not necessarily errors in the model 225 (Fig. 2).

Comparisons between the modeled distributions suggest that *T. ambiguus* and *T. stictocephalus* underwent a contraction of their distribution from the LGM to that of the present day but may expand this in the future. *Thamnophilus punctatus* has expanded its distribution through time, but this is expected to shrink in the future. The distribution of *T. pelzelni* retracts and that of *T. sticturus* expands from the past through the current into the estimated future climate scenarios (Fig. 2).

231

232 Overlap, equivalence, niche similarity and genetic divergence.

The multivariate analysis based on the climatic niche indicated that the PCA explains 77.3% of the total variation, when combining the PC1 (49.1%) and PC2 (28.2%) axes (Fig. 3). When overlapping the correlation circle with climatic projections of ecological niche, the bioclimatic variables that best explain the density of occurrence of each species are: *T. ambiguus*: alt, bio17, bio18, bio13 and bio14 (variables of precipitation); *T. pelzelni*: bio2, bio13, bio11, bio9 and bio6; *T. punctatus*: bio6, bio11, bio13, bio9 and bio18; *T. stictocephalus*: bio6, bio13, bio9, bio11 and bio6 and *T. sticturus*: bio2,

bio18 e bio13 (Fig. 3) It is mostly precipitation driving the distributions of *T. ambiguus*, *T. punctatus* and *T. sticturus*, and temperature driving the distributions of *T. pelzelni* and *T. stictocephalus*.

The species of the *Thamnophilus punctatus* complex presented, in general, low values for climatic niche overlap, and the hypothesis of niche equivalence between all species was rejected. Niche similarity values varied between approximately 12% and 76%, with the highest values observed between *T. ambiguus* and *T. stictocephalus* and between *T. ambiguus* and *T. pelzelni*, with 76% and 65% similarity respectively.

Genetic analyses indicated a high degree of genetic distance (p-distance) between species of the *T. punctatus* complex, but within expectations for closely related species (Table 2). The Mantel test indicated that there were not significative correlations between: 1) SchoenerD x Genetic Distance (pdistance) r = -0.5826, p > 0.05; 2) Schoener D x LGM/Present r = 0.5531, p > 0.05; 3) Schoener D x Present/Future r = 0.1729, p > 0.05; 4) Genetic distance x LGM/Present r = -0.322, p > 0.05; 5) and Genetic Distance (p-distance) x Present/Future r = 0.2654, p > 0.05.

252

253 DISCUSSION

254

255 Our study indicates that niche conservatism is unlikely to be a factor in the response to 256 climatic change as the most closely related species did not have identical climatic niches and these 257 species pairs did not respond identically in the modeled climate change scenarios. H0 was therefore 258 rejected as a viable hypothesis. Furthermore, species with a large climatic niche overlap did not respond 259 to the climatic change scenarios in the same way either, which meant that the first alternative hypothesis 260 (H1) was also rejected. Instead, our analysis suggests that climatic changes determine variations in 261 climatic suitability where each species occurs, due to each species being dependent on several region-262 specific variables, regardless of genetic proximity or degree of niche overlap.

263 Our results are qualitatively similar to those of McCormack et al. (2009), who examined 264 whether allopatrically distributed species of Aphelocoma jays can occupy similar climatic niches. They 265 found that these species show a low correlation with climatic variables, such as temperature and 266 precipitation, and show a stronger correlation with vegetation type instead. The expansion and retraction 267 dynamics of modeled distributions for Aphelocoma jays follow historical events of biome landscape 268 changes over time, as influenced by climatic changes rather than phylogenetic proximity or niche 269 equivalence. Thus, other ecological and evolutionary processes should also be taken into account as 270 determinants of species distributions, such as speciation, extinction, dispersal and vegetation (Kozak and 271 Wiens 2010; McCormack et al. 2009).

An alternative explanation for the rejection of our hypotheses related to niche conservatism and niche shifting caused by climatic change is that the species of the *T. punctatus* complex are all quite closely related and replace each other geographically, probably reflecting speciation by geographical vicariance during the course of the Pleistocene and competitive exclusion in zones of contact. This is particularly relevant for the very closely related *T. sticturus*, *T. pelzelni* and *T. ambiguus* (Brumfield and Edwards 2007), which may have been split by climatic change effects during Pleistocene oscillations and 278 kept their current distribution by exclusion in zones of contact. This species-rich family initially 279 diversified in tropical rainforest biomes, but the Thamnophilini tribe shifted to more open savannah 280 habitats along the periphery of the Amazon Basin, beginning in southern Brazil (Bravo 2012; Belmonte-281 Lopes 2013). This would probably have required some flexibility in its thermal tolerance, as inhabitants 282 of this region would have had to endure periods of cold weather caused by southern polar winter winds, 283 notably in the Pleistocene epoch (Servant et al. 1993). There is a good deal of empirical evidence to 284 suggest that species differ greatly in their ability to tolerate cold: most species prefer hotter temperatures 285 but differ greatly in their abilities to tolerate cold, which may be a specialized condition that allows some 286 groups to take advantage of uncontested food resources that exist (at least for part of the year) at high 287 latitudes (Araujo et al. 2013). This may also be relevant for Thamnophilus species, given their 288 biogeographic history. Cold-tolerant species can fairly easily settle or return to warmer climates, but the 289 opposite movement may impose strong selection pressure on populations and is therefore rare (Khaliq et 290 al. 2015). Our interpretation is that this group of *Thamnophilus* antshrikes is thermally flexible (Smith et 291 al. 2012, Araújo et al. 2013; Khaliq et al. 2015; Stager et al. 2015), but the distributions of the individual 292 species are constrained by the biogeographic history, with isolation of populations in different parts of a 293 broad ancestral range. These patterns may presently be maintained by competitive interactions (exclusion) 294 in places where these closely related species coincide or by geographic barriers such as rivers.

295

296 Geographic distribution modeling

297 The models we generated under each climate scenario indicate that there have been 298 differences in responses to climatic changes from the LGM to the present among the five species of the T. 299 punctatus complex. These results could potentially be generalized for the avifauna that occurs in similar 300 environments, and, if so, they may indicate ecosystem responses to climate change. Thus, further studies 301 could focus on other species complexes that are widely distributed in open areas, in order to determine if 302 climatic changes have had similar effects on species occurring in the same environments and regions and 303 may also do so under ongoing and future climatic changes. Below we discuss the changes modelled for 304 each species individually, highlighting the peculiarities and similarities among them, taking into account 305 the results from previous studies.

306

307 *Thamnophilus punctatus*

The models generated for *T. punctatus* indicate suitable areas for their occurrence both in the northern and southern regions of Amazonia, which does not corroborate their known current distribution. One hypothesis to explain this mismatch with the current geographical distribution of *T. punctatus* is the presence of an ecological substitute (*T. stictocephalus*) that may compete with *T. punctatus* (Urbina-Cardona and Loyola 2008). The large Amazonian rivers could isolate these two species, preventing them from exploring new environments. This, in essence, is a possible case of historical contingency affecting the distribution, rather than a current limit due entirely to lack of suitable habitat.

Considering that *T. punctatus* is currently found in more open areas of dry forests such as the whitesand "campinas" and boundary forests of Amazonia (Peters 1951; Zimmer and Isler 2003), expansion and contraction would be expected in the LGM and the present, respectively, due to the

318 climatic variations of these periods (Ab'Saber 1977; Prado and Gibbs 1993; Hoorn et al. 2010). However, 319 our models indicated a stability of the size of the climatically suitable areas for this species. For the 320 future, these areas are expected to be somewhat reduced, but overall stability will remain. According to 321 Arruda et al. (2018), with the contraction of the Amazon forest in the past, substitution for other types of 322 vegetation occurred in preserved areas. This means that even with no loss of forest area, more sandy 323 environments of the Amazon river beds were colonized by tree species specialized in occupying these 324 types of arid environments. Such evidence indicates that the Amazon maintained climatically adequate 325 areas for *T. punctatus* between the two scenarios, past and present.

326

327 Thamnophilus stictocephalus

The models for *T. stictocephalus* predict a significant reduction in the size of climatically adequate areas from the past to the present. The expansion of savannahs during cool periods in the past (Arruda et al. 2018; Häggi et al. 2017) may have been an important factor in *T. stictocephalus* having broader suitability areas in southern regions of the Amazon. The model for the current scenario predicts suitable areas where the species is not known to occur, and a growing suitability area in future scenarios.

The current distribution of *T. stictocephalus* (Fig. 1) suggests past climatic changes where savannah areas expanded into southern Amazonia. Although this would indicate a favorable scenario for its future expansion under natural conditions, current forest fragmentation due to the advance of the agricultural frontier in southern Amazonia, especially in the Brazilian states of Pará and Rondônia (Fernandes 2013), may limit their actual spread into environmentally suitable areas.

338

339 Thamnophilus sticturus

340 The expansion and contraction of biome vegetation has historically been concentrated in 341 areas of vegetation transition, in addition to the expansion of the Atlantic Forest through the southeastern 342 Brazilian route (Arruda et al. 2018; Costa et al. 1997). The distribution of T. stictrurus may be restricted 343 to its current distribution as a result of this. The existence of areas predicted by the model to be 344 climatically suitable for this species that occur outside the current distribution of this species (i.e. where 345 no records of occurrence exist), might be explained by competitive exclusion or the effect of unmeasured 346 eco-environmental variables that do constitute part of the species' niche but were not accounted for in this 347 study (Raxworthy et al. 2003; Sobreron and Peterson 2005; Pearson et al. 2007; Urbinas-Cardona and 348 Loyola 2008; Warren et al. 2008). They may also relate to factors that limit dispersal, such as 349 geographical barriers, as in the example of the Paraguay River that may explain the separation between T. 350 Pelzelni and T. sticturus (Grohnert and Piacentini 2018). Climate models predict intense climatic changes 351 in the distribution region of T. sticturus, with extreme rainy and dry periods, combined with intense 352 ongoing exploitation of the Pantanal as well as the southern and eastern Amazonian regions for 353 agriculture and energy generation (Marengo et al. 2006). Even so, our simulations indicate an increase in 354 areas with a suitable climate for this species.

355

356 Thamnophilus pelzelni

357 The distribution modeling for T. pelzelni shows a small decrease in areas of climatic 358 suitability, indicating stability between the LGM and the present. According to Arruda et al. (2018), the 359 Caatinga is a stable climatic domain in South America when the climatic change between the LGM and 360 the present is considered. The expansion and contraction dynamics in this area have been restricted to its 361 transition zones, although this still deserves more detailed studies. Since the distribution of T. pelzelni is 362 associated with a potentially stable area in this period, distribution stability would be predicted for the 363 species. As the climate changes, T. pelzelni will have a significant reduction in potentially appropriate 364 areas of occurrence, but the species will not be further threatened, because it will be able to occupy some 365 new areas in the future, counterbalancing the loss in other areas (Fig. 2, Table 2). In this scenario, future 366 extinctions at regional levels may occur (Grant and Bowen 1998), impacting the genetic diversity of the 367 species.

368

369 Thamnophilus ambiguous

370 Climatic variation between the LGM and the present did not identify climatically favorable 371 areas for the expansion of the distribution of T. ambiguus. Several studies point to a decrease in the size 372 of the Atlantic Forest (where T. ambiguus maintains populations) between the LGM and the present, 373 especially along the coast due to the inland advance of the ocean front, followed by the replacement of the 374 forest by the underwater vegetation present today (Carnaval et al. 2009; Costa et al. 2017; Jaramillo and 375 Cárdenas 2013). However, in future scenarios expansion is expected (Fig. 2, Table 2). This expansion 376 may be brought on by Atlantic Forest fragmentation due to increasing temperatures and changes of other 377 variables, as well as by anthropic action in this region (Collevatti et al. 2011), which could result in the 378 expansion of the bordering forest areas and secondary forests that are the preferred habitat for this 379 species.

380

381 Niche overlap

382 The niche overlap analyses presented here suggest that divergence of populations separated 383 by past dispersal barriers (such as the lower Amazon river or past climatic change), later reinforced by 384 competitive exclusion where expanding populations come into contact, might be an important factor in 385 the diversification of the species in the Thamnophilus punctatus complex. Similar results have been 386 previously suggested for other species using primarily climatic variables (Warren et al. 2008). This 387 further supports the importance of climate change, potentially during Pleistocene oscillations, and 388 competitive exclusion in zones of contact in determining current geographical range, particularly for the 389 very closely related species T. sticturus, T. pelzelni and T. ambiguus.

The highest degree of niche overlap found was between *T. pelzelni* and *T. sticturus*, with
approximately 33% overlap. These two species are associated with savannah and dry forest environments. *T. sticturus* is however distributed across a larger range of habitats, such as transition areas between
Cerrado, Chaco, Amazonian Forest and Pantanal (Isler et al. 1997; Peters 1951; Zimmer and Isler 2003).

When comparing the genetic analyses, the niche overlap and the area variations between the scenarios, we found no correlation between the different variables. Although these species share a small portion of their niches, they are also subject to different climatic conditions due to differences in theirgeographic distributions (Warren et al. 2008; Broennimann et al. 2012).

T. pelzelni and *T. sticturus* presented a decrease and an increase respectively in the area of their climatic suitability among the modeled scenarios. These divergences were also observed for other species of the complex, for example, *T. punctatus* and *T. stictocephalus*. Therefore, in a global warming scenario, phylogenetically close species may have different distribution responses, especially in the event that they are widely distributed across a wide range of environmental conditions (Broennimann et al. 2012).

404

405 Conclusions

406 In summary, our results suggest that climate niche divergence was important for isolation and 407 speciation within the T. punctatus complex, potentially during Pleistocene oscillations. The exclusive 408 niches and geographical distributions determine variations in the climatic suitability for species 409 occurrence, due to each species being dependent on several region-specific conditions. The current 410 distributions of sister species can also be associated with competitive exclusion in zones of contact and 411 rivers creating barriers in the Amazon. However, the fragmentation of the Amazon Forest due to the 412 advancing of agriculture in southern Amazonia in the Brazilian states of Pará and Rondônia (Fearnside 413 2018) and the advance and development of cities along the coast of Brazil (Urbina-Cardona and Loyola 414 2008) may limit the spread of species to areas suitable for occupation.

415 According to Häggi et al. (2017), one of the factors that contributed to Amazonian biodiversity is 416 that it had stable climatic conditions. Therefore, many species become highly threatened in a climate 417 change scenario driven by the fragmentation of large forest areas (Bickford et al. 2010; Fernandes 2013; 418 IPCC, 2014; Marengo et al. 2009). This should be most evident for species occupying environments of 419 intense anthropogenic exploration, such as T. ambiguus in the Atlantic Forest. Although the distribution 420 of T. pelzelni is associated with a potentially stable area during climatic change, the dry forest habitats 421 have also become highly threatened due to intense and historical human explorations. Therefore, the 422 predictions presented here show which species are most susceptible to climatic variations but point to the 423 need for associations with environments and historical biogeography. Additional work should be 424 undertaken to test the effects of climatic changes on other species, in order to provide a more complete 425 picture of the effects on different biomes and species. Taken together, this line of research will provide 426 crucial information to better identify environments that deserve immediate attention for conservation.

427 428

Acknowledgments

We thank the curators and curatorial assistants of the bird collection of the Museu Paraense Emílio Goeldi and the Louisiana State University Museum of Natural Science for allowing us to study and sequence skins and tissues under their care. During data collection and analysis, Erasmo Andrade da Silva was supported by a master's fellowship from *Fundação do Amparo a Ciência e Tecnologia do estado de Pernambuco* (FACEPE,IBPG-1346-2.04-15). A.A. is supported by grants from the Swedish Research Council (B0569601), the Swedish Foundation for Strategic Research, the Biodiversity and

- 435 Ecosystems in a Changing Climate (BECC) programme, and a Wallenberg Academy Fellowship. Support
- 436 to A.M.F's research was provided by FACEPE (APQ-0641-2.04/18).

443 **REFERENCES**

- 444 Ab'Saber AN (1977) Os domínios morfoclimáticos na América do Sul: primeira aproximação.
- 445 Geomorfologia, São Paulo, n. 52, p. 1-22.
- 446 Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species
- geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus
 Nephelomys) in Venezuela. J Biogeogr 37: 1378–1393
- 449 Antonelli A, Zizka A, Antunes CF, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018) Amazonia is
- 450 the primary source of Neotropical biodiversity. Proceed. of the Natl Acad of Sci of the USA. 115(23):
- 451 6034–6039. https://doi.org/10.1073/pnas.1713819115
- 452 Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL (2013) Heat freezes niche
- 453 evolution. Ecology Letters 16: 1206–1219.
- 454 Arruda MD, Schaefer CGR, Fonseca RUS, Solar RRUS, Filho EIF (2018) Vegetation cover of Brazil in
- 455 the last 21 ka: New insights into the Amazonian refugia and Pleistocenic arc hypotheses. Glob Ecol and
- 456 Biog 27:47–56. <u>https://doi.org/10.1111/geb.12646</u>
- Bean WT, Stafford R, Brashares JS (2012) The effects of small sample size and sample bias on threshold
 selection and accuracy assessment of species distribution models. Ecography 35: 250–258.
 <u>https://doi:10.1111/j.1600-0587.2011.06545.x</u>
- 460 Belmonte-Lopes R (2013) Investigando o isolamento esplêndido da América do Sul: filogenia a
- 461 biogeografia histórica dos Thamnophilidae (Aves: Passeriformes: Tyranni). PhD thesis, Universidade
- 462 Federal do Paranã, Brazil; 182 pp.
- Bickford D, Howard SD, Daniel JJNg, Sheridan JA (2010) Impacts of climatic change on the amphibians
 and reptiles of Southeast Asia. Biodivers Conserv 19:1043–1062. <u>https://doi.org/10.1007/s10531-010-</u>
 9782-4
- Bowman AW, Azzalini A (2014) R package 'sm': nonparametric smoothing methods (version 5.4).
 http://www.stats.gla.ac.uk/~adrian/sm.
- 468 Bravo GA (2012) Phenotypic and niche evolution in the antbirds (Aves, Thamnophilidae). Ph.D.469 dissertation, Louisiana State University.
- 470 Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin
- 471 MJ, Randin C, Zimmermann NE, Graham CH, and Guisan A (2012) Measuring ecological niche overlap
- 472 from occurrence and spatial environmental data. Glob Ecol and Biog 21: 481-497.
- 473 <u>https://doi.org/10.1111/j.1466-8238.2011.00698.x</u>

- 474 Broennimann O, Di Cola V, Guisan A (2016) Ecospat: Spatial Ecology Miscellaneous Methods. R
- 475 package version 2.1.1. https://CRAN.R project.org/package=ecospat
- 476 Brumfield RT, Edwards SV(2007) Evolution into and out of the Andes: a Bayesian analysis of historical
- 477 diversification in *Thamnophilus* antshrikes. Evolution 61: 346–67
- 478 Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic
- 479 diversity in the Brazilian Atlantic Forest hotspot. Sci <u>https://doi.org/10.1126/science.1166955</u>
- 480 Collevatti GR, Nabout JC, Diniz-Filho JAF (2011) Range shift and loss of genetic diversity under
- 481 climatic change in *Caryocar brasiliense*, a Neotropical tree species. Springer-Tree Genetics & Genomes
- 482 7:1237–1247. https://doi.org/10.1007/s11295-011-0409-z
- 483 Costa GC, Ledru HAMP, Martinez PA, Mazzochini GG, Shepard DB, Werneck FP, Moritz C, Carnaval
- 484 AC (2017) Biome stability in South America over the last 30 kyr: Inferences from long-term vegetation
- 485 dynamics and habitat modeling. Glob Ecol and Biogeogr 1–13
- 486 Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics, 6(3):241–252.
- 487 Fernandes AM (2013) Fine-scale endemism of Amazonian birds in a threatened Landscape. Biodivers
- 488 Conserv 22:2683–2694. <u>https://doi.org/10.1007/s10531-013-0546-9</u>
- 489 Fearnside P (2018) Why Brazil's new president poses an unprecedented threat to the Amazon. Yale490 Environ. 360
- 491 Guisan A, Thuiller W, Zimmermann N (2017) Maximum Entropy. In Habitat Suitability and Distribution
- 492 Models: With Applications in R (Ecology, Biodiversity and Conservation, pp. 217-223). Cambridge:
- 493 Cambridge University Press. doi:10.1017/9781139028271.019
- 494 Grant WAS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine
- 495 fishes: insights from sardines and anchovies and lessons for conservation. J of Hered Vol 89, 415–426,
- 496 https://doi.org/10.1093/jhered/89.5.415
- 497 Grohnert N, Piacentini VQ (2018) Caracterização da zona de contato entre duas espécies do complexo
- 498 Thamnophilus punctatus (Thamnophilidae) no Mato Grosso: T. sticturus x T. pelzelni. Congresso
- 499 Brasileiro de Ornitologia 2018. João Pessoa, PB, Brasil
- 500 Häggi C, Chiessib CM, Merkela U, Mulitzaa S, Prangea M, Schulza M, Schefu E (2017) Response of the
- 501 Amazon rainforest to late Pleistocene climate variability. Earth and Planet Sci Lett 50-59.
- 502 http://dx.doi.org/10.1016/j.epsl.2017.09.013
- 503 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Superfícies climáticas interpoladas de alta
- 504 resolução para áreas terrestres globais. Int J of Climatol 25: 1965-1978

- 505 Hoorn C, Wesselingh FP, Steege, H, Bermutez MA, Mora A, Sevink J, Sanchez-Mesenguer A, Anderson
- 506 CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Sarkinen T,
- 507 Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape. Evol and
- 508 Biodivers Sci 330: 927–931
- 509 IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the
- 510 Fifth Assessment Report of the Intergovernmental Panel on Climate change [Core Writing Team, R.K.
- 511 Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp
- 512 Isler ML, Isler PR, Whitney BM (1997) Biogeography and systematics of the Thamnophilus punctatus
- 513 (Thamnophilidae) complex. Ornitol Monogr Vol 48. 355-381
- 514 Jaramillo C, Cárdenas A (2013) Global Warming and Neotropical Rainforests: A Historical Perspective.
- 515 Annu. Rev of Earth and Planet Sci 741-759. https://doi.org/10.1146/annurev-earth-042711-105403
- 516 Khaliq I, Fritz SA, Prinzinger R, Pfenninger M, Böhning-Gaese K, Hof C (2015) Global variation in
- 517 thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the
- 518 tropics. Journal of Biogeography 42: 2187-2196.
- 519 Kozak KH, Wiens JJ (2010) Niche Conservatism Drives Elevational Diversity Patterns in Appalachian
- 520 Salamanders. The Am Nat Vol 176 https://doi.org/10.1086/653031
- 521 Ledro MP, Mourguiart P, Riccomini C (2009) Related changes in biodiversity, insolation and climate in
- 522 the Atlantic rainforest since the last interglacial. Palaeogeogr Palaeoclimatology Palaeoecol 140-152
- 523 Makarieva AM and Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the
- 524 hydrological cycle on land. Hydrology and Earth System Sciences 1013–33.
- 525 Marengo, JÁ (2006) Mudanças Climáticas Globais e seus Efeitos sobre a Biodiversidade, Caracterização
- 526 do Clima Atual e Definição das Alterações Climáticas para o Território Brasileiro ao Longo do Século
- 527 XXI. MMA: Brasília.
- 528 Marengo JÁ, Ambrizzi T, DA Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC,

529 Ferraz SET (2009) Future change of climate in South America in the late twenty-first century: 530 intercomparison of scenarios from three regional climate models. Clim Dyn 1073-1097. 531 https://doi.org/10.1038/35002501

- 532 Marengo JÁ, Alves LM, Bezerra EA, Lacerda FF (2011) Variabilidade e mudanças climáticas no 533 semiárido brasileiro. Recursos hídricos em regiões áridas e semiáridas. ISBN 978-85-64265-01-1.
- 534 Instituto Nacional do Semiárido, Campina Grande-PB.
- 535 McCormack JE, Zellmer AJ, Knowles LL (2009) Does niche divergence accompany allopatric 536 divergence in *Aphelocoma* jays as predicted under ecological speciation?: insights from tests with niche
- 537 models. Evol 64-5: 1231-1244. https://doi.org/10.1111 / j.1558-5646.2009.00900.x

- 538 Medeiros MCMP, Guisan A, Lohmann LG (2015) Climate niche conservatism does not explainrestricted
- 539 Hollander M, Wolfe DW (1973), Nonparametric Statistical Methods. New York: John Wiley & Sons.
- 540 Pages 115–120.
- 541 Nobre CA, Sampaio G, Salazar L (2007) Mudanças Climáticas e Amazônia. Mudanças climática.
- 542 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O'Hara RB, Simpson
- 543 GL, Solymos P, Stevenes MHH, Wagner H (2019). Vegan: Community Ecology Package. R package 544 version 2.5-5.
- 545 Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from
- 546 small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J of Biogeog 2007.
- 547 34, 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
- 548 Peters JL (1951) Check-list of birds of the world. Vol VII Mus of Comp Zool
- 549 Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary
- 550 time: Science Vol 285, no. 5431, 1265-1267. http://dx.doi.org/10.1126/science.285.5431.1265
- 551 Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic
- distributions. Ecol Modelling Vol 190, 231-259. <u>https://doi.org/ 10.1016/j.ecolmodel.2005.03.026</u>
- 553 Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling:
- 554 a response to Peterson et al. (2007). Ecogr Vol 31, 272-278. <u>https://doi.org/10.1111/j.2007.0906-</u>
- 555 <u>7590.05378.x</u>
- 556 Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a
- 557 comprehensive evaluations. Ecogr Vol 31. 161-175. <u>https://doi.org/10.1111/j.2007.0906-7590.05203.x</u>
- 558 Raxworthy C, Martinez-Meyer E, Horning N, Nussbaum R, Schneider G, Ortega-Huerta M, Peterson A
- (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nat 426:837-841.
 https://doi.org/10.1038/nature02205
- Ribas CC, Aleixo A, Nogueira ACR, Miyaki CY, Cracraft JA (2012) Palaeobiogeographic model for
 biotic diversification within Amazonia over the past three million years. The R Soc 681–689.
 https://doi.org/10.1098/rspb.2011.1120
- 564 Servant M, Maley J, Turcq B, Absy ML, Brenac P, Fournier M, Ledru MP (1993) Tropical forest changes
- 565 during the late quaternary in African and South American lowlands. Glob. Planet. Change 7: 25–40.
- 566 Schoener TW (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecolog 51: 408–418.
- 567 Smith BT, Bryson RW, Houston DD, Klicka J (2012) An asymmetry in niche conservatism contributes to
- the latitudinal species diversity gradient in New World vertebrates. Ecology Letters 15: 1218–25.

- Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species'
 distributional areas. Biodivers Inform 2: 1–10. https://doi.org/10.17161/bi.v2i0.4
- 571 Stager M, Pollock HS, Benham PM, Sly ND, Brawn JD, Cheviron ZA (2015) Disentangling 572 environmental drivers of metabolic flexibility in birds: the importance of temperature extremes versus 573 temperature variability. Ecography 39: 787–95.
- 574 Urbina-Cardona JN, Loyola RD (2008) Applying niche-based models to predict endangered-hylid 575 potential distributions: are Neotropical protected areas effective enough?. Trop Conserv Sci Vol 1
- 576 (4):417-445. <u>https://doi.org/10.1177 / 194008290800100408</u>
- Warren DL, Glor REG, Turelli M (2008) Environmental niche equivalency versus conservatism:
 quantitative approaches to niche evolution. Evol 62-11: 2868–2883. <u>https://doi.org/10.1111/j.1558-5646.2008.00482.x</u>
- 580 Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ,
- 581 Grytnes J, Harrison SP, Hawkins BA, Holt RD, Mccain CM, Stephens PR (2010) Niche conservatism as
- an emerging principle in ecology and conservation biology. Ecol Lett 13: 1310–1324
- Zachos Z, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, Rhythms, and Aberrations in global
 climate 65 Ma to present. Sci Apr 27. 292, 5517. pg. 686
- 585 Zimmer KJ, Isler ML (2003) Amazonian Streaked Antwren Myrmotherula multostriata. in del Hoyo, J.,
- 586 Elliott, A. e Christie, D. A. (eds.) Handbook of the birds of the world, Vol 8. P. 578. Lynx Edicions, 587 Barcelona

588

589 FIGURES AND CAPTIONS

Figure 1: Species occurrence records of the five species of the *Thamnophilus punctatus* complex.

590

- Figure 2: Predicted distribution maps for the past, current and future distributions of the *Thamnophilus* punctatus complex. (a)- *T. ambiguus*, (b)-*T. pelzelni*, (c)- *T. punctatus*, (d)- *T. stictocephalus*, (e)- *T.*
- 591 592 593 594 sticturus. LGM, Last Glacial Maximum. Parts of the modelled range that correspond to the actual range
- are illustrated in red.

Figure 3: Environmental variables correlated to the ecological niche of the *Thamnophilus punctatus* complex at the limits of PCA. Shading represents the occurrence density of each species, analyzed separately. The solid and dotted contour lines show 100% and 50%, respectively, of the available environmental space. (a)- *T. ambiguus*; (b)- *T. pelzelni*; (c)- *T. punctatus*; (d)- *T. stictocephalus*; (e)- *T. stictocephalus*; (e)- *T. sticturus*; (f)- Correlation circle.

6	60	1
	- ^	~

Table 1: Fragmentation of area between the Last Glacial Maximum (LGM), present and future from the 606 potential distribution maps of the *Thamnophilus punctatus* complex based on the distribution models.

000 poter	indi districut	ion maps of a	ne mannep.	nins punctum co	mpren susea on me	aistiic ation moael	81
Species	Area of LGM	Present Area	Future Area	LGM/Present Variation	Present/Future Variation	LGM/Present Fragmentation	Present/future Fragmentation
	(km ²)	(km ²)	(Km ²)	(km ²)	(Km ²)	(% Variation)	(% Variation)
Thamnophilus	598,341	288,215	1,247,199	-310,126	+958,984	51.83	332.73
ambiguus							
Thamnophilus	2,363,950	2,131,183	1,157,940	-232,767	-973,243	9.84	45.66
pelzelni							
Thamnophilus	1,000,194	1,067,250	972,664	+67,056	-94,586	6.28	8.86
punctatus							
Thamnophilus	3,038,385	1,325,835	2,152,030	-1,988,382	+826,195	65.44	62.31
stictocephalus							
Thamnophilus	682,879	1,050,003	1,207,384	+367,124	+157,381	34.96	14.99
sticturus							
<0 7							

Table 2: Overlap values (SchoenerD), equivalence, niche similarity and genetic distance among the five species of the *Thamnophilus punctatus* complex. The niche overlap measures intersection levels between ranges of the environmental space occupied by the two populations or species; niche equivalence indicates whether niche overlap is constant by randomly relocating the occurrence of both populations between their two ranges; and niche similarity measures to what extent the niche of one population or species can predict the occurrence of the other. Genetic distance measures the degree of genetic divergence between one species and another.

Combination	Schoener D	Niche Equivalence	Niche Similarity	Genetic Distance
T. ambiguus Vs. T. pelzelni	0.131817	1	0.653465347	0.0379
T. ambiguus Vs. T. punctatus	0.224464	1	0.405940594	0.0698
T. ambiguus Vs. T. stictocephalus	0.012273	1	0.762376238	0.0651
T. ambiguus Vs. T. sticturus	0.149502	1	0.376237624	0.0430
T. pelzelni Vs. T. punctatus	0.142882	1	0.475247525	0.0568
T. pelzelni Vs. T. stictocephalus	0.247345	1	0.207920792	0.0594
T. pelzelni Vs. T. sticturus	0.333783	1	0.138613861	0.0232
T. punctatus Vs. T. stictocephalus	0.310135	1	0.128712871	0.0324
T. punctatus Vs. T. sticturus	0.090668	1	0.544554455	0.0585
T. stictocephalus Vs. T. sticturus	0.054553	1	0.534653465	0.0589

The effects of climate change on the distribution of South American antbirds (*Thamnophilus punctatus* complex) as affected by niche divergences and contact zone interactions between species.

Erasmo Andrade da Silva¹, Helder Farias Pereira de Araujo², Alexandre Aleixo³, Alexandre Antonelli^{4,5,6}, Alexandre M. Fernandes^{1,7}

¹Rural Federal University of Pernambuco – Serra Talhada Campus, Pernambuco, Brazil

²Department of Biological Sciences, CCA/Federal University of Paraíba – Areia Campus, Paraíba, Brazil

³Finnish Museum of Natural History, University of Helsinki. Helsinki, Finland

⁴Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Göteborg, Sweden.

5Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.

6Royal Botanical Gardens Kew, TW9 3AE Richmond, United Kingdom

7Correspondence author email: <u>fernandesornito@gmail.com</u>

Table S1 Collection locality, voucher number, institutions of origin, and GenBank accession numbers for*Thamnophilus punctatus* species complex samples used in this study. Institution acronyms: MuseuParaense Emílio Goeldi (MPEG) and Louisiana Museum of Natural History (LSUMZ).

Taxon	Institution	Voucher	Locality	GenBank
Thamnophilus	MPEG	57616	BR, AM, Manicoré, Rodovia do Estanho.	
stictocephalus			Fazenda Copeares	
Thamnophilus	MPEG	57617	BR. AM. Manicoré. Rodovia do Estanho.	
stictocephalus			Fazenda Copeares	
Thamnophilus	MPEG	56530	BR. RR. Mun. Alto Alegre - Faz.	
punctatus	_		Paraense	
Thamnophilus	MPEG	56355	BR, RR, Caracaraí, PARNA Viruá -	
punctatus			Posto Alianca - Marg. E. Rio Branco	
Thamnophilus	MPEG	56531	BR, RR, Alto Alegre - Faz. Paraense	
punctatus				
Thamnophilus	MPEG	55711	BR, PA, Rio Xingu, Senador José	
punctatus			Porfírio	
Thamnophilus	MPEG	61013	BR, PA, Monte Alegre, Parque Estadual	
punctatus			Monte Alegre, Ilha Grande	
Thamnophilus	MPEG	61834	BR, PA, Portel, Flona do Caxiuanã	
stictocephalus				
Thamnophilus	MPEG	64678	BR, PA, Flota de Faro, ca 70 km NW de	
punctatus			Faro	
Thamnophilus	MPEG	65136	BR, PA, Itaituba, Flona Amanã, Pista de	
punctatus			Pouso Maranhão	
Thamnophilus	MPEG	65411	BR, PA, Alenquer, ESEC Grão-Pará	
punctatus			-	
Thamnophilus	MPEG	61833	BR, PA, Portel, Flona do Caxiuanã, Plot	
stictocephalus			PPBIO	
Thamnophilus	MPEG	66658	BR, PA, Óbidos, ESEC Grão-Pará	
punctatus				
Thamnophilus	MPEG	68035	BR, MA, São João dos Patos- Jatobá dos	
pelzelni			Noletos- Mancha Verde	
Thamnophilus	MPEG	68044	BR, PI, José de Freitas- Eco Resort	
pelzelni			Nazareth	
Thamnophilus	MPEG	68039	BR, PI, Piracuruca- Parque Nacional de	
pelzelni			Sete Cidades	
Thamnophilus	MPEG	68032	BR, PI, Castelo do Piauí- Faz. Bonito	
pelzelni				
Thamnophilus	MPEG	68026	BR, PI, Guadalupe- Faz. Maharish-	
pelzelni			Cerrado dos Indianos	
Thamnophilus	MPEG	68018	BR, PI, Uruçuí- Vale do Rio Pratinha	
pelzelni	_			
Thamnophilus	MPEG	67142	BR, PA, Ourilandia do Norte, Serra da	
stictocephalus			Onça	
Thamnophilus	MPEG	67141	BR, PA, Ourilandia do Norte, Serra da	
stictocephalus			Onça	
Thamnophilus punctatus	MPEG	69942	BR, PA, Faro, Vila Maracanã, Rio Xingu	
Thamnophilus	MPEG	71075	BR, RO, Machadinho D'Oeste, margem	
stictocephalus			esquerda Rio Jiparaná	
Thamnophilus	MPEG	70725	BR, BA, Ilhéus, Ecoparque de UMA	
pelzelni				
Thamnophilus	MPEG	L_170	BR, MT, Fazenda Invernada, Chapada	
pelzelni			dos Guimarães	
Thamnophilus	MPEG	L 487	BR, MT, Fazenda Baía de Pedra, Cáceres	

sticturus				
Taxon	Institution	Voucher	Locality	GenBank
Thamnophilus sticturus	MPEG	L_514	BR, MT, Fazenda Baía de Pedra, Cáceres	
Thamnophilus pelzelni	MPEG	L_540	BR, MT, Sítio Marimbondo, Chapada dos Guimarães	
Thamnophilus nelzelni	MPEG	L_552	BR, MT, Estrada para Água Fria, Chapada dos Guimarães	
Thamnophilus stictocaphalus	MPEG	74151	BR, PA, Santarém, RESEX	
Thamnophilus stictocaphalus	MPEG	74205	BR, PA, Santarém, RESEX	
Thamnophilus stictocephalus	MPEG	74206	BR, PA, Santarém, RESEX Tanaiós/Arapiuns, Capixauã	
Thamnophilus punctatus	LSUMZ	32638	PE, Cajamarca Department, Las Juntas, junction of Rios Tabaconas and Chinchipe	
Thamnophilus punctatus	LSUMZ	32916	PE, Cajamarca Department, Las Juntas, junction of Rios Tabaconas and Chinchipe	
Thamnophilus punctatus	LSUMZ	48289	Guyana	
Thamnophilus punctatus	LSUMZ	44235	PE, San MartÌn Department	
Thamnophilus punctatus	LSUMZ	44566	PE, San MartÌn Department	
Thamnophilus punctatus	LSUMZ	44567	PE, San MartÌn Department	
Thamnophilus stictocephalus	LSUMZ	14412	BO, Santa Cruz Department	
Thamnophilus stictocephalus	LSUMZ	14416	BO, Santa Cruz Department	
Thamnophilus punctatus	LSUMZ	65765	SR, Sipaliwini District	