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      A B S T R A C T  

The existence and uniqueness of the solution of 
a variational inequality is considered, and methods 
of approximation of the solution are given. 

Some elementary theorems concerning bilinear forms 
and antimonotone operators are given in the appendix. 



 



 
 
 
 
 
 
 
Let H be a real Hilbert Space with its dual H' ,  whose 

inner product and norm are denoted by (( ·  ))  and | |  ·  | |  respectively. 
The pairing between f ∈  H' and u ∈  H  is denoted by (f ,u) .  Let F' 
be the Frechet differential of a nonlinear functional F on a 
closed convex set M in H. 

Consider also a coercive continuous bilinear form a(u,v) on H, 
i ,e.  there exists constants α  > 0, β  > 0 such that 

a(v,v) ≥  α  | |  v | | 2   for all  v ∈  H,                            (1) 

|  a (u,v) |  ≤  β  | |  u | |  | |v | |               for all  u,v∈  H.                          (2) 

Furthermore let F be a given element of H'.  We now 
consider a functional I[v] defined by 

I [v] = a(v,v) - 2F(v) for all  v∈  H. 

Many mathematical problems either arise or can be formulated 
in this form. Here one seeks to minimize the functional I[v] 
over a whole space H or on a convex set M in H. It  is 
well—known [ 1] that if  F is a linear functional,  then the 
element u which minimizes I [v] on M is given by 

a(u,v-u) ≥  (F,v-u) for all  v ∈  M. (3) 

For a nonlinear Frechet differentiable functional F, 
i t  was shown [3] that the minimum of the functional I[v] on M 
is given by u ∈  M such that 

    a(u,v-u) ≥  (F'(u),v-u) for all  v ∈  M. (4) 
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Such type of inequalities are known as variational 
inequalities [1].  Lions-Stampacchia. [1] have studied the existence 
of a unique solution of (3).  The motivation for this report is to 
show that under certain conditions there does exist a unique solution 
of a more general variational inequality of which (4) is a special case. 
         Let us consider the following problem. 

PROBLEM 1 

Find u∈  M such that 

a(u,v-u) ≥  (Au,v-u)             for all  v ∈M,                      (5) 
where A is a nonlinear operator such than Au∈  H ' .  

For M = H, the inequality (5) is equivalent to finding u∈  H 
such that 

a(u,v) = (Au,v) for all  v∈  H, 
and thus our results include the Lax-Milgram lemma as a special case. 

Definition

The operator T :  M →  H' is called antimonotone, if  

(Tu-Tv, u-v) ≤  0 for all  u,v∈  M, 

and is said to be hemicontinuous [4],  if for all  u,v∈  M, the mapping 
t  ∈  [0,1] implies that (T(u+t(v-u)),u-v) is continuous. Furthermore, 
T is Lipschitz continuous, if  there exists a constant 0 < ϒ  ≤  1 
such that 

| |Tu-Tv| |  ≤  ϒ  | |u-v| |  for all  u,v∈  M. 

Theorem 1. 

Let  a(u,v)  be a  coercive cont inuous bi l inear  form and M 
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a closed convex subset in H. If A is a Lipschitz continuous 
antimonotone operator with ϒ  < α ,  then there exists a unique u∈M 
such that (5) holds. 

The following lemmas are needed for the proof. 

Lemma 1 .  
If  A is an antimonotone hemicontinuous operator,  then u∈M 

is a solution of (5) if  and only if u satisfies 

            a(u,v-u) ≥  (Av,v-u)           for all  v∈M                                (6) 

Proof
If for a given u in M, (5) holds, then (6) follows by the 

antimonotonicity of A. 
Conversely, suppose (6) holds, then for all  t∈[0,1] and 

w∈M, vt ≡  u + t(w-u) ∈  M, since M is a convex set.  Setting v = vt  in 
(6) ,  we have 

                  a(u,w-u) ≥  (Avt ,w-u)              for all  w∈M . 

Now let  t→  o.  Since A is  hemicont inuous ,  Av t→  Au.  
It  follows that 

               a(u,w-u) ≥  (Au,w-u)               for all  w∈M. 

T h e  m a p  v  →  a ( u , v )  i s  l i n e a r  c o n t i n u o u s  o n  H ,  s o  b y  
R e i s z - F r e c h e t  t h e o r e m ,  t h e r e  e x i s t s  a n  e l e m e n t  η  =  T u ∈ H '  
such that 

               a(u,v) = (Tu,v)            for all  v∈H         (7) 

      Le t  ⋀  b e  a  c a n o n i c a l  i s o mo r p h i s m f r o m H ’  o n t o  H  d e f i n e d  
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by 

(f,v) = ((⋀f,v))           for all v∈H, f∈H' (8) 

 Then ||⋀|| H' = || ⋀-1 || H = 1. We note first that by (1),(2) and 
 

(7), it follows that 

(i)     ||T|| ≤ β 

(ii) α ≤ β 

        The next lemma is a generalization of a lemma of 
Lions-Stampacchia [1]. 

Lemma 2

      Let ζ be a number such that 0 < ζ<  and 

Then there exists a θ with 0 < θ < 1 such that 

 

||φ(u1)-φ(u2)|| ≤ || u1-u2 || for all u1,u2 ∈ H, 

 

where for u∈H, φ(u) ∈ H' is defined by 

 

(φ(u) ,v) = (( u,v )) - ζ a(u,v) + ζ(Au,v) for all v∈H.               (9) 

Proof: 

For all u1,u2∈Η. 

(φ(u1) - φ(u2),v) = ((u1-u2 ,v)) - ζ a (u1-u2,v) + ζ (Au1-Au2,v) for all v∈H 

= ((u1-u2,v)) -ζ(T(u1-u2),v)+ ζ(Au1-Au2,v), by (7) 

= ((u1-u2 ,v)) -ζ ((⋀T(u1-u2),v)) +ζ((⋀Au 1-⋀Au 2,V), by (8) 

= (( u1-u2 , - ζ Τ(u1-u2),v))+ ζ(( Au1- Au2,v)) 

Thus 

 

|φ((u1) -φ(u2),v)| ≤ ||u1-u2-ζAT(u1-u2)|| ||v||+ ζ ||Au1-Au2|| | |v| | 

for all v∈H. 
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Now  using  (7)   and  (8)  we  have 

| |U1-U2-ζ⋀  T(u1-u2) | |  2  ≤   | |u1-u2  | |  2  +ζ  2  | |  T | | 2   | |u1-u2 | | 2-2ζ   a( u1-u2,u1-u2) 
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 The  following  results  are  proved  by  Mosco  [2]. 

Lemma  3

 Let    M    be  a  convex  subset  of    H.     Then,  given  z H  we  have 

     x  =  PMz, 

 if   and   only  if 

      x  M;    ((x-z,y-x))   ≥  0    for  all  y∈M. 

where    PM    is   the  projection  of    H    in  M. 

Lemma  4. 

PM    is non-expansive,  i.e., 

                      ||PM Z1-PMZ2 ||  ≤  || Z1-Z2 ||                 for all z1,z2 ∈ H. 
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Using the technique of Lions-Stampacchia [ 1 ] , we now 
prove theorem 1, 

Proof of theorem 1, 

(a) Uniqueness 

Let u i , i=1,2 be solutions in M of 
 

a(ui, v-ui.) ≥ (Aui-v-ui) for all v∈M. 

Setting v = u3- i , i = 1 , 2 in the above inequality, by addition 
we have 

a(u1-u2,u1-u2) ≤ (Au1-Au2,u1-u2) . 

Since a(u,v) is a coercive bilinear form, there exists a constant 

a > 0 such that 

 
α || u1-u2 ||2 ≤ (Au1-Au2,u1-u2) ≤ 0, 

by the antimonotonicity of A. From which the uniqueness of the solution 
u∈M follows. 

(b) Existence
For a fixed ζ as in Lemma 2, and u H, define φ(u) ∈H' by (9). 

By lemma 3, there exists a unique w ∈M such that 

((w,v-w)) ≥ (φ (u),v-w) for all v∈M, 

and w is given by 

w = PM ⋀ φ (u) = Tu, 

which defines a map from H into M. 
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Now for all u.,u H, 

|| TU1-TU2 || = || PM ⋀ φ (u1) - PM ⋀ φ(u2 ) ||, 
                                        

                                       ≤  || ⋀ φ (u1) - ⋀ φ (u2 ) || , by lemma 4, 
                                        
                                       ≤  || φ (υ1) - φ(u2) || , 
                                        
                                       ≤  θ|| u1 -u2 ||, by lemma 2. 
 
Since θ < 1. Tu is a contraction and has a fixed point u = Tu, which 
belongs to M, a closed convex set and satisfies 
         
         ((u,v-u)) > (φ (u),v-u) = ((u,v-u)) - ζ [a(u,v-u) - (Au,v-u)] 
 
Thus for ζ > 0, 
 
         a(u,v-u) ≥ (Au,v-u) for all v∈ M 
 
showing that u is a unique solution of problem 1. 

Remarks 
1; It is obvious that for Au = F' (u), the existence of a unique 
solution of a variational inequality (4) follows under the assumptions 
of theorem. 1 . 

2: If A is independent of u, that is Au = A' (say), then the 
Lipschitz constant γ  y is zero, and lemma 2 reduces to a lemma of 

Lions-Stampacchia [1] and ζ is a number such that 0 < ζ < .2β
2α  

Consequently theorem 1 is exactly the same as one proved by 

Lions-Stampacchia for the linear case. It is obvious that our result 

not only generalizes their result, but also includes it as a special case. 
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Method of Approximation 

Suppose that the bilinear form is non-negative, i.e. 
a(v,v) ≥ 0 for all v∈ H. (10) 

Assume that there exists at least one solution u ∈M of 

                  a(u,v-u) ≥ (Au,v-u) for all v∈M (11) 

and X is the set of all solutions of (11). Let, finally, 
b(u,v) be a coercive bilinear form on H, that is there exists 
a constant α > 0 such that 
                  
                 b(v,v) ≥ α ||v||                  for all v∈H                                       (12) 

First of all we prove some elementary but important lemmas. 

Lemma 5 
If a(u,v) is a non-negative bilinear form and u∈M, then 

the inequality (5) is equivalent to the inequality 

                a(v,v-u) ≥ (A(u),v-u) for all v∈M.                          (13) 

Proof
Let (5) hold, then 

                a(v,v-u) ≥ (A(u),v-u) + a(v-u,v-u) ≥(A(u),v-u), by (10). 
 

Thus (13) holds; 
Conversely let (13) hold, then for all t ∈[0,l] 

and w∈M, vt = u+ t(w-u) ∈M. Setting v=vt in (13) it follows that 

a(u,w-u) + t a(w-u,w-u) ≥ (A(u),w-u), for all w∈M. 

Letting t → 0, (5) follows. 
As a consequence of lemma 1 and lemma 5 we have the following 

result. 

Lemma 6. 

If a(u,v) is non-negative bilinear form and A is hemicontinuous 

- 8 - 



 
 
 
 
antimonotone operator, then the inequality (5) is equivalent to 

a(v,v-u) ≥ (A(v),v-u)     for all v∈M. 

Theorem 2 
If b(u,v) is a coercive continuous bilinear form and B is 

a Lipschitz continuous antimonotone operator with ϒ < α then 
there exists a unique solution uo ∈ X such that 

  

b(uo ,v-uo ) ≥ (Buo ,v-uo ) for all v∈x. (14) 
 

Proof: 
Obviously X is closed. In order to prove theorem (2), 

it is enough to show that X is convex. Since a(u,v) is 
non-negative, so (11) is equivalent to 

a(v,v-u) ≥ (Av,v-u) , by lemma 6 . 
Now for all t ∈ [0,1], u1 , u2 ∈ X, 

a(v,v-u2-t(u1-u2))= a(v,v-u2) -t a(v,u1-u2) 
= a(v,v-u2 ) -t a(v,u1 -v+v-u2 ) 

= a(v,v-u2) + t a(v,v-u1) - t a(v,v-u 2) 

= (1-t) a(v,v-u2) + t a(v,v-u1) 
≥ (1-t) (Av,v-u2) + t (Av,v-u1), 

by lemma 6 . 

Thus for all t ∈[0,1], U1 ,U2 ∈ x , tu1 +(l-t)u2 ∈ x, 
which implies that X is a convex set. Hence by theorem (1), there 
does exist a unique solution uo ∈X satisfying (14). 

Theorem 3

Assume that (10) and (12) hold. If a(u,v) + ∈ b (u,v) is a 
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continuous bilinear form and A, B are both antimonotone 
Lipschitz continuous with Y < α , then there exists a unique 

solution uε ∈ M such that 

a(u ε ,v-u ε ) + ε b(u ε ,v-u ε ) ≥ (Auε -εBuε ,v-u ε ) for all v∈M.    (15) 

Proof: 

Since for ∈ > 0 and by (10), (12), the continuous bilinear 
form a(u,v) + ε b(u,v) is coercive on H, then by theorem 1, 
there exists a unique u ε ∈ M satisfying (15). 

Using lemma 1 and the methods of Sibony [ 4 ] and 
Lions-Stampacchia [ 1 ], we prove that the elements of X can be 
approximated. 

Theorem 4

Suppose A,B:M → H' are both hemicontinuous operators and 

the assumptions of theorems (2) and (3) hold. If uo is the element 

of X defined by (14) satisfying 

a(u o ,v-u o ) ≥ (Auo ,v-uo ) for all v∈X. (16) 

and uε is the element of M defined by (15), then 
 

uε → uo strongly in H as ε → 0. 
 

Proof: 

Ihis is proved in three steps. 

(i) u£ is bounded in H. 

Setting v = uo in (15) and v = uε in (16), we get 
 

a(u ε , uo — u ε ) + εb(u ε ,u o —uε ) ≥ (Auε +εBuε ,u o -uε ) 

and 

a(uo , u-uo ) ≥ (Auo ,u ε -uo ) 
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By addition of these inequalities, it follows from (10) 
and the antimonotonicity of A that 

                   b(uε ,u o -uε ) ≥ (Buε ,uo -u ε ) (17) 

 

Since b(uε ,uε ) is a coercive bilinear form, there 
exists a constant a > 0 such that 

α ||uε ||2 ≤ b(uε ,uo) + (Buε,uε-uo) . 

It follows that || u ε || ≤ constant, independent of ε. 
Hence there exists a subsequence uε which converges to ξ , say. 

(ii) ξ belongs to X. 

Since A and B are antimonotone operators, by (15) 
and the application of lemma 1, we get 

        a(uε ,v- uε ) + εb(uε ,v-uε ) ≥ ( Av + εBv,v-uε )      for all v∈M. 

Now let ε → 0, then uε → ξ and lim inf a(uε , uε ) ≥ a(ξ,ξ) ,[1 ] 
We have 

            a(ξ,v-ξ) ≥ (Av,v-ξ) for all v∈X , 

which is by lemma 1 equivalent to 

             a(ξ,v-ξ) ≥ (Aξ,v-ξ) for all v∈X. 

Thus ξ∈X. 
(iii) Finally || uε || → || c|| when ε → 0, 

            Setting v=u ∈X in (15) and v-uε ∈X in (11) 

We obtain 

               a(uε ,u-uε ) + εb(uε ,u-uε ) ≥ ( Auε + εBuε ,u-uε ), 
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which is, by lemma 1, equivalent to 

            a(uε , u-uε ) +εb(uε , u-uε ) ≥ (Au+εBu,u-uε ) 
 

Also, 

            a(u,uε -u) ≥ (Au,uε -u) 

By addition one has 

            a(uε -u,u—u ε ) + εb(uε ,u-u ε ) ≥ ε(Bu,u-uε ) 

 

Using (10) , and for ε > 0, we get 

             b(u ε ,u-u ε ) ≥ (Bu,u-uε ) for all u∈X. 

 

Letting ε → 0 , u ε  → ξ , we have 
           b(ξ ,u-ξ ) ≥ (Bu.u-ξ ) 

                          ≥ (Bξ ,u-ξ ), by lemma 1. 

Thus ξ ∈X is a solution of (14) and since the solution is unique, 

it follows that ξ - uo . 

Also from (17), by the coercivity of b(uε ,u ε ), it follows 
that there exists a constant α >0 such that 

              α | |  uε -uo | | ≤ b(uε -uo ,uε -uo ) 

                               ≤(Buε ,uε-uo ) - b(uo ,uε -uo ) 

                               ≤(Buo ,uε -uo )-b(uo , u ε— uo ), by lennna 1, 
   

which → 0 , as, ε → 0 . Hence it follows that uε → u strongly in H. 
 

Theorem 5

 If a(u,v), b(u,v) are coercive continuous bilinear forms, 
M is a closed convex set in H, and A,B are heniicontinuous antimonotone 
Lipschitz continuous operators with α > γ , then problem 1 has a 

    - 12 - 



unique solution if and only if there exists a constant L, 
independent of ε, such that the solution of (15) satisfies 

|| uε || ≤ L                                                               (18) 

Proof: 

If there exists a solution, then from theorem 4, it 
follows that (18) holds. Conversely suppose that (18) holds , 
then there exists a subsequence uη of uε which converges to 

w weakly in H. Since M is a closed convex set, w∈M, Further 
writing (15) in. the form 

a(u ,u -v) + εb(u ε ,u ε —v) ≤ (Av+εBv,uε —v) for all v∈M 

and taking ε = η=0 , we find that 

a(w,w) ≤ a(w,v) + (Av,w—v) for all v∈M, 

which is by lemma 1 , equivalent to 

a(w,w—v) ≤ (Aw,w—v) for all v∈M. 

Thus w is the solution satisfying (11). 



Existence of Solutions 

 In this section, the existence of the solution satisfying 
(10) for the cases, when M is bounded or an unbounded convex 
subset of H is considered. 

Theorem 6 

If M s a bounded closed convex subset, and A is a 
hemicontinuous Lipschiltz antimono tone operation, then there exists 
a unique solution of problem (1). 

Proof: 

Let uε ∈M be the element defined by (15). Since M is bounded, 

then ||uε || is bounded, and theorem (6) follows from theorem (5). 

Consider now the case when the set M is bounded. Let 
MR = {k ; k∈M, | | k || ≤ R } with R large enough so that MR ≠ φ . Assume 
that A is hemicontinuous antimonotone operator, then by theorem (6), 
there exists a non-empty set, 

         XR ≡ set of all solution of w∈MR with 

a(w,v-w) ≥ (Aw,v-w)                                     for all v∈MR

Theorem 7

   Suppose a(u,v) is a continuous bilinear form and A is 
a hemicontinuous antimonotone operator. If u∈XR with 
||u|| < R, then u satisfies (11). 

Proof

   In fact, let w be any solution in M. Then for 
0 < ε < 1, u+ε(w-u) ∈ M and || u+∈(w-u)|| ≤ || u| + ε ||w-u|| < R for 
sufficiently small ε. Thus for 0 < ε < ε1, v=u + ε(w-u) ∈ MR. 

(19) 

- 14 - 



Consequently such a v is allowed in (19) with w =u 

and it follows that 

               a(u,w-u) ≥ (Au,w-u)          for all. w∈M. 

This proves theorem 7. 
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APPENDIX 

  Let a(u,v) be a coercive continuous bilinear form on H. 

The  Cauchy-Schwarz   inequality holds for a(u,v) and is given by 

 

|a(u,v) |2 ≤ a(u,u)a(v,v)         for all u,v∈H. 

Theorem 8

A bounded bilinear form is continuous with respect to the 

norm convergence. 

Proof: 

           Let un → u and vn → v, these sequences are bounded. We 

let Y be their bound, and then || un || ≤ Y .  

Now 

           [a(un ,v n ) - a (u,v) | = | a(un ,vn ) - a(un ,v) +a(un ,v) - a(u,v) | 

     ≤ | a(un ,vn -v)| + |a(un -u,v) | 

      ≤ C γ || vn-v || +C1 || un-u || ||v||, 

by the Cauchy-Schwarz inequality. But ||un —u || → 0 and 

|| [vn -v || → 0 as n → ∞, and therefore 

             | a(un ,vn ) - a(u,v) | → 0, i.e., 

             a(un ,vn ) → a(u,v) . 

Theorem 9

        Let v be in H and M be a closed convex subset of H. If u 

is a minimizing vector and a(x,v) is any continuous bilinear form such 
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that a(x,y) = ((x,y)), for all x,y∈H, then 

                    a(u-v,w—u) ≥ 0                  for all w∈M.                 (20) 

Conversely if (19) holds and a(u,v) Is also coercive, then 

    ||u-v || ≤ α-1 c || w-v || for all w∈M. 

Proof: 

If u is the unique minimizing vector, then we have to 
show that a(u-v,w—u) ≥ 0 for all w∈M. 

        Suppose to the contrary that there is a vector v1 ∈M 
such that a(u-v,u-v1) = ε > 0. For all t ∈[0,l] and v1 ∈M, 
v t ≡ u + t(v1-u) ∈ M, 

Now 

|| vt -v||2 = || u+t (v1-u) -v||2

    = ||u-v|| 2 + t2 || v1-u ||2 + 2t(u-v,v1-u) 

      < || u-v ||2, 

for, small positive t , which contradicts the minimizing property 
of u. Hence no such v1 can exist. 

Conversely let ueM such that (20) holds, then for 
any w u, w∈M, ≠

   0 ≤ a( u—v,w-u) = a(u-v,w-v +v— u) 
implies that 

    a(u—v,u-v) ≤ a(u—v,w—v). 

Since a (u, v) is a continuous coercive bilinear form, 

there exist constants c >0, α >0 such that 

 α ||u-v||2 ≤ c|| u-v|| || w-v ||               for all w∈M, 

i.e., 

   || u- v || ≥ a -1 c ||w-v ||                for all w∈M. 



    The following representation of the differentiable 

f unctions is needed 

ds.)v)s(u(vF'v,(u1
oF(v)F(u) −+−∫=−  

Theorem 10. 

     If F’ is antimonotone, then the real-valued functional F 

is weakly upper semicontinuous and concave. 

Proof: 

  Consider  
ds)u)ns(u(uF'u,n(u1

oF(u))nF(u −+−∫=−  
  

(u))dsF'u))ns(un(uF'u,n(u1
o(u)dsF'u,n(u1

o −−+−∫+−∫=  

If un → u weakly, as n → ∞ , then the first term on R.H.S. 

tends to zero. The second term is always non-positive. In fact, 

by antimonotonicity (un -u,F' (u+s(un -u)) - F' (u)) ≤ 0 for all 

0 ≤ s ≤ 1 , and therefore the integrand ≤ 0 for all 0 ≤ s ≤ 1. Hence 

for a sufficiently large n, there exists εn → 0 as n → ∞ such 

that F(u ) -F(u) ≤ ε n , i.e., 

       lim
n ∞→ sup F(un ) ≤ F(u) . 

Thus F is a weakly upper semicontinuous functional. Using 

a similar argument, it can be seen that the antimcnotonicity of F' 

guarantees concavity of F. 

Theorem 11. 

             If a functional F is concave on a convex set M, then the 
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Frechet differential F' of F is antimonotone . 

Proof: 

For all t ∈[0,l] and u,v∈M, tu+(l-t)v = v + t(u-v)∈M. 

By definition 

F(v+t(u-v) ≥ t F (u) + (l-t)F(v) 

Dividing both sides by t, and letting t → 0, we get 

F'(v),u-v) ≥ F(u) -F(v) 

Similarly 

(F'(u),v-u) ≥ F(v) -F(u) 

By addition, it follows that 

                          (F' (v) - F' (u) ,u-v) ≥ 0              for all u,v∈M. 

Thus from theorem 10 and theorem 11 one concludes that 

"A real—valued functional on a convex set in a Hilbert space 

is concave if and only if its Frechet differential is an 

antimonotone operator". 
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