
Master’s thesis
Theoretical and Computational Methods

Federated Learning for Mortality Prediction
in Intensive Care Units

Hannu Pelttari

September 7, 2020

Supervisor(s): Antti Honkela, Jyri Kivinen, Timo Petäjä

Examiner(s): Antti Honkela
Jyri Kivinen

University of Helsinki
Faculty of Science

PL 64 (Gustaf Hällströmin katu 2a)
00014 Helsingin yliopisto

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/334611171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science
Theoretical and Computational Methods

Hannu Pelttari

Federated Learning for Mortality Prediction in Intensive Care Units

Master’s thesis September 7, 2020 67

Federated Learning, Random Forest, Gradient Boosting, Mortality Prediction

Federated learning is a method to train a machine learning model on multiple remote datasets
without the need to gather the data from the remote sites to a central location. In healthcare,
gathering the data from different hospitals into a central location can be a difficult and time-
consuming task, due to privacy concerns and regulations regarding the use of sensitive data, making
federated learning an attractive alternative to more traditional methods.

This thesis adapted an existing federated gradient boosting model and developed a new federated
random forest model and applied them to mortality prediction in intensive care units. The results
were then compared to the centralized counterparts of the models.

The results showed that while the federated models did not perform as well as the centralized models
on a similar sized dataset, the federated random forest model can achieve superior performance when
trained on multiple hospitals’ data compared to centralized models trained on a single hospital. In
scenarios where the centalized models had data from multiple hospitals the federated models could
not perform as well as the centralized models. It was also found that the performance of the
centralized models could not be improved with further federated training. In addition to practical
advantages such as possibility of parallel or asynchronous training without modifications to the
algorithm, the federated random forest performed better in all scenarios compared to the federated
gradient boosting. The performance of the federated random forest was also found to be more
consistent over different scenarios than the performance of federated gradient boosting, which was
highly dependent on factors such as the order with the hospitals were traversed.

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Degree programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

Acknowledgements

I want to thank GE Healthcare and Chief Scientist Hanna Viertiö-Oja for providing the
topic and an opportunity to write this thesis. Special thanks also to my thesis supervisors
Jyri Kivinen and Timo Petäjä at GE Healthcare as well as Antti Honkela, my thesis
supervisor at University of Helsinki. Lastly, I would like to thank the data science team
at GE Healthcare, and my friends and family.

September 7, 2020
Hannu Pelttari

1

Contents

Acknowledgments 1

Acronyms 3

1 Introduction 5

2 Background 7
2.1 Machine Learning . 7
2.2 Decision Trees . 8

2.2.1 Impurity Measures . 9
2.2.2 Advantages and Disadvantages . 10

2.3 Boosting and Ensembles . 11
2.3.1 Boosting . 11
2.3.2 Ensemble Learning . 12

2.4 Neural Networks . 13
2.4.1 Feed-Forward Networks . 13
2.4.2 Backpropagation . 14

2.5 Model Evaluation and Tuning . 15
2.5.1 Training, Test and Validation Sets 15
2.5.2 Cross-Validation . 16
2.5.3 Model Performance . 18
2.5.4 Hyperparameter Tuning . 21

3 Federated Learning 23
3.1 Federated Deep Learning . 23

3.1.1 Federated Averaging . 24
3.1.2 Secure Aggregation . 24

3.2 Federated Gradient Boosting Decision Trees 25
3.2.1 Sequential Tree Building . 25
3.2.2 SimFL . 27

2

1

3.3 Privacy Protection . 27
3.4 Related Work . 28

4 A Novel Method for Federated Random Forest 31
4.1 Federated Random Forest . 31

4.1.1 Communication Costs . 32
4.1.2 Computational Costs . 32

5 Dataset and Experiments 33
5.1 The eICU Dataset . 33

5.1.1 Targets and Prediction Windows 33
5.1.2 Cohort Selection . 35
5.1.3 Data Statistics . 35

5.2 Experiments . 36
5.2.1 Experiments on Full Training Set 37
5.2.2 Centralized and Federated Training on a Subset of Hospitals 37
5.2.3 Federated Training on Top of Centralized Training 37

6 Results 39
6.1 Models Trained on Full Training Set . 39
6.2 Models Trained on a Subset of Training Set Hospitals 41

6.2.1 Centralized Models with Data from the Largest Hospital 41
6.2.2 Centralized Models with Data from the 2 Largest Hospitals 43
6.2.3 Centralized Models with Data from the 3 Largest Hospitals 44

6.3 Federated Training on top of Centralized Models 46
6.3.1 Models with 2 Centralized Hospitals 46
6.3.2 Models with 3 Centralized Hospitals 48

6.4 Effect of Number of Trees on Federated Random Forest 49
6.5 Factors affecting Federated Gradient Boosting Performance 51

7 Discussion 52
7.1 Performance of the models . 52
7.2 Limitations . 55

8 Conclusions 58

Appendix A Features 60

Bibliography 62

2

Acronyms

AUPRC Area under the precision-recall curve.

AUROC Area under the receiver operator characteristic curve.

BPdiast Diastolic blood pressure.

BPmean Mean blood pressure.

BPsyst Systolic blood pressure.

BUN Blood urea nitrogen.

CRP C-reactive protein.

CV Cross-validation.

CVP Central venous pressure.

EMR Electronic medical records.

FADL Federated autonomous deep learning.

FedGB Federated gradient boosting.

FedRF Federated random forest.

FiO2 Fraction of inspired oxygen.

FPR False positive rate.

GB Gradient boosting.

GCS Glasgow coma scale.

GDPR General data protection regulation.

HIPAA Health insurance portability and accountability act.

3

4 Acronyms

ICU Intensive care unit.

MCH Mean corpuscular hemoglobin.

MCHC Mean corpuscular hemoglobin concentration.

MCV Mean corpuscular volume.

MPV Mean platelet volume.

MSE Mean squared error.

PaCO2 Arterial carbon dioxide partial pressure.

PaO2 Arterial oxygen partial pressure.

PEEP Positive end-expiratory pressure.

RDW Red cell distribution width.

RF Random forest.

ROC Receiver operator characteristic.

SpO2 Peripheral capillary oxygen saturation.

TPR True positive rate.

1. Introduction

In the recent years, machine learning has gained popularity in solving various problems
in many industries, including healthcare. During the last decade, the number of articles
published focused on machine learning in healthcare has increased manyfold [1].

Machine learning methods usually require that the data used in training the models
is gathered to a single database on which the models are trained on. Collecting data from
e.g. multiple hospitals to a central location poses a challenge in healthcare, since the
data usually contains sensitive information and privacy must be guaranteed for everyone
included in the dataset. Hence, there are many regulations, such as the Health Insurance
Portability and Accountability Act (HIPAA) in the United States and the General Data
Protection Regulation (GDPR) in the European Union, that must be followed when
sensitive data are used [2] [3]. In addition to privacy concerns, the amount of data
might be very large which makes copying and transferring the data from one location
to another more difficult. The data may also be spread out to many different locations
which, in combination to the two previous factors, makes the data collection efforts a
time-consuming and expensive task.

One solution to these problems is a method called federated learning [4]. In feder-
ated learning, a centralized server distributes the model parameters to the remote sites,
which then train the model and update the parameters using their own data and send
the updated parameters back to the central server which aggregates the parameters and
updates the global model on the server. This is in contrast to more traditional methods
where usually a a single model is trained on a single centralized dataset.

The objective of this thesis is to study federated learning methods in mortality
prediction in the intensive care unit (ICU) and their performance compared to traditional
machine learning methods where the data is collected centrally. The patients in intensive
care units are generally very ill and early identification of high risk patients may save
lives and help doctors to target their attention and efforts where it is most impactful.
In the experiments of this thesis, the models make hourly predictions for each patient
of whether the patient is going to die within the next 8 hours or not. These kinds of
predictions can be used for example to alert doctors in advance if the patient’s state is
about to deteriorate.

5

6 Chapter 1. Introduction

The main research question for this thesis is that can federated learning achieve
similar performance compared to centralized learning? This question is studied by training
both the federated and the more traditional, centralized models on the same data. The
centralized models keep the dataset as a single dataset and the federated models split the
dataset into multiple smaller datasets, each containing data from a single hospital.

Further research questions are whether the federated models can achieve superior
performance compared to the centralized models if the federated models have access to
more data, and if the performance of the centralized models can be improved if they are
trained centrally on a smaller dataset and then additional training is carried out in a
federated manner. The former question is studied by training the centralized models on
datasets with data from 1 to 3 largest hospitals and the federated models on datasets with
data from 5 to 20 largest hospitals. The latter question is studied by having data from
2 or 3 largest hospitals centralized and data from the rest of the hospitals as separate
datasets. The models are then trained on this partly federated, partly centralized dataset
and the performance is compared to the centralized models having data from the 2 or 3
largest hospitals.

Chapter 2 contains a brief introduction to some background information on ma-
chine learning necessary for understanding this thesis. Chapter 3 introduces the concept
of federated learning and the federated gradient boosting model used in this thesis as well
as a brief discussion of privacy protection and some relevant previous work on federated
learning. Chapter 4 presents a novel federated random forest method developed for this
thesis. Then we move on to Chapter 5, which describes the data used in this thesis as
well as the experiments that are carried out.Chapter 6 presents the results of the exper-
iments. A discussion of the results is contained in Chapter 7, along with the limitations
related to the data, experiments and analysis. Finally, Chapter 8 contains a summary
and conclusions from the results of the thesis.

2. Background

This chapter contains a short introduction to some machine learning concepts necessary
for understanding the methods and experiments used in this thesis. The chapter starts
with a brief introduction to machine learning, then provides an overview of decicion trees,
gradient boosting, random forests and neural networks, and ends with a review of some
general concepts used for evaluating and training machine learning models.

2.1 Machine Learning

The book Machine Learning: A Probabilistic Perspective [5] defines machine learning as
"a set of methods that can automatically detect patterns in data". These learned patterns
can then be used to perform different kinds of tasks. Some of the most common tasks
that machine learning is used are clustering [6] where similar items are grouped together,
anomaly detection [7] where anomalies are detected in a signal, regression [8] where the
value of an outcome variable is predicted based on one or more independent variables and
classification [9] where items are classified into one or more classes.

From another point of view, machine learning can be categorized into supervised and
unsupervised learning. In unsupervised learning the computer is not given any examples
of what is the correct end result of performing the task. Clustering for example is usually
unsupervised since the machine learning algorithm gets some data as input and performs
the clustering without any instructions on which samples should belong to which clusters.
A simple example of supervised learning is a classification task where we have some
training data for which we know the true class of each observation, and based on that
data, we try to learn how to assign a correct class to observations for which we do not
know the true label beforehand. The classification task can then be separated into a
training phase and a prediction phase. Model training can also be called model fitting,
especially when considering models such as linear regression [10] where a curve is fitted
to the data. Instead of prediction, the term inference can be used and it can be more
appropriate in some cases since not all machine learning is focussed on prediction. In the
training phase the classification algorithm gets as input not only the data it is supposed
to classify but also the correct classification labels for each data point. The classification

7

8 Chapter 2. Background

algorithm uses the training data and the correct labels to learn from the data how to
classify each data point. After the training phase, the algorithm can be used to classify
new data for which the correct labels are not known. These are not all of the possible
categorizations and types of machine learning, and multiple other categories exist, such
as semi-supervised learning [11] and reinforcement learning [12].

The machine learning tasks in this thesis are all binary classification tasks, meaning
that there exists two distinct classes to one of which each data point belongs to. Many
different classification algorithms have been developed and the basics of the ones relevant
to this thesis are presented in the following sections.

2.2 Decision Trees

Decision trees are one of the simplest machine learning methods and they can be used for
both regression and classification tasks [13]. This thesis is only concerned with classifica-
tion trees and this section will provide an introduction to them.

The training phase for classification decision trees work by splitting the feature space
recursively into two regions and classifying a sample to the majority class in the region
the sample is located in. Decision trees are binary trees meaning that each node have at
most two child nodes. The first node in the tree, which has no incoming edges, is called
the root node, the final nodes, which have no outgoing edges, are called leaf nodes, and
the nodes between the root and the leaves are called internal nodes [14].

To keep things simple, let us consider the case where there are two classes and all
the features are binary, i.e. have two possible values, for example 0 and 1. The first stage
in building the tree is to find the best feature tho make the first split on. For this, all
the features are considered and the split is executed for the feature that results in the
smallest impurity, determined by some impurity measure. The root node now splits the
data so that all data for which the chosen features value is 0 goes into one branch and all
the data for which the value is 1 goes to the other branch. In the next stage the features
which result in the lowest impurity need to be found for the two resulting nodes. This
search for splits is continued until some stopping criterion is reached or until there are no
more features to split on.

Since at each stage, the split that is chosen is determined by the lowest impurity in
the current stage, the method is considered to be greedy, i.e. it chooses the best split for
the current situation, and does not consider how it affects the performance further down
the line. It is not guaranteed that this produces the optimal tree. [15]

To classify a sample to a class in the prediction phase, the tree is traversed down-
wards. For example, if the first split is made for feature f1, the value of the sample for
f1 is examined, and depending on the value of f1 and the split criterion, the traversing

9 Chapter 2. Background

continues either to the left or the right branch,. This is done until one of the leaf nodes
is reached. At the leaf node, the sample is classified to the majority class in that region.

So far, only binary features have been considered. Using continuous features com-
plicates the matter only slightly. If the features are continuous, we need to consider not
only what feature to split on but also at what value to make the split on. In practice,
when searching for the optimal split for a feature, the values of the feature are sorted and
the averages of each adjacent values are considered as the potential split points. The split
is chosen by calculating the impurity for each point and choosing the one resulting in the
lowest impurity.

2.2.1 Impurity Measures

A simple way to measure impurity would be to use the misclassification rate of the samples

1
N

∑
i

(1− δyik) = 1− accuracy, (2.1)

where N is the number of samples, k is the class label, yi is the class that the classfier
assigned for sample i and δyik is the Kronecker delta, which is defined as

δi,j =

1, if i = j

0, if i 6= j.
(2.2)

Accuracy can be defined as
accuracy = 1

N

∑
i

δyik. (2.3)

Although simple, since misclassification rate is not differentiable and not as suitable for
numerical optimization, it is usually not used as an impurity measure for classification
trees. [16]

Two common impurity measures used in classification decision trees are the Gini
index and entropy. The formula for the Gini index is

IG(p) =
J∑
i=1

pi
∑
k 6=i

pk

= 1−
J∑
i=1

p2
i , (2.4)

where J is the number of classes and pi is the fraction of items labeled to class i in the
data set. Considering the simple case where J = 2, i.e. we have two distinct classes, we
can see that the impurity is clearly minimized when all the items belong to the same class

10 Chapter 2. Background

and maximized when there is equal number of items in both classes. This can be verified
by plugging in the numbers:

IG(p) = 1−
2∑
i=1

p2
i = 1− 02 + 12 = 0, (2.5)

which is the impurity when all the items belong to one of the classes and

IG(p) = 1−
2∑
i=1

p2
i = 1− 0.52 + 0.52 = 0.5, (2.6)

which is the impurity when both classes have equal number of items in them.
The formula for entropy does not differ greatly from the Gini index:

IE(p) = −
J∑
i=1

pi log(pi). (2.7)

Since 0 log(0) and 1 log(1) both are equal to zero, we can see that entropy too is minimized
when all items belong to the same class.

Since both the Gini index and entropy are minimized when the region contains only
one class and maximized when the distribution is equal to all classes, either one of them
can be used as a criterion for choosing a split. The Gini index and entropy impurity
measures are better than misclassification rate in that they are more sensitive to changes
in class probability and favour pure splits that only contain one class [5]. Many other
impurity measures also exist, such as likelihood ratio chi-squared statistic, DKM criterion
and gain ratio [14]. The details of these other impurity measures will not be presented
here however, since only the Gini index and entropy are considered in the experiments of
this thesis.

2.2.2 Advantages and Disadvantages

One of the greatest advantages of decision trees compared to other model types is the easy
interpretability and intuitivity of decision trees [15]. If one has access to the tree structure,
it is easy to manually traverse through the tree to see why a sample was classified the
way it was.

Another advantage is the handling of missing values. Many other models cannot
handle missing values, hence they need to be imputed. For decision trees there are a
couple of options. For categorical variables one can either create a new category "missing"
or construct surrogate variables, where one first chooses a best feature and split point for
the primary split and then creates a list of surrogate predictors and splits to use if the
primary is missing [16]. Decision trees also perform automatic variable selection and scale
well to large datasets [5].

11 Chapter 2. Background

The downside of decision trees is that they have high variance, so changing only a
small part of the data can lead to a very different tree structure. This is due to the fact
that a change in the top split propagates its effect downwards to further splits [16].

2.3 Boosting and Ensembles

This section will present methods for combining multiple decision trees into a larger model
to overcome some of the weaknesses of decision trees. Two different ways of combining
trees are considered, namely boosting and ensemble learning. Although it is possible to
use boosting or ensembles with other model types than decision trees, this section will
consider boosting and ensemble learning only for decision trees.

2.3.1 Boosting

Boosting is a way to combine multiple base models that perform only slightly better than
random, sometimes called weak learners [17], into a single model that performs better than
the individual weak learners. Boosting in general can be viewed as way to fit an additive
expansion to a set of elementary "basis" functions [16]. The basis function expansion can
be described as

f(x) =
M∑
m=1

βmb(x; γm), (2.8)

where βm are the expansion coefficients and b(x; γ) are the basis functions. The basis
functions considered in this chapter are the individual decision tree classifiers, although
they can in principle be any simple functions.

The basic idea of boosting is to give more weight to samples that were misclassified
as more weak learners are added to the model [5]. Next we will show how this can be
done with a method called gradient boosting.

Gradient Boosting

Gradient boosting was first introduced by Jerome Friedman in 2001 [18]. Function ap-
proximation in gradient boosting is done in function space as opposed to parameter space.
Friedman introduced the following algorithm for gradient boosting:

12 Chapter 2. Background

Algorithm 1 Gradient Boosting
1: F0(x) = argminρΣN

i=1L(yi, ρ)
2: for m=1 to M do:
3: ỹi = −

[
∂L(yi,F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

, i = 1, . . . , N
4: am = argmina,βΣN

i=1 [ỹi − βh(xi; a)]2

5: ρm = argminρΣN
i=1L(yi, Fm−1(xi) + ρh(xi; am))

6: Fm(x) = Fm−1(x) + ρmh(x; am)
7: end for

In Algorithm 1 [18], L(yi, ρ) can be any differentiable loss function and a is a pa-
rameter characterizing a weak learner h(x; a), usually a decision tree.

In practice, at each stage, gradient boosting adds to the ensemble a weak learner
that tries to predict the residuals ỹ, calculated as the negative gradient of the loss function.

In line 1 of Algorithm 1, the model is initialized with a constant value by minimizing
the loss function with respect to ρ. In the loop, starting from line 2, M trees are built.
The negative gradient of the loss function is calculated in line 3, which gives us the values
for the residuals. A weak learner (a decision tree in this thesis) is fitted on the residuals
on line 4. The parameter ρm is then optimized in line 5 and the model is updated in line
6. This method results in gradient descent in function space.

2.3.2 Ensemble Learning

Ensemble learning is another way of combining base models into a larger model. In
principle, neural networks and boosting can also be considered as ensemble learning [5]
but for clarity, these will be considered as separate concepts in this chapter.

A simple way to perform ensemble learning is to train multiple models and then
average the predictions of the models. If all models are trained on the same data, this will
result in multiple identical or very similar models in most cases. One way to introduce
variability is to use bootstrap and train the models on bootstrap datasets [17]. The basic
idea is to randomly draw samples with replacement from the original dataset until a
same size (bootstrap) dataset is produced, and then train the base models on different
bootstrap datasets [16].

Next, random forests will be introduced as a way to introduce even more variability
between the models.

Random Forests

Decision trees are noisy [16] and prone to overfitting [19], i.e. they have good prediction
performance on the data they were trained on but poor performance on other data.

13 Chapter 2. Background

This means that decision trees generalize poorly to unseen data. Random forests try to
increase the generalization performance of individual trees by using bootstrap aggregation
or bagging as it is often called. The general idea is to build many de-correlated trees and
average the predictions of the trees to get the final prediction. For classification, each
tree in the forest cast a unit vote and the prediction given by the forest is taken to be the
mode of the votes.

Since fully grown trees usually have low bias but high variance, the generalization
performance can be increased by reducing the variance. The variance of B independently
distributed random variables is given by

ρσ2 + 1− ρ
B

σ2, (2.9)

where ρ is the positive pairwise correlation and σ2 is the variance. Random forests decrease
the variance by increasing the number of trees B and decreasing ρ. [16]

The decrease of ρ in random forests is achieved with building de-correlated trees
by randomly selecting the input variables. When building a tree, a bootstrap sample of
size N is drawn and for each node, m out of p input variables are randomly selected to
be considered for the split. The best split is then selected from these m variables. If no
random sampling of variables would be used and the training set contains one very strong
predictor, then almost all trees would use the same strong predictors in their first split,
resulting in highly correlated trees [15]. Hence, random sampling of variables results in
de-correlated trees, decreasing ρ and therefore reducing the variance of the average.

Another advantage of random forests is that they are robust to overfitting, and
although there is a limit to the generalization error, overfitting does not happen when the
number of trees B is increased [20].

2.4 Neural Networks

Neural networks are statistical models inspired by the structure and information process-
ing of the brain, but since the goal is to develop an efficient machine learning algorithm
and not model the brain, biological accuracy is unnecessary [17] [21]. This section provides
a brief introduction to neural networks, necessary to understand federated deep learning,
which will be presented later in the thesis. The terms neural networks and deep learning
are used interchangeably in this thesis.

2.4.1 Feed-Forward Networks

The purpose of feed-forward networks is to approximate some function f and define a
mapping y = f(x;θ) [22]. Here x is the input to the network, y is the output of the

14 Chapter 2. Background

network and θ are the parameters that the network learns in order to approximate the
original function f as well as possible. Typically, feed-forward networks are composed of
multiple layers by chaining together multiple functions: f(x) = f (3)(f (2)(f (1)(x))). They
are called feed-forward networks because information flows forward from the first layer
f (1), called input layer, through intermediate layers to the last, output layer f (3) and there
are no closed directed cycles [17]. The layers between the input layer and the output layer
are called hidden layers. There are different conventions in literature regarding how many
layers a network is said to have, depending if the input and output layers are counted as
the layers of the network [17].

Without applying any activation function, the output of each linear layer is z =
W>h+ b, where W are the weights of the layer, b is the bias and h is the output from
the previous layer. For the first hidden layer, h = x, i.e. the input to the network. The
optimal values of the weights W and biases b for each layer are the parameters values
that the network is trying to learn.

Since z = W>h+ b is just a linear transformation applied to vector h, and can not
capture non-linear relationships, typically a non-linear activation function is applied to
each layer. A common choice for an activation function for hidden layers is the rectified
linear unit (ReLU), which is defined as f(x) = max(0,x), where x is the input vector. For
the output layer, the problem definition determines what kind of an activation function is
suitable. For example, the sigmoid function, f(x) = ex

ex+1 is a suitable activation function
for binary classification since it outputs values between 0 and 1, and the softmax function,
f(x)i = exi∑

j
exj is suitable for multiclass classification since it normalizes the output’s sum

to 1.
Next, we will consider how the values for the weights and biases of neural networks

are optimized during the training phase via backpropagation.

2.4.2 Backpropagation

As noted before, the training phase consists of optimizing the values of the weights and
biases and the way this is done is called backpropagation. The way that this optimization
works is that first some input is fed to the first layer of network which then feeds its output
to the next layer and so on, until the final layer is reached. This phase is called forward
propagation. The output of the final layer and the true value (the true label in the case
of classification) of the datum is fed to a loss function, such as the L1 and L2 [5] or cross-
entropy [17] losses. For each problem type, there is typically a natural output activation
function and loss function pair, such as sigmoid output activation and cross-entropy loss
for binary classification, or softmax output activation and multiclass cross-entropy loss
for multiclass classification [17]. The objective is then to find the weights and biases that

15 Chapter 2. Background

minimize the loss. The local minimum of the loss function can be found at the point
where the gradient is zero. Using this knowledge, the values of weights and biases can be
adjusted towards the minimum with gradient descent [17]. The gradient is calculated for
each layer, starting from the last layer, and the error is propagated backwards, hence the
name backpropagation. Let us now present this concept in a more formal way.

Let y = g(x) and z = f(g(x)) = f(y). The gradient of z with respect to x can now
be computed with the chain rule [22]:

dz

dx
= dz

dy

dy

dx
. (2.10)

For vectors, this can be written in vector notation:

∇xz =
(
∂y

∂x

)T
∇yz. (2.11)

From Equation (2.11) we can see that the gradient of x is equivalent to multiplying the
Jacobian matrix ∂y

∂x
with the gradient ∇yz [22].

To sum up, backpropagation is an algorithm to calculate the derivatives of all the
nodes in a neural network by recursively applying the chain rule and can be used in neural
networks to find a minimum of the loss function. An important consideration that has
been neglected so far however, is that there might be multiple local minima of the loss
function where the gradient is zero or very small, but we would like to find the global
minimum, i.e. the smallest value of the loss function for any weight and bias vector.
There is no reliable and general way to find the global minimum but luckily, a sufficiently
good solution can in many cases be found with a local minimum [17].

2.5 Model Evaluation and Tuning

2.5.1 Training, Test and Validation Sets

The data used in training the model is called the training set. The goal of the training
stage is to fit the model to the training data as well as possible, i.e. to minimize the
training error. However, usually we are not really interested in what the training error is
but we are more concerned with the model’s performance on new, unseen data. Focusing
only on minimizing the training error can lead to overfitting [19]. This is why the data set
is usually divided into separate training and test sets. The test set is necessary, since the
model with the lowest training error is not necessarily the same model as the one that has
the lowest test error because the model can, for example, fit to the random noise on the
training data, which is not present in the test data. When the data has been split into
a training set and a test set, the model is first trained on the training data and once the

16 Chapter 2. Background

training is finished, the performance is evaluated on the test data, which was not used in
the training stage. This way it can be estimated how well the model performs on unseen
data [15].

A new problem arises if we are not satisfied with the model’s performance on the
test data. We could adjust the values of the hyperparameters of the model, fit the model
on the training data again with the new hyperparameters, evaluate the performance again
on the test set and continue this hyperparameter tuning, training and testing loop until
we are satisfied with the performance on the test set. Doing so would introduce bias to
the model since we have tuned the hyperparameters based on the test set performance.
This means that the test set data is not new and unseen for the model, since information
about the test set performance has now been used to train the model, and the test error
does not reflect well the performance of the model on new data.

The problem can be solved by dividing the data into three sets, called training,
validation and test sets. Now the model can be trained on the training set, performance
evaluated on the validation set and hyperparameters tuned based on the performance on
the validation set. This can be continued until we are satisfied with the performance
of the model on the validation set. Only when all the hyperparameter tuning is done
and we are satisfied with the model, is the performance of the model evaluated on the
test set. Since the model has not seen the test data before and the hyperparameters are
not tuned based on the test set performance, the test set performance can now be used
to approximate the performance of the model on new data. If we are still not satisfied
with the model’s performance, we must not use the same test set again for evaluating the
performance, but we should somehow gather new data to be used as the test set.

2.5.2 Cross-Validation

The validation set error is an estimate to the test set error but depending on which
observations were selected into the validation set, it can be highly variable and might not
be a very accurate estimate [15]. This problem can be remedied by using cross-validation.

Leave-One-Out Cross-Validation

In leave-one-out cross-validation, a single sample is chosen as the validation set and the
model is trained on the rest of the data. The whole data set is gone through, picking and
using a single sample as the validation set each time and training the model on the rest
of the data, until all the samples have been the validation set once. Now the estimate for
the test set error is the average of all the validation set errors during cross-validation:

ErrorCV = 1
n

Σn
i=1MSEi. (2.12)

17 Chapter 2. Background

Here n is the size of the data set and MSEi is the mean squared error for sample i.
Using leave-one-out cross-validation, a better estimate of the test error (compared to
having a single validation set) can be achieved by taking the average of the validation
set errors and, as an additional bonus, we have more data to use when fitting the model
because we only leave one sample out of the training set each time, which reduces the
bias of the model [15]. There is one substantial drawback on leave-one-out cross-validation
however: if the data set is large or the model is complex, it may be very computationally
demanding to do leave-one-out cross validation. This makes it impractical in many real
world situations. What is usually done to make cross-validation more practical is to use
k-fold cross-validation.

K-Fold Cross-Validation

In k-fold cross-validation, instead of leaving out one sample as the validation set, we divide
the data set randomly to k equal sized parts, called folds, use each fold as the validation
set and then train the model with the rest k − 1 folds. The estimate for the test error is
now

ErrorK_CV = 1
k

Σk
i=1MSEk. (2.13)

Instead of fitting the model n times like in leave-one-out cross validation, the model is
now fit only k times. K-fold cross-validation of course is identical to leave-one-out cross-
validation when k = n. Usually the choice of k is much smaller than n, and a typical
choice is k = 10. There is one caveat in choosing the value for k however. Due to the
bias-variance trade-off, doing k-fold cross-validation with k < n, we might get a more
accurate estimate of the test error than when using leave-one-out cross-validation. From
a bias point of view, leave-one-out cross-validation is desirable, but since the n models
fitted are using almost the same data, they are highly correlated with each other which
results in higher variance [15].

Multiple-Source Cross-Validation

In the federated setting, we have data from multiple sources and it would be more desirable
to estimate the performance of the model on new and unseen data from a new source
rather than unseen data from the same source that is used in training the model. In the
healthcare setting, different sources could be for example different hospitals, and multiple-
source-cross-validation would give an estimate of how a model trained on some hospitals’
data generalizes to new hospitals.

Conventional cross-validation, where the data is randomly sampled to training and
validation sets, would not give a good estimate for the model’s performance since data

18 Chapter 2. Background

from the same source could simultaneously end up in both the training set and the vali-
dation sets.

To solve this problem, cross-validation can be done so that a single source’s data
can only be in the training set or in the validation set in any given time, but not in both.
Geras et al. called this multiple-source cross-validation and provided some theoretical
analysis for it [23]. Multiple-source cross-validation is exactly the same as the regular
cross-validation shown in Equation (2.13) but instead of randomly dividing the data to k
different folds, each fold consists of the data of a single source.

Stratified Cross-Validation

Since people may visit multiple different hospitals, either because of the same condition
or a completely new one, there is a possibility that there will be identical records of
the same patient in multiple hospitals’ datasets. In fact, even up to 15% of the records
can be duplicates [24]. This might leak information if the same records are present
in the training and validation sets simultaneously, therefore producing overly optimistic
estimates for the model performance. For this reason, Bey et al. introduced a stratified
cross-validation technique to alleviate the problem [25]. Stratified cross-validation makes
sure that identical records do not end up in the training and validation sets simultaneously.

Stratified cross-validation works as follows:

Algorithm 2 Stratified Cross-Validation
1: Select a covariate x that is weakly associated with other covariates and the outcome
2: Choose the number of folds k and define thresholds {t0, t1, ..., tk} that there are ap-

proximately the same amount of records fulfilling ti < x < ti+1 for each i, and associate
each fold with an index i.

3: Group all records with the same fold index i in inter-hospital folds Di and apply
cross-validation on these folds.

Johnson et al. show that in the critical care setting, training and cross validating
the model across multiple hospitals can produce a model that generalizes well to new
hospitals [26].

2.5.3 Model Performance

A simple way to measure model performance is to measure the accuracy, i.e. how many
samples were properly classified out of all the samples. In some cases this is sufficient but
there are many situations where accuracy is not a good metric to use. In a medical setting
where we are predicting if a patient is likely to die, we might be much more interested
in classifying correctly all the cases where the patient is likely to die, in order to save

19 Chapter 2. Background

as many lives as possible, or we might want to reduce the number of false alarms to a
minimum, i.e. to not label patients who are in a good condition as ones likely to die, in
order to reduce the burden and alarm fatigue for doctors.

Precision, Recall and False Positive Rate

To understand precision and recall, we first need to define the concepts of a true positive,
a false positive, a true negative and a false negative. In the context of classification, a
true positive is a sample that our classifier correctly labeled as a positive sample. In the
case of mortality prediction where we are trying to predict if a patient dies, a positive
sample is one where the patient died and a negative sample one where the patient did not
die. A true positive in this case is a sample that the classifier correctly labeled as positive
and where the patient actually died. A false positive on the other hand is a sample that
the classifier incorrectly labeled as positive but the patient did not die. Similarly, true
negative is a sample that the classifier correctly labeled negative and the patient did not
die, and a false negative is one that the classifier incorrectly labeled as negative but the
patient died.

The above concepts can be visually represented as a confusion matrix:

True class
Positive Negative

Predicted class
Positive True positive False positive

Negative False negative True negative

Table 2.1: Confusion matrix

Precision can now be defined as

Precision = TP
TP + FP , (2.14)

where TP is the number of true positives and FP is the number of false positives.

Recall or True Positive Rate (TPR) can be defined as

Recall = TP
P , (2.15)

where P is the number of positive samples and TP is once again the number of true pos-
itives. In other words, precision is the ratio of samples correctly classified as positive out

20 Chapter 2. Background

of all the samples classified as positive and recall is the ratio of samples correctly classified
as positive out of all positive samples (no matter how they were classified by the classifier).

False Positive Rate (FPR) can be defined as

FPR = FP
N , (2.16)

where FP is the number of false positives and N is the number of negative samples.

Receiver Operator Characteristics

The receiver operator characteristic curve or the ROC curve is a curve that forms when
recall (TPR) is plotted on the y-axis and false positive rate is plotted on the x-axis. With
classifiers that produce a probability or a score, this can be achieved by changing the
threshold where the samples are classified as positive [27]. The ROC curve can be used
to determine for example the optimal threshold for the classification based on a specific
use case. A ROC curve with a constant slope of 45°, going from point (0, 0) on the lower
left corner of the graph to point (1, 1) on the upper right corner of the graph, is equal
to random predictions, meaning that points above the 45° line are better than random
predictions and points below the 45° line are worse than random predictions [27].

AUROC and AUPRC

AUROC is an abbreviation of area under the receiver operator characteristic curve and it
can be used to assess the performance of the classifier with a single number. AUPRC is
similarly an abbreviation of area under the precision - recall curve and it can also be used
in model assessment. The precision-recall curve is a curve where precision is plotted on
the y-axis and recall on the x-axis. The values for AUPRC in this thesis are calculated
as average precision (AP) using Scikit-learn’s [28]. Average precision can be defined as

AP =
n∑
t=1

(TPR(t)− TPR(t− 1))P(t), (2.17)

where TPR(t) is the true positive rate (recall) at threshold t and P(t) is the precision
at threshold t. Average precision is an approximation of area under the precision-recall
curve [29].

The area under the ROC-curve can be interpreted as being the probability that a
random pair of a positive and a negative sample will be correctly classified [30]. Since a
ROC curve with a constant slope of 45° implies performance equal to random guess, an
AUROC of 0.5 implies a classifier that makes random predictions, 1.0 a perfect classifier
and anything below 0.5 implies performance worse than a random classifier [30].

21 Chapter 2. Background

For AUPRC, the baseline is not fixed as it is for AUROC. The baseline where the
classifier is as good as random guessing is the prevalence which is equal to the number of
positives divided by the number of all samples [31]. This means that AUPRC baseline is
different for data sets with differing prevalence and is only the same as it is for AUROC
(0.5) when the data set is balanced.

2.5.4 Hyperparameter Tuning

In addition to the learnable parameter values that the machine learning model automat-
ically tunes during the training stage to get the best fit, many models have other param-
eters called hyperparameters that have to be manually set before fitting the model. The
hyperparameters can be, for example, the learning rate of the neural network, the number
of trees in a random forest, or the loss function in gradient boosting. The other parame-
ters that the model automatically learns can be for example the weights and biases of a
neural network model. Finding the hyperparameter values that produce the best model
is called hyperparameter tuning, or more precisely hyperparameter value tuning (since the
values are the subject of the tuning) and sometimes hyperparameter optimization.

A simple way to tune the values of the hyperparameters is to choose them manu-
ally. This method can be very effective if there is some domain knowledge or extensive
experience working with the model type in question. Manual selection for the values of
the hyperparameters can be laborious and not very effective if there is not much knowl-
edge of what the optimal hyperparameter combination could be. In this case, one might
want to employ some automatic methods for the selection of the optimal values for the
hyperparameters.

Two simple methods for automatic hyperparameter tuning are grid search and ran-
dom search [32]. In grid search, one selects a range of values for all hyperparameters that
should be optimized. For hyperparameters that have a contiuous range, the range has to
be discretized. The grid search then automatically goes through all the hyperparameter
combinations, trains and evaluates the model with all of the combinations and selects
the combination of hyperparameters that results in the best fit. The advantage and the
disadvantage of grid search is that it exhaustively searches the specified hyperparameter
space and finds the optimal hyperparameter values from the specified ranges. At the same
time, this is a disadvantage since the exhaustive search is computationally intensive and
not very efficient.

An alternative to grid search is random search. Similarly to grid search, a range of
hyperparameter values is specified, but instead of exhaustively trying all of the possible
combinations, the hyperparameter combinations are randomly sampled from the ranges.
For random search, continuous ranges do not have to be discretized but values can be

22 Chapter 2. Background

sampled from a distribution. This method is not as computationally demanding since not
all of the combinations are tested and usually a good combination of parameters are found
with a relatively small computational cost. Bergstra et al. have demonstrated that given
the same computational budget, random search finds an equally good or better hyper-
parameter configuration as grid search [33]. On the other hand, since the combinations
are randomly sampled and not all combinations are tested, the optimal combination of
parameters is not necessarily found.

Other hyperparameter optimiation methods include for example Bayesian optimiza-
tion [34], gradient based optimization [35] and evolutionary optimization [36].

3. Federated Learning

This chapter contains an introduction to federated learning and a description of the models
used in the experiments of this thesis, as well as a short discussion of privacy protection.

3.1 Federated Deep Learning

Federated learning is a distributed machine learning method [37] where multiple models
are trained on a loose federation of remote sites and then aggregated into a single, final
model. Distributed machine learning methods differ from centralized methods in that
the distributed methods use multiple compute nodes instead of just one machine, and
federated learning differs from other distributed learning methods in that the data need
not be shared between the different compute nodes in federated learning.

In federated learning, the models trained on the remote sites can be called local
models and the final aggregate model can be called the global model. The term federated
learning was first coined by McMahan et al. [38] in 2015. As we can later see in Section 3.4,
different federated learning techniques can achieve comparable performance compared to
a centralized model which has all the data in a single location, therefore eliminating the
need to collect data centrally. The minimum requirement for federated learning to be of
any utility is to have better performance than a model trained with the data of a single
site.

The main difference between federated learning and more traditional machine learn-
ing methods is that in the traditional setting, a model is trained on a single centralized
data set, but in federated learning the model is trained on multiple distinct data sets
which are generally located far away from each other. In a typical setting for federated
learning, the data is distributed unevenly to multiple sites and there is a central server
coordinating the learning process. Yang et al. [39] categorized federated learning into two
classes: vertical federated learning and horizontal federated learning.

If we consider a dataset where rows represent different observations and columns
represent features, vertical federated learning can be defined as federate learning when
the data is partitioned so that all sites have the same rows but different columns. An
example of a situation for vertical federated learning would be a case where the data is

23

24 Chapter 3. Federated Learning

partitioned to two sites, for example a bank and a an insurance company. Here both of
the sites could have different kinds of information about the same customers.

Horizontal federated learning on the other hand can be defined as a federated learn-
ing scenario where the data is partitioned so that all of the sites have the same columns
but different rows. A typical example is in healthcare where different hospitals take the
same measurements but from different patients. The data used in this thesis is partitioned
horizontally so that all sites share the same feature space but have data about different
patients.

3.1.1 Federated Averaging

Federated averaging was first described by McMahan et al. [4] for updating the global
federated neural network model by averaging the updates of the local models. Before
training with federated averaging can start, the model structure has to be defined and
the model parameter values initialized in the central server. The training in the federated
averaging starts with the central server distributing the model to the clients. After the
clients have received the model, each client calculates the gradients of the loss function
using it’s own training data, updates the local model, and sends the gradient updates
to the central server. Typically, the local models are updated multiple times before the
update is sent to the central server. The central server then calculates the weighted
average of these gradient updates and updates the global model. After the global model
is updated, the new parameter values are sent to the clients, the local models are updated
with the global parameter values and the training can continue.

Let us now describe federated averaging in a more formal way. Each client
k calculates the gradient updates as gk = ∇Fj(wt) on it’s current model wt. The
central server then updates the global model by aggregating these gradient updates:
wt+1 ← wt − η 1

n
ΣK
k=1nkgk = wt − η∇f(wt), where nk is the number of data points in

client k and η is the learning rate. If one wishes to control the computational and com-
munication costs for each round, one can e.g. perform the computations only on a fraction
of the clients on each round, perform variable number of training passes on each client
before aggregating the gradients and control the minibatch size on each client.

3.1.2 Secure Aggregation

Since the gradient updates collected from the clients are used just once when updating the
global model, there is no need to store the individual updates and they can be discarded
as soon as the gradients are aggregated at the central server. These short-lived updates
are called ephemeral updates [4]. Using ephemeral updates improves security, since the
data is stored only as long as it is needed. The security of federated learning can still be

25 Chapter 3. Federated Learning

further imporved by using secure aggregation [40].
The secure aggregation protocol, developed for federated learning by Bonawitz et

al. [40], allows the server to aggregate the vectors collected from clients without being able
to infer anything about any individual client that is not inferable from the aggregated
value. In the protocol, each user u samples a vector su,v uniformly from [0, R)k for each
other user v, so that each pair of users agree on a matched pair of input perturbations.
Users exchange the sampled vectors and compute perturbations pu,v = su,v−sv,u (mod R)
so that each user sends to the server a perturbed vector yu = xu + Σvpu,v (mod R). The
server then sums the perturbed values by computing x̄ = Σuyu (mod R), which gives the
correct aggregated value because the perturbations cancel out because pu,v = −pv,u.

The above protocol is suitable for simple cases where none of the clients drop out
during the training but Bonawitz et al. [40] also proposed refinements to the protocol to
make it robust to drop outs and computationally feasible. The refinements are based on
encryption and secret sharing rounds so that the server can keep track of which clients
have passed each round of the protocol without knowing the contents of the messages. In
the refined protocol, the clients only use perturbations of the surviving clients so that the
aggregate values can be computed correctly.

3.2 Federated Gradient Boosting Decision Trees

So far, in the federated setting, we have mainly been concerned with neural networks. It
is now time to take a look at how to build gradient boosting decision trees in a federated
manner. Since federated averaging was based on averaging the gradient updates for the
model, one might think that it is possible to use the same method for training gradient
boosting decision trees. This is not the case however, mainly because of one key difference
in training neural networks versus training decision trees: when using federated averaging
with neural networks, the model structure is decided beforehand and communicated to
all the clients but in the case of decision trees, the structure of the trees is learned from
the client data. This means that when using neural networks, all of the local models have
the same structure, but when using decision trees, the local models might have different
structure.

3.2.1 Sequential Tree Building

In 2019, Zhao et al. [41] introduced a method to build privacy-preserving gradient boosting
decision trees in the horizontal federated learning setting. They presented an algorithm
to build differentially private∗ regression trees and used them to construct a privacy

∗A short explanation of differential privacy can be found in Section 3.3

26 Chapter 3. Federated Learning

preserving gradient boosting decision tree, using data from multiple sites.
Although privacy is one key motivation for conducting the research for this thesis,

differential privacy is omitted here and the method of Zhao et al. is adopted using
classification trees without differential privacy. Without differential privacy, the method
Zhao et al. presented for building gradient boosting decision trees is simple. The algorithm
loops through each site and at each site, trees from the previous sites are used to evaluate
the residuals and a new tree is built. All the trees are then sent to the next site. On the
first site, the first decision tree is constructed without the residuals evaluated using other
trees since no trees are yet built, and on the last site, after the final tree is constructed,
all the trees are sent to the central server if the training is completed, or back to the first
site if multiple training rounds are performed.

Communication Costs

For sequentially built federated gradient boosting decision trees, the communication costs
depend on four factors: the size T of each tree, the number of trees M built on each site
at each training round, the number of clients K and the number of training rounds L.
Since each site sends M trees it built, each of size T, and the trees it has received from
the previous site, to the next site we get an equation for the communication costs:

Ctotal =
K∑
i=1

TMi, (3.1)

and if multiple training rounds are performed (i.e L > 1)

Ctotal =
LK∑
i=1

TMi. (3.2)

For calculating the communication cost between site i and i+ 1 we have

Ci,i+1 = (L− 1)K + iM. (3.3)

Computational Costs

The computational complexity of training trees on a single site depends on the size of the
dataset and the number of trees, so for a singe site the time complexity is O(MN) where
M is the number of trees. If the number of sites is K and the number of training rounds
is L we end up with a total computational cost of

TGB = O(LKMN) (3.4)

27 Chapter 3. Federated Learning

3.2.2 SimFL

In 2019, Li et al. proposed a new method for federated gradient boosting that uses p-stable
locality-sensitive hashing [42] and weighted gradients, called SimFL [43]. As advantages
compared to other methods, they cited better accuracy since the method uses information
from all parties to boost each tree and improved efficiency since it does not use complex
cryptography that some other methods use. Instead, the method uses locality-sensitive
hashing to find similar instances between sites and calculates the gradients by combining
the gradients of similar instances. The method consists of a separate preprocessing stage
where the similarity information is calculated, and a training stage where the boosted
trees are fit.

The authors claim a computational overhead of O(NL+Nd) for the preprocessing
stage where L is the number of hash functions and d is the number of dimensions, and an
overhead of O(NT) for the training stage where T is the number of trees. The behavior of
O(NL+Nd) for the preprocessing stage was not able to be reproduced for this thesis but
instead the overhead was O(N2). This meant that the preprocessing would have taken a
too long time, so no experiments were carried out for the SimFL method.

3.3 Privacy Protection

One of the main motivation for federated learning is to protect the privacy of participants
by not moving any raw data between clients. Especially in the medical setting, there
might be legal considerations that prevent collecting the data to any central location, so
to access data from multiple locations, federated learning might be required. Nevertheless,
federated learning alone can not guarantee privacy, since there are many ways to attack
machine learning models no matter how they are trained. This section provides a brief
overview of some attacks against machine learning models and ways to protect the models,
even though no privacy protection methods are implemented with the models used in this
thesis.

One of the methods to attack machine learning models is membership inference
where the attacker has access to a black-box model and tries to infer wether a specific
data record was used in training the model [44].

Shokri et al. described a way to use so called shadow models to perform membership
inference attacks [45]. They trained multiple shadow models using similar data as the
model that the attack targeted used, to create models that behave similarly to the targeted
model and used the shadow models to teach the attack model to distinguish between data
that was used in training of the shadow models and data that was not.

Another type of attack is called a model inversion attack. In a model inversion

28 Chapter 3. Federated Learning

attack, the attacker has access to a model trained with a data set D1 but not to the
data set D1 itself. The attacker can then, having access to another dataset D2 that has
some shared variables with D1, retrieve some variables from D1 for the individuals that
are in both D1 and D2 [46]. Fredrikson et al. showed that given white-box access to
a decision tree model, one can retrieve sensitive information about the source data with
high precision [47].

One way to provide rigorous mathematical privacy-guarantees is to use a technique
called differential privacy [48]. In essence, differential privacy seeks to ensure that for
any given individual whose data is included in the dataset, no more information will be
revealed about them than would be if their data were not included in the dataset [49].
The privacy loss associated with a randomized function can be mathematically represented
with ε-differential privacy [49] [50]:

Definition 1. A randomized function K gives ε-differential privacy if for all data sets D1

and D2 differing on at most one row, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)Pr[K(D2) ∈ S] (3.5)

3.4 Related Work

In literature, many previous studies about different federated random forest and gradient
boosting methods can be found. Liu et al. [51] proposed a lossless federated random forest
algorithm for vertically partitioned data. In their algorithm, each tree is built jointly with
all clients and each client stores the split information about the features in their nodes. In
their tests, the method outperformed local models and was as accurate as the centralized
model. The method is different from the federated random forest used in this thesis
and it is not applicable for the experiments of this thesis since eICU data is horizontally
partitioned.

Wang et al. [52] proposed a federated XGBoost method for mobile crowdsensing,
which was efficient and secure to private data leakage. Another federated gradient boost-
ing method called SecureBoost was proposed by Cheng et al. [53]. They provided a the-
oretical proof that SecureBoost is as accurate as a centralized gradient boosting model.

Brisimi et al. [54] developed a federated optimization scheme for support vector
machines to predict future hospitalizations from EMR data.

Liu et al. [55] developed a federated autonomous deep learning (FADL) method to
predict mortality during ICU stay. The dataset was the same as the one used in this thesis,
the eICU dataset, but the model inputs were only the medications taken during the 24
hours of the ICU stays. FADL outperformed the original federated learning method and
achieved the same AUROC as centralized learning and a higher AUPRC than centralized

29 Chapter 3. Federated Learning

learning. The results can be found in Table 3.1.

Table 3.1: AUROCs and AUPRCs for federated autonomous deep learning [55]

Training method AUROC AUPRC
Centralized deep learning 0.79 0.21
Original federated learning 0.75 0.16
Federated autonomous deep learning (FADL) 0.79 0.23

Huang et al. [56] demonstrated that patient clustering can improve the efficiency of
federated learning to predict mortality and stay time in the ICU. Their centralized model
achieved an AUROC of 0.6811 and AUPRC of 0.0947 while for their federated model
the same numbers were 0.6520 and 0.0871 and for their best community-based federated
model 0.6628 and 0.0912.

Beaulieu-Jones et al. [57] compared centralized and federated deep learning for mor-
tality prediction using the eICU database. They predicted mortality after 24 hours in
the 5 largest hospitals. Table 3.2 shows that their federated models achieved close to the
same level of AUROC as the centralized models.

Table 3.2: AUROCs for centralized and federated models in for the 5 largest hospitals [57]

Institutions Centralized AUROC Federated AUROC
1 0.743 0.738
2 0.760 0.762
3 0.794 0.789
4 0.804 0.797
5 0.808 0.801

In addition to the above studies that used federated learning, multiple studies have
been conducted using centralized learning methods for mortality prediction. Sheikhal-
ishahi et al. [58] compared a bidirectional long short-term memory (BiLSTM) neural
network model to logistic regression, 1-layer neural network, and Acute Physiology and
Chronic Health Evaluation (APACHE) [59] [60] score for predicting mortality during the
first 24 and 48 hours of ICU stay, using the eICU dataset. The BiLSTM model outper-
formed all of the baseline models achieving an AUROC of 83.30 and AUPRC of 48.72 for
the prediction for the first 24 hours and an AUROC of 86.63 and AUPRC of 55.20 for the
prediction for the first 48 hours.

30 Chapter 3. Federated Learning

Ding et al. [61] developed a novel method combining just-in-time learnign (JITL)
and extreme learning machine (ELM) called JITL-ELM for mortality prediction. They
used data from PhysioNet [62] and achieved an AUROC of 0.8568.

Ge et al. [63] developed an interpretable LSTM model for ICU mortality prediction
using data from Asan Medical Center hospital and achieved an AUROC of 0.7614.

4. A Novel Method for Federated
Random Forest

Since no suitable federated random forest methods were found for the use case of this
thesis from the literature, a novel federated random forest method was developed for this
thesis. To the best knowledge of the author, this exact method has not been studied
before. This chapter provides a description for the federated random forest algorithm
developed for this thesis.

4.1 Federated Random Forest

Since the trees of a random forest are not dependent on each other and the prediction
of the forest is taken to be the mode of the prediction of individual trees, the most
straightforward method to create a federated random forest is to build a local random
forest at each site and combine all the local forests into a single, larger global forest. The
prediction of the combined forest is then taken to be the mode of all the individual trees
from all of the forests built on each site.

There are many advantages to using this simple method to build a federated random
forest compared to other federated methods. First one is that it is easy to understand
and implement, since it does not differ much from the regular, centralized random forest.
In fact, the only difference is that the bootstrap sets used to build trees are not drawn
from the same data for all trees. Another advantage is that the communication costs
are low since each site only needs to send the final forest to the central server, so no
communication is needed between the central server and the sites or between sites during
the training. The sites need not communicate anything to each other so the training can
proceed in parallel at each site. Finally, it is easy to include more sites later on, since
a new forest can be trained in isolation and added to the global forest in the central
server. No further modifications are needed when new sites are introduced. Likewise, if
the information about which trees came from which sites is stored, it is easy to discard
the trees that came from a specific site, removing the influence of that site’s data to the
final model, if the need arises.

31

32 Chapter 4. A Novel Method for Federated Random Forest

4.1.1 Communication Costs

For the federated random forest method, there are three factors affecting the communica-
tion costs: the size T of each tree, number of trees M built at each client and the number
of clients K. If all trees are equal size and all clients build the same number of trees the
total communication costs can be expressed as

Ctotal = TMK, (4.1)

since the only communication needed is when the clients send the fully grown forest to
the central server. For the communication cost between a single client and the central
server, this equation reduces to

Cclient = TM. (4.2)

4.1.2 Computational Costs

Louppe [64] demonstrated that the worst case time complexity for random forest is

TRF = O(mN2 logN), (4.3)

where m is number of input variables considered during each split and N is the size of
the data set. Since the training of all local forest in the federated random forest method
can be done in parallel, the time-complexity depends only on the size of the largest data
set and the time-complexity becomes

TRF = O(mN2
max logNmax), (4.4)

where Nmax is the size of the largest data set among the sites.

5. Dataset and Experiments

This chapter presents a description of the data and experiments used in this thesis. The
eICU data set will be described along with the prediction targets, selected features and
selected cohort. The chapter concludes with a description of the experiments conducted
in this thesis.

5.1 The eICU Dataset

The dataset used in this thesis is the eICU Collaborative Research Database [65]. The
database consists of data from 208 hospitals, collected with the Philips eICU Program,
around the United States. There are 200 859 patient unit encounters from 139 367 unique
patients admitted between 2014 and 2015.

The data is de-identified with measures such as removing all protected health infor-
mation and randomly assigning a unique identifier for all patients to protect the privacy
of the patients [65]. Before using the data set, the researcher has to complete training
(course on Human Subjects Research) related to sensitive data and ethical conducting
of research. The researcher also has to agree to rules, such as not sharing or trying to
re-identify the data, and releasing code associated with any publication using the data.

For this thesis, the most relevant information contained in the data set are the
vitals, lab results, and admission and discharge times as well as discharge status (alive
or expired). In addition, the dataset of course contains information to identify distinct
patients, unit stays and hospitals, such as id for the unit stay of a patient and and ids for
the hospitals.

5.1.1 Targets and Prediction Windows

The binary classification task in this thesis is to predict death in the ICU. The observations
where a patient is dead were labeled a positive label and the ones where the patient is
alive were labeled with a negative label.

Since the eICU data set does not contain the exact time of death for each patient,
but only contains the information of whether the patient has died in the ICU or not and

33

34 Chapter 5. Dataset and Experiments

the discharge time from the ICU, it is impossible to accurately identify the time of death
for the patients. Since it is expensive to keep patients in the ICU and the number of
available beds is limited, it can be expected that expired patients do not spend very long
times in the ICU before they are discharged.

In the experiments for this thesis, the time of death for patients was considered to
be three hours before the discharge from ICU. This is a crude approximation and most
of the patients probably died closer to the discharge time and some patients probably
died earlier than three hours before discharge. Making such an approximation not only
makes the prediction task harder, but also makes it more difficult to measure the absolute
performance of the models. The same approximation is made for all the models however,
and since the main objective in this thesis is to compare the performance of the federated
and centralized models, it can be assumed that the approximation affects all models in
roughly the same way, so the results can be compared. If the main objective would be
to produce the best predictive model possible or to examine the performance of a single
model this approximation would be more problematic but since we are more interested
in comparing the results of different models than the absolute performance of any given
model, this will not be such a big problem.

The clinical relevance of a model that predicts patients’ death in the ICU depends
on the system to notify the clinician about the patient’s status at the appropriate time.
According to Lilly et al., the average length of stay in the ICU in USA is 3.28 days [66].
The individual variability for the length of stay is large however, and in some cases can
vary even between 1 and 132 days [67]. Hence, in some cases, in theory it might be
possible to make predictions very early on. Nevertheless, predictions made too early are
not useful for the clinician since such an early prediction does not prompt the clinician to
adjust their actions yet. On the other hand, predictions made too close to death do not
leave enough time for the clinician to make actions that could save the patient. To study
a clinically relevant scenario, the target in this thesis was set to predict death 8 hours in
advance.

In an unprocessed data set, each patient that died would have just one observation
labeled as positive at the time of death of the patient and all other observations would
be labeled as negative. To enable predicting death 8 hours prior to the time of death,
all the observations 8 hours prior to the (approximated) time of death for each patient
were also labeled as positive during the data preprocessing stage. All observations prior
to 8 hours before the time of death were labeled as negative in preprocessing. Taking into
account that the true time of death is not known for the patients in the data set and the
time of death was approximated to be 3 hours prior to discharge, the time-window that
the observations are labeled as positive varies from 8 to 11 hours before the actual time
of death, assuming that no patients died prior to 3 hours before discharge.

35 Chapter 5. Dataset and Experiments

5.1.2 Cohort Selection

For this thesis, a specific cohort of patients was selected from the eICU database. The
criteria for the selection was that for each patient there exists at least one measurement
of each vital (heart rate, respiration rate, temperature, SpO2 and blood pressure), at
least one measurement of the most common labs (calcium, chloride, creatinine, glucose,
potassium, sodium and blood urea nitrogen) and at least one measurement of PaO2 and
PaCO2. After this selection, the dataset contains a total of 20 959 distinct patients and
69 hospitals. The dataset was then further divided to a training set (51 hospitals, 11281
patients) and a test set (18 hospitals, 5484 patients).

5.1.3 Data Statistics

The target was to predict death during patients’ ICU stays. The prevalence of death
among the patients in the training set was 8.6% and in the test set 8.7%. However, for the
whole training data set, row-wise and after the features were computed, the prevalence
was only 0.89% and for the test set 0.87%. This puts the baseline for AUPRC in the
training set to 0.0089 and in the test set to 0.0087.

Feature Extraction

New features were calculated from existing variables on the dataset, using different meth-
ods. A summary of which features are calculated for each type of variable are presented
in Table 5.1 and the full list of all features can be found in Table A.1 in Appendix A.

Table 5.1: Features

Variable Window Last First Mean Median Min Max Slope Std Dev Delta P90% P10%

Vitals 8h x x x x x x x x x x x
FiO2 1h x
PEEP 1h x
GCS 24h x
Labs 48h x

Missing Value Imputation

Due to the nature of ICU data, a large proportion of values are missing. Typically vitals
such as heart rate are measured continuously, whereas labs are ordered by doctors at
different intervals, creating a situation where there are not many missing values for vitals
but many missing values for labs. The status of the patients affects which labs and

36 Chapter 5. Dataset and Experiments

measurements are useful for doctors, and doctors use their own judgment in deciding
which measurements to take, so the data can not be considered to be missing at random.

Since most observations have at least one missing value, it is not feasible to discard
the observations with missing values. Decision trees in general could be able to handle
missing values, but the implementations of random forest and gradient boosting from
python’s Scikit-learn library [28], which are used in the experiments of this thesis, do not
handle missing values, the only option left is to impute the missing values.

The imputation was done using so-called forward fill, i.e. using the previous non-
missing value to impute the missing values. If no previous non-missing value was found,
the missing values were imputed with the median for the feature.

5.2 Experiments

Since the goal of this thesis is to study how well federated learning compares to centralized
learning in the healthcare setting, a few scenarios emulating real world situations are
simulated. In the first scenario, both the centralized and the federated models are trained
with the full training set. In the second scenario, the centralized models have data from a
few hospitals, and the federated models have data from a larger subset of hospitals from
the training set. In the third scenario, data from a few hospitals is gathered centrally and
the rest of the data remains remote. Federated models are then trained on the centralized
plus the remote data.

The values for the hyperparameters for all models are tuned using random search
with cross-validation. Hyperparameters that were tuned for the random forest were the
number of trees, the impurity measure (gini or entropy) and the maximum depth of the
trees. For gradient boosting the hyperparameters that were tuned were the loss function,
number of trees, the learning rate and the maximum depth of the trees. The federated
random forest had the same hyperparameters tuned as the centralized version but the
federated gradient boosting had the number of training rounds tuned in addition to the
same hyperparameters that were tuned for the centralized model.

The centralized models use standard 5-fold cross-validation and the federated models
use multiple-source cross-validation. From the cross-validation results, the model with the
highest AUPRC is chosen and the model is retrained on the training set without cross-
validation. After retraining, the models are evaluated on the test set, which remains the
same for all scenarios.

37 Chapter 5. Dataset and Experiments

5.2.1 Experiments on Full Training Set

In the first scenario, both the centralized models and the federated models have access
to the full training set. The centralized models treat the training set as a single data set
while the federated models split the training set to multiple data sets, each containing data
from a single hospital. For the federated random forest, this means that 51 random forests
are trained, one on each hospital’s data, and the trees from these forests are combined
into the final and larger federated random forest. For the federated gradient boosting,
it means that the method sequentially goes through each hospital’s dataset, training a
number of boosted trees on each dataset.

The goal of this scenario is to study the difference in performance of centralized and
federated training on the same dataset. The practical implications of this experiment are
that if federated training can offer similar level of performance as centralized training,
costs and labour related to gathering data from different sources to a central location
could be eliminated with federated training.

5.2.2 Centralized and Federated Training on a Subset of Hospi-
tals

In the second scenario, the models are trained with subsets of the hospitals in the full
training set. Three sizes of subsets are considered for the centralized models: one with
only the data from the largest hospital, another with data from the two largest hospitals
and third with data from the three largest hospitals. Both the centralized random forest
and gradient boosting are trained on all of these subset sizes, using cross-validation to
find the best models for each subset.

For the federated models, four sizes of subsets are considered: subsets with data
form the 5, 10, 15 and 20 largest hospitals. Both federated model types are trained on
each subset and the best models for both model types are chosen with cross-validation
for each subset.

The goal of this scenario is to study whether federated training can provide superior
results compared to centralized training, if one has access to more data via federated
training.

5.2.3 Federated Training on Top of Centralized Training

The third scenario consists of two different subscenarios with four sizes of subsets. In the
first subscenario, the federated models have data from the two largest hospitals centralized
and non-centralized data from additional 3, 8, 13 and 18 hospitals. In other words, the
federated models here have the same data as in the second scenario but data from the

38 Chapter 5. Dataset and Experiments

two largest hospitals is considered as a single site.
The second subscenario is otherwise identical to the first subscenario, but instead of

having two largest hospitals centralized, the models have three largest hospitals central-
ized.

The goal of this scenario is to study whether a model trained centrally can be
improved with further federated training or can the performance of federated training be
improved if some of the data is gathered centrally.

6. Results

This chapter presents the results for each experiment separately. The centralized models,
that treat the data from different hospitals jointly as a single dataset, are denoted as RF
for random forest and GB for gradient boosting. The federated models, which treat the
data from different hospitals as separate datasets, are denoted as FedRF and FedGB for
federated random forest and federated gradient boosting, respectively.

6.1 Models Trained on Full Training Set

The first scenario was to train both the centralized models and the federated models with
the whole training set and compare the test set results from the centralized and federated
models.

Comparing models trained with data from all hospitals in the training set, Fig-
ure 6.1 and Figure 6.2 show that the centralized gradient boosting model has the best
performance on the test set, both in terms of AUPRC (0.147) and AUROC (0.886). The
centralized random forest performs nearly as well as the gradient boosting model, achiev-
ing an AUPRC of 0.142 and an AUROC of 0.869. Both of the federated models perform
worse than the centralized models with the federated random forest achieving an AUPRC
of 0.112 and AUROC of 0.846 and the federated gradient boosting performing the worst
with an AUPRC of 0.098 and AUROC of 0.823.

From Figure 6.1 and Figure 6.2 we can see that all of the models performed signif-
icantly above the baseline AUPRC of 0.0087 and AUROC of 0.5. The figures also show
that the cross-validation and test set performances of the models are close to each other
so no significant overfitting has occured. The best centralized model (gradient boosting)
achieved a 31% better AUPRC compared to the federated random forest model and 50%
higher AUPRC compared to the federated gradient boosting model. For centralized ran-
dom forest the same percentages are 27% and 45%. The centralized gradient boosting
achieved almost 17-fold (16.9) increase to the baseline AUPRC while the federated ran-
dom forest still achieved almost a 13-fold (12.9) increase to the baseline AUPRC. Table 6.1
summarizes the AUROC and AUPRC results of all models in one table.

39

40 Chapter 6. Results

Figure 6.1: AUPRCs of centralized and federated models trained on the full training set. The baseline
AUPRC is marked with a dashed line.

Figure 6.2: AUROCs of centralized and federated models trained on the full training set. The baseline
AUROC is marked with a dashed line.

41 Chapter 6. Results

Table 6.1: Comparison of federated and centralized models trained on full data from all hospitals

RF GB FedRF FedGB
Cross-validation AUPRC 0.165 0.179 0.158 0.106
Cross-validation AUROC 0.876 0.897 0.865 0.839
Test set AUPRC 0.142 0.147 0.112 0.098
Test set AUROC 0.869 0.886 0.846 0.823

6.2 Models Trained on a Subset of Training Set Hos-
pitals

To study the effect of having access to more data with federated training, all of the models
were trained with data from differing amounts of hospitals. The centralized models were
trained with three different sized data sets: data from the largest hospital, from two
largest hospitals and from three largest hospitals. Similarly, the federated models were
trained with data from the 5, 10, 15 and 20 largest hospitals. The test set remained the
same as in the above section and all of the federated models were compared to the three
centralized models.

6.2.1 Centralized Models with Data from the Largest Hospital

Figure 6.3 and Figure 6.4 show that when the centralized models were trained with data
from only the largest hospital, the centralized random forest achieved an AUPRC of
0.111 and AUROC of 0.848 while the centralized gradient boosting achieved an AUPRC
of 0.089 and AUROC of 0.850. All of the federated random forest models outperformed
both of the centralized models and the model with data from the 15 largest hospitals
performed the best with an AUPRC of 0.129 and AUROC of 0.860. None of the federated
gradient boosting models outperformed the centralized random forest model and only the
federated gradient boosting model with data from the 20 largest hospitals outperformed
the centralized gradient boosting with an AUPRC of 0.104 while the AUROC was 0.840
and below the centralized model’s AUROC.

We can also see from Figure 6.3 and Figure 6.4 that performance was still sig-
nificantly above the baseline, but the difference between cross-validation and test set
performance is larger than in the previous scenarios, so some slight overfitting may have
started to happen. Table 6.2 has both the AUPRC and AUROC results and we can see

42 Chapter 6. Results

that the federated random forest with data from 15 hospitals performed best on both
metrics.

Figure 6.3: AUPRCs of centralized models trained on the data from the largest hospital and federated
models trained on data from varying number of hospitals. The baseline AUPRC is marked with a dashed
line.

Figure 6.4: AUROCs of centralized models trained on the data from the largest hospital and federated
models trained on data from varying number of hospitals. The baseline AUROC is marked with a dashed
line.

Table 6.2: Comparison of federated models to centralized model with data from 1 hospital

RF GB FedRF 5x FedGB 5x FedRF 10x FedGB 10x FedRF 15x FedGB 15x FedRF 20x FedGB 20x
Cross-validation AUPRC 0.155 0.156 0.177 0.370 0.208 0.223 0.193 0.188 0.194 0.146
Cross-validation AUROC 0.911 0.917 0.887 0.940 0.889 0.901 0.891 0.864 0.890 0.871
Test set AUPRC 0.111 0.089 0.122 0.086 0.125 0.078 0.129 0.087 0.126 0.104
Test set AUROC 0.848 0.850 0.863 0.826 0.861 0.836 0.869 0.783 0.866 0.840

43 Chapter 6. Results

6.2.2 Centralized Models with Data from the 2 Largest Hospi-
tals

Figure 6.5, Figure 6.6 and Table 6.3, describe the results for the case where the centralized
models were trained with data from the two largest hospitals and the results for the same
federated models as in Section 6.2.1. In this scenario, the gradient boosting model achieved
an AUPRC of 0.135 and an AUROC of 0.863 while the random forest model performed
slightly worse with an AUPRC of 0.131 and an AUROC of 0.862. Both centralized
models outperformed the best federated model in terms of AUPRC (0.126) but in terms
of AUROC, the best federated model performed slightly better with an AUROC of 0.869.

Figure 6.5 and Figure 6.6 also show that the centralized models with data from
two hospitals still achieve above baseline performance and no significant overfitting is
happening. In terms of AUPRC, the centralized models have started to outperform the
federated models and the cross-validation and test set performance are closer to each
other than with the federated models, suggesting lesser overfitting with the centralized
models. Table 6.3, which shows both the AUPRC and AUROC results in a single table,
we can see that the same model was not the best on both metrics this time and that
the centralized gradient boosting was best in terms of AUPRC and the federated random
forest with data from 15 hospitals was best in terms of AUROC.

Figure 6.5: AUPRCs of centralized models trained on the data from the two largest hospitals and
federated models trained on data from varying number of hospitals. The baseline AUPRC is marked
with a dashed line.

44 Chapter 6. Results

Figure 6.6: AUROCs of centralized models trained on the data from the two largest hospitals and
federated models trained on data from varying number of hospitals. The baseline AUROC is marked
with a dashed line.

Table 6.3: Comparison of federated models to centralized model with data from 2 hospitals

RF GB FedRF 5x FedGB 5x FedRF 10x FedGB 10x FedRF 15x FedGB 15x FedRF 20x FedGB 20x
Cross-validation AUPRC 0.192 0.180 0.177 0.370 0.208 0.223 0.193 0.188 0.194 0.146
Cross-validation AUROC 0.905 0.901 0.887 0.940 0.889 0.901 0.891 0.864 0.890 0.872
Test set AUPRC 0.131 0.135 0.122 0.086 0.125 0.078 0.129 0.088 0.126 0.104
Test set AUROC 0.862 0.863 0.863 0.826 0.861 0.836 0.869 0.783 0.866 0.840

6.2.3 Centralized Models with Data from the 3 Largest Hospi-
tals

Figure 6.7, Figure 6.8 and Table 6.4 describe the results when the centralized models were
trained with data from the three largest hospitals and the same results for the federated
models as in the two preceding subsections. The random forest achieved an AUPRC of
0.158 and an AUROC of 0.899 while the gradient boosting model achieved an AUPRC of
0.129 and an AUROC of 0.870. The centralized random forest out performed all of the
federated models in this case, and the centralized gradient boosting performed equally
well as the best federated model.

We can also see from Figure 6.7 and Figure 6.8 that the performance of the cen-
tralized models has become more clearly better than the federated models’ performance
and that any that may have happened on the models trained with less data has decreased
clearly.

45 Chapter 6. Results

Figure 6.7: AUPRCs of centralized models trained on the data from the three largest hospitals and
federated models trained on data from varying number of hospitals. The baseline AUPRC is marked with
a dashed line.

Figure 6.8: AUROCs of centralized models trained on the data from the three largest hospitals and
federated models trained on data from varying number of hospitals. The baseline AUROC is marked
with a dashed line.

Table 6.4 shows all the results in a single table and we can see that this time the
centralized random forest was the best on both metrics.

Table 6.4: Comparison of federated models to centralized model with data from 3 hospitals

RF GB FedRF 5x FedGB 5x FedRF 10x FedGB 10x FedRF 15x FedGB 15x FedRF 20x FedGB 20x
Cross-validation AUPRC 0.164 0.170 0.177 0.370 0.208 0.223 0.193 0.188 0.194 0.146
Cross-validation AUROC 0.885 0.899 0.887 0.940 0.889 0.901 0.891 0.864 0.890 0.871
Test set AUPRC 0.158 0.129 0.122 0.086 0.125 0.078 0.129 0.088 0.126 0.104
Test set AUROC 0.899 0.870 0.863 0.823 0.861 0.836 0.869 0.783 0.866 0.840

46 Chapter 6. Results

6.3 Federated Training on top of Centralized Models

To study whether a centrally trained model can be improved by further training it with
federated training, two scenarios were tested. In the first scenario, the centralized model
has data from two of the largest hospitals and the model is further trained with data from
additional hospitals so that the total number of hospitals (including the two centralized
hospitals) is either 5, 10, 15 or 20. The second scenario is otherwise identical to the first
but the centralized model has data from three hospitals. The results from the models
with additional training are compared to the models with just the centralized data from
two or three hospitals.

6.3.1 Models with 2 Centralized Hospitals

Figure 6.9, Figure 6.10 and Table 6.5 show the results for the same centralized models
as in Section 6.2 but in this case the federated models had the same data centralized as
the centralized models and the rest of the data as distinct (federated) datasets. Further
federated training of the centralized model initially trained with data from two hospitals
did not seem to improve the results, since the centralized models still perform better than
the federated models. The best federated model in this case was the federated random
forest trained with data from 20 largest hospitals, achieving and AUPRC of 0.127 and
AUROC of 0.869 on the test set. The AUROC is slightly better than the best AUROC
of the centralized model (Gradient Boosting, 0.863) and the federated random forest
trained with data from 5 largest hospitals achieves the same AUROC of 0.869 but with
a worse AUPRC of 0.123. The federated random forest trained with data from the 15
largest hospitals achieved the same AUPRC 0.127 but with a slightly worse AUROC of
0.867. None of the federated models achieve the AUPRC of 0.135 that the centralized
gradient boosting achieved. The AUPRCs of the federated models are in fact worse than
the federated random forest with fully federated training with data from the 15 largest
hospitals that achieved an AUPRC of 0.129.

From Figure 6.9 and Figure 6.10 we can see that the federated models trained with
data from 5 or 10 of the largest hospitals have a significant difference in cross-validation
and test set AUPRC, suggesting some overfitting. The difference is not as large in the
AUROC performance however.

From Table 6.5 we can see the result that in this scenario, a single model did not
perform the best on both metrics but that the centralized gradient boosting perfromed
the best in terms of AUPRC, and in terms of AUROC the federated random forest with
data from 5 hospitals performed equally well as the federated random forest with data
from 20 hospitals, outperforming the other models.

47 Chapter 6. Results

Figure 6.9: AUPRCs of centralized models trained on the data from the two largest hospitals and
federated models trained data from the two largest hospitals centralized and rest of the data federated.
The baseline AUPRC is marked with a dashed line.

Figure 6.10: AUROCs of centralized models trained on the data from the two largest hospitals and
federated models trained data from the two largest hospitals centralized and rest of the data federateds.
The baseline AUROC is marked with a dashed line.

48 Chapter 6. Results

Table 6.5: Comparison of centralized models with data from 2 hospitals to models with additional
federated training

RF GB FedRF 5x FedGB 5x FedRF 10x FedGB 10x FedRF 15x FedGB 15x FedRF 20x FedGB 20x
Cross-validation AUPRC 0.192 0.180 0.163 0.537 0.215 0.312 0.185 0.178 0.176 0.147
Cross-validation AUROC 0.905 0.901 0.884 0.957 0.896 0.921 0.893 0.863 0.892 0.884
Test set AUPRC 0.131 0.135 0.123 0.074 0.122 0.093 0.127 0.081 0.127 0.101
Test set AUROC 0.862 0.863 0.869 0.825 0.894 0.838 0.867 0.770 0.869 0.841

6.3.2 Models with 3 Centralized Hospitals

Figure 6.11, Figure 6.12 and Table 6.6 show the results for the same centralized models
as before and the results for the federated models that had data from the three largest
hospitals centralized. Similarly to the previous scenario in Section 6.3.1, the additional
federated training does not improve results here either. The best federated model in this
scenario is the federated random forest trained with data from the 20 largest hospitals,
achieving an AUPRC of 0.127 and AUROC of 0.867. These are well below the centralized
random forest that achieved an AUPRC of 0.158 and AUROC of 0.899. Compared to
the previous scenario, the performance of the federated random forest is actually slightly
worse with all training set sizes.

From Figure 6.11 and Figure 6.12 we can also see that the difference in cross-
validation and test set AUPRC is still large with the federated models trained with data
from 5 or 10 hospitals and that the difference in AUROC performance is once again
smaller than the difference in AUPRC performance.

Figure 6.11: AUPRCs of centralized models trained on the data from the three largest hospitals and
federated models trained data from the three largest hospitals centralized and rest of the data federated.
The baseline AUPRC is marked with a dashed line.

49 Chapter 6. Results

Figure 6.12: AUROCs of centralized models trained on the data from the three largest hospitals and
federated models trained data from the three largest hospitals centralized and rest of the data federateds.
The baseline AUROC is marked with a dashed line.

Table 6.6 shows both the AUPRC and AUROC from all the models in a single table,
and we can see the result that the centralized random forest again performed the best on
both metrics, as it did in the scenario of Section 6.2.3.

Table 6.6: Comparison of centralized models with data from 3 hospitals to models with additional
federated training

RF GB FedRF 5x FedGB 5x FedRF 10x FedGB 10x FedRF 15x FedGB 15x FedRF 20x FedGB 20x
Cross-validation AUPRC 0.164 0.170 0.151 0.496 0.184 0.209 0.194 0.192 0.177 0.136
Cross-validation AUROC 0.885 0.899 0.871 0.952 0.892 0.901 0.894 0.905 0.894 0.860
Test set AUPRC 0.158 0.129 0.117 0.084 0.120 0.065 0.124 0.100 0.127 0.093
Test set AUROC 0.899 0.870 0.857 0.846 0.857 0.819 0.895 0.837 0.867 0.797

6.4 Effect of Number of Trees on Federated Random
Forest

Figure 6.13 shows how increasing the number of trees built on each site affects the AUPRC
performance of the federated random forest on the test set. As expected, the performance
is very poor when each site builds only a single tree, but the performance quickly increases
when more trees are built. The increase in AUPRC is sharp in the beginning but it starts
to level of at around 20 trees per site.

50 Chapter 6. Results

Figure 6.13: Effect of increasing the number of trees built on each site to AUPRC on test set.

For AUROC, a similar result can be seen in Figure 6.14. AUROC in the test set
increases sharply in the beginning and starts to level off at around 20 trees per site.

Figure 6.14: Effect of increasing the number of trees built on each site to AUROC on test set.

51 Chapter 6. Results

6.5 Factors affecting Federated Gradient Boosting
Performance

Since the federated gradient boosting method used in this thesis is sequential in nature,
the effect of going through the hospitals in different order was studied by performing
60 different permutations for the order of hospitals. Table 6.7 shows that the order of
hospitals indeed does have an effect. The maximum AUPRC achieved was 57% higher
than the lowest and the maximum AUROC achieved was 7% higher than the lowest. The
standard deviations were not very high however, 0.007 for the AUPRC and 0.008 for
the AUROC. The mean and median for both AUPRC and AUROC were closer to the
maximum than the minimum.

Table 6.7: Variability of AUPRC and AUROC of federated gradient boosting when the order of hospitals
is permuted

Statistic AUPRC AUROC
Minimum 0.069 0.779
Maximum 0.108 0.835
Median 0.100 0.825
Mean 0.098 0.823
Standard Deviation 0.007 0.008

7. Discussion

This thesis was focused on comparing the performance of federated learning and central-
ized learning on predicting mortality in the ICU. The focus was on tree-based models,
namely random forest and gradient boosting, both of which had a federated and a cen-
tralized version. In addition to being trained with the full training set, the centralized
models were trained with data from the 1, 2 and 3 largest hospitals, and the federated
models with the 5, 10, 15, and 20 largest hospitals. In addition, the federated models were
trained with the 5, 10, 15, and 20 largest hospitals, but once with the 2 largest hospitals
merged into a single dataset and once with the 3 largest hospitals merged into a single
data set, in order to examine if the centralized models benefit from additional training
with federated learning.

7.1 Performance of the models

The centralized models clearly outperformed the federated models when trained with the
full training set, with the centralized gradient boosting achieving a 31% AUPRC compared
to the federated random forest and 50% higher AUPRC compared to federated gradient
boosting. The centralized random forest achieved 27% and 45% higher AUPRC compared
to the federated random forest and federated gradient boosting. The baseline AUPRC
was only 0.0089 in the test set and both of the federated models achieved above 10-fold
increase in AUPRC compared to the baseline. This suggests that while the performance
of the federated models was significantly worse than the centralized models when trained
on the full training set, federated learning might still be a viable choice if the data can’t
be collected into a single location.

To examine if the federated models could outperform the centralized models when
given more training data, the centralized models were trained with data from the 1, 2
and 3 largest hospitals and the federated models with data from the 5, 10, 15 and 20
largest hospitals. The results showed that compared to the centralized models with data
from a single hospital, all of the federated random forests outperformed the centralized
models, with the best one being the one trained on data from the 15 largest hospitals,
achieving a 16% and a 45% increase in AUPRC compared to the centralized random forest

52

53 Chapter 7. Discussion

and centralized gradient boosting. The federated gradient boosting could not outperform
the centralized random forest however, achieving a 6% worse AUPRC at best, but could
outperform the centralized gradient boosting, achieving a 17% higher AUPRC. It is no-
table however, that the performance of the federated models increased compared to the
federated models trained with the full training set.

When more data was added to the centralized models, they started to outperform
the federated models again. From the centralized models trained on the data from the 2
largest hospitals, the gradient boosting was the best, having an AUPRC of 5% higher than
the best federated model (RF with 15 hospitals). From the centralized models trained
on the data from the 3 largest hospitals on the other hand, the centralized random forest
was the best with an AUPRC 22% higher than the best federated model.

Since the AUPRC of the centralized random forest dropped 22% from 0.142 to 0.111
and the AUPRC of the centralized gradient boosting dropped 39% from 0.147 to 0.089
when the training data was reduced from the full training set to just one hospital’s data,
and all the federated random forest models outperformed the centralized models in this
case, the results seem to suggest that if sufficient amount of data can not be collected
centrally, federated learning can help improve the performance of the models. When more
hospitals were added to the centralized models’ training sets, their performance increased
significantly however, allowing them to outperform the federated models, suggesting that
the increase in the amount of data that federated learning brings must be significant to
achieve a boost in performance.

When training the federated models with either 2 or 3 hospitals centralized, to
study whether the performance of a centralized model can be improved with further fed-
erated training, the results show that the centralized models still outperform the federated
models. In fact, the federated gradient boosting with fully federated training largely out-
performed the federated gradient boosting models with 2 or 3 hospitals centralized. The
federated random forest with 2 hospitals centralized had similar performance to the fully
federated version, and the one with 3 hospitals slightly worse than the fully federated one,
except for the case of 20 hospitals where the model with 3 centralized hospitals had a min-
imal improvement compared to the fully federated model. These results imply that the
centralized models can not be improved with further federated training and furthermore,
if federated training is going to be used, it is not worthwhile to gather portion of the data
centrally. One reason why the federated random forest sometimes performed poorly when
some of the data was centralized might be that since all the sites built the same number
of trees, and thus all sites have equal say in the final prediction, gathering the largest
hospitals to a central location diminishes the effect of the largest hospitals on the final
prediction. The method would allow scaling the number of trees grown on each individual
site by the number of data points on the site, which could possibly improve performance

54 Chapter 7. Discussion

when the size of the datasets differ between sites. Scaling the number of trees was not
studied in this thesis and further work is needed to study the effect of scaling.

The performance of the federated random forest method was found to behave as
expected when the number of trees grown on each site was varied. When each site grew
only a small number of trees the performance was poor but when the number of trees
per site was increased the performance quickly improved. The federated random forest
was not found to overfit when more trees were added, which is the same behavior that is
expected from a centralized random forest [20].

The performance of gradient boosting was found to be dependent on the order
that the sites are traversed in. The different between the smallest and largest AUPRC
and AUROC was significant but not extreme. The standard deviation for both metrics
was small. The distribution was also found to be slightly skewed, with the mean and
median for the both metrics being closer to the maximum than the minimum values.
These findings show that even though there was a clear difference between the best and
the worst performances, the method was still somewhat stable and one can expect the
results to be fairly close to the average in most cases. Possible interaction of the random
hyperparameter search and the traverseing order cannot be ruled out and further work is
needed to investigate the effect of the interaction.

Overall, it was found that the performance of federated random forest on the test set
was more stable over the different scenarios and training set sizes than the performance
of federated gradient boosting. The standard deviation of AUPRC and AUROC for
federated random forest was roughly half of the the standard deviations for federated
gradient boosting.

Based on the results of this study, the federated gradient boosting method offers
a minor boost in performance compared to centralized gradient boosting trained with
less data at best. In most cases the centralized model outperforms the federated model.
These results are in line with findings of Zhao et al. [41], where they found that using this
sequential method to build trees does not improve the results of the local models. The
federated random forest used in this thesis may offer some benefits over the centralized
model in some cases, especially if the dataset that could be used for a centralized model is
small and insufficient to produce a high-perfroming model. Zhao et al. [41] claimed that
their proposed SimFL federated gradient boosting model outperformed the sequential
gradient boosting method and achieved a similar performance to the centralized model
trained with joint data. No experiments were carried out with SimFL in this thesis and
further research is needed to find out how it compares to the federated random forest
method.

Liu et al. [55] found that centralized deep learning achieved a 31% higher AUPRC
than original federated learning for mortality prediction using eICU dataset. This result

55 Chapter 7. Discussion

is similar to what was found in this thesis for the random forest: the centralzed random
forest achieved a 27% (and 31% for the centralized gradient boosting) higher AUPRC
than the federated random forest on the full training set. Their federated autonomous
deep learning model achieved a higher AUPRC than the centralized model, however.
Compared to the results of Huang et al. [56], the federated models of this thesis did not
achieve as good performance compared to the centralized models of this thesis. Their
centralized model achieved only 9% higher AUPRC than the federated model and 10%
higher AUPRC than their best community-based federated model. Beaulieu-Jones et
al. [57] had numbers for AUROCs and the results varied from the centralized model
having 0.9% higher AUROC than the federated model when trained with 4 hospitals and
the federated model having 0.3% higher AUROC than the centralized model when trained
with 2 hospitals. On this thesis (with the full data set), the centralized gradient boosting
had a 7.7% higher AUROC than the federated gradient boosting and the centralized
random forest had a 2.7% higher AUROC than the federated random forest. The gap
between the performance of the centralized and federated models in this thesis was much
higher than with the models of Beaulieu-Jones et al. [57].

7.2 Limitations

A confounding factor when interpreting the results on whether federated learning using
more data can increase the performance compared to centralized model using less data
is that the performance of the models in general did not increase in all cases when more
data was added. The centralized random forest trained on three hospitals’ data out-
performed the centralized model trained on the full training set in terms of AUPRC by
11%. Similarly, the federated random forests trained with 5, 10, 15 or 20 hospitals’ data
outperformed the one trained with the full training set, by 9 to 15%, the best one being
the model trained on 15 hospitals’ data. The effect was less pronounced with gradient
boosting, since the centralized model trained on full training set was the best and the
federated model using 20 hospitals was the only one that beat the one trained on full
training set. This suggests that some of the smaller hospitals introduced only noise in
the data set and that there exists some optimum number of hospitals between using just
single hospitals’ data and all of the hospitals’ data. Based on the results of the federated
models, the optimum seemed to lie somewhere near 15 to 20 hospitals, but no further
efforts were made to find this optimum. Had the data set contained more hospitals with
larger data sets, federated models might have gained a larger increase in AUPRC com-
pared to the centralized models with less data. More research will be needed to more
precisely quantify the extent of the possible performance increase gained by having more
data with federated learning.

56 Chapter 7. Discussion

Another factor that most likely affects the performance of the federated random
forest is that all the sites (hospitals) trained an equal number of trees. Since the federated
model is formed by collecting all the trees from the individual forests and the prediction
for the federated model is taken to be the majority vote from all the trees, all of the sites
contribute equally to the final prediction since all the sites provided an equal number
of trees. This means that a hospital with data from 1000 patients will have an equally
large effect on the final prediction as a hospital with 10 patients. As the results showed,
using data from all the hospitals for the federated random forest resulted in significantly
poorer performance compared to models trained with 5 to 20 largest hospitals. This effect
might be magnified because the large and small hospitals had an equal effect on the final
prediction.

As mentioned before, scaling the number of trees based on dataset size was nut
studied on this thesis and further research is needed to find out the effect of the size
of individual sites on the performance of the federated random forest method. Possible
experiments would be to scale the number of trees by the number of datapoints or number
of patients in each dataset, or to add the number of trees grown on individual sites as a
hyperparameter to tune.

Furthermore, the federated random forest here was trained with multiple-source
cross-validation, which meant that performance of the federated model, after the individ-
ual forests were trained, was evaluated with cross-validation and we do not have any idea
how well the individual forests would perform on the data they were trained on. That
also means that all the forests share the same hyperparameter values. An alternative
way would have been to train the individual forests by regularly cross-validating them
on their own data sets and combined the cross validated models to a federated model.
This method might be more practical in a real-world scenario since the training can be
completely asynchronous but it is computationally expensive to simulate in an experiment
with a single machine since all of the sites need to perform cross-validation. There is no
guarantee that this method would result in a more accurate model but it might be an
interesting question to study in later research.

The experiments showed that the performance of federated gradient boosting de-
pended on the order that the sites where traversed in but the reason behind the effect
remains unclear since no experiments where carried out to investigate it. Furher experi-
ments could be done by sorting the hospitals by dataset size to study wether it is better to
traverse the hospitals from largest to smallest, smallest to largest or in random order. The
order could also be optimzed as a hyperparameter, although it might be computationally
intense if the number of hospitals is large.

The AUROCs for all the models in all experiments were generally considerably
higher than in the studies presented in Section 3.4, suggesting that in this thesis, the

57 Chapter 7. Discussion

learning problem was easier and the dataset used different, compared to the other studies.
Therefore, making conclusions and comparisons about the absolute numbers of the results
in this thesis and other related work, as well making comparisons of the models between
the studies, is difficult.

Lastly, it is difficult to say how large an effect randomness has on the final results,
since for random forest there is inherent randomness in the algorithm and for all models
the hyperparameters were tuned with random search. The performance differences gen-
erally were not very large so it is difficult to say whether the differences are statistically
significant without doing a more thorough statistical analysis.

8. Conclusions

The objective for this thesis was to compare the performance centralized random forest
and gradient boosting to federated random forest and gradient boosting on ICU data.
For federated gradient boosting, the method of Zhao et al. [41] was adopted with omit-
ting differential privacy. For federated random forest, a novel method was developed by
combining random forest built on remote sites.

Three scenarios were considered: comparison of centralized and federated methods
on the same data set, comparison of centralized training with less data to federated
training with more data and federated training with some data centralized.

The federated methods were found to provide performance well above a random
classifier, but when trained on the same data set, centralized methods were found to be
superior. With access to more data, federated random forest was found to have superior
performance compared to the centralized models trained with a single hospital’s data.
Federated gradient boosting was found to have similar level of performance compared to
the centralized gradient boosting in this scenario. When more hospitals were added to the
centralized models’ data sets they started outperforming the federated models. Having
some of the data centralized was not found to improve the performance of the federated
models.

In general, federated random forest was found to perform better than federated
gradient boosting. The performance of federated random forest was also found to be
more stable with different data sets compared to federated gradient boosting. In addition
to the superior performance, federated random forest is simpler to implement, can be
trained asynchronously or in parallel, has smaller communication costs and sites can be
easily added or removed from the model later.

The results of the thesis suggest that in some scenarios, federated random forest
might provide superior performance compared to centralized models but based on the
experiments of this thesis, the effect is not likely to be large. For a practical application,
consideration is needed wether it is worthwhile to use federated random forest instead of
centralized models, even if more data could be acquired with the federated method, leading
to potentially slightly better performance. Even though federated learning eliminates the
need to collect all the data centrally, gaining access to multiple data sources still requires

58

59 Chapter 8. Conclusions

more work than gaining access to a single source. The extra work required for gaining
access to the data might outweigh the benefits gained from a slight performance boost
associated with using federated random forest, possibly making the method unfit for
practical use. The poor and unstable performance of the federated gradient boosting
model suggest that it will not be beneficial compared to centralized learning or federated
random forest.

60

61 Appendix A. Features

Appendix A. Features

Table A.1: Full table of features

Variable Window Last First Mean Median Min Max Slope Std Dev Delta P90% P10%

Heart Rate 8h x x x x x x x x x x x
Respiration Rate 8h x x x x x x x x x x x
BPsyst 8h x x x x x x x x x x x
BPdiast 8h x x x x x x x x x x x
BPmean 8h x x x x x x x x x x x
CVP 8h x x x x x x x x x x x
SpO2 8h x x x x x x x x x x x
Temperature 8h x x x x x x x x x x x
FiO2 1h x
PEEP 1h x
GCS verbal 24h x
GCS motor 24h x
GCS eye 24h x
Hematocrit 48h x
Hemoglobin 48h x
Leukocytes 48h x
Erythrocytes 48h x
Thrombocytes 48h x
Eosinophils 48h x
Monocytes 48h x
Neutrophils 48h x
Basophils 48h x
RDW 48h x
MCV 48h x
MCHC 48h x
MCH 48h x
MPV 48h x
Potassium 48h x
Sodium 48h x
Creatinine 48h x
Glucose 48h x
BUN 48h x
Calcium 48h x
Chloride 48h x
PaCO2 48h x
PaO2 48h x
Lactate 48h x
CRP 48h x
Total Bilirubin 48h x
Troponin T 48h x
Troponin I 48h x
Total Protein 48h x
Total CO2 48h x
Magnesium 48h x
Albumin 48h x
Aspartate Aminotransferase 48h x
Alanine Aminotransferease 48h x
Alkaline Phosphatase 48h x

Bibliography

[1] Veerajalandhar Allareddy, Deepti Karhade, Madhuradhar Chegondi, Aditya Bad-
heka, and Veerasathpurush Allareddy. 1384: Machine learning methods in health-
care: An overview. Critical Care Medicine, 48:669, 2020.

[2] Carol Bova, Deborah Drexler, and Susan Sullivan-Bolyai. Reframing the influence of
the health insurance portability and accountability act on research. Chest, (3):782–
786, 2012.

[3] Luca Marelli and Giuseppe Testa. Scrutinizing the EU general data protection reg-
ulation. Science, 360(6388):496–498, 2018.

[4] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized
Data. In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Ma-
chine Learning Research, pages 1273–1282, Fort Lauderdale, FL, USA, 2017. PMLR.

[5] Kevin Murphy. Machine Learning: A Probabilistic Perspective, volume 58. MIT
Press, 2012.

[6] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Quantitative Appli-
cations in the Social Sciences. SAGE Publications Inc, 1984.

[7] Kishan Mehrotra, Chilukuri Mohan, and HuaMing Huang. Anomaly Detection Prin-
ciples and Algorithms. Springer, 2017.

[8] Henning Best and Christof Wolf. The SAGE Handbook of Regression Analysis and
Causal Inference. SAGE Publications Ltd, 2014.

[9] Alan Fielding. Cluster and Classification Techniques for the Biosciences. Cambridge
University Press, 2007.

[10] Douglas Montgomery, Elizabeth Peck, and Geoffrey Vining. Introduction to Linear
Regression Analysis. John Wiley & Sons Ltd, fifth edition, 2012.

62

63 Bibliography

[11] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learn-
ing. MIT Press, 2006.

[12] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[13] Chi Song and Heping Zhang. Fifty years of classification and regression trees discus-
sion. International Statistical Review, 82:359–361, 2014.

[14] Lior Rokach and Oded Maimon. Data mining with decision trees : theory and appli-
cations, volume 81 of Series in Machine Perception and Artificial Intelligence. World
Scientific Pub. Co, second edition, 2015.

[15] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduc-
tion to Statistical Learning with applications in R. Springer, 2013.

[16] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Elements of Statistical
Learning Data Mining, Inference, and Prediction. Springer, 2009.

[17] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[18] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine.
Ann. Statist., 29(5):1189–1232, 2001.

[19] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning. from
theory to algorithms. Understanding Machine Learning: From Theory to Algorithms,
2013.

[20] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[21] Hervé Abdi, Betty Edelman, and Dominique Valentin. Neural Nerworks. SAGE
Publications Inc, 1999.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[23] Krzysztof Geras and Charles Sutton. Multiple-source cross-validation. In Sanjoy Das-
gupta and David McAllester, editors, Proceedings of the 30th International Confer-
ence on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 1292–1300, Atlanta, Georgia, USA, 2013. PMLR.

[24] Allison McCoy, Adam Wright, Michael Kahn, Jason Shapiro, Elmer Bernstam, and
Dean Sittig. Matching identifiers in electronic health records: Implications for dupli-
cate records and patient safety. BMJ quality & safety, 22, 2013.

http://www.deeplearningbook.org

64 Bibliography

[25] Rokia Bey, Romain Goussault, Mehdi Benchoufi, and Raphal Porcher. Strati-
fied cross-validation for unbiased and privacy-preserving federated learning. ArXiv,
abs/2001.08090, 2020.

[26] Alistair E. W. Johnson, Tom J. Pollard, and Tristan Naumann. Generalizability of
predictive models for intensive care unit patients. ArXiv, abs/1812.02275, 2018.

[27] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27(8):861–874, 2006.

[28] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(85):2825–2830, 2011.

[29] Javed Aslam, Emine Yilmaz, and Virgil Pavlu. A geometric interpretation of r-
precision and its correlation with average precision. pages 573–574, 2005.

[30] J.A. Hanley and Barbara Mcneil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143:29–36, 1982.

[31] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS
One, 10(3), 2015.

[32] Philipp Probst, Marvin N. Wright, and Anne-Laure Boulesteix. Hyperparameters and
tuning strategies for random forest. WIREs Data Mining and Knowledge Discovery,
9(3), 2019.

[33] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research, 13(10):281–305, 2012.

[34] Bob Hickish, David I. Fletcher, and Robert F. Harrison. Investigating Bayesian opti-
mization for rail network optimization. International Journal of Rail Transportation,
0(0):1–17, 2019.

[35] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computa-
tion, 12(8):1889–1900, 2000.

[36] Hua Cui and Jie Bai. A new hyperparameters optimization method for convolutional
neural networks. Pattern Recognition Letters, 125:828–834, 2019.

65 Bibliography

[37] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning:
parallel and distributed approaches. Cambridge University Press, 2012.

[38] Jakub Konecny, H. Brendan McMahan, and Daniel Ramage. Federated optimization:
Distributed optimization beyond the datacenter. arXiv:1511.03575, 2015.

[39] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learn-
ing: Concept and applications. ACM Transactions on Intelligent Systems and Tech-
nology, 10:1–19, 2019.

[40] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for federated learning on user-held data. In NIPS Workshop on
Private Multi-Party Machine Learning, 2016.

[41] Lingchen Zhao, Lihao Ni, Shengshan Hu, Yanjiao Chen, Pan Zhou, Fu Xiao, and
Libing Wu. Inprivate digging: Enabling tree-based distributed data mining with
differential privacy. IEEE INFOCOM 2018 - IEEE Conference on Computer Com-
munications, 2018.

[42] Mayur Datar, Piotr Indyk, Nicole Immorlica, and Vahab Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. Proceedings of the Annual Symposium
on Computational Geometry, 2004.

[43] Qinbin Li, Zeyi Wen, and Bingsheng He. Practical federated gradient boosting de-
cision trees. Proceedings of the AAAI Conference on Artificial Intelligence, 34:4642–
4649, 2020.

[44] Stacey Truex, Ling Liu, Mehmet Gursoy, and Lei Yu. Demystifying membership
inference attacks in machine learning as a service. IEEE Transactions on Services
Computing, pages 1–1, 2019.

[45] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18, 2017.

[46] Michael Veale, Reuben Binns, and Lilian Edwards. Algorithms that remember: model
inversion attacks and data protection law. Philosophical Transactions A: Mathemat-
ical, Physical and Engineering Sciences, 376, 2018.

[47] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks
that exploit confidence information and basic countermeasures. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,

66 Bibliography

CCS ’15, pages 1322–1333, New York, NY, USA, 2015. Association for Computing
Machinery.

[48] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. Theory of Cryptography, 3876:265–284, 2006.

[49] Cynthia Dwork. A firm foundation for private data analysis. Commun. ACM, 54:86–
95, 2011.

[50] Cynthia Dwork. Differential privacy. Automata, Languages and Programmin, 4052:1–
12, 2006.

[51] Yang Liu, Yingting Liu, Zhijie Liu, Yuxuan Liang, Chuishi Meng, Junbo Zhang, and
Yu Zheng. Federated forest. IEEE Transactions on Big Data, pages 1–1, 2020.

[52] Zhuzhu Wang, Yilong Yang, Yang Liu, Ximeng Liu, Brij Gupta, and Jianfeng Ma.
Cloud-based federated boosting for mobile crowdsensing. arXiv:2005.05304, 2020.

[53] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, and Qiang Yang. Se-
cureboost: A lossless federated learning framework. arXiv:1901.08755, 2019.

[54] Theodora Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Paschalidis,
and Wei Shi. Federated learning of predictive models from federated electronic health
records. International Journal of Medical Informatics, 112, 2018.

[55] Dianbo Liu, Timothy Miller, Raheel Sayeed, and Kenneth Mandl. Fadl:federated-
autonomous deep learning for distributed electronic health record. arXiv:1811.11400,
2018.

[56] Li Huang, Andrew Shea, Huining Qian, Aditya Masurkar, Hao Deng, and Dianbo
Liu. Patient clustering improves efficiency of federated machine learning to predict
mortality and hospital stay time using distributed electronic medical records. Journal
of Biomedical Informatics, 99:103291, 2019.

[57] Brett Beaulieu-Jones, William Yuan, Samuel Finlayson, and Zhiwei Wu. Privacy-
preserving distributed deep learning for clinical data. arXiv:1812.01484, 2018.

[58] Seyedmostafa Sheikhalishahi, Vevake Balaraman, and Venet Osmani. Benchmarking
machine learning models on multi-centre eicu critical care dataset. PLoS One, 15(7),
2020.

[59] Jack Zimmerman, Andrew Kramer, Douglas McNair, and Fern Malila. Acute phys-
iology and chronic health evaluation (APACHE) IV: Hospital mortality assessment
for today’s critically ill patients. Critical Care Medicine, 34(1297-1310), 2006.

67 Bibliography

[60] William A Knaus, Elizabeth A Draper, Douglas P Wagner, and Jack E Zimmer-
man. APACHE II: A severity of disease classification system. Critical care medicine,
13(10):818–829, 1985.

[61] Yangyang Ding, Youqing Wang, and Donghua Zhou. Mortality prediction for ICU
patients combining just-in-time learning and extreme learning machine. Neurocom-
puting, 2017.

[62] Mohammed Saeed, Mauricio Villarroel, Andrew Reisner, Gari Clifford, Li-wei
Lehman, George Moody, Thomas Heldt, Tin Kyaw, Benjamin Moody, and Roger
Mark. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): A
public-access intensive care unit database. Critical care medicine, 39:952–60, 2011.

[63] Wendong Ge, Jin-Won Huh, Yu Rang Park, Jae Ho Lee, Y.H. Kim, and Alexander
Turchin. An interpretable ICU mortality prediction model based on logistic regres-
sion and recurrent neural networks with LSTM units. AMIA Annual Symposium
proceedings, 2018:460–469, 2018.

[64] Gilles Louppe. Understanding Random Forests: From Theory to Practice. PhD
thesis, 2014.

[65] Tom Pollard, Alistair Johnson, Jesse Raffa, Leo Celi, Roger Mark, and Omar Badawi.
The eICU Collaborative Research Database, a freely available multi-center database
for critical care research. Scientific Data, 5:180178, 2018.

[66] Craig Lilly, Ilene Zuckerman, Omar Badawi, and Richard Riker. Benchmark data
from more than 240,000 adults that reflect the current practice of critical care in the
United States. Chest, 140:1232–42, 2011.

[67] Yaseen Arabi, Srinivas Venkatesh, Samir Haddad, Abdullah Shimemeri, and Salim
Malik. A prospective study of prolonged stay in the intensive care unit: Predictors
and impact on resource utilization. International journal for quality in health care,
14:403–10, 2002.

	Acknowledgments
	Acronyms
	Introduction
	Background
	Machine Learning
	Decision Trees
	Impurity Measures
	Advantages and Disadvantages

	Boosting and Ensembles
	Boosting
	Ensemble Learning

	Neural Networks
	Feed-Forward Networks
	Backpropagation

	Model Evaluation and Tuning
	Training, Test and Validation Sets
	Cross-Validation
	Model Performance
	Hyperparameter Tuning

	Federated Learning
	Federated Deep Learning
	Federated Averaging
	Secure Aggregation

	Federated Gradient Boosting Decision Trees
	Sequential Tree Building
	SimFL

	Privacy Protection
	Related Work

	A Novel Method for Federated Random Forest
	Federated Random Forest
	Communication Costs
	Computational Costs

	Dataset and Experiments
	The eICU Dataset
	Targets and Prediction Windows
	Cohort Selection
	Data Statistics

	Experiments
	Experiments on Full Training Set
	Centralized and Federated Training on a Subset of Hospitals
	Federated Training on Top of Centralized Training

	Results
	Models Trained on Full Training Set
	Models Trained on a Subset of Training Set Hospitals
	Centralized Models with Data from the Largest Hospital
	Centralized Models with Data from the 2 Largest Hospitals
	Centralized Models with Data from the 3 Largest Hospitals

	Federated Training on top of Centralized Models
	Models with 2 Centralized Hospitals
	Models with 3 Centralized Hospitals

	Effect of Number of Trees on Federated Random Forest
	Factors affecting Federated Gradient Boosting Performance

	Discussion
	Performance of the models
	Limitations

	Conclusions
	Appendix Features
	Bibliography

