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Resonant inelastic X-ray scattering (RIXS) is one of the most powerful synchrotron based meth-

ods for attaining information of the electronic structure of materials. Novel ultra-brilliant X-ray

sources, X-ray free electron lasers (XFEL), offer new intriguing possibilities beyond the traditional

synchrotron based techniques facilitating the transition of X-ray spectroscopic methods to the non-

linear intensity regime. Such nonlinear phenomena are well known in the optical energy range, less

so in X-ray energies. The transition of RIXS to the nonlinear region could have significant impact

on X-ray based materials research by enabling more accurate measurements of previously observed

transitions, allowing the detection of weakly coupled transitions on dilute samples and possibly

uncovering completely unforeseen information or working as a platform for novel intricate methods

of the future.

The nonlinear RIXS or stimulated RIXS (SRIXS) on XFEL has already been demonstrated in the

simplest possible proof of concept case. In this work a comprehensive introduction to SRIXS is

presented from a theoretical point of view starting from the very beginning, thus making it suitable

for anyone with the basic understanding of quantum mechanics and spectroscopy. To start off,

the principles of many body quantum mechanics are revised and the configuration interactions

method for representing molecular states is introduced. No previous familiarity with X-ray matter

interaction or RIXS is required as the molecular and interaction Hamiltonians are carefully derived,

based on which a thorough analysis of the traditional RIXS theory is presented. In order to stay in

touch with the real world, the basic experimental facts are recapped before moving on to SRIXS.

First, an intuitive picture of the nonlinear process is presented shedding some light onto the term

stimulated while introducing basic terminology and some X-ray pulse schemes along with futuristic

theoretical examples of SRIXS experiments. After this, a careful derivation of the Maxwell-Liouville-

von Neumann theory up to quadrupole order is presented for the first time ever. Finally, the chapter

is concluded with a short analysis of the experimental status quo on XFELs and some speculation

on possible transition metal samples where SRIXS in its current state could be applied to observe

quadrupole transitions advancing the field remarkably.
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1. Introduction

Since the discovery of X-rays in 1895 they have become one of the most important

tools in materials research and in little more than hundred years the number of ap-

plications of X-rays has grown immensely. Medical imaging applications of X-rays

were immediately discovered by Wilhelm Röntgen himself soon followed by the work

of Max von Laue and the Braggs (father and son) showing unequivocal evidence on

the nature of X-rays as electromagnetic radiation. They also showed that since the

wavelength of X-rays is of the order of atomic structures it could be used to inves-

tigate matter on an atomic level. This was a gigantic leap in materials research.

Even though the early X-ray tubes yielded many ground breaking results, they were

unable to provide radiation for more complicated studies, since the radiation from

an X-ray tube is isotropic and incoherent. Further, only few high intensity spectral

peaks called characteristic lines were produced apart from the considerably weaker

background produced by bremsstrahlung. The difficulty of tuning the characteristic

lines and polarization, the lacking of coherence, high brilliance and the ability of

producing extremely short pulses all drove the evolution towards a more powerful,

versatile source. The shortcomings of an X-ray tube were finally overcome by syn-

chrotron radiation sources, even though electron storage rings were initially solely

built for particle accelerator purposes and the produced radiation was considered a

nuisance. In the 1960’s it was however realized that synchrotron radiation emitted

by the bending magnets of the storage rings has a number of properties far supe-

1



2 CHAPTER 1. INTRODUCTION

rior compared to X-ray tubes – tunable wavelength, directed emission and a huge

increase in brilliance. This ultimately lead to the paradigm changing development

of synchrotron radiation sources. This further lead to the still ongoing development

of various methods for investigating matter on an atomic scale utilizing synchrotron

X-ray sources. A multitude of Nobel prizes for discoveries related to X-rays have

been awarded after the very first Noble prize in physics in 1901 awarded to Wilhelm

Röntgen for the discovery of X-rays [1]. This underlines the importance of X-ray

based methods in numerous fields of natural sciences.

Similar to the development of the synchrotron radiation source we are witness-

ing the dawn of a new X-ray source – first X-ray free electron lasers (XFEL) are

already operational and producing results [2–4]. XFELs are capable of producing

ultra brilliant, ultra short X-ray pulses with laser-like properties. This enables new

experimental methods unraveling electronic structure of matter down to electronic

spacial and temporal scales [5, 6]. Because of extreme intensities, XFELs facilitate

the transfer of nonlinear spectroscopic methods, well known in the optical regime [7],

to the X-ray spectral domain. Many of these methods are time-resolved utilizing

the ultra short pulses from XFELs. For instance x-ray spectroscopy [8–10], resonant

inelastic x-ray scattering (RIXS) [11, 12] and photoelectron [13] or Auger spectro-

scopies [14] can all be time-resolved and are powerful complementary methods for

deciphering structural and chemical dynamics. The transfer of nonlinear methods

from the optical regime to the X-ray domain not only makes these methods even

more powerful but can also reveal completely unforeseen phenomena. For example,

dilute samples with naturally low scattering intensities often appear in biologically

interesting settings and could benefit from such methods.

One extremely promising method for realizing nonlinear X-ray spectroscopy

is stimulated resonant inelastic X-ray scattering (SRIXS) [5]. Due to the resonant

enhancement, traditional RIXS is one of the most powerful tools for attaining infor-
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mation on the valence electron structure of matter [15–18], therefore vivid research is

going on in order to upgrade the method to the nonlinear regime utilizing the power

of an XFEL. Multiple nonlinear pump and probe spectroscopy schemes have been

theorized based on SRIXS: simulations give evidence on the possibility of initiating

and probing valence electron packets [19], tracking charge transfer in molecules [20]

and observing electron hole dynamics [21]. Several, even more complicated, non-

linear spectroscopic schemes related to RIXS have been theoretically transferred to

the X-ray spectroscopic regime [6]. Vast array of theoretical and simulational exam-

ples is, however, not met with experimental verification as many of these schemes

require rather elaborate X-ray multi-pulse constructions with controllable pulse du-

ration, time-delay and spectral features. Even more complicated requirements, such

as phase control between pulses, have also been proposed [22], but current XFELs

cannot, however, fulfill such specifications, and thus, only the simplest imaginable

single-pulse stimulated RIXS scheme on atomic neon has been demonstrated so

far [23, 24]. Enormous potential of the proposed methods is, nevertheless, indis-

putable.

In order to render stimulated RIXS and other nonlinear spectroscopies from

being novelties into useful tools, systematic theoretical and experimental work is

required. An interesting following step would be to demonstrate SRIXS on transi-

tion metals following in the foot steps of stimulated X-ray emission spectroscopy in

transition metals [25]. This work is motivated by these considerations and aims to

give a solid, self-contained and thorough introduction into the theoretical aspects of

stimulated RIXS. The work is directed to anyone interested in the theoretical consid-

erations behind nonlinear X-ray spectroscopy but also traditional RIXS. Therefore

it assumes a minimal previous knowledge of the field and gives a complete descrip-

tion starting from first principles. In order to guide the reader to the subject, a full

theoretical treatment of the traditional RIXS, the Kramers-Heisenberg approach, is
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presented. Indeed, the reader does not need to be familiar even with the traditional

method. Another reason for representing Kramers-Heisenberg theory is to obtain a

well known point of comparison for the new nonlinear theory. The theory describing

SRIXS, Maxwell-Liouville-von Neumann theory, is derived carefully. Especially, we

will derive the equations describing SRIXS including electric quadrupole transitions

taking the first step on the road to demonstrating SRIXS in transition metals. This

is noteworthy, because before SRIXS has only been considered up to the dipole or-

der in simple atomic samples and quadrupole transitions can be of importance in

transition metals. Utilizing the traditionally weak quadrupole allowed transitions

acting as direct probes of the 3d or 4f orbitals, for example in the Ni 1s-3d and Ga

2p-4f transitions, RIXS could be enhanced considerably by a stimulated process. Ex-

panding SRIXS to cover quadrupole transitions can have significant applications for

instance in 3d transition metal investigations in biologically relevant samples, where

the naturally weak quadrupole transition and dilute sample together yield poorly

observable scattering intensities. In order to produce an illuminating example of

stimulated quadrupole RIXS, we shall theoretically investigate a model scheme of

1s2p SRIXS where nd orbitals are probed by exciting 1s electrons. Even though

the present work is mainly theoretical, experimental side is not forgotten either.

We shall provide an overlook of the most important experimental aspects regarding

both traditional and stimulated RIXS in order to give a wholesome picture of the

field to the reader.

More specifically the current text is constructed as follows. In the second chap-

ter we introduce standard quantum mechanical machinery for dealing with many-

particle systems. The configuration interaction expansion will be one of our most

valued tools. The third chapter introduces generalities of X-ray matter interaction,

most importantly the interaction Hamiltonian used throughout the rest of the work.

Dipole and quadrupole approximations are also derived here. The next, fourth,
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chapter contains the derivation of the Kramers-Heisenberg theory interpreted in the

light of single particle-hole transitions utilizing the configuration interaction series.

The fifth chapter is devoted to stimulated RIXS, it will first give an intuitive picture

before delving into the theoretical considerations finally completing the comprehen-

sive description into a synopsis and interpretation of the main results. The final

chapter concludes the work with an outlook into the future.



2. Principles of Many-body

Quantum Mechanics

In this work we will solely be dealing with systems consisting of more than just

one or two quantum mechanical particles. Generally, even classical many body sys-

tems are impossible to solve exactly, which is why it is inevitable to arrive at some

complications on the way. There are, however, some methods for dealing with quan-

tum mechanical many-body systems, and here we shall present two. First we will

give a quick recap on occupation number representation leading the way to second

quantization, both quite general principles of quantum field theory. After this we

will introduce a powerful method for describing many-electron states in molecules

and atoms called the configuration interaction method. This method is inherently

compatible with the occupation number representation allowing for a useful descrip-

tion of the molecular states utilizing single-particle states called spin orbitals. In

addition to the molecular ground state configuration interaction method enables

handling excited states. Thus, it gives us the opportunity to interpret excitations

in the light of the single-particle spin orbitals and their occupations.

Before delving right in, let us introduce the unit system to be utilized. In the

atomic units the electron mass, unit charge, reduced Planck constant and the speed

of light are given, respectively, me = 1, |e| = 1, ~ = 1, c = 1/α, where the fine

structure constant is α = e2

~c ≈ 1/137. The rest of the units are derived accordingly.

6
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2.1 Second quantization

When dealing with many-particle systems in quantummechanics the standard method

of writing the relevant equations in first quantization poses an inconvenience. The

system of equations will have an explicit dependence on the particle number, which

becomes particularly troublesome when the particle number changes during the

processes being described. This problem is usually resolved by occupation number

representation or second quantization [26, 27]. It is a powerful formalism, regularly

used to describe many body quantum systems. Especially interesting for us are

the applications in the field of quantum chemistry and matter-radiation interaction.

Second quantization allows us to describe both electromagnetic radiation fields and

electronic states under the same strategy, which turns out to be extremely useful

when investigating the interactions between the two.

The occupation number representation for identical particles is constructed via

the Hermitian conjugates creation and annihilation operators b̂†µ and b̂µ satisfying

the commutation relations

[b̂†µ, b̂†ν ] = [b̂µ, b̂ν ] = 0, [b̂†µ, b̂ν ] = δµ,ν (2.1.1)

for bosons and the anti-commutation relations

{â†µ, â†ν} = {âµ, âν} = 0, {â†µ, âν} = δµ,ν (2.1.2)

for fermions. In both cases the creation operator â†µ (b̂†µ) creates a particle in the

single particle state |µ〉, and respectively the annihilation operator âµ (b̂µ) annihilates

a particle from the same state. Here the single index µ is thought to contain all

the information about the state. In the following we use the fermionic operators,

but the results apply for bosons also. The number operator n̂µ = â†µâµ gives the

number of particles in the state |µ〉. Due to the anti-commutation relations we have

n̂2
µ = n̂µ for fermions, which is to be understood as the Pauli exclusion principle.
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MECHANICS
The quantum state is now created separately for bosons or fermions by consecutive

operations of the respective creation operator to the vacuum |0〉:

|{nµ}〉 = |n1n2 · · ·〉 =
√

1
n1!n2! · · ·(â

†
1)n1(â†2)n2 · · · |0〉 , (2.1.3)

where one would replace â†µ with b̂†µ for a bosonic state. The vacuum satisfies âµ |0〉 =

0 and 〈0|0〉 = 1. Note that for fermions the number of particles in a state is

always either 1 or 0, i.e. nµ ∈ {0, 1}, therefore the square root always equals unity

in the fermionic case. One also notes that the fermionic state will be completely

antisymmetric, as it should, due to the anti-commutation. The total number of

particles in a state defined by 2.1.3 can be calculated as

N̂ =
∑
µ

n̂µ. (2.1.4)

We should be able to write any operator in the language of occupation number

representation in order to calculate anything in it. This turns out to be relatively

simple. Using the creation and annihilation operators â†µ and âµ any one-body

operator Ô(1) can be written as a series:

O(1)
occ =

∑
µν

〈µ| Ô(1) |ν〉 â†µâν . (2.1.5)

Similarly, a two-body operator Ô(2) is given as:

O(2)
occ =

∑
µµ′νν′

O(2)
µµ′νν′ â

†
µ′ â†µâν âν′ , (2.1.6)

where O(2)
µµ′νν′ = 〈µµ′| Ô(2) |νν ′〉. The sums here extend over all the single-particle

states, not just the occupied ones. In principle, an N -body operator can be written

similarly, but there are very few situations when anything beyond two-body operator

is needed.
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We will now focus on the second quantization of fermions. Let us now define the

second quantized field operators inspired by the occupation number representation:

ψ̂†(ξ) =
∑
µ

ψ∗µ(ξ)â†µ and ψ̂(ξ) =
∑
µ

ψµ(ξ)âµ. (2.1.7)

Here ξ = (x, σ) contains both spatial spin degrees of freedom. The operator ψ̂(x)

annihilates a particle at x with spin σ, whereas the conjugate ψ̂†(x) creates one. The

ψ∗µ(ξ) and ψµ(ξ) are first quantization wave functions used as expansion coefficients.

These field operators clearly satisfy the same commutation or anti-commutation

relations as before. Written explicitly for fermions:

{
ψ̂(ξ), ψ̂(ξ′)

}
=
{
ψ̂†(ξ), ψ̂†(ξ′)

}
= 0 (2.1.8){

ψ̂(ξ), ψ̂†(ξ′)
}

= δ(ξ − ξ′) = δσ,σ′δ(x− x′). (2.1.9)

We can define all the required first quantized operators in second quantization sim-

ilarly as before:

O(1)
sq =

∫
d3ξψ̂†(ξ)Ô(1)(ξ)ψ̂(ξ)

O(2)
sq =

∫
d3ξ

∫
d3ξ′ψ̂†(ξ)ψ̂†(ξ′)Ô(2)(ξ, ξ′)ψ̂(ξ′)ψ̂(ξ).

(2.1.10)

In this representation the number density operator is given by

n̂(ξ) = ψ̂†(ξ)ψ̂(ξ). (2.1.11)

Consequently, the number of particles is calculated as:

N̂ =
∫
dξψ̂†(ξ)ψ̂(ξ). (2.1.12)

When dealing with electrons the field operators 2.1.7 are often written in the spinor

representation:

ψ̂†(x) =
(
ψ̂†+1/2(x)
ψ̂†−1/2(x)

)
and ψ̂(x) =

(
ψ̂+1/2(x)
ψ̂−1/2(x)

)
, (2.1.13)

where the spin coordinate is moved to the sub index.
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MECHANICS
There are a couple of benefits using second quantization. Second quantization

inherently allows using the same Hamiltonian for systems with different number of

particles in them. This is the main reason for it being the de facto representation

when handling many-body systems in the quantum regime. The number of particles

is strictly a property of the system, not the Hamiltonian. Another useful derivative

property is that second quantization forms an intrinsic foundation for the particle-

hole formalism to be used in the future while discussing excitations.

It is noteworthy that these definitions and results are not trivial. It requires

quite a bit more justification to prove them correct unequivocally. The underlying

statement here is that any N -body wave function can be created by operating with

N independent creation operators into a unique vacuum state. Even though not

trivial, this is the standard method, and so, more involved presentation will be

overlooked here.

2.2 Configuration interaction method

In this section we shall develop a powerful method for representing molecular quan-

tum mechanical states. The configuration interaction (CI) [28] method will allow us

to write molecular states using single particle spin orbitals which, in turn, enables

the interpretation of our results in terms of single particle-hole transitions. Con-

figuration interaction method can be written in second quantization right from the

start yielding a suitable framework for many of our calculations. CI is a so called

post Hartree-Fock method, as it aims for improving on the traditional Hartree-Fock

approximation [29], and is suitable for a range of systems and produces relatively

accurate results. In the full CI scheme one can, in principle, give an exact expression

to an arbitrary many-particle molecular quantum state. However, as one can guess,

this is not a theory of everything that makes many-particle quantum mechanics ut-

terly blissful. As we will soon see, the expressions become computationally way too
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intense in practice, and an approximation has to be implemented.

Consider an N -electron molecular system, described by the standard molecular

Hamiltonian (see 3.1.10). We are interested in the quantum state of the electrons in

the molecule under the Born-Oppenheimer approximation [30], so we shall only take

the electronic part of the Hamiltonian. Let us begin our inspection with a ground

state Slater determinant produced by some mean field approximation, for example

the Hartree-Fock or Kohn-Sham method [27,29]:

|Φ0〉 = |ϕ1ϕ2 · · ·ϕN〉 . (2.2.1)

The Slater determinant consists of N spin-orbitals |ϕp〉, where p = (ni, li,mi,ms) is

a composite index containing all the information required to describe an electronic

state. The spin orbitals are found by minimizing the expectation value 〈Φ0|Ĥel|Φ0〉

using linear variational principle [29], where

Ĥel = −1
2
∑
i

∇2
i −

∑
n,i

Zn
|xi −Rn|

+ 1
2
∑
i 6=j

1
|xi − xj|

(2.2.2)

is the electronic Hamiltonian describing electronic states within an atom. The elec-

tronic Hamiltonian is discussed more in 3.1.2. Minimizing the expectation value of

the energy yields an infinite set of eigenequations for the spin orbitals:

ĥ |ϕp〉 = εp |ϕp〉 , (2.2.3)

where ĥ is the one electron mean field Hamiltonian. These equations could be for

instance the Hartree-Fock or Kohn-Sham equations. The method for solving this

set of equations is not of importance to our analysis, so let’s just assume a solution.

Solving them yields, in principle, an infinite set of orthonormal spin orbitals {|ϕp〉},

which would then span the Hilbert space of states. Computationally we are, however,

forced to solve only a finite dimensional subspace of the whole infinite dimensional

Hilbert space. Let the number of obtained spin orbitals thus be restricted to 2K.

The factor 2 is to remind that there are two spatially equivalent spin orbitals with
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MECHANICS
opposite spins when discussing electronic degrees of freedom, assuming Kohn-Sham

or restricted Hartree-Fock method for solving the set. From the set of 2K spin

orbitals {|ϕp〉} we choose N with the lowest energies to be occupied in the ground

state Slater determinant |Φ0〉. We then have a set of 2K−N spin orbitals with higher

energies that remain unoccupied. These shall be called the virtual orbitals. Let us

establish a labelling system for the different orbital sets. The occupied orbitals in

|Φ0〉 shall be labelled with indices from the set {i, j, k, l, ..}, whereas the virtual

orbitals shall be labelled by {a, b, c, d, ..}. Orbitals that are general, in the sense

that they can fall into either of the categories, are labelled by {p, q, r, s, ..}.

The lowest order of approximation is to assume that the obtained ground state

Slater determinant equals the exact molecular ground state |Ψ0〉:

|Ψ0〉 ≈ |Φ0〉 = |ϕ1ϕ2 · · ·ϕiϕj · · ·ϕN〉 . (2.2.4)

In addition, the virtual spin orbitals can be used to form exited determinants. We

replace one or more of the N lowest energy spin orbitals in |Φ0〉 with a virtual orbital

to obtain a higher energy states:

|Φa
i 〉 = |ϕ1ϕ2 · · ·ϕaϕj · · ·ϕN〉 singly excited, (2.2.5)∣∣∣Φab
ij

〉
= |ϕ1ϕ2 · · ·ϕaϕb · · ·ϕN〉 doubly excited, (2.2.6)

and so on. These are given as a reference to the ground state determinant |Φ0〉. In

general, one can always expand an arbitrary completely antisymmetric function of

N variables in the complete orthonormal basis of functions {ϕp} as:

f(x1, x2, ..., xN) =
∑

i1<i2<···<iN
αi1i2···iNϕi1ϕi2 · · ·ϕiN . (2.2.7)

The antisymmetry of the function f is applied by the conditions

αi1i2···ijik···iN = −αi1i2···ikij ···iN and αi1i2···ijik···iN δijik = 0. (2.2.8)

Applying this to the excited Slater determinants we can write an arbitrary exact
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state of an N -electron molecular system as:

|Ψ〉 = α0 |Φ0〉+
∑
ia

αai |Φa
i 〉+

∑
j<k,b<c

αbcjk
∣∣∣Φbc

jk

〉
+ · · · . (2.2.9)

This is the configuration interaction expansion [28, 29]. Note, that when we say

that any N -electron state can be written exactly in CI we are assuming an infi-

nite, orthonormal set {|ϕp〉}. This gives the infinite set of N -electron determinants

{|Φ0〉 , |Φa
i 〉 ,

∣∣∣Φbc
jk

〉
, ...} used to write the state |Ψ〉 as a series expansion. As men-

tioned before, this is computationally rather impossible, and we are forced to work

with a finite basis rendering the above representation to an approximation. With

a finite set of 2K spin orbitals {|ϕp〉} one can form
(

2K
N

)
N-electron determinants.

Using all of these in the expansion 2.2.9 is called full CI, even though it is not “full”

in the sense of the infinite basis. Full CI is, however, exact in the one-electron sub-

space spanned by the 2K spin orbitals. Often one has to further approximate and

truncate the full CI series. In fact, one can see that the amount of determinants

large quite quickly along with growing number of spin orbitals and electrons. This

stands to say that the CI is not a method that makes everything easy in regards of

many-particle quantum mechanics. In our analytical calculations we will only use

the first two terms in the expansion 2.2.9, which is often called the CI singles (CIS)

theory as it only takes into account singly excited states in addition to the ground

state.

As a final remark, let us note that CI is readily compatible with the occupation

number representation of quantum mechanics [29]. We can take the fermionic ladder

operators satisfying the anti-commutation relations:

{ĉp, ĉq} = {ĉ†p, ĉ†q} = 0, {ĉp, ĉ†q} = δpq, (2.2.10)

and use these to create or annihilate electrons in spin orbitals:

ĉ†p |0〉 = |ϕp〉 , ĉp |ϕp〉 = |0〉 . (2.2.11)
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MECHANICS
Here we use the letter c to denote the operator instead of a since from now on we

will be using a as an index abundantly. The vacuum state |0〉 is annihilated by ĉp,

as always, and the indices here denote both spatial and spin degrees of freedom.

Care has to be taken while performing the computations since the operators cannot

operate outside of their respective index set. For instance, one cannot annihilate an

electron in an orbital that is not occupied to begin with: ĉa |Φ0〉 = 0. Now we may

construct the ground state by operating with the creation operators consecutively:

|Φ0〉 = |ϕ1ϕ2 · · ·ϕN〉 = ĉ†1ĉ
†
2 · · · ĉ

†
N |0〉 =

N∏
i=1

ĉ†i |0〉 . (2.2.12)

We obtain the excited determinants just as easily:

|Φa
i 〉 = ĉ†aĉi |Φ0〉 = |ϕ1ϕ2 · · ·ϕaϕj · · ·ϕN〉 . (2.2.13)

It is evident that all of the determinants in the CI expansion 2.2.9 can be constructed

in this manner. Further, one immediately notes that due to the anti-commutation

relations the antisymmetry of the determinants is imminent. We can also write any

operator in the occupation number representation by using the spin orbitals and

their ladder operators. As an example the single particle Hamiltonian is written as

Ĥ =
∑
pq

〈ϕp| ĥ |ϕq〉 ĉ†pĉq =
∑
p

εpĉ
†
pĉp (2.2.14)

yielding the expression

Ĥ |Φ0〉 =
(∑

p

εp

)
|Φ0〉 = E0 |Φ0〉 . (2.2.15)

This is of course completely analogous to the occupation number representation

introduced in 2.1. Now we just have three sets of ladder operators and consider the

occupation of spin-orbitals instead of particles. In the following chapters we shall

use the methods presented here abundantly.



3. Radiation-Matter Interaction

In this chapter we will lay out the grounds on which a vast number of methods

probing the atomic and electronic structure of matter with X-rays is based on. For

a start we make a remark about the ratio of the masses of electrons and nuclei in

atoms. To a very good approximation, the X-rays only interact with the electrons in

matter [31]. The ratio of the electron mass compared to the proton mass is of order

∼ 10−4, thus, the nucleus is simply too heavy, in comparison with the electron,

to undergo significant oscillations under the high frequency electromagnetic field.

Consequently, we will focus on describing the interaction of electrons with the field.

In order to do this, we will utilize non-relativistic quantum electrodynamics. As long

as the electron mass (511 keV) is large compared to the photon energy, relativistic

effects are negligible, further, relativistic electronic structure effects, such as spin-

orbit coupling, are ignored here. A covariant theory is not required, so a Hamiltonian

approach will be utilized. We shall begin with the minimal coupling Hamiltonian

and extend that to the full Hamiltonian describing all the processes in the interaction

of X-rays and matter. This Hamiltonian will serve as a foundation to the rest of

the work, therefore it is educational to inspect its origins, but most importantly, the

interaction Hamiltonian derived here will be the theoretical starting point of all our

future computations.

15
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3.1 The Matter-field Hamiltonian

In order to describe complicated quantum mechanical systems perturbation theory

[26] is often utilized: The idea is to describe a complicated system as an expansion

of a simpler system. Especially in the time-dependent perturbation theory one

divides the system into a time-independent and time-dependent contributions. Thus,

using perturbation theory requires the Hamiltonian in a form where the dominant

contribution is included in the unperturbed time-independent Hamiltonian Ĥ0, and

the perturbation is described by the time-dependent interaction Hamiltonian Ĥint(t):

Ĥ = Ĥ0 + Ĥint(t). (3.1.1)

In the following we shall explicitly produce both parts of the above Hamiltonian

along with justification or derivation. The starting point will be the minimal cou-

pling Hamiltonian of a single charged particle:

ĥi = [p̂i − αqiA(xi)]2

2mi

+ qiΦ(xi)

= p̂2
i + [αqiA(xi)]2 − αqi[p̂i ·A(xi) +A(xi) · p̂i]

2mi

+ qiΦ(xi),
(3.1.2)

where p̂i, qi, xi and mi are the momentum, charge, position and mass of the i’th

particle, respectively. The terms independent of the vector potential A will consti-

tute the molecular Hamiltonian covering the standard interactions in atomic matter.

The middle terms will form the interaction Hamiltonian Ĥint in 3.1.1 that accounts

for the interaction of the matter with the external field. The minimal coupling

Hamiltonian is obtained using the principle of minimal coupling. Mathematically

the statement of the principle is simply

p̂→ p̂− qA. (3.1.3)

The vector potential A(xi) and the scalar potential Φ(xi) are related to the electric
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and magnetic fields in the standard way:

E = −∇Φ− α∂A
∂t

B = ∇×A.
(3.1.4)

Before moving forward we are going to discuss about gauge fixing. Fixing a

gauge can greatly simplify forthcoming calculations.

3.1.1 Coulomb Gauge

Coulomb gauge [32] is one of the most commonly used gauges in quantum chem-

istry and condensed matter physics. Historically, electromagnetic radiation was first

quantized in Coulomb gauge. There is a major advantage in using Coulomb gauge.

A natural Hamiltonian formulation of the equations of motion of the electromagnetic

field is attained using Coulomb gauge. Thus, as we are seeking for a Hamiltonian

description, we shall use Coulomb gauge throughout this work. The gauge condition

is, quite simply,

∇ ·A = 0. (3.1.5)

By Maxwell’s laws, magnetic field is always purely transverse, ∇ · B = 0.

Adapting the Coulomb gauge separates the electric field in longitudinal and trans-

verse parts:

E = E‖ +E⊥, (3.1.6)

where, using 3.1.4 and standard vector calculus identities:

E‖ = −∇Φ, ∇×E‖ = 0

E⊥ = −α∂A
∂t

, ∇ ·E⊥ = 0.
(3.1.7)

We can quickly verify that the gauge produces the standard Coulomb elec-

trostatic potential. We use Gauss’s law and plug in 3.1.6 and 3.1.7 in order to
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obtain

∇ ·E = ∇ ·E‖ = −∇2Φ = 4π
∑
i

qiδ(x− xi). (3.1.8)

Solving for Φ yields the standard result

Φ = 4π
∑
i

qi
|x− xi|

. (3.1.9)

Applying this result on 3.1.2 and taking a sum over all relevant particles we are able

to write down the Hamiltonian describing internal interactions in matter. This is

what is done in the following section.

Before moving on to the actual matter at hand, the Hamiltonian, let us ad-

dress one drawback of the Coulomb gauge. As mentioned before, the gauge is not

Lorentz covariant [33]. Thus, it is not used in modern covariant perturbation theory

calculations in relativistic quantum field theory. A rather similar gauge, namely,

Lorentz gauge ∂µAµ = 0, is often the choice in relativistic calculations. If one is

to make a Lorentz transformation into a new inertial frame, an additional gauge

transformation needs to be performed in order to retain Coulomb gauge condition.

These properties of the Coulomb gauge will, however, not be a hindrance to us, as

we will ignore all relativistic effects.

3.1.2 The Molecular Hamiltonian

The standard molecular Hamiltonian describes the motion of the nuclei as well as the

Coulomb interaction between the nuclei. Furthermore, it accounts for the momenta

and the interactions of the electrons, both, with the nuclei and the other electrons.

The molecular Hamiltonian describes atomic matter in the absence of any external

fields: A = 0. We will write the Hamiltonian in the standard for as a sum of three

terms [31]:

Ĥmol = T̂N + V̂NN + Ĥel. (3.1.10)
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These three terms follow almost trivially from the terms that are independent of A

(first and last term) in the Hamiltonian 3.1.2 by plugging in the Coulomb electro-

static potential 3.1.9 to the last term in the Hamiltonian. The first term in 3.1.10

is the kinetic energy of the nuclei, given by

T̂N =
∑
n

p̂2
n

2Mn

= −1
2
∑
n

∇2
n

Mn

, (3.1.11)

whereas the second term describes the nucleus-nucleus Coulomb interaction:

V̂NN =
∑
n<n′

ZnZn′

|Rn −Rn′|
. (3.1.12)

Here Mn, Zn and Rn are the mass, atomic number and position of the n’th nucleus,

respectively.

The electronic Hamiltonian Ĥel collects the kinetic energy terms of the elec-

trons as well as the nucleus-electron and electron-electron Coulomb interactions.

Explicitly, in respective order, it is written as:

Ĥel = −1
2
∑
i

∇2
i −

∑
n,i

Zn
|xi −Rn|

+ 1
2
∑
i 6=j

1
|xi − xj|

. (3.1.13)

The sums extend over all the electrons i, j and the nuclei n. In addition to previous

definitions, xi is the position of the i’th electron. The Hamiltonian 3.1.10 is exact

apart from relativistic effects and small corrections, such as spin-orbit coupling. Ig-

noring spin-dependent terms is a standard approximation as they are ~/mc2 smaller

than the rest of the terms [34]. Note, that while 3.1.2 depends on mass and charge,

in this subsection and from here on the electron charge and mass are, respectively

|qe| = 1 and me = 1.

3.1.3 The Interaction Hamiltonian

In the previous subsection we expanded the terms independent of the vector poten-

tial in the Hamiltonian 3.1.2 into their final form. Now we are going to deal with
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the middle terms in 3.1.2 that do depend on the vector potential A. First, let us

modify the p̂i ·A(xi) terms. We have:

(p̂i ·A(xi) +A(xi) · p̂i) = −i (∇ ·A(xi) +A(xi) · ∇)

= −i [(∇ ·A(xi)) +A(xi) · ∇+A(xi) · ∇]

= −2i(A(xi) · ∇).

(3.1.14)

Here we note that, as a Hamiltonian is an operator, we can imagine it operating on

some state and then use the product rule for divergence on the first term. Under the

Coulomb gauge condition 3.1.5 the first term in the second line vanishes. Plugging

this result back into 3.1.2 and taking the sum over all Nel electrons we obtain the

interaction Hamiltonian [31,35]:

Hint =
Nel∑
i

(
α2

2 A
2(xi)− iαA(xi) · ∇i

)
. (3.1.15)

The sum above extends over all the electrons in the system. As discussed before, the

interactions of the nuclei with the external field are excluded. This approximation

is justified by the vastly larger mass of the nucleus compared to an electron and the

high frequency of the radiation used. The nuclei will simply not “move” anywhere

near as much as the electrons.

The first term on the right hand side of 3.1.15 is commonly referred to as the

A2 term whereas the second is called the p ·A term. The A2 term is often ignored

in visible spectrum range [35], but in the X-ray region it is responsible for elastic

Thomson and inelastic Compton scattering [36]. For us the second term is more

interesting as it the dominating term in resonant scattering. Therefore, through out

the rest of this work we shall mainly direct our interest to the p ·A term. Further,

it is accountable for photoabsorption [37] and anomalous scattering [38] but these

effects are not in the scope of this work.

Looking back at the beginning of this section, we now have the interaction

part of the Hamiltonian 3.1.1, as defined above. The molecular Hamiltonian 3.1.10
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constitutes to the unperturbed part Ĥ0 in 3.1.1. We still require a Hamiltonian de-

scription of the free electromagnetic field towards the full unperturbed Hamiltonian

of the system at hand.

3.1.4 The Electromagnetic Field Hamiltonian

In quantum electrodynamics the electromagnetic field is quantized. Here we shall

not present a detailed derivation of the quantized electromagnetic field, but rather

collect the needed results in a concise manner. In the Coulomb gauge the electric

field is divided into longitudinal and transverse parts given by 3.1.7. In free space

there are no sources of electric field. Thus, in the case of electromagnetic radiation,

the electric field is purely transverse, ∇ ·E = ∇ ·E⊥ = 0. Classically, the energy of

a free electromagnetic field is now given as:

EEM = 1
8π

∫
d3x

(
E2 +B2

)
= 1

8π

∫
d3x

α2
[
∂A

∂t

]2

+ [∇×A]2
 . (3.1.16)

Fourier expanding the vector potential A in plane waves is the standard way of

proceeding. This expansion can be found in many advanced quantum mechanics or

quantum field theory books (e.g. [26,39]):

Â(x) =
∑
k,λ

√
2π

V ωkα2

(
âk,λεk,λe

ik·x + â†k,λε
∗
k,λe

−ik·x
)
. (3.1.17)

The expansion is carried out in a box volume V . The polarization vectors εk,λ satisfy

k·εk,λ = 0 and ε∗k,λ·εk,α = δλ,α. These conditions are nothing but the Coulomb gauge

condition in momentum space. The wave vector k and the frequency ωk = |k|/α

are standard. Polarization λ can have values 1 or 2. This expression is already

quantized by replacing the expansion coefficients of the Fourier expansion with the

bosonic ladder operators âk,λ and â†k,λ from the section 2.1. The raising operator â†k,λ

creates a photon in the mode (k, λ), whereas the lowering operator âk,λ annihilates
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a photon, respectively. Electromagnetic radiation will be described as a collections

of harmonic oscillators.

By plugging the Fourier expanded vector potential into 3.1.16 and applying

some algebra one arrives at

ĤEM =
∑
k,λ

ωkâ
†
k,λâk,λ. (3.1.18)

The vacuum energy term ωk/2 is ignored here. We can always renormalize the

theory as we are only able to observe the changes in energy anyhow [31].

We now have all the pieces of the puzzle. We can explicitly write down the

full Hamiltonian capturing all relevant physical phenomena occurring in matter-

radiation interaction. The Hamiltonian, written in the format suitable for pertur-

bation theory, is

Ĥ = Ĥmol + ĤEM︸ ︷︷ ︸
=Ĥ0

+Ĥint. (3.1.19)

Next, we shall use this Hamiltonian to derive the scattering cross section of the RIXS

process. In order to do this we will first adopt a scheme called second quantization.

Using the results from section 2.1 we will be able to write down the electronic

Hamiltonian 3.1.13 in second quantization:

Ĥel =
∫
d3xψ̂†(x)

[
−1

2∇
2 −

∑
n

Zn
|x−Rn|

]
ψ̂(x)

+1
2

∫
d3x

∫
d3x′

ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)
|x− x′|

.

(3.1.20)

We will also transfer the interaction Hamiltonian 3.1.15 into the second quantized

form:

Ĥint = −iα
∫
d3xψ̂†(x)

[
Â(x) · ∇

]
ψ̂(x) + α2

2

∫
d3xψ̂†(x)Â2(x)ψ̂(x). (3.1.21)

Note that here we are using the spinor representation 2.1.13.

We now have the Hamiltonian assembled and written in the modern quantum

field theoretical setting of second quantization. We can now move on to derive
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the Kramers-Heisenberg formula giving the traditional explanation for the RIXS

process.

3.2 Dipole and quadrupole approximations

As we will see, matrix elements of the form 〈Ψ| Ĥint |Φ〉, with 〈Ψ| defined as the final

state and |Φ〉 as the initial state, arise when calculating observables in perturbation

theory. The interaction Hamiltonian Ĥint contains an exponential operator that

appears in the vector potential 3.1.17. This exponential coupled to other operators

renders an exact calculation of the matrix elements rather impossible, which is why

a further approximation has to be implemented. Let us derive an approximation for

the matrix elements and argue that, consequently, the interaction Hamiltonian can

be written in a simpler form. We will work in first quantization and look at the p ·A

term in 3.1.15. Further, we shall focus on single particle-hole states, thus, omitting

the A2 term and plugging in the vector potential 3.1.17 the interaction Hamiltonian

reads:

Ĥint(x, t) = −iα
∑
k,λ

√
2π

V ωkα2

(
âk,λεk,λe

−i(ωkt−k·x) + â†k,λε
∗
k,λe

i(ωkt−k·x)
)
· ∇. (3.2.1)

The position dependent exponent is Taylor expanded in the usual way:

e±ik·x = 1± ik · x+ (±ik · x)2

2 + · · · (3.2.2)

Plugging in the first two terms of this expansion, the Hamiltonian is separated into

the dipole and quadrupole contributions, respectively:

Ĥint(x, t) ≈− iα
∑
k,λ

√
2π

V ωkα2

(
âk,λεk,λe

−iωkt + â†k,λε
∗
k,λe

iωkt
)
· ∇

+ α
∑
k,λ

√
2π

V ωkα2 (k · x)
(
âk,λεk,λ · ∇e−iωkt − â†k,λε∗k,λ · ∇eiωkt

)

=HD(t) +HQ(x, t).

(3.2.3)
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Higher order terms are neglected here. A more general way of proceeding is the

multipole expansion but as the scope of this work is restricted to the quadrupole

transitions this approach is adequate [15].

In quantum mechanics the Hamiltonian is an operator corresponding to an

observable. Due to this nature of quantum mechanics the Hamiltonian, as is, won’t

tell us anything, rather, we are interested in the expectation values or more generally

the matrix elements of the Hamiltonian. In this work we are interested in resonant

scattering events meaning that there are radiation induced transitions involved in

the atoms of the sample. In order to calculate a scattering cross section, describing

how the incoming radiation scatters from the sample, we must be able calculate

transition amplitudes 〈F | Ĥint |I〉 related to the probabilities observing radiation in-

duced transitions between the initial state |I〉 and the final state |F 〉 in the system.

To this end, let us calculate the transition amplitudes of the approximate Hamil-

tonian we have in the hopes of simplifying the expression. Let us define product

states describing the joint state of the atom or a molecule and the radiation field

containing N photons:

|I〉 = |Ψ0〉 |Nk,λ〉 and |F 〉 = |Ψf〉 |Nk,λ − 1〉 , (3.2.4)

where the initial state |I〉 contains one more photon in the electromagnetic field

than the final state |F 〉. Therefore the transition from |I〉 to |F 〉 is clearly related to

photoabsorption and the opposite transition to photoemission. The matrix elements

for photoabsorption are

〈F | Ĥint |I〉 = 〈F | ĤD |I〉+ 〈F | ĤQ |I〉

=α
√

2πNk,λ
V ωkα2 〈Ψf | εk,λ · p |Ψ0〉 e−iωkt

+ iα

√
2πNk,λ
V ωkα2 〈Ψf | (k · x)(εk,λ · p) |Ψ0〉 e−iωkt.

(3.2.5)

Here the scalar products of the photon number states are readily calculated using

their orthogonality. Also we recalled that in quantum mechanics the momentum is
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given as p = −i∇.

Let us focus on the dipole term first. Using a standard quantum mechanics

commutation relation,

[
x, Ĥ0

]
= ip, (3.2.6)

one can rewrite the matrix element as:

〈F | ĤD |I〉 = iα

√
2πNk,λ
V ωkα2ωf0εk,λ · 〈Ψf |x |Ψ0〉 e−iωkt. (3.2.7)

Where ωf0 = Ef −E0. Next, we take on the quadrupole term in 3.2.5. Omitting the

constants we can rewrite the term dividing it into an antisymmetric and symmetric

part, respectively:

〈Ψf | (k · x)(εk,λ · p) |Ψ0〉 = 〈Ψf | kixipj(εk,λ)j |Ψ0〉

= 1
2ki(εk,λ)j 〈Ψf |xipj − xjpi |Ψ0〉+ 1

2ki(εk,λ)j 〈Ψf |xipj + xjpi |Ψ0〉 ,
(3.2.8)

where one sums over the repeated indices. The first, antisymmetric, part is the so

called magnetic dipole [26] revealed by its regular form (k × εk,λ) · 〈Ψf |x× p |Ψ0〉.

We shall ignore the magnetic dipole here, since we are only only looking at electric

transitions and it is small compared to the electric transitions anyway. The second

part can be reduced by first using the quantum mechanical commutator of position

and momentum, [xi, pj] = iδij, and then writing momentum using 3.2.6 again. We

obtain:

〈Ψf | (k · x)(εk,λ · p) |Ψ0〉 ≈
1
2ki(εk,λ)j 〈Ψf |xipj + xjpi |Ψ0〉

= 1
2ki(εk,λ)j 〈Ψf |xipj + pixj + iδji |Ψ0〉

= i

2ω0fki(εk,λ)j 〈Ψf |xixj |Ψ0〉 ,

(3.2.9)

where ω0f = E0 − Ef and the δij term on the second line vanishes due to the

condition k · εk,λ = 0. Here xixj is often replaced by the quadrupole operator

Qij = xixj −
1
3x

2δij, (3.2.10)
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as the second term will never contribute due to k · εk,λ = 0. The final form for the

quadrupole matrix elements is thus given:

〈F | ĤQ |I〉 = −α2

√
2πNk,λ
V ωkα2ω0fki(εk,λ)j 〈Ψf |Qij |Ψ0〉 e−iωkt. (3.2.11)

In the results 3.2.7 and 3.2.11 the energy difference ωf0 appears. In order for the

absorption to take place, this energy must be the same as that of the annihilated

photon, conversely, the same applies in emission, therefore we can remark ωf0 ≈ ωk.

Comparing these results with the definition of the electric field operator of the free

electromagnetic field (see appendix A) one can deduce that, in the sense of matrix

elements, the following approximations can be used:

ĤD(x, t) = E(t) · x

ĤQ(x, t) = i

2kiEj(t)Qij.
(3.2.12)

Checking the emission case, where one looks at 〈I| Ĥint |F 〉 transitions, is an identical

calculation to the preceding one.



4. Traditional Resonant Inelastic

X-ray Scattering

We have so far reviewed the generalities of radiation matter interaction and as a

result obtained the interaction Hamiltonian. Next we shall turn our scope to the par-

ticular method at hand — Resonant Inelastic X-ray Scattering (RIXS). Even though

our final description of the stimulated RIXS process relies on a fundamentally dif-

ferent approach, it is beneficial to take a look at the traditional Kramers-Heisenberg

approach and to try and understand the physics of the process.

The traditional method presented here will utilize the machinery of perturba-

tion theory in order to produce the differential cross section of the traditional RIXS

process. The basis of this approach is the interaction Hamiltonian 3.1.21 derived

in the previous chapter. Starting from the interaction Hamiltonian shall derive the

traditional RIXS cross section hoping that it will shed some light into the process

and will give perspective in the future when dealing with the theory of stimulated

RIXS. We shall also try and give a physical interpretation of the theory as we go.

We will introduce some samples and situations where RIXS will prove useful and

review the standard experimental methods.

27
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4.1 Theoretical model

4.1.1 Transitions rates

In this section we shall derive the the RIXS cross-section starting from the Hamil-

tonian 3.1.19. The Hamiltonian consists of two parts, the Ĥ0 describing the unper-

turbed system and the perturbation Ĥint describing the interaction. Let us write a

general state in the interaction picture [26] as

|Ψ, t〉I = eiĤ0t |Ψ, t〉 , (4.1.1)

accompanied with an initial condition limt→−∞ |Ψ, t〉I = |Ψ, t〉 = |I〉. This can be

enforced by adiabatic switching, i.e. adding an exponential that guarantees the

condition [31, 35]. Let us apply this to the Schrödinger equation, also transformed

to the interaction picture:

i
∂

∂t
|Ψ, t〉I = eiĤ0tĤinte

−ε|t|e−iĤ0t︸ ︷︷ ︸
=HI(t)

|Ψ, t〉I . (4.1.2)

The above equation is solved in the perturbation theory using the time evolution

operator U(t, t0) that evolves a state from the time t0 to t:

|Ψ, t〉I = U(t, t0) |Ψ, t0〉I . (4.1.3)

Plugging this back into the Schrödinger equation the form of time evolution operator

is solved to be

U(t, t0) = T e−i
∫ t

t0
dt′ĤI(t′)

, (4.1.4)

where T is the time ordering operator. The expansion of the above exponential is

called the Dyson series [26].

We are interested in calculating the transition amplitude mediated by ĤI from

a completely unperturbed initial state of the atomic system to an arbitrary state long

after the perturbation. From there we can easily derive any observable of interest,
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most importantly the scattering cross section. Thus, the initial state |I〉 is chosen

to be the far in the past limit of any state |Ψ, t〉I , as defined before using adiabatic

shifting. Then the initial state is a product state

|I〉 = |NEM〉 ⊗
∣∣∣ΨNel

0

〉
, (4.1.5)

where |NEM〉 is the number state describing the electromagnetic field containing

NEM photons in the mode (kin, λin) and
∣∣∣ΨNel

0

〉
is the ground state of the atom or a

molecule containing Nel electrons. Note that we have chosen to consider the ground

state here but the initial state is actually arbitrary. This is the state before the

interaction, which according to perturbation theory, is assumed to be an eigenstate

of the unperturbed Hamiltonian: Ĥ0 |I〉 = EI |I〉 = (EEM+ENel
0 ) |I〉. The final state

will be defined more carefully later, but for now, let |F 〉 be an arbitrary state with

the constraint |F 〉 6= |I〉 [35]. We can now calculate the scattering matrix (S-matrix)

of the scattering process. The S-matrix is a mapping from initially asymptotically

free particles to the finally asymptotically free particles, i.e. it connects the initial

and final states mathematically. We take the limit t0 → −∞ in the Dyson series

4.1.4 in accordance with the initial state. The S-matrix is the limit of transition

amplitude at large times implemented as a limit t → ∞. We have up to second

order in Dyson series:

SFI = lim
t→∞
〈F |U(t,−∞) |I〉

− i
∫ ∞
−∞

dtei(EF−EI)t 〈F | Ĥint |I〉

−
∫ ∞
−∞

dt
∑
M

ei(EF−EM )t 〈F | Ĥint |M〉 ×
∫ t

−∞
dt′ei(EM−EI−iε)t′ 〈M | Ĥint |I〉 .

(4.1.6)

Here |M〉 is a intermediate state introduced into the calculation as a unity |M〉 〈M | =

1. Here EX is the energy of the state |X〉 calculated implicitly using operator

exponentials. Next, using the definition of the Dirac delta [40] on the first term,

performing the dt′ integration on the second and using the Dirac delta again for the
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dt integral we obtain:

SFI = −2πiδ(EF − EI)
[
〈F | Ĥint |I〉+

∑
M

〈F | Ĥint |M〉 〈M | Ĥint |I〉
EM − EI − iε

]
. (4.1.7)

Note that the limit ε→ 0 is also taken appropriately.

The transition rate is defined via the transition amplitude by the Fermi’s golden

rule [26]. Mathematically this reads:

ΓFI = lim
T→∞

|SFI |2

T
, (4.1.8)

where T is the time. Here we have a problematic term where the Dirac delta is

squared. In the sense of distributions it is not well defined to do the multiplication

[41], but there exists a somewhat heuristic workaround that we shall employ here

[42]. Let us write the square as a product using the integral definition of the delta

function:

δ(EF − EI)2 = lim
T→∞

δ(EF − EI)
∫ T/2

−T/2

dt

2πe
i(EF−Ei)t. (4.1.9)

Now, one can argue that, due to the delta function before the integral, the above is

equal zero unless EF − EI = 0, accordingly, we set EF − EI = 0 in the exponential

in the integral. The integral then reduces to a very simple result and we are left

with

δ(EF − EI)2 = lim
T→∞

δ(EF − EI)
T

2π .
(4.1.10)

Although seemingly irrational, the result perfectly coincides with the definition of

the transition rate and nicely removes the time dependence with the limit. We

obtain the result:

ΓFI = 2πδ(EF − EI)
∣∣∣∣∣〈F | Ĥint |I〉+

∑
M

〈F | Ĥint |M〉 〈M | Ĥint |I〉
EM − EI − iε

∣∣∣∣∣
2

. (4.1.11)

Here we have two terms within the |· · ·|2. The terms shall be referred to as the first

order perturbation term and the second order perturbation term, respectively.
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4.1.2 The cross section

The previous result 4.1.11 is a relatively general one. In order to proceed we must

specify the system more carefully along with all the states that are relevant to the

process under investigation. The initial state has already been specified before in

4.1.5 as the state way before the interaction is regularly the desired onset. The

final state and all the possible intermediate states need to be figured out and the

sum of those contributions calculated. Next, we are going to do this in the case of

RIXS. We shall separate the processes arising from the A2 and p ·A components

of the interaction Hamiltonian 3.1.21 and see that the latter gives rise to resonant

scattering.

Before doing this, however, a word about the initial photon state in 4.1.5 is

in order. There we assumed a pure state with only one photon mode. This is a

sufficient simplification as we only look at single photon absorptions and emissions

at a time and are dealing with a low order process. In general, an arbitrary radiation

field has mixed states and is represented correctly only by a density matrix [31,43].

Let us first specify the final state we are interested in. RIXS is an inelastic

scattering event meaning that one photon is absorbed from the initial state |I〉 and

another is emitted in a different mode (kF , λF ) 6= (kin, λin). The atomic or molecular

state is modified accordingly in the process. Therefore the final state is given as [35]:

|F 〉 =
∣∣∣ΨNel

F

〉
â†kF ,λF

|NEM − 1〉 , (4.1.12)

where we dropped the tensor product sign. Now, the intermediate state |M〉 can

be one of two possibilities [35]. Intuitively, the absorption of the incoming pho-

ton happens before the emission. Then the intermediate state is exactly what you

expect:

|M〉 =
∣∣∣ΨNel

M

〉
|NEM − 1〉 . (4.1.13)

However, there is nothing in the theory that prevents the apparent time-reversal of
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these events. Then the emission takes place before the absorption and, consequently,

the intermediate state is

|M〉 =
∣∣∣ΨNel

M

〉
â†km,λm

|NEM〉 . (4.1.14)

Now, all that is left is to plug these into 4.1.11 and use the brute force al-

gorithm to find out the result. This is a relatively simple but tedious calculation

so let us simply write down the result accompanied with some explanation of the

terms. As one can guess, there will be altogether three terms: One from the first

order perturbation term in 4.1.11, and two from the second order term utilizing the

different intermediate states. It is evident that with the defined initial and final

states only the A2 contribution in the interaction Hamiltonian 3.1.21 can produce a

finite result in first order perturbation. This will be the first term. In second order

perturbation theory, on the other hand, we only get contribution from the p · A

term in Ĥint using the intermediate states defined above. With these definitions the

transition rate is given by [35]:

ΓFI =2πδ(ENel
F − ωF − ENel

0 − ωin)α4

×

∣∣∣∣∣∣12
∫
d3x

〈
ΨNel
F

∣∣∣ 〈NEM − 1| âkF ,λF
ψ̂†(x)Â2(x)ψ̂(x)

∣∣∣ΨNel
0

〉
|NEM〉

−
∫
d3xd3x′

∑
M

〈ΨNel
F

∣∣∣ 〈NEM − 1| âkF ,λF
ψ̂†(x)Â(x) · ∇ψ̂(x)

×

∣∣∣ΨNel
M

〉
|NEM − 1〉 〈NEM − 1|

〈
ΨNel
M

∣∣∣
ENel

0 − ENel
M + ωin + iε

ψ̂†(x′)Â(x′) · ∇′ψ̂(x′)
∣∣∣ΨNel

0

〉
|NEM〉


−
∫
d3xd3x′

∑
M,m

〈ΨNel
F

∣∣∣ 〈NEM − 1| âkF ,λF
ψ̂†(x)Â(x) · ∇ψ̂(x)

×

∣∣∣ΨNel
M

〉
â†km,λm

|NEM〉 〈NEM | âkm,λm

〈
ΨNel
M

∣∣∣
ENel

0 − ENel
M + ωm + iε

ψ̂†(x′)Â(x′) · ∇′ψ̂(x′)
∣∣∣ΨNel

0

〉
|NEM〉

∣∣∣∣∣∣
2

.

(4.1.15)

The physical interpretation of the three terms in the formula 4.1.15 contained

within the |· · ·|2 is diagrammatically represented in figure 4.1. These diagrams are
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+ +

Figure 4.1: Diagrammatic representation of the terms in 4.1.15. The first term on the left

describes simultaneous absorption and emission without an intermediate state, whereas the last

two have core-excited intermediate states but are time reversed versions of each other.

similar to, but not exactly, Feynman diagrams. In respective order, we have the first

order perturbation theory term describing simultaneous absorption and emission

plus the two terms arising from second order perturbation theory. The second order

terms have a short lived core-excited intermediate state
∣∣∣ΨNel

M

〉
in the middle. These

terms are time reversed in the sense that in the last term the emission takes place

before the absorption. Physically this arises from the fact that the intermediate

product state |M〉 is actually a virtual state, thus, we cannot exactly know the time

of absorption or emission [18].

The first order term is responsible for X-ray Thomson scattering [18,36], which

offers information about the electron densities and excitations caused by charge fluc-

tuations [16]. For our purposes, the second order term with regular time ordering

is the one of interest however. A RIXS experiment is arranged so that the incident

photon energy is close to an absorption edge: ENel
0 − ENel

M + ωin ≈ 0, thus, the

second term in 4.1.15 dominates over the other two [16]. From now on we will direct

our interest solely on this term. It is, however, important to recognise the fact that

these three terms are, in fact, inseparable. Looking at the formula 4.1.15 makes this

mathematically obvious: All the terms are under the same square. Possible inter-

ferences may have affects in the line shape of the spectrum, in most cases however,

we can neglect the first and the last term in 4.1.15 close to a strong resonance [18].
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Being finally able to justify the leading order term in the transition rate for-

mula, we can move forward. Let us write the dominant second order term again and

plug in the vector potential 3.1.17. Allowing for the ladder operators to operate on

the photon number states and using orthogonality we find the non-zero terms in the

vector potential expansion. We acquire [35]:

ΓFI =(2π)3NEM

V 2ωFωin
δ(ENel

F + ωF − ENel
0 − ωin)

×

∣∣∣∣∣∣
∫
d3xd3x′

∑
M

〈
ΨNel
F

∣∣∣ ψ̂†(x)e−ikF ·xε∗kF ,λF
· ∇ψ̂(x)

×

∣∣∣ΨNel
M

〉 〈
ΨNel
M

∣∣∣
ENel

0 − ENel
M + ωin + iε

ψ̂†(x′)eikin·x′
εkin,λin

· ∇′ψ̂(x′)
∣∣∣ΨNel

0

〉 ∣∣∣∣∣∣
2

.

(4.1.16)

Next we expand the field operators according to 2.1.7 using spin-orbitals as the

coefficients. Plugging these expansions in and separating the operators between

correct bra-kets will produce:

ΓFI =(2π)3NEM

V 2ωFωin
δ(ENel

F + ωF − ENel
0 − ωin)

×

∣∣∣∣∣∣
∑

M,a,i,p,q

〈ϕp| e−ikF ·xε∗kF ,λF
· ∇ |ϕq〉 〈ϕa| eikin·x′

εkin,λin
· ∇′ |ϕi〉

×

〈
ΨNel
F

∣∣∣ ĉ†pĉq ∣∣∣ΨNel
M

〉 〈
ΨNel
M

∣∣∣ ĉ†aĉi ∣∣∣ΨNel
0

〉
ENel

0 − ENel
M + ωin + iε

∣∣∣∣∣∣
2

.

(4.1.17)

Here the two integrals over x an x′ have already been written in the bra-ket notation

on the second line. We were also smart in advance and chose the indices of the

orbitals conveniently. In order to obtain an interpretation in single particle-hole

transitions we will rely on configuration interaction method from section 2.2. In

principle, all reachable intermediate states are contained within the sum at this

point. This contains all the correlated states. The intermediate states can be off

shell in the sense that the sub-processes may not conserve energy, only the total

process must [35]. The delta function ensures this. Thus, RIXS probes electron

correlations, even though the process seemingly appears as a couple of photon in /

photon out single particle-hole transitions. In addition to elementary excitations,
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collective modes are probed. These include quasi-particles such as phonons and

magnons, charge transfer modes etc. [15–18]. Let us, however, view the process

from the point of view of the photoabsorption and emission in the light of single

particle-hole transitions. Photoabsorption excites a state and creates a core hole

whereas the emission is observed due to de-excitation and filling of the core hole.

Let us assume that the initial state can be approximated by the first Slater

determinant from the 2.2.9 and that the intermediate and final states can be ap-

proximated by singly excited determinants. We restrict our description to single

excitations. Let us allow for multiple intermediate states but fix the final state.

This way we are able to take into account for the possibility of multiple interme-

diate states up to single particle-hole order. In principle, a truly monochromatic

source can promote an electron only to a specific state. This is almost never the

case, but there are states very close in energy and the spectrum of the source has a

finite width. We shall use the following approximations for the exact states:

∣∣∣ΨNel
0

〉
≈ |Φ0〉 ,

∣∣∣ΨNel
M

〉
≈ |Φa

i 〉 and
∣∣∣ΨNel

F

〉
≈
∣∣∣Φb

j

〉
, (4.1.18)

where j 6= i. The intermediate and final states are singly excited determinants as

oppose to the ground state. Note that in the intermediate state the orbital j must

be an occupied one. The final state is a specific determinant whereas the indices in

the intermediate state are chosen on purpose to consider the sum over correlations.

By plugging these into 4.1.17 we obtain [35]

ΓFI =(2π)3NEM

V 2ωFωin
δ(Eb

j + ωF − ENel
0 − ωin)

×

∣∣∣∣∣∣
∑
a,i,p,q

〈ϕp| e−ikF ·xε∗kF ,λF
· ∇ |ϕq〉 〈ϕa| eikin·x′

εkin,λin
· ∇′ |ϕi〉

×

〈
Φb
j

∣∣∣ ĉ†pĉq |Φa
i 〉 〈Φa

i | ĉ†aĉi |Φ0〉
ENel

0 − Ea
i + ωin + iε

∣∣∣∣∣∣
2

.

(4.1.19)

The matrix elements on the last line can be calculated using the definitions from the

section 2.2 and produce a set of Kronecker deltas. Performing these calculations
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and applying the results finally yields:

ΓFI =(2π)3NEM

V 2ωFωin
δ(εa − εj + ωF − ωin)

×

∣∣∣∣∣∣〈ϕi| e
−ikF ·xε∗kF ,λF

· ∇ |ϕj〉 〈ϕa| eikin·x′
εkin,λin

· ∇′ |ϕi〉
εi − εa + ωin + iε

∣∣∣∣∣∣
2

.

(4.1.20)

Note that this is the contribution of one scattering channel, in an experiment, how-

ever, there might be multiple channels which need to be accounted for in a similar

fashion.

We have now the final form of the transition rate 4.1.20. All that is left to do

is to calculate the scattering cross section based on this. We define the photon flux

as

J = NEM

αV
, (4.1.21)

and the total scattering cross section follows:

σ = ΓFI
J
. (4.1.22)

Thus, the differential scattering cross section can be written as a derivative with

respect to spatial solid angle Ω and energy of the scattered photon ωF [31]:

d2σ

dΩdωF
= V α3

(2π)3ω
2
F

ΓFI
J
, (4.1.23)

finally yielding the differential scattering cross section:
d2σ

dΩdωout
= α4ωout

ωin
δ(εa − εj + ωout − ωin)

×

∣∣∣∣∣∣〈ϕi| e
−ikout·xε∗kout,λout

· ∇ |ϕj〉 〈ϕa| eikin·x′
εkin,λin

· ∇′ |ϕi〉
εi − εa + ωin + iΓ

2

∣∣∣∣∣∣
2

.

(4.1.24)

Note that we changed the ωF to ωout and interpreted the adiabatic shifting constant

ε as the spectral broadening due to the life time of the core hole Γ, not to be confused

with the transition rate ΓFI . We assume that the lifetime broadening here contains

both Auger and radiative decay, further, Γ is also assumed constant (independent

of the intermediate state) [16].
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What does the formula 4.1.24 tell us? It is the differential scattering cross

section of the RIXS process, by definition, it describes the probability of finding the

scattered photon within a certain, infinitesimal, solid angle region dΩ and energy

range dωout. Now, because spectrum is defined as the intensity as a function of energy

or frequency, the differential cross section directly translates to a spectrum detected

in a certain solid angle area. Therefore, given the solid angle of the detector and

a model for calculating the transitions in the sample system, one can estimate the

intensity, or amount of radiation, detected within a certain energy range using 4.1.24.

Measuring this gives a direct path for cross referencing the scattering properties of

the theoretical model and the sample, thus allowing the comparison of the model and

actual structure of material. This is the standard process of obtaining information

of material structures via scattering methods.

On a more fundamental physical level this result is to be interpreted as tran-

sition of an electron from the single particle orbital ϕi to a virtual orbital ϕa which

corresponds to the excitation of the ground state into an excited state. This is

followed by an inseparable transition from an orbital ϕj to the orbital ϕi which

corresponds to the filling of the core hole. Once again we note that RIXS is a co-

herent process that consists of, but cannot be separated into, an absorption and an

emission of a photon. We note a couple of characteristic properties to RIXS here.

The first is the earlier mentioned resonant amplification of the cross section. In an

experiment the incident energy ωin is scanned over the resonance energy εa − εi.

Close to the resonance energy the cross section will grow strongly. The other strik-

ing property of RIXS is that the spectral features obtained in RIXS can be sharper

than the core hole life time broadening Γ [17,44,45]. This is because the line width

of the emitted radiation is linearly proportional to the incident due to the energy

conservation between the initial an final states.

The theoretical model derived here is the traditional Kramers-Heisenberg ap-
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proach to RIXS readily embedded with the configuration interaction theory. This

model works for most of the transitions and samples as long as one is able to calcu-

late the orbitals and the result approximates the system well enough. There are also

other models for resolving the underlying electron structure or band structure. For

strongly correlated d and f electron systems, such as rare-earth metal compounds or

transition metal compounds, the Anderson impurity model could be utilized [16].

As a final note in this section let us mention that the derivation of the cross

section 4.1.24 presented here does not contain approximating the interaction Hamil-

tonian: The exponential that was expanded in the section 3.2 can be seen in the

numerator of the cross section formula. In that sense this result is exact. It is, how-

ever, often the case that dipole and quadrupole interaction dominate over the higher

order transitions. Therefore, applying dipole and quadrupole approximations here

is computationally sensible and allows estimating their relative spectral strengths,

which might be highly relevant to an experiment. Keep in mind, however, that

strictly speaking in the sense of the cross section the dipole and quadrupole contri-

butions are inseparable similar to what was discussed before. In an experiment one

can separate between the two to a certain degree relying on selection rules [46–48].

They also usually produce peaks in the spectra that are well separated from each

other in energy. Applying either one of the approximations to the formula 4.1.24

follows exactly the same steps taken in section 3.2 where the transition amplitudes

were calculated.

4.2 Experimental overview

Now that we have derived the traditional theory describing RIXS, we are going to

take a quick look into the experimental perspective. Even though this is a theoretical

review, it is good to have an idea about the experimental side and generalities of

the field.
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In a RIXS experiment there are multiple parameters that can be adjusted [17],

of which the absorption edge is possibly the most important as RIXS measurements

are made in the vicinity of absorption edges, since the resonances occur there. Usual

choices of absorption edges are the K and L-edges which offer complementary infor-

mation with different emphasis on different features. Thus, one has to consider the

obtainable information and the type of the transition, for instance, considering 3d

transition metals, at the K-edge 1s-3d is a quadrupole transition and thus relatively

weak. On the other hand 3d-transition metal L-edge 2p-3d is a dipole transition

and probes the 3d states directly via dipole transition but moves the energy region

to soft X-rays in contrast to the hard X-ray K-edge. Considering rare earth metals,

the quadrupole allowed 2p-4f transition is a sensitive probe of the magnetically im-

portant 4f orbitals and can be reached via L-edge RIXS. Further, one might have

to consider that at different edges different excitations can be created. Once the

edge has been selected one must think about the incident energy ωin as the choice

of incident energy can emphasize some features while diminishing others [15]. On a

more technical note experiment-wise, the elastic scattering intensity must be consid-

ered and minimized as well as the self absorption of the sample considered in data

normalization. The choice of incident energy and the recorded emission energy ωout,

or energy transfer ωin − ωout, are the key parameters, so let us discuss their role a

bit more in depth in the next subsection via an illustrative example.

4.2.1 RIXS plane

Although our discussion has been general and material-independent so far, it is

useful to review RIXS by visualizing it through a concrete example. For the sake of

argument, we will use a theoretical model, depicted in figure 4.2, as an example of

so called 1s2p quadrupole transition RIXS in transition metals [17]. In this model

we assume that the initial state |Ψ0〉 (here also the ground state) is coupled to two
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intermediate states |ΨM1〉 and |ΨM2〉 via radiation induced quadrupole transitions

and that the intermediate states are coupled to three final states |ΨF1〉, |ΨF2〉 and
E
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Initial Intermediate Final

Figure 4.2: An energy level scheme showing the transitions in the model considered here. The

arrows indicate the possible couplings or transitions: The initial state is coupled only to the

intermediate states which are coupled to the final states according to the arrows. ω0M and ωMF

are the energies of the transitions. Transition rates or relative energies are arbitrary and not in

scale.

|ΨF3〉 via spontaneous dipole transitions. This model could describe e.g. transition

metal RIXS with excitation 1s2ndm → 1s1ndm+1, where n = 3, 4, followed by

the filling of the core hole from the p-orbitals: 1s12p63dm+1 → 1s22p53dm+1 and

1s13p64dm+1 → 1s23p54dm+1. Here the 2p spin-orbit splitting into 2p3/2 and 2p1/2

could be the reason for the 1s13dm+1 state to decay into two states. We shall,

however, discuss this model in a more general level without assigning specific orbitals

or states, for further discussion see [17,49].

Let us first discuss the information obtainable by RIXS, best illustrated by a

concept called RIXS plane. As one can see by looking at the result 4.1.24 in a RIXS
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experiment it is possible to vary both the incident photon energy ωin as well as the

emitted energy ωout, therefore, the total spectrum that can be recorded is plotted

as a two dimensional surface or a contour. A contour plot is often more useful, as

seen in the bottom left corner of the figure 4.3. The standard convention of plotting

the intensity against incident energy ωin and energy transfer (or final state energy)

ωin − ωout is used. The spectrum featured here represents a RIXS process detailed

above and is calculated based on the model energy level scheme in figure 4.2 with a

different life time broadening for the intermediate and final states. The final state life

time is possible to incorporate into the theory by using the fact that a the Dirac delta

function in 4.1.24 can be written as a Lorentzian (or Cauchy) distribution [17,18,50].

Also note that in the schematic 4.2 relative transition energies and transition rates

are not in scale and are taken to be arbitrary, therefore one should not interpret

the relation of the schematic and the presented spectra too far. We shall not go

into more detail on how these results are obtained, but rather just use them as an

example of RIXS, for more details and the calculations see [17].

Let us point out few important features from the contour plot 4.3. First we note

that there are two 1s resonances on the diagonal at incident energies 6542 and 6544

eV. The third peak vertically above the 6542 eV resonance peak is not a resonance,

but an effect due to the splitting of the emission channel of the second intermediate

state |ΨM2〉 de-exciting to |ΨF2〉 and |ΨF2〉 as seen in the schematic 4.2 [17,44]. Now,

having the RIXS plane (bottom left corner 4.3) one can do several different types of

line cuts or integrations in order to obtain line plot spectra. There are two integrated

spectra and one line cut in the figure 4.3 that all emphasize different features. The

left upper corner presents a spectrum obtained by integrating the intensity over

the energy transfer ωin − ωout in a narrow section around the resonances. Taking

the integration limits to the same value produces a line cut with constant energy

transfer, the constant energy transfer (CET) spectrum, whereas integrating over all
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Figure 4.3: Contour plot of a RIXS plane (bottom left) accompanied by integrated line plots

(top left and bottom right) and a diagonal slice. Adapted here from [17] with the permission of

Elsevier.

the final states this spectrum becomes equivalent to regular X-ray Absorption Near

Edge Structure (XANES) spectrum [17]. Measurements of this type correspond

to scanning the incident energy while keeping the final state energy in a constant

range or value. Integrating over a narrow section in the incident energy ωin yields

the spectrum in the bottom right corner of 4.3. Here the line cut limit taken at

a single incident energy value is called a constant incident energy (CIE) spectrum.

This correspond to keeping the intermediate state energy in a constant range or a

single value while scanning the transferred energy. In the CET scan intermediate

state features are pronounced whereas the CIE focuses on the final states. The final
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line spectrum at top right corner is a diagonal line cut of the RIXS plane, which

correspond to constant emission energy (CEE). Since mapping the whole RIXS

plane experimentally is rather cumbersome, CEE scans are often utilized [44]: The

spectrometer records at a constant emission energy ωout and the incident is scanned

over the resonances. Note that the third small feature between the main peaks in

the CEE plot is the earlier mentioned feature due to the splitting of the emission

channel of the intermediate state |ΨM2〉. In an experiment this could be accidentally

interpreted as a weak resonance that was revealed by a RIXS (compared to regular

X-ray absorption) [17, 44]. A look at the RIXS plane, however, reveals the true

nature of this peak. This puts emphasis on the fact that it is important to be able to

measure the whole RIXS plane instead of just cuts through it. However, for example

in dilute systems, the signal may be weak in standard RIXS and measurement times

may become prohibitively large. In those cases stimulated RIXS would be very

desirable.

4.2.2 Instrumentation

Let us quickly describe a standard RIXS instrument. There are two required devices

in any spectroscopy measurement. The first is the radiation source. In a modern

RIXS experiment the de facto source is a synchrotron, but in fine-resolved pump-

probe experiments X-ray free electron laser (XFEL) are utilized. The second device

is, of course, the spectrometer. Spectrometers can be further divided in two: a soft

X-ray spectrometer or a hard X-ray spectrometer.

X-ray sources

Let’s first take a look at the X-ray sources. For advanced RIXS experiments storage-

ring based X-ray sources are most common. In a storage-ring based synchrotron

facility electrons (or positrons) are driven around a circular storage ring at a speed



44 CHAPTER 4. TRADITIONAL RIXS

very close to the speed of light. Magnets are used to turn the electron bunch

and straight parts are equipped with electromagnetic cavities for accelerating to

compensate the energy lost in radiation. The simplest device in the storage ring

for producing radiation is the bending magnet. Bending magnets steer the electron

bunch so that radiation is released due to the acceleration of charged particles.

These days bending magnets are mainly used for keeping the electrons in the storage

ring, since there are more powerful solutions, namely wigglers and undulators, for

radiation production [18]. Both of these devises are placed in the straight parts of

Figure 4.4: A schematic of the insertion devices [51].

The figure also shows the dependence of the intensity

on number of electrons, Ne, and the number poles in

the magnetic field, Np.

the storage ring. A wiggler consists

of a row of strong superconduct-

ing magnets with alternating direc-

tions so that the electron bunch

will undergo a wiggling motion in-

side [18]. Thus, compared to the

bending magnet, many sharp turns

release a lot more radiation than

one gentle turn. The structure of a

wiggler is schematically represented

in figure 4.4, along with the other

insertion devices. Undulator is a

wiggler that is tuned so that inter-

ference effects amplify some of the

frequencies and kill off others [18].

Thus, an undulator produces high intensity peaks at certain frequencies, whereas

the spectrum of a wiggler is wider and continuous, similar to a bending magnet [52].

The spectra of these insertion devices are compared in figure 4.5. Both wiggler and

undulator radiation is tunable by varying the magnetic field strength [18].
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Even though we haven’t but mentioned stimulated RIXS yet, let us describe the

required source for such an experiment, the X-ray free electron lasers (XFEL), here.

XFEL is basically a very long undulator – the length of a regular undulator is up to

five meters whereas the length of an XFEL can be over a hundred meters [2]. This

is because unlike in a regular optical laser, mirrors cannot be utilized. Therefore, all

the amplification must be achieved with a single pass. In an XFEL a phenomenon

called self amplified spontaneous emission (SASE) occurs [53,54]. This refers to the

Figure 4.5: Comparison between spectra of different

insertion devices [52].

emitted radiation interacting with

the electron inside the undulator

[54]. As a consequence of SASE

the initial electron bunch starts mi-

crobunching into smaller bunches

separated by one radiation wave-

length. The process originates from

the random noise in the initial

bunch. Microbunching causes the

produced radiation to superimpose

favoring certain wavelengths to oth-

ers. This, in turn, strengthens mi-

crobunching which leads to expo-

nential growth of intensity. This

is however a relatively random pro-

cess, and thus, pulses with extremely bright intensity spikes with random phases and

heights are produced adding up to spectra of stochastic noise. Since microbunching

reduces the phase space available for photons, the radiation shows some laser like

features, despite of randomness. The pulses are transversely coherent, but temporal

and spectral coherence is limited [53]. An XFEL pulse produced by SASE is shown
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Figure 4.6: Typical XFEL SASE pulse spectrum both in time (left) and energy domain (right)

[52].

in figure 4.6. All in all, using an XFEL has its pros and cons, further, one must

remember that XFELs are a relatively new innovation, and new techniques are being

developed all the time. We shall discuss a bit more about them in section 5.3 while

considering stimulated RIXS experiments.

Spectrometers

Now that we have a suitable source for the experiment we can worry about mea-

suring. For soft X-rays (well below 5 keV in energy) one uses a diffraction grating

spectrometer, since Bragg crystal optics fail at large wavelengths [15, 18]. Such a

grating is typically a line grating operated at a grazing incidence where the radiation

is diffracted from the lines and the resolution is determined by the line density. The

advantage of diffraction grating optics is easy tunability over a wide energy range,

on the other hand, grazing incidence geometry causes low solid angle acceptance

calling for precise alignment. Further, low grating reflectivities (typically few per-

cent) require bright sources [18]. The grating can be an even plane, when a separate

collection mirror has to be used, or a concave one [15]. The grating disperses the

radiation to a detection device, a CCD camera, for instance, and the emitted energy

is scanned by tuning the angle of the grating. A soft X-ray spectrometer is schemati-
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Figure 4.7: A soft X-ray spectrometer schematic. Adapted here from [18] with the permission of

Elsevier.

cally picture in figure 4.7. The resolution of the detector adds up to the total resolu-

tion of the set up. In a modern RIXS instrument the whole spectrometer-detector set

up can be rotated around the sample in the horizontal plane and adjusted vertically.

A full description of a modern soft X-ray RIXS instrument (European Synchrotron

Radiation Facility (ESRF) ID32) can be found in [55].

A hard X-ray instrument is based on crystal optics. A very high quality crystal

lattice is used to Bragg reflect the signal from a sample to the detector [15]. The

lattice spacing is chosen to match the used wavelengths, typically germanium or

silicon is used. As in the case of soft X-ray grating concave crystals are often used

to avoid separate collimation optics. Spherically bent crystals are most common.

Usual set up with a spherically bent crystal uses the Rowland circle geometry. Here

the sample, Bragg crystal and detector are always on a same circle of diameter R.

The optimal performance is obtained in Johann geometry when the diameter R is

equal to the bending radius of the crystal [15]. There are many parameters in a

Bragg crystal spectrometer affecting the resolution, and the optimization of such

a device is not a trivial task. The whole spectrometer set up is often built into a

movable detector arm capable of moving in horizontal and vertical direction. Usually

the scattering angle, i.e., the angle between the straight incoming beam path and
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the position of detection, is fixed at 90◦ in order to minimize elastic scattering which

is εin · εout dependent [15]. A hard X-ray spectrometer is depicted in the figure 4.8.

A more complete description of hard RIXS instruments can be found for instance

in refs. [34, 56].

Rowland circles

Figure 4.8: A hard X-ray spectrometer schematic. Adapted here from [15] with the permission

of APS.



5. Stimulated Resonant Inelastic

X-ray Scattering

Now we shall turn our focus on stimulated RIXS. We saw in the previous chapter

the traditional theoretical description of the RIXS process, the Kramers-Heisenberg

picture. In SRIXS we shall, however, move from the linear intensity range to the

nonlinear and the traditional theory becomes inadequate: The considered intensities

are so high that the response of the matter to the applied electric field is no longer

linear. Therefore the theoretical description illuminating stimulated RIXS is very

different from the traditional, even though the fundamental physics stays same in

the sense that the interaction Hamiltonian still governs everything. First we shall

introduce the basic concepts and paint an intuitive picture of the process. We will

also present different X-ray pulse schemes and possible applications that have been

theorized. The current state of the art is illustrated and further development of the

method is motivated followed by a careful derivation of the theory. The theoretical

model relies on quantum mechanical description of matter but the electric field will

be assumed classical due to the extremely high intensities. Once we are done with

the detailed derivation of the theory we shall collect the results into a synopsis with

an illuminating explanation on the interpretation and meaning of the equations.

Finally, we shall also give a short overview of the SRIXS experiment utilizing SASE

pulses from X-ray free electron lasers.

49
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5.1 Introduction

In order to obtain an intuitive picture of the process as compared to traditional

RIXS, let us introduce the standard idea behind the method before jumping into the

theoretical model. Stimulated RIXS is intuitively understood as a similar process

to the production of laser [57]. Although different from traditional optical laser,

inner-shell X-ray lasers [58–60] have actually paved the way for nonlinear X-ray

spectroscopy, both theoretically and experimentally. Population inversion between

the 1s and valence shell is the key to obtaining magnification of the RIXS signal by

stimulation of the emissive transitions. Population inversion refers to a state where

most of the atoms or molecules in the sample media are in an excited state rather

than ground state. In stimulated RIXS population inversion is achieved by pumping

the sample with an extremely brilliant X-ray source, namely, an X-ray free electron

laser. When talking about population inversion it should be recognised that the

phenomena described here are no longer in the linear region of polarization response

to the applied electric field [61], i.e. we cannot assume that the polarization of the

sample reacts linearly to change in intensity. Rather, we are talking about nonlinear

X-ray spectroscopy. Once population inversion is achieved, the transitions to the

final states are stimulated by some source of external radiation on a suitable freq-

Figure 5.1: Schematic description of the SRIXS process. On the left practically all the atoms

are in the ground state. In the middle a strong population inversion is present. On the right the

population inversion is relaxed by a possible probe pulse leading to an avalanche of stimulated

scattering events.
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uency so that the desired final states are reached. Note that due to population

inversion only a few seed photons with suitable energy suffice to drive an avalanche

of stimulated scattering events resulting in an exponential amplification of the RIXS

signal [23]. The stimulated RIXS process is schematically described in the figure 5.1.

Note that there a probe pulse is depicted, even though it may not always be present:

The spectral tails of the pump pulse may be enough to act as a seed. Different pulse

schemes are discussed in the following section 5.1.1.

The role of stimulated emission [39] must be emphasized here. It is crucial to

the process the same way as population inversion. From rudimentary analysis with

Einstein coefficients one can derive the result for exponential amplification once

population inversion is present [62]. This requires, however, the key property of

stimulated emission. Once an atom or a molecule in an excited state interacts with

a radiation field an emission of a photon in the exact same mode as the field can be

stimulated [39, 57]. Therefore, all the photons that are emitted due to stimulated

emission stimulate more emissions in the same mode while passing through the

sample where population inversion is present. This is the intuitive picture for the

exponential growth. The exponential amplification and growth in photon number

is schematically depicted on the right of the above figure 5.1. We note that when

stimulating with an external source we can, in principle, choose the transitions to

be stimulated and therefore the final states in RIXS. Numerous schemes utilizing

this process have been presented through out the last years, some more viable than

others [6].

5.1.1 Pulse schemes

Let us quickly describe the possible schemes for realizing SRIXS. They can be crudely

divided into two categories: the multi-colour and single-colour schemes. The multi-

colour scheme uses two or more temporally separated pulses with different frequen-
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cies for pumping and probing the system, whereas the single-colour scheme uses one

wide bandwidth pulse that reaches both pump and probe energy regions. Probing

can also be referred to as dumping. This refers to dumping electrons into the core

holes that were created by pumping. Probing often refers to observing a process

initiated by the pump pulse when regarding more complicated schemes. Different

pump and dump schemes are presented in the figure 5.2.

Figure 5.2: Different SRIXS pulse schemes illustrated. (a) Well defined pump and dump pulses.

(b) A well defined temporally short pulse has enough bandwidth to serve as pump and dump. (c) A

wide bandwidth SASE pulse has stochastic nature and changes from shot to shot. (d) Two-colour

SASE. Separate but incoherent pulses. Adapted here from [6] with the permission of The Royal

Society.

The ideal realization would be a multi-colour scheme using well defined X-ray

pulses with highly stable and tunable duration, bandwidth, frequency and time de-

lay [6]. For example in a simple two-colour scheme, the sample is first resonantly

pumped into a population inversion followed by a time-delayed dump pulse to stim-

ulate the transition of an electron to fill the core hole. This corresponds to the

case (a) in figure 5.2. The spectrum is obtained as the difference of the incoming

and transmitted dump pulse. If the pulses are completely tunable one can imagine

various schemes for utilizing such a set up. Many quite complex nonlinear X-ray

spectroscopy pump and probe schemes have been theorized over the recent years.

These include methods for initiating and probing valence electron wave packets [19],
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probing charge transfer in molecules [20] and observing electron-hole entanglement

dynamics [6,21]. Even though there is theoretical evidence of these ambitious appli-

cations, the quality of currently available ultrabrilliant X-ray pulses renders experi-

mental implementations rather impossible. As explained in section 4.2.2 the XFEL

pulses produced by SASE are far from ideal. First two-colour SRIXS experiments

with SASE pulses have been made but they proved unsuccessful due to suboptimal

experimental conditions. These correspond to the case (d) in figure 5.2. More details

can be found in [24,63]. SRIXS experiments are discussed in more depth in section

5.3.

The single-colour scheme is the simplest possible realization of SRIXS. A single

wide band pulse is used for pumping and stimulating the emissive transitions to final

states. Single-colour schemes are illustrated in the pictures (b) and (c) of figure 5.2.

The latter describes the state of the art, a single SASE pulse. So far SRIXS has

only been demonstrated using single-pulse scheme with SASE pulses [6, 23]. There

an XFEL pulse was tuned over the 1s23p0 → 1s13p1 resonance in neon. A strongly

amplified emission was observed at the transition 1s13p1 → 1s22p53p1. The high

pulse intensity of XFEL achieves strong population inversion between the core and

valence levels in a time comparable to the life-time of the core hole. Therefore

only few photons at the frequency of the emissive transition 1s13p1 → 1s22p53p1

suffices to initiate the avalanche of stimulated emissions. The lower energy tail of

the XFEL pulse provides the seed photons for stimulating the dump transition. The

spectra is recorded as the difference between incoming and transmitted pulse. In the

experiment [23] a magnification of seven to nine orders of magnitude in the RIXS

signal was recorded as compared to traditional spontaneous RIXS process. This is

a significant improvement and stands to emphasize the fact that samples well below

the limit of observation with traditional methods can be measured via stimulated

RIXS.
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5.2 Theoretical model

In here we shall derive the theoretical model for predicting spectra produced by

SRIXS. The theoretical model presented here is quite general and can be adapted to

suit many experimental conditions with minor modifications. It is a generalization of

Maxwell-Bloch formalism used to describe optical stimulated Raman spectroscopy

[64], and similar theories are used for describing many phenomena occurring at high

X-ray pulse intensities at XFELs [65–68]. We shall, however, focus on viewing the

model from the point of view of SRIXS giving a detailed derivation up to quadrupole

order in interaction Hamiltonian.

In the following we shall assume one dimensional experimental geometry and

utilize the paraxial approximation. This is a reasonable assumption as the sample

volume is often considerably longer than the spot size of the beam, since the length

of the sample is matched to the focal depth of the beam, whereas the X-ray beam

is usually focused to few micrometer spot [23]. Therefore, a long but thin popula-

tion inversion channel is formed within the sample, and since population inversion is

the requirement for amplification, everything interesting happens within this narrow

channel. We shall describe the electric field classically under slowly varying envelope

approximation [39] and the sample medium by the quantum mechanical density ma-

trix obtained by representing the states in configuration interaction theory (see 2.2).

The evolution of the electric field is governed by the Maxwell equations, whereas

the evolution of the density matrix is given by the Liouville-von Neumann equa-

tion [39]. The exact form of the Liouville-von Neumann equations is derived from

the Schrödinger equation and coupled to the applied electric field via the nonlinear

polarization response [61].

Since theoretical considerations up to dipole transitions have been presented

and experimentally investigated before [5,23,69,70], for the first time ever, we shall

consider quadrupole transition within this framework. This is hoped to be the first
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step on the road to realizing SRIXS in transition metals and making it an accessible

and valuable tool for analyzing samples beyond synchrotron based methods. The

Maxwell-Liouville-von Neumann equations are somewhat more system dependent

than the Kramers-Heisenberg cross section, therefore, it is difficult to write down a

useful final form of the equations on the same level of generality as before. Thus, in

order to give an illuminating description of the theory, let us define a simple example

system that still captures the essential features one might find in an actual sample

in a real-life experiment. To this end we assume a similar setting as in [69], but

instead of dipole transitions, we shall consider quadrupole transitions in the vicinity

of some K-edge, relevant to RIXS investigations in transition metals. This scheme

also resembles the one we had before in the section 4.2. Our model will describe so

called 1s2p RIXS, observed in many transition metals, where a quadrupole excitation

is followed by emission due to dipole transition, because the quadrupole emission

channels might be too weak for current SASE pulse set ups. Ideally the XFEL

pulse would only excite the exact states under investigation, but as explained in the

previous section, currently such extremely narrow band gap experiments are rather

impossible. Rather, the SASE pulse covers a manifold of transitions all the way

up to continuum. Therefore, we must further include the possibility of competing

processes into our description dividing the theoretical investigation in two parts,

one covering the actual SRIXS process we are interested in, the other accounting

for the possible competing processes. With this in mind, let us start investigating

a SRIXS process with resonant quadrupolar excitations from the 1s orbital to the

d-shell followed by stimulated dipolar emissions from the 2p orbital filling the 1s

core hole:

Excitations: 1s2ndm → 1s1ndm+1

Emissions: 1s1ndm+1 → 1s22p5ndm+1.

(5.2.1)

Here n = 3, 4, 5 and m ∈ [0, 9] depending on the transition metal. Note that only
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the relevant orbitals are displayed in the notation. Note that we have not explicitly

included orbital splitting into the states here, but the theoretical model derived here

allows for discrimination by angular momentum.

Now, the XFEL pulse can either cause one of the resonant excitations defined

above or ionize atoms or molecules in the system. The two main processes are reso-

nant excitations and single ionizations by promotion of 1s electron to the continuum.

Even though valence electrons can also be ionized, we shall only incorporate it as a

loss term rather than track the time evolution of such states. We will include the

time evolution of both neutral and singly core ionized constituents into the theory

by introducing two separate density matrices ρ(t) and ρ+(t), describing the two in

respective order. The transitions 5.2.1 are the ones between the states contained by

the neutral density matrix. We will also take into account the evolution of the ions,

as they have a relevant emission channel

Emission: 1s12p6 → 1s22p5, (5.2.2)

effectively leading to stimulated fluorescence in the same frequency domain as the

actual SRIXS process, thus important to account for. We shall further divide the

X-ray flux into two parts in energy, one below the K-edge of interest and one above,

giving the total flux as a sum of the respective parts: J = Jb+Ja. This is because the

two parts are responsible for different phenomena, excitations and ionizations, within

this framework. Further, a step like absorption such as the K-edge is difficult to

implement into a numerical solution. In the following two sections we will derive the

time-evolution equations for the two density matrices containing the states reachable

via the above defined transitions coupled to the evolution of the electric field.

5.2.1 Evolution of the neutral density matrix

Here we shall derive the equation governing the evolution of the electric field flux Jb

below the K-edge, coupled with the equations governing the evolution of the density
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matrix elements ρij(t) describing the SRIXS process of neutral atoms or molecules.

Once again we shall begin our analysis with the matter-field Hamiltonian, this time

however, we are going to start out with the approximated version of the interaction

right away. Based on section 3.2 we may write the Hamiltonian, up to quadrupole

order, as:

Ĥ = Ĥ0 + Ĥint = Ĥ0 + ĤD + ĤQ

= Ĥ0 +E(t) · x+ i

2kiEj(t)Q̂ij.
(5.2.3)

Due to SRIXS experimental geometry, we shall immediately reduce this to one

dimension. We define the coordinates so that the X-ray pulse travels in y-direction

and assume a linearly polarized field in z-direction. Therefore, the Hamiltonian

reads

Ĥ = Ĥ0 + ẑE(t) + i

2kyEz(t)Q̂yz. (5.2.4)

From hereon the electric field will be treated classically. This is adequate since even

the tails of XFEL pulses are considerably more intense than any vacuum fluctuations

[69]. The dipole part of the above, fully quantum, interaction Hamiltonian is readily

transformed into a semi-classical form by treating the electric field as a multiplicative

constant or a dot product in one dimension. As for the quadrupole term, we have a

direct relationship between momentum and position through the Fourier transform,

therefore we essentially perform a Fourier transform back into the position space

in order to define a classical counterpart of the quadrupole term containing photon

momentum. The semi-classical Hamiltonian then reads

Ĥ = Ĥ0 + ẑE(t) + 1
2Q̂∂yE(t). (5.2.5)

This result can, of course, be derived completely classically too, see for instance [71].

We note that the dipole term is related to the direct coupling of the field with

matter whereas the quadrupole gives the coupling to the field derivatives of the
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field. Further, we shall apply the slowly varying envelope approximation to the

electric field [39,69]:

E(t) = E0(t, y)e−iω0t + E∗0 (t, y)eiω0t, (5.2.6)

where ω0 is the frequency of the incident field and E0 a slowly varying complex

envelope. The wave equation describing the evolution of the envelope below the

K-edge thus becomes (see appendix B):

∂E0

∂y
+ 1
c

∂E0

∂t
= −i2πN

cω0
P (5.2.7)

under the slowly varying envelope approximation [5, 39, 69]. Here N is the particle

density and P the macroscopic polarization of the sample medium. The source

term on the right hand side describes coupling to resonances and is connected to

the system via the density matrix dependent formula:

P =
∑
i 6=j

ρijTijωjiei(ωji−ω0)t +
∑
i 6=j

ρ+
ijTijωjiei(ωji−ω0)t (5.2.8)

defining nonlinear polarization. Here i, j are composite indices describing atomic

states. The atoms that are ionized due to the part of the X-ray pulse above the

K-edge also evolve in the system, therefore contributing to the polarization, and

thus, must be included in the above formula. Accordingly, ρij are the components

of the neutral atom and ρ+
ij the components of the ionized atom density matrix,

further, Tij are the components of the transition operator corresponding to the

transition i ↔ j. In this theory the transition operator can be either the dipole or

the quadrupole operator, so far we have not made any separation between the two.

The transition frequency is the difference of orbital energies ωji = εj − εi. Now,

everything we need to do, is to find out how the electric field evolves in the sample

medium. In order to do this the exact form of the density matrix is required. Note,

however, that in this section we only deal with the equations related to the primary

process of interest, the SRIXS of the neutral atoms, even though we had to include
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the density matrix of the ions, ρ+(t), into the above formula. The following section

5.2.2 will introduce the derivation of the ionic density matrix.

In order to find the form of the neutral atom density matrix ρ(t) we are going

to derive the master equations describing time evolution of the density matrix [5,69,

70,72–74]. First we must describe the atomic or molecular states within the sample

system. Once again, we shall use configuration interactions method from section 2.2

for this purpose by expanding a general quantum state according to 2.2.9:

|Ψ(t)〉 = α0(t)e−iE0t |Φ0〉+
∑
i,a

αai (t)e−iE
a
i t |Φa

i 〉 , (5.2.9)

where we have introduced the time dependence in the standard way [26,75]. Since we

are only going to look at single excitations we truncate the series as above. Moving

into the interaction picture by using |Ψ(t)〉I = eiĤ0t |Ψ(t)〉 gives

|Ψ(t)〉I = α0(t) |Φ0〉+
∑
i,a

αai (t) |Φa
i 〉 . (5.2.10)

The Schrödinger equation in the interaction picture reads

i
∂

∂t
|Ψ(t)〉I = ĤI(t) |Ψ(t)〉I , (5.2.11)

where the Hamiltonian operator 5.2.3 is transformed into the interaction picture in

the usual way operators are transformed:

ÔI = eiĤ0tÔe−iĤ0t. (5.2.12)

Thus, the form of the Schrödinger equation will be

i
∂

∂t
|Ψ(t)〉I = eiĤ0tĤinte

−iĤ0t |Ψ(t)〉I . (5.2.13)

From now on we will work in the interaction picture but drop the subscript I.

Plugging in the expansion 5.2.10 to the above equation yields

i

α̇0(t) |Φ0〉+
∑
i,a

α̇ai (t) |Φa
i 〉

 = eiĤ0tĤinte
−iĤ0t

α0(t) |Φ0〉+
∑
i,a

αai (t) |Φa
i 〉

 .
(5.2.14)
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We are interested in the time evolution of the expansion coefficients αai (t), so let

us isolate the time derivatives by projecting this equation onto 〈Φ0| and
〈
Φb
j

∣∣∣. This
yields, in respective order,

iα̇0(t) = α0(t) 〈Φ0| Ĥint |Φ0〉+
∑
i,a

αai (t)eiωiat 〈Φ0| Ĥint |Φa
i 〉 ,

iα̇bj(t) = α0(t)eiωbjt
〈
Φb
j

∣∣∣ Ĥint |Φ0〉+
∑
i,a

αai (t)ei(E
b
j−E

a
i )t
〈
Φb
j

∣∣∣ Ĥint |Φa
i 〉 − i

Γj
2 α

b
j(t),

(5.2.15)

where ωij = εi−εj and Ea
i = E0 +εa−εi are calculated according to the section 2.2.

Here we also introduced a phenomenological decay rate Γj to take into account the

spontaneous decay of the core excited states j, for example via Auger decay [69,70].

Let us briefly turn our focus to the matrix elements containing the interaction

Hamiltonian Ĥint in the above formulae. In order to calculate these, recall that the

Hamiltonian 5.2.5 contains two separate interaction terms describing the dipole and

quadrupole interactions, and that both of these terms contain a transition operator

that can be written in second quantization as shown in the section 2.2:

T̂ =
∑
pq

Tpq ĉ†pĉq, where Tpq = 〈ϕp| T |ϕq〉 . (5.2.16)

Then the matrix elements are calculated according to the principles presented in

section 2.2 and [29]:

〈Φ0| T̂ |Φ0〉 =
∑
i

Tii,

〈Φ0| T̂ |Φa
i 〉 = Tia,〈

Φb
j

∣∣∣ T̂ ∣∣∣Φa
i

〉
= Tbaδij − Tijδba + δbaδij

∑
k

Tkk.

(5.2.17)

As explained earlier, we are trying to formulate a theory describing 1s2p SRIXS,

where the XFEL pulse couples to quadrupole excitations and dipole de-excitations

or emissions in our model system. Therefore, in order to capture this whole system

within single theory, we must consider both dipole and quadrupole transitions. Let

us, however, continue with the general transition operator T for now and replace the
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appropriate operator in when necessary. Plugging the above results back into 5.2.15

and replacing the electric field dependent multiplicative coefficient in the interaction

Hamiltonian with a generalized coefficient

ET (t) =


E(t), for dipole transitions, T = z

1
2E
′(t), for quadrupole transitions, T = Q,

(5.2.18)

we obtain the generalized final form of the time evolution of the time dependent

coefficients in the expansion 5.2.10. Note that here we denote ∂yE(t) = E ′(t).

Further, by ignoring transitions between virtual orbitals (Qab = 0) and transitions

between same single particle orbitals, i.e. the term Tkk in 5.2.17, the equations 5.2.15

take the form:

α̇0(t) = −iET (t)
∑
i,a

αai (t)eiωiatTia,

α̇ai (t) = −iET (t)
α0(t)eiωaitTai −

∑
j

αaj (t)eiωjitTji

− Γi
2 α

a
i (t),

(5.2.19)

So far out discussion has been on a very general level. We, however, need

to describe atomic or molecular states more carefully than just with occupied and

unoccupied orbitals in order to properly characterize the resonant excitations by X-

ray field in the theory. To this end, let us define a new composite index describing

atomic or molecular states so that one of these composite indices contains three

indices describing an electronic state where an electron is excited from an orbital

i to an orbital a forming a state with total angular momentum J . Denoting this

index as Jai and applying this to the above formulae we obtain

α̇0(t) = −iET (t)
∑
i,a,J

αJa
i
(t)eiωiatT0,Ja

i
,

α̇Ja
i
(t) = −iET (t)

α0(t)eiωaitTJa
i ,0 −

∑
j,J ′

αJa
j
(t)eiωjitTJa

i ,J
′a
j

− Γi
2 αJ

a
i
(t).

(5.2.20)

These equations capture the time evolution of the atomic or molecular states instead

of the evolution of occupation or unoccupation of some single orbital.
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At this point one could solve for αJa
i
(t) directly from the above equations and

obtain the time evolution of the states, but let us analyse the equations further by

defining the elements of a truncated density matrix [29,43,70] of a Slater determinant

for the states of the neutral atom in the new index system:

ρJa
i ,K

b
j
(t) =

∣∣∣ΦJa
i

〉 〈
ΦJb

j

∣∣∣ = αJa
i
(t)αKb

j

∗(t). (5.2.21)

The diagonal density matrix elements describe the populations in the system of the

neutral atoms, whereas the non-diagonal elements describe the coherences. Both

are directly coupled to the evolution of the electric field in the sample, therefore

the SRIXS process is also encoded in the evolution of these elements. The time

derivative of the density matrix elements is given as

ρ̇Ja
i ,K

b
j
(t) = α̇Ja

i
(t)αKb

j

∗(t) + αJa
i
(t)α̇Kb

j

∗(t), (5.2.22)

from which we quickly note that the time evolution of the diagonal elements can be

written as separate equation:

ρ̇Ja
i ,J

a
i
(t) = 2 Re[α̇Ja

i
(t)αJa

i

∗(t)]. (5.2.23)

Now we can plug in the equations 5.2.20 in order to obtain the time evolution

equations for the density matrix elements. For instance, for the ground state we

have:

ρ̇0 = −2 Im
ET (t)

∑
i,a,J

αJa
i
(t)eiωiatT0,Ja

i
α∗0(t)


= −2 Im

ET (t)
∑
i,a,J

ρJa
i ,0(t)eiωiatT0,Ja

i

 ,
(5.2.24)

where we reuse the definition of the density matrix elements 5.2.21. Now, in order to

plug in the electric field ET (t) explicitly, we must segregate between the two possible

transitions. As explained earlier, in the 1s2p RIXS we assume that the excitations

are due to quadrupole coupling. Therefore, as the ground state is depleted by
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quadrupolar excitations to the d-shell, we plug in the the field derivative and invoke

the rotating wave approximation, which yields

ρ̇0 = − Im
∑
i,a,J

ρJa
i ,0(t)E ′0(t, y)ei(ωia−ω0)tT0,Ja

i

= − Im
∑
i,a,J

RQ
0,Ja

i
(t)ρJa

i ,0(t).
(5.2.25)

Here we define the generalized Rabi frequencies:

RTij(t, y) =


E ′0(t, y)ei(ωij−ω0)tQij, when T = Q

E0(t, y)ei(ωij−ω0)tzij, when T = z.

(5.2.26)

In our experimental geometry the transition operators are explicitly written as:

zpq = 〈ϕp| z |ϕq〉 =
∫
dxϕp(x)zϕq(x),

Qpq = 〈ϕp| yz |ϕq〉 =
∫
dxϕp(x)yzϕq(x).

(5.2.27)

Recalling the transitions we specified in 5.2.1, and checking which states are coupled

to the ground state via quadrupole transition, we can write down the final equation

for the evolution of the ground state population:

ρ̇0(t) =− [σ1sJa + σv(Jb + Ja)] ρ0(t)− Im
∑
n

RQ

0,Jnd
1s

(t)ρJnd
1s ,0(t), (5.2.28)

where we denote a = nd and i = 1s according to the specified system of transi-

tions. Notice, that here we have phenomenologically added an ionization term to

the ground state equation describing the ionization of an electron from the 1s and

valence orbitals to continuum with the cross sections σ1s and σv, respectively, in

order to take into account the depletion of ground state population via ionization.

The valence ionization loss term takes into account all ionization channels above the

1s ionization. We shall discuss the ionized states more in depth and derive the ion-

ization cross sections in the next section. Taking similar steps as above and carefully

checking the correct transition types and couplings one can derive the remaining two
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evolution equations of neutral atom populations:

ρ̇Jnd
1s ,J

nd
1s

(t) =− ΓρJnd
1s ,J

nd
1s

(t)− Im
(
RQ

Jnd
1s ,0

(t)ρ0,Jnd
1s

(t)− 2
∑
J ′
Rz
Jnd

1s ,J
′nd
2p

(t)ρJ ′nd
1s ,Jnd

1s
(t)
)

ρ̇Jnd
2p ,J

nd
2p

(t) =− 2 ImRz
Jnd

2p ,K
nd
1s

(t)ρKnd
1s ,J

nd
2p

(t).

(5.2.29)

Note, that we have not defined a sum convention here: All appearing sums are

explicitly written down. Therefore, K is the specific angular momentum of the

1s1ndm+1 excited state, not a sum or an arbitrary value.

Let us next derive the time evolution of the non-diagonal components of the

density matrix describing the coherences in the system. By plugging in 5.2.20 to

the time derivative equation 5.2.22 and using the definition of the density matrix

elements we obtain

ρ̇Ja
i ,0(t) =− iET (t)

ρ0(t)eiωaitTJa
i ,0 −

∑
j,J ′

ρJ ′a
j ,0(t)eiωjitTJa

i ,J
′a
j


− Γi

2 ρJ
a
i ,0(t) + iET (t)

∑
j,b,J ′

ρJa
i ,J

′b
j

(t)eiωbjtTJ ′b
j ,0
.

(5.2.30)

Similar to before, we plug in the electric field 5.2.6, invoke the rotating wave ap-

proximation and use the definition of the generalized Rabi frequencies to obtain:

ρ̇Ja
i ,0(t) =− Γi

2 ρJ
a
i ,0(t)− iRTJa

i ,0
(t)ρ0(t) + i

∑
j,J ′

RTJa
i ,J

′a
j
(t)ρJ ′a

j ,0(t)

+ i
∑
j,b,J ′

RTJ ′b
j ,0

(t)ρJa
i ,J

′b
j

(t).
(5.2.31)

Again, by denoting a = nd and i = 1s plus checking the specified system for the

correct couplings of the states one obtains

ρ̇Jnd
1s ,0(t) =− 1

2 [Γ + σ1sJa] ρJnd
1s ,0(t)− i

2R
Q

Jnd
1s ,0

(t)ρ0(t)

+ i
∑
J ′
Rz
Jnd

1s ,J
′nd
2p

(t)ρJ ′nd
2p ,0(t) + i

2
∑
n

RQ

Jnd
1s ,0

(t)ρJnd
1s ,J

nd
1s

(t),
(5.2.32)

where we have again added the ionization loss term. Repeating the preceding calcu-
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lations for the rest of the coherences one ends up with the following set of equations:

ρ̇Jnd
1s ,K

n′d
2p

(t) =− ΓρJnd
1s ,K

n′d
2p

(t)− i

2R
Q

Jnd
1s ,0

(t)ρ0,Kn′d
2p

(t)

+ i
∑
J ′
Rz
Jnd

1s ,J
′nd
2p

(t)ρJ ′nd
2p ,Kn′d

2p
(t) + iRz

Jn′d
1s ,Kn′d

2p
(t)ρJnd

1s ,K
n′d
1s

(t),

ρ̇Jnd
1s ,J

n′d
1s

(t) =− ΓρJnd
1s ,J

n′d
1s

(t)− i

2R
Q

Jnd
1s ,0

(t)ρ0,Jn′d
1s

(t) + i

2R
Q

0,Jn′d
1s

(t)ρJnd
1s ,0(t)

+ i
∑
J ′
Rz
Jnd

1s ,J
′nd
2p

(t)ρJ ′nd
2p ,Jn′d

1s
(t)− i

∑
J ′
Rz
J ′n′d

2p ,Jn′d
1s

(t)ρJnd
1s ,J

′n′d
2p

(t),

ρ̇Jnd
2p ,J

′n′d
2p

(t) = iRz
Jnd

2p ,K
nd
1s

(t)ρ
Knd

1s ,J
′n′d
2p

(t) + iRz
Kn′d

1s ,J ′n′d
2p

(t)ρJnd
2p ,K

n′d
1s

(t).

(5.2.33)

Together with the equation 5.2.32 these equations define the time evolution of the

coherences of the neutral atoms or molecules in the system. Let us next take a look

at the competing processes and the evolution of ionic density matrix.

5.2.2 Competing processes

We have now derived the equations describing the actual RIXS process, but as

mentioned, there are multiple competing processes as due to the relatively wide

band gap of the SASE pulse. We shall address these competing processes here. As

explained earlier, the X-ray flux is divided into two parts, the one above the K-edge

Ja and the one below Jb. Both of these parts cause competing processes, one of the

most notable being the 1s core ionization of the atoms or molecules in the sample

due to the part above the K-edge, and the subsequent evolution of the ions due

to the part below. There are other ionization channels too but we shall assume

that they won’t give rise to a population significant enough to merit a whole time

evolution analysis and are only incorporated into the theory as loss terms similarly

as before. Further, these ionization channels won’t give rise to the filling of a 1s core

hole, and therefore the emission of a photon in the energy region we are interested

in.

Before moving on to the mathematical derivations explained above, let us

mention another obvious and important competing process due to the below K-edge
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part of the flux, which is of course, the dipole RIXS process, which is actually al-

ways stronger over the quadrupolar RIXS. We shall, however, not write down the

equations for this process, since it can be easily incorporated into the theory by

performing calculations analogous to the previous section and simply interchanging

the quadrupole transitions for the dipole counterparts, which should be easy in the

presented generalized formalism. Dipole transitions are considered more carefully

for example in [69]. If we were going to do simulations, or especially experiments, we

would have to include the dipole transitions in order to obtain reasonable results,

but for now, we will acquiesce with stating that generally quadrupole transitions

are some twenty to hundred times weaker than dipole transitions [48]. Since the

theories for describing the different transitions are analogous, we expect the spec-

tral features from the different transitions to have the same relative intensities as

their corresponding transition strengths. Therefore comparing transition dipole and

quadrupole elements 5.2.27 should yield some quantitative information about the

expected ratio between the spectral intensities of the corresponding features. As

current XFELs offer no possibility of discriminating between the two transitions

via extremely accurate energy selection, one is most likely forced to consider the

dipole transitions as a competing process when ever considering the quadrupole

RIXS. There are also experimental methods to improve the detection of quadrupole

transitions utilizing the geometry of the sample, polarization etc. [47,48,76].

Here we shall consider the 1s ionization and subsequent time evolution of the

singly core ionized atoms in the model system, giving the possibility to estimate the

influence of the filling of the core hole according to 5.2.2 on the final spectrum. We

will show how to derive the ionization cross sections within our theoretical frame-

work, notice however, that the evolution of the ionic density matrix elements is due

to the part of electric field flux below the K-edge and that the electric field associ-

ated with that evolution is governed by the familiar equation 5.2.7. The polarization
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5.2.8 in the wave equation evolves due to the neutral atoms as shown in the previous

section whereas the evolution due to ions is covered in the following. The part of

the electric field flux above the K-edge is fully governed by

∂Ja(t)
∂y

= −ρ0(t)NσtotJa(t), (5.2.34)

where N is the particle density and σtot is the total photoionization cross section.

This equation is only connected to the rest of the equations via the ground state

population and describes the attenuation of the the flux due to photoabsorption.

The analysis of the evolution of density matrix elements is similar to what we

did before, apart from the definition of the density matrix elements. This time we

shall start out by defining the reduced density matrix ρ+(t) for the ions [43,69,77]:

ρ+
Ji,Kj

(t) =
∑
a

αJa
i
(t)αKa

j

∗(t), (5.2.35)

where the index of the occupied virtual orbital disappears as we are describing

excitations to the continuum. The time derivative is given by

ρ̇+
Ji,Kj

(t) =
∑
a

α̇Ja
i
(t)αKa

j

∗(t) + αJa
i
(t)α̇Ka

j

∗(t). (5.2.36)

First focusing on the diagonal elements, we notice again that the above time deriva-

tive can be written as

ρ̇+
Ji,Ji

(t) = 2
∑
a

Re[α̇Ja
i
(t)αJa

i

∗(t)]. (5.2.37)

Notice, that since we are interested in the densities of ionic states, the relevance of

the orbital where the electron ends up after excitation, or ionization, disappears.

Therefore, we can simplify the theory a bit by investigating hole densities rather

than the densities of states labelled with the composite index Jai . Thus, we can now

plug in the time derivatives 5.2.19 and treat the indices as hole identifiers in order

to obtain the evolution equation for the diagonal density matrix elements. Let us



68 CHAPTER 5. STIMULATED RIXS

derive the evolution of singly 1s-ionized atoms for example:

ρ̇+
1s,1s(t) =− 2 Im

∑
a

ET (t)
α0(t)eiωa,1stTa,1s −

∑
j

αaj (t)eiωj,1stT1s,j

αa1s∗(t)
− Γ1s

∑
a

αa1s(t)αa1s∗(t).
(5.2.38)

By using the definition of the reduced density matrix elements and doing some

simple manipulations we obtain

ρ̇+
1s,1s(t) =− 2 Im

∑
a

E(t)α0(t)αa1s∗(t)eiωa,1stTa,1s

− Γ1sρ
+
1s,1s(t) + 2 Im

∑
j

Rz
1s,j(t)ρ+

j,1s(t),
(5.2.39)

where we use the definition of the generalized Rabi frequencies 5.2.26 again. Notice

that we are only dealing with dipole coupling here. Now the second line is in the

final form coherent with the earlier formulae, whereas the first row needs some

manipulations in order to take the final form describing the 1s-ionization.

Let us show that the first term in the above reduces to the 1s-ionization cross

section. The term is somewhat tricky since it contains the time dependent expansion

coefficients αa1s(t) and α0(t) plus other terms depending on the virtual orbital a,

therefore it cannot simply be reduced by some definition as we have done so far.

We can, however, rewrite the time dependent coefficient αa1s(t) by formally solving

it from the second equation in 5.2.19, from which we obtain by integration:

αa1s
∗(t) = i

∫ t

−∞
dt′e

Γ1s
2 (t′−t)E(t′)

α∗0(t′)eiω1s,at′z1s,a −
∑
j

αaj
∗(t′)eiω1s,jt

′
z1s,j

 .
(5.2.40)

Plugging this into the first term in 5.2.39 yields

2 Re
E(t)α0(t)

∑
a

eiωa,1stza,1s

∫ t

−∞
dt′e

Γ1s
2 (t′−t)E(t′)

×

α∗0(t′)eiω1s,at′z1s,a −
∑
j

αaj
∗(t′)eiω1s,jt

′
z1s,j

,
(5.2.41)

where a similar αaj (t)
∗ term appears again. This last term however produces a

rapidly oscillating contribution to the absorption rate as the sum ∑
a extends over



5.2. THEORETICAL MODEL 69

the continuum. Such fast oscillating terms can be neglected here as they are blurred

out by the characteristic time scale of the ionization time evolution anyhow [70].

Discarding the last term and plugging in the electric field 5.2.6 plus invoking the

rotating wave approximation gives

Re
E(t)α0(t)

∑
a

|za,1s|2
∫ t

−∞
dt′E(t′)α∗0(t′)e

Γ1s
2 (t′−t)eiω1s,a(t′−t)e−iω0t′

. (5.2.42)

Here a non-trivial integral over time appears where the integrand contains a func-

tion with no definite form multiplied by an exponential – there is a work around

however. The sum over a in front of the integral sums over the exponential term

of form exp[iω1s,a(t′ − t)] in the integral. If we assume that the a dependent co-

efficients |za,1s|2 are nearly constant, which is reasonable at high ω0, the sum over

the exponential can be viewed as an effective Dirac delta function with respect to

(t′− t) [70] centering the contribution of the integral strongly around t′ = t. Conse-

quently, we evaluate E(t′)α∗0(t′) at t′ = t and extract it out of the integral. The rest

of the integral can now be computed regularly:

2 Re
E(t)|α0(t)|2

∑
a

|za,1s|2E(t)e−iω0t
∫ t

−∞
dt′e

Γ1s
2 (t′−t)eiω1s,a(t′−t)e−iω0(t′−t)


= 2 Re

E(t)ρ0(t)
∑
a

|za,1s|2
E(t)e−iω0t

i(ω1s,a − ω0) + Γ1s

2

,
(5.2.43)

where we use the definition of the neutral atom density matrix 5.2.21 to write ρ0(t).

Next we plug in the electric field 5.2.6 for the remaining E(t), take the real part of

the result and average over the period of the radiation field (2π/ω0) yielding

ρ0(t)E2(t)
∑
a

|za,1s|2
Γ1s

2

(ω1s,a − ω0)2 + Γ2
1s

4

. (5.2.44)

This is not yet a very informative result, at least intuitively. We can rewrite the

Lorentzian (or Cauchy) distribution in the sum as a Dirac delta [50], in the limit of

very small Auger core hole life times Γ1s:

δ(x− x0) = lim
ε→0

1
π

ε

(x− x0)2 + ε2
. (5.2.45)
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Therefore, according to standard scattering theory [26, 31], we identify the sum as

the total 1s photoionization cross section. By writing the square of electric field in

terms of the flux of the field and plugging this result back into 5.2.39 along with

correct constants we finally obtain:

ρ̇+
1s,1s(t) = σ1s(ω0)Jaρ0(t)− Γ1sρ

+
1s,1s(t) + 2 Im

∑
j

Rz
1s,j(t)ρ+

j,1s(t), (5.2.46)

where the cycle averaged flux is given by

J(t) = c

8πω0
E2(t). (5.2.47)

Note, that in here the ionization is a source term and that only the flux above K-

edge produces 1s core ionized ions. Via analogous steps one derives the equation for

the 2p ionized atom:

ρ̇+
2p,2p(t) = σ2p(ω0) [Ja + Jb] ρ0(t) + 2 ImRz

1s,2p(t)ρ+
2p,1s(t). (5.2.48)

Here both parts of the flux can ionize as 2p ionization can occur at energies below

K-edge too.

Let us next derive the evolution equation for coherences between 1s and 2p

ionized atoms for completeness. The general time evolution of the ions is given by

5.2.36 which, by plugging in the time derivatives from 5.2.19, yields

ρ̇+
1s,2p(t) =− Γ1s

2 ρ+
1s,2p(t) + iE(t)

∑
j

ρ+
j,2p(t)eiωj,1stT1s,j −

∑
k

ρ+
1s,k(t)e−iωk,2ptT2p,k


− iE(t)

∑
a

[
α0(t)αa2p∗(t)eiωa,1stTa,1s − αa1s(t)E(t)α0(t)eiωa,2ptTk,2p

]
(5.2.49)

after minor rearrangement and the usage of the definition 5.2.35 on the first line.

Now we have a similar situation as before with the terms on the second line. Apply-

ing similar steps as above with ρ+
1s,1s(t) would, however, yield an oscillatory ioniza-

tion cross section term with exp(iω1s,2pt) dependence that would average out over

the period of radiation. Thus, let us not waste our breath deriving these terms but
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simply drop them straight away. Inserting the definition of the electric field 5.2.6

and invoking the rotating wave approximation once more allows us to rewrite the

remaining equation in its final form in terms of Rabi frequencies 5.2.26:

ρ̇+
1s,2p(t) = −Γ1s

2 ρ+
1s,1p(t) + i

∑
j

Rz
1s,j(t)ρ+

j,2p(t)− iRz
1s,2p(t)ρ+

1s,1s(t). (5.2.50)

This concludes our derivation of the time evolution equations for the density matrices

or Liouville-von Neumann equations for SRIXS, next, we will take a closer look at

what we derived and what do these results mean.

5.2.3 Synopsis

The preceding two sections were full on derivation containing an overwhelming

amount of formulae and results, therefore, let us next collect all the actual results

together and try to give some intuitive explanation on their physical interpretation.

We shall also discuss solving the equations shortly.

The ultimate goal of the theory is to predict the evolution of the electric

field in the sample medium, thus enabling predicting spectra obtained by SRIXS.

Electric field evolution is generally governed by the wave equation. In the beginning,

however, the electric field flux was divided into two parts, the part above the K-

edge Ja and the part below Jb, therefore, two equations were presented governing

the evolution of the two parts, respectively:

∂Ja(t)
∂y

= −ρ0(t)NσtotJa(t), (5.2.51)

∂E0

∂y
+ 1
c

∂E0

∂t
= −i2πN

cω0
P . (5.2.52)

The first equation simply describes the attenuation of the electric field flux Ja due

to photoabsorption in the sample. Note that only the ground state population

is assumed to be relevant here since it is practically the only population in the

beginning and only single ionizations are considered here. The second equation
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governs the evolution of the electric field below the K-edge. It is the result of

applying slowly varying envelope approximation to the general wave equation (see

appendix B). The first equation is directly coupled to the sample via the ground

state population ρ0(t), whereas in the second equation the coupling is hidden in the

polarization, defined here as:

P =
∑
i 6=j

ρijTijωjiei(ωji−ω0)t +
∑
i 6=j

ρ+
ijTijωjiei(ωji−ω0)t. (5.2.53)

Now, in order to solve for the electric field, and therefore the spectrum, from the

equations 5.2.51 and 5.2.52 as the XFEL pulse passes through the sample, one needs

to know how ρij(t) and ρ+
ij(t) evolve in time. Deriving this time evolution was the

most important content of the previous two sections. Let us see the results of that

derivation next.

We first derived the time evolution of the neutral atoms in the sample in

the section 5.2.1. This derivation resulted in two sets of equations, one describ-

ing the evolution of populations (the diagonal elements of the density matrix) of

states in neutral atoms, and one describing the evolution of coherences (off-diagonal

elements). For population we obtained

ρ̇0(t) =− [σ1sJa + σv(Jb + Ja)] ρ0(t)− Im
∑
n

RQ

0,Jnd
1s

(t)ρJnd
1s ,0(t),

ρ̇Jnd
1s ,J

nd
1s

(t) =− Γ1sρJnd
1s ,J

nd
1s

(t)− Im
(
RQ

Jnd
1s ,0

(t)ρ0,Jnd
1s

(t)− 2
∑
J ′
Rz
Jnd

1s ,J
′nd
2p

(t)ρJ ′nd
1s ,Jnd

1s
(t)
)
,

ρ̇Jnd
2p ,J

nd
2p

(t) =− 2 ImRz
Jnd

2p ,K
nd
1s

(t)ρKnd
1s ,J

nd
2p

(t).

(5.2.54)

These three equations tell us how the populations of the respective states evolve as

the electric field interacts with the matter. Most of the terms here are not fully

intuitively interpretable to the naked eye as many of them depend on coherences,

and are therefore the result of complicated processes. We can, however, easily see

how the 1s and valence ionizations deplete the ground state in the first term of the

first equation, and that on the second line the first term describes losses due to
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spontaneous, irrelevant de-excitations, such as Auger decay. As far as interpreting

the rest of the terms goes, the Rabi frequency RTij(t) (see 5.2.26) contains a transition

operator, therefore, the indices of the Rabi frequency reveal the coupling which

contribution to the population the term describes. In order to solve this set of

equations one needs to know about the evolution of the coherences. To that end,

we derived the following set of equations describing coherences:

ρ̇Jnd
1s ,0(t) =− 1

2 [Γ1s + σ1sJa] ρJnd
1s ,0(t)− i

2R
Q

Jnd
1s ,0

(t)ρ0(t)

+ i
∑
J ′
Rz
Jnd

1s ,J
′nd
2p

(t)ρJ ′nd
2p ,0(t) + i

2
∑
n

RQ

Jnd
1s ,0

(t)ρJnd
1s ,J

nd
1s

(t),

ρ̇Jnd
1s ,K

n′d
2p

(t) =− Γ1sρJnd
1s ,K

n′d
2p

(t)− i

2R
Q

Jnd
1s ,0

(t)ρ0,Kn′d
2p

(t)

+ i
∑
J ′
Rz
Jnd

1s ,J
′nd
2p

(t)ρJ ′nd
2p ,Kn′d

2p
(t) + iRz

Jn′d
1s ,Kn′d

2p
(t)ρJnd

1s ,K
n′d
1s

(t),

ρ̇Jnd
1s ,J

n′d
1s

(t) =− Γ1sρJnd
1s ,J

n′d
1s

(t)− i

2R
Q

Jnd
1s ,0

(t)ρ0,Jn′d
1s

(t) + i

2R
Q

0,Jn′d
1s

(t)ρJnd
1s ,0(t)

+ i
∑
J ′
Rz
Jnd

1s ,J
′nd
2p

(t)ρJ ′nd
2p ,Jn′d

1s
(t)− i

∑
J ′
Rz
J ′n′d

2p ,Jn′d
1s

(t)ρJnd
1s ,J

′n′d
2p

(t),

ρ̇Jnd
2p ,J

′n′d
2p

(t) = iRz
Jnd

2p ,K
nd
1s

(t)ρ
Knd

1s ,J
′n′d
2p

(t) + iRz
Kn′d

1s ,J ′n′d
2p

(t)ρJnd
2p ,K

n′d
1s

(t).

(5.2.55)

The same description as above pretty much applies here too. We have three de-

excitation loss terms with Γ1s in the first three equations and one ionization loss term

due to 1s ionization in the first equation. The rest of the terms are contributions from

photoinduced couplings between the states and form rather complicated dynamics

for the system. The equations 5.2.54 and 5.2.55 effectively contain the information

about the SRIXS process.

As explained before, we did not include the fully dipolar RIXS to our model

this time, but did however take into account for the stimulated fluorescence from

the singly 1s ionized atoms. This is an important competing process as it causes the

emission of photons in the same frequency domain as the actual SRIXS process we

are interested in. Luckily, the ions have considerably fewer, less complicated states
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than the neutral atoms, therefore evolving according to

ρ̇+
1s,1s(t) = σ1sJaρ0(t)− Γ1sρ

+
1s,1s(t) + 2 Im

∑
j

Rz
1s,j(t)ρ+

j,1s(t),

ρ̇+
2p,2p(t) = σ2p [Ja + Jb] ρ0(t)− 2 ImRz

1s,2p(t)ρ+
2p,1s(t),

ρ̇+
1s,2p(t) = −Γ1s

2 ρ+
1s,2p(t) + i

∑
j

Rz
1s,j(t)ρ+

j,2p(t)− iRz
1s,2p(t)ρ+

1s,1s(t).

(5.2.56)

Here the first two equations describe the evolution of the populations and the last

the coherences between the states. Note that due to the splitting of the 2p orbital

to 2p1/2 and 2p3/2 the index 2p here contains both of these cases. Similar to before

we identify the ionization and de-excitation loss terms here.

As one can easily see the equations collected here are not solvable by pen and

paper, thus, in order to solve the emitted electric field after the sample we have to

resort to a numerical solution. This is, however, beyond the scope of this theoretical

review, but let us quickly describe the idea. In principle obtaining a solution is

straightforward. The equations are solved step by step in a simulation-like method

where each time step advances the position within the sample at the speed of light.

The density matrices ρ(t) and ρ+(t) are solved from the equations 5.2.54, 5.2.55

and 5.2.56 in every step and the electric field is updated according to 5.2.51 and

5.2.52. The initial electric field, i.e. the SASE pulse, is modeled as chaotic noise

with gaussian statistics [78, 79], whereas the density matrices initially only display

ground state population, i.e. ρ0 = 1 and all other elements are zero including all

the elements of ρ+(t).

5.3 Experimental overview

We have described traditional RIXS experiments in the section 4.2, and that gives a

nice reference of a typical spectroscopical experimental setting, but SRIXS experi-

ments are somewhat different. Thus, we shall give a quick overview on some aspects

of the stimulated RIXS experiment in the light of the previous sections. While dis-



5.3. EXPERIMENTAL OVERVIEW 75

cussing the X-ray sources, we have shortly described an X-ray free electron lasers

in the section 4.2.2, where it was explained that XFELs produce extremely intense

X-ray pulses using SASE and that the spectrum of such a source resembles chaotic

noise. In the section 5.1.1 it was mentioned that this complicates the experiments

somewhat, and here we shall attend to that problem by introducing a couple of pos-

sible solutions. The obvious solution relies on developing better XFELs capable of

producing tunable, stable and reproducible pulses, preferably with some predictable

lineshape. Such devices should be able to control pulse duration, frequency and

delay between pulses, further, it would be convenient to be able to control relative

phases between pulses [6, 22]. One can rather confidently say that such devices

are just a matter of time since in the extreme ultraviolet range seeded FELs have

demonstrated these qualities [80, 81]. As we know, however, the current XFELs

produce radiation through SASE and the qualities are far from this. The radiation

is coherent in the transverse direction but not in the longitudinal, in other words,

the level of spatial coherence can be high but the temporal and spectral coherence

is low [6, 53]. The spiky random structure in spectral and temporal domains is

Figure 5.3: Schematic of a self-seeded SASE. The first undulator from the left produces a standard

SASE pulse. The electrons and the radiation are separated and the radiation is monochromatized.

The monochromatized beam will act as a seed for the SASE as the electrons and the beam are

guided to the second undulator producing a high intensity narrow band X-ray spectrum. Adapted

here from [82] with the permission from Springer.
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demonstrated in the figure 4.6 in section 4.2.2. Recent advancements include meth-

ods for producing a couple of pulses with somewhat tunable separation and reducing

the number of intensity spikes considerably [83, 84], these pulses nevertheless have

at least an underlying SASE structure and are not reproducible. Self-seeded SASE

is a likely candidate to resolve all of these issues in the future [85]. We shall not

delve into this concept beyond the illuminating schematic 5.3 where the principle

of two undulators and monochromatizing the X-ray beam while separated from the

electrons is presented. Such a device would be able to deliver considerably more

convenient pulse properties.

Along with the randomness of the SASE spectrum the absence of reproducibil-

ity is also a large complication in XFEL based spectroscopy. This leads us to the

second solution of the SASE problem. A solution that is already at hand and can

be used with the current XFELs relies on statistics and careful data analysis. By

looking at the XFEL spectra 4.6 one might quickly think that it is impossible to

obtain spectroscopic data with such a source. Throw in the fact that the pulses can-

not be reproduced and despair is not far. It turns out, however, that high quality

spectra can be obtained with XFEL radiation. The spiky structure of the XFEL

spectrum is utilized in the sense that each of the intensity peaks can be thought as

a narrow band pulse driving a scattering process, since peaks are narrow, high reso-

lution is achieve in a statistical sense. Even though the band width of the spectrum

of the whole pulse covers all the transition energies as depicted in 5.1.1 (c), a single

SASE shot can be thought as bunch of narrow band pulses at separate energies.

Performing covariance analysis [86] over a large set of recorded spectra a high reso-

lution spectrum, analogous to narrow band source spectrum, can be obtained [5,69].

The resolution of the final spectrum is then determined by the peak width of the

SASE spectrum. This method obviously requires that a large number of spectra are

recorded, it is however, not a problem since current XFELs already have repetition
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rates of dozens of hertz [23,52]. This shows that current XFELs can be used for at

least simple SRIXS experiments and encourages to invest more effort in developing

data analysis tools.

The experimental setup of a currently realizable SRIXS experiment itself is

rather straightforward. As explained in 5.2, the SRIXS experiment is assumed one

dimensional, unlike traditional RIXS experiment, because of the population inver-

sion channel required for the amplification by stimulation. Therefore the experimen-

tal scheme resembles more an X-ray absorption experiment than a traditional RIXS

setup: The XFEL pulse is focused into the sample and the spectrometer is placed

behind the sample straight on the beam path. In the experiment [23] a flat-field

grazing incidence spectrometer with an X-ray CCD detector was used. The SRIXS

spectrum of a single shot is recorded as the difference of the incoming and transmit-

ted X-ray spectra, thus, X-ray optics for measuring the incoming and transmitted

spectra at the same time would facilitate faster, more accurate measurements, but

is not mandatory [23]. Such beam splitter would be placed between the source

and the sample so that a part of the incoming beam could be diverted to second

spectrometer separate from the one behind the sample.

5.3.1 Potential first samples

Even though this is work describes stimulated RIXS in a very general level, it is

always illuminating to introduce possible samples and speculate on the additional

information the method at hand could yield. Of course, one must immediately

recognise the fact that the first experiment performed should, and will, be a proof

of concept type measurement with no aim of extracting actual useful scientific data.

This type of experiment could, for instance, focus on detecting the weak quadrupole

pre-K-edge 1s-3d resonance in atomic neon instead of dipole transition [23,69]. This

would encourage more complicated experiments and the evolution on to transition
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metals where quadrupole transitions act as a direct probe of the 3d valence orbitals in

the hard X-ray range. Let us quickly review few realistic, relatively simple examples

of types of transition metal samples where SRIXS utilizing quadrupole transitions

could yield useful complementary information to traditional methods.

Strongly correlated materials exhibit numerous interesting and useful prop-

erties, such as high temperature superconductivity, colossal magnetoresistance and

metal-insulator transitions, that still lack a detailed explanation. Many transition

metal oxides fall into this class of materials and are therefore under intense research.

A useful method for investigating the valence energy levels of these materials are

the dd-excitations, which are sensitive to the local coordination. These excitations

change only the occupation of the 3d orbital and can be directly investigated via

soft X-ray techniques, such as RIXS or X-ray absorption spectroscopy [87], using

the L-edge and nearby dipole allowed resonances, or via hard X-rays using the K-

edge and the 1s-3d quadrupolar transitions. Soft X-ray spectra are loaded with

information due to strong 2p-3d interaction causing multiplet effects and thus also

complicated to analyze. Furthermore, bulk sensitivity, better resolution and better

penetration make hard X-rays a candidate worth considering for such studies, even

though K-edge resonances are relatively weaker. In [47] Huotari et al. consider

dd-excitations utilizing hard X-ray RIXS on Ni K-edge in NiO discovering strong

quadrupole character of the pre-peak and accurately determining the crystal field

parameters of the electronic structure using novel synchrotron based methods. In

experiments such as this being able to enhance the quadrupole transition coupling

significantly via SRIXS could open up new possibilities and allow even more accurate

determination of electronic structure utilizing the high energy resolution obtainable

by SRIXS. Conversely to the discussion by Huotari et al. on the possibility of us-

ing their method in high pressure sample environments, SRIXS could be especially

useful allowing measurements in dilute samples with weak quadrupole coupling.
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Another aspect also briefly discussed by Huotari et al. is the structural geom-

etry and coordination of the material structure around the transition metal centre.

In the anti-ferromagnetic NiO a rhombohedral distortion from perfect cubic struc-

ture is present under the Néel temperature (523 K) which can also be observed in

the pre-edge structure obtained by RIXS [47,88]. The analysis of X-ray absorption

near edge structure (XANES) [87] pre-edge structures along with related transition

metal coordination complexes and bulk oxides are discussed more generally by de

Groot et al. in [76]. They present a comprehensive guide to the analysis of pre-edge

structures in transition metal coordination complexes where different symmetries

have different levels of 3d and 4p orbitals mixing leading to variations in the pre-

edge structure. For instance, octahedral complexes exhibit only 1s-3d quadrupole

transitions, whereas in tetrahedral complexes the metal 3d and 4s states mix lo-

cally if the inversion symmetry is broken leading to more a pronounced pre-edge as

dipole coupling is also allowed. Bulk transition metal oxides, on the other hand,

may behave similarly to coordination complexes when they can be described with

a local model, which is the case for divalent oxides, whereas trivalent and tetrava-

lent oxides display non-local orbital mixing in addition to the local mixing. These

examples clearly show that the pre-peak structure contains abundant information

on the electron structure in the form of different levels of dipole and quadrupole

characters. Therefore being able to measure the pre-edge structure more accurately

and being able to separate between the dipole and quadrupole characters [48] of the

pre-edge even more precisely would be useful in transition metal related research.

Traditional RIXS provides useful complementary information to XANES pre-edge

structures allowing a more detailed analysis. Stimulated RIXS offers potentially

even more resolving power and energy resolution, further, it allows the detection

of formerly undetectable quadrupole transitions thus facilitating the separation of

dipole and quadrupole characters of the pre-peak.



6. Conclusions

We set out to give a comprehensive and self-contained theoretical introduction to

stimulated resonant inelastic X-ray scattering. The goal was to achieve this with-

out any substantial previous knowledge of stimulated RIXS, nonlinear X-ray spec-

troscopy, or even traditional RIXS, making the present work accessible for anyone

the with basic understanding of quantum physics and spectroscopy. The second

objective of this work, perhaps for the more advanced reader, was to give an ini-

tial nudge in the direction of realizing SRIXS in transition metals with high X-ray

energies utilizing quadrupole transitions.

In regards of the first objective the reader was reminded of the basics of

many-particle quantum mechanics in the very beginning of this work. A more in-

volved description suitable for representing quantum mechanical states in atoms and

molecules, the configuration interaction method, was also presented right after the

basics. Next, the matter-radiation interaction was investigated physically and as a

result the relevant Hamiltonian describing both the electromagnetic field and mat-

ter separately as well as their interaction was derived. In the sense of perturbation

theory, the most important result was, of course, the interaction Hamiltonian as it

mediates all the processes investigated here. As often in physics, approximations are

required here too, thus, the dipole and quadrupole approximations to the interaction

Hamiltonian were derived. Following the introductory chapters, the traditional the-

ory describing RIXS was carefully presented and the scattering cross section derived.
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We embedded the traditional Kramers-Heisenberg approach with the configuration

interaction singles theory interpreting the RIXS process in the light of single particle

excitations giving us the same fundamental physical interpretation as used later on

in the theoretical considerations of stimulated RIXS. After the theoretical consid-

erations we take a look at the basics of RIXS experiment by first introducing the

concept of a RIXS plane visualizing the information obtainable by RIXS followed

by an overview of X-ray sources and detectors.

Once the basics and the introduction to RIXS was complete, we moved on to

the actual topic: stimulated RIXS. In the beginning of chapter 5 we introduce the

basic idea in an intuitive description without any mathematical detail in order to lead

the reader, especially one without any previous knowledge of nonlinear spectroscopy,

to the subject. We further present several possible pulse schemes that could be used

to realize SRIXS experiments including the current state of the art SASE pulses in

order to give a depiction of what is possible now and what could be achieved in the

future with this method. After the intuitive introduction to SRIXS we proceeded

to a detailed derivation of the Maxwell-Liouville-von Neumann equations governing

the evolution of both the electromagnetic field and the density matrix elements.

This theoretical model is, for the first time, considered up to quadrupole order. The

obtained set of equations is not solved within this work since a meaningful solution

requires relatively involved computational efforts, rather, this is hoped to act as a

foundation to future computational work. Finally we conclude the chapter to an

experimental remark, same as the traditional RIXS chapter, but this time we focus

more on the problematic nature of the SASE pulses of the current XFELs introducing

possible solutions via future development of XFELs and novel data analysis tools.

Since quadrupole transitions have not been considered in SRIXS so far, we end

with a short view of possible transition metal samples where SRIXS could provide

complementary information to X-ray absorption or traditional RIXS.
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Considering the goals set for the work in the light of this recap, we can say

that it fulfills them. This work assumes only the minimum previous knowledge of

the field, yet it delivers a full theoretical description all the way to the cutting edge,

even proceeding slightly beyond the previous considerations. Even though mainly

theoretical, it also manages to give an overlook on the experimental side on the

level any, even the most hardcore, theorist should know. As this work is an intro-

duction to the field, the most advanced theoretically possible applications of SRIXS

have not been thoroughly discussed, but rather left on the level of a notion for the

interested reader. Future research in the field is offers a wide array of possibili-

ties both theoretically and experimentally. Considering the capabilities of current

XFELs even the one dimensional theory offers a variety of experimental possibili-

ties, first and foremost being the experimental detection of stimulated quadrupole

transitions in a proof of concept type experiment. Following a successful proof of

concept an experiment on a scientifically relevant transition metal sample becomes

topical. Theoretically at least the expansion to three dimension is something to look

forward in the future, not to dismiss comprehensive computational studies.



A. Quantized Electric and

Magnetic Fields

Let us calculate exact representations for the free quantized electric and magnetic

fields for a reference. The quantized vector potential describing the electromagnetic

field is given by 3.1.17, thus, as shown in the section 3.1, we can calculate the fields

as:

Ê(x) = −α ∂
∂t

∑
k,λ

√
2π

V ωkα2

[
âk,λεk,λe

−i(ωkt−k·x) + â†k,λε
∗
k,λe

i(ωkt−k·x)
]

= i
∑
k,λ

√
2πωk
V

[
âk,λεk,λe

−i(ωkt−k·x) − â†k,λε∗k,λei(ωkt−k·x)
]
,

(A.0.1)

B̂(x) = ∇× Â(x)

= i
∑
k,λ

√
2π

V ωkα2

[
âk,λ (k × εk,λ) e−i(ωkt−k·x) − â†k,λ

(
k × ε∗k,λ

)
ei(ωkt−k·x)

]
.

(A.0.2)

Note that here we have written the time dependence explicitly.
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B. Slowly Varying Envelope

Approximation

Slowly varying envelope approximation effectively states that higher order deriva-

tives in the wave equation can be neglected. If ω0 and k are the frequency and wave

vector of the carrier wave for the signal E(t, r), we can write the electric field in the

standard form:

E(t, r) = E0(t, r)ei(k·r−ω0t) + E∗0 (t, r)e−i(k·r−ω0t). (B.0.1)

In the slowly varying envelope approximation one assumes that the complex envelope

E0(t, r) varies slowly in time and space, thus implying:

∣∣∣∇2E0(t, r)
∣∣∣� |k · ∇E0(t, r)| and

∣∣∣∂2
t E0(t, r)

∣∣∣� |ω0∂tE0(t, r)|. (B.0.2)

Therefore the wave equation in vacuum (no polarization term) becomes

∇2E(t, r)− 1
c2
∂2E(t, r)
∂t2

= 0

(∇2E0) + 2ik · ∇E0 + 1
c2
∂2E0(t, r)

∂t2
+ 2iω0

c2
∂E0

∂t
− (k2 − ω2

0
c2 )E0 = 0

k · ∇E0 + ω0

c2
∂E0

∂t
= 0 (B.0.3)

Where we have dropped the second derivatives according to slowly varying envelope

approximation and chosen the k and ω0 to satisfy the dispersion relation:

k − ω0

c
= 0
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