
ARTICLE

Structural disconnectivity and the risk of
dementia in the general population
Lotte G.M. Cremers, PhD, Frank J. Wolters, MD, Marius de Groot, PhD, M. Kamran Ikram, PhD,

Aad van der Lugt, PhD, Wiro J. Niessen, PhD, Meike W. Vernooij, PhD,* and M. Arfan Ikram, PhD*

Neurology® 2020;95:e1528-e1537. doi:10.1212/WNL.0000000000010231

Correspondence

Dr. Ikram

m.a.ikram@erasmusmc.nl

Abstract
Objective
The disconnectivity hypothesis postulates that partial loss of connecting white matter fibers
between brain regions contributes to the development of dementia. Using diffusion MRI to
quantify global and tract-specific white matter microstructural integrity, we tested this hy-
pothesis in a longitudinal population-based study.

Methods
Global and tract-specific fractional anisotropy (FA) and mean diffusivity (MD) were obtained
in 4,415 people without dementia (mean age 63.9 years, 55.0% women) from the prospective
population-based Rotterdam Study with brain MRI between 2005 and 2011. We modeled the
association of these diffusion measures with risk of dementia (follow-up until 2016) and with
changes on repeated cognitive assessment after on average 5.4 years, adjusting for age, sex,
education, macrostructural MRI markers, depressive symptoms, cardiovascular risk factors, and
APOE genotype.

Results
During a median follow-up of 6.8 years, 101 participants had incident dementia, of whom 83
had clinical Alzheimer disease (AD). Lower global values of FA and higher values of MD were
associated with an increased risk of dementia (adjusted hazard ratio [95% confidence interval
(CI)] per SD increase for MD 1.79 [1.44–2.23] and FA 0.65 [0.52–0.80]). Similarly, lower
global values of FA and higher values ofMD related tomore cognitive decline in people without
dementia (difference in global cognition per SD increase in MD [95% CI] was −0.04 [−0.07 to
−0.01]). Associations were most profound in the projection, association, and limbic system
tracts.

Conclusions
Structural disconnectivity is associated with an increased risk of dementia and more pro-
nounced cognitive decline in the general population.
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Dementia is among the leading causes of death and dis-
ability worldwide, and its socioeconomic burden on society
will continue to increase as the number of persons with
dementia is predicted to nearly triple to 131 million in
2050.1 Effective preventive and curative interventions are
urgently needed, but their development and timely appli-
cation is hampered by incomplete understanding of path-
ophysiology, lack of markers that can identify changes in
the very early, subclinical stages of disease, and lack of
prognostic markers. Subclinical brain changes are thought
to occur years, if not decades, prior to onset of clinical
symptoms,2 which is beyond the scope of currently applied
subclinical macrostructural imaging markers of neuro-
degeneration, such as hippocampal volume and presence
of white matter hyperintensities (WMHs). Despite ad-
vances in measurement of amyloid and tau, these mea-
surements come at high cost and provide incomplete answers
to prediction of dementia in the presence of a multitude of
pathologies at old age.3 In particular, when selecting individuals
in the community for further screening or trial inclusion, im-
aging tools are valuable to improve prognostic precision be-
yond clinical characteristics.4

One of the recent insights in dementia is that brain damage
can lead to disruption of brain networks, so called
disconnectivity.5–7 Disconnectivity, which can be investigated
using diffusion MRI, seems to occur prior to changes in con-
ventional structural MRI markers such as WMHs load in de-
mentia,8 and is thought to reflect early cerebral white matter
damage.9,10 Disconnectivity is more pronounced in patients
with dementia compared to healthy controls,11,12 and relates to
more rapid cognitive decline in patients with Alzheimer disease
(AD).13 In 4 longitudinal studies from 2 clinical cohorts
of patients with small vessel disease, network disruption was
related to accelerated decline in psychomotor speed and an
increased risk of dementia.14–17 However, patients with sub-
stantial small vessel disease onMRI represent a minority of the
individuals at high risk of dementia in the community, and it
remains undetermined whether prior findings extend to the
wider populationwithout severe small vessel disease, prior TIA,
or stroke. In addition, study in persons with and without small
vessel diseasemay better determine the effect of disconnectivity
on dementia, above and beyond the burden of, for example,
WMHs.

We aimed to determine the association of global and tract-
specific disconnectivity with dementia and cognitive decline
in a population-based setting.

Methods
Standard protocol approvals, registrations,
and patient consents
The Rotterdam Study has been approved by the medical
ethics committee according to the Population Study Act
Rotterdam Study, executed by theMinistry of Health, Welfare
and Sports of the Netherlands. All participants gave written
informed consent.

Study population
This study was embedded within the Rotterdam Study, a
population-based cohort study including participants 45 years
and older living in Ommoord, a suburb of Rotterdam.18 The
study started in 1990 with 7,983 participants and was extended
with 3,011 participants in 2000 and with 3,932 participants in
2006. Participants were examined at baseline with a home in-
terview and an extensive set of examinations in the research
center. Follow-up examinations were repeated every 3–4 years.
All participants were continuously monitored through elec-
tronic linkage of the study database with their own medical
records. All details of the study have been described pre-
viously.18 From 2005 onwards, MRI scanning was imple-
mented in the core protocol. Between 2005 and 2011, 5,715
participants without contraindications for MRI (metal im-
plants, pacemaker, claustrophobia) were eligible for scanning,
of whom 4,888 (86%) underwent a multisequence MRI ac-
quisition of the brain, and 4,813 (98%) participants completed
the diffusion-weighted sequences. We excluded 245 individuals
due to technical scanning issues, e.g., failed segmentations, as
well as 38 participants with prevalent dementia and 100 par-
ticipants with insufficient dementia screening at baseline,
resulting in a study sample of 4,430 individuals. Of these in-
dividuals, 4,317 persons had detailed cognitive assessment at
baseline and 3,402 (79%) had repeated assessment during
follow-up examination after on average 5.4 (SD 0.6) years.

MRI acquisition and processing
Multisequence MRI was performed on a 1.5T MRI scanner
(GE [Chalfont St. Giles, UK] Signa Excite). The imaging
protocol has been described extensively elsewhere.19 The
conventional scan protocol consisted of a T1-weighted image,
a T2-weighted fluid-attenuated inversion recovery (FLAIR)
sequence, and a proton density–weighted image.

Scans were spatially coregistered using rigid registration. Scans
were segmented with an automated tissue segmentation ap-
proach into gray matter, white matter, CSF, and background
tissue,20,21 followed byWMHsegmentation based on the tissue

Glossary
AD = Alzheimer disease; BMI = body mass index; CES-D score = Center for Epidemiologic Studies Depression Scale; DSM-
III-R = Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, revised; FA = fractional anisotropy; FLAIR = fluid-
attenuated inversion recovery; GMS = Geriatric Mental Schedule; HDL = high-density lipoprotein; HR = hazard ratio; ICV =
intracranial volume; MD = mean diffusivity; MMSE = Mini-Mental State Examination; WMH = white matter hyperintensity.
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segmentation and the FLAIR image.22 Supratentorial in-
tracranial volume (ICV), to correct for head size, was estimated
by summing total gray and white matter and CSF volumes.21

We visually assessed the presence of infarcts on conventional
MRI sequences, and in case of involvement of cortical gray
matter, we classified these as cortical infarcts.

Diffusion MRI processing and tractography
For diffusion MRI, we performed a single-shot, diffusion-
weighted spin echo echoplanar imaging sequence. Maximum
b-value was 1,000 s/mm2 in 25 noncollinear directions;
3 volumes were acquired without diffusion weighting
(b-value = 0 s/mm2). All diffusion data were preprocessed
using a standardized pipeline.23 In short, eddy current and
head motion correction were performed on the diffusion
data. The resampled data were used to fit diffusion tensors to
compute mean fractional anisotropy (FA) and mean diffu-
sivity (MD) in the normal-appearing white matter, through
combination with the tissue segmentation. The diffusion
data were also used to segment white matter tracts using a
diffusion tractography approach described previously.24 The
tract-specific analysis was performed incorporating all voxels
of the tract anatomy, both normal-appearing white matter
voxels and voxels containing WMHs. Tractography was
performed in native space, using standard space seed, target,
stop, and exclusion masks as described previously.24 Trac-
tography was performed with PROBTRACKX, a Bayesian
framework for white matter tractography, available in FSL
(version 4.1.4). Protocols for identifying 15 white matter
tracts were defined as described previously and were made
available as the autoPTX plugin for FSL (version 0.1.1). The
reproducibility of the tractography was 87%, as previously
shown.24 The amount of seed points was variable across
tracts to achieve a robust sampling of all tracts investigated.
The ball and stick diffusion model (BedpostX) estimation
and tractography algorithm were run with default settings.
We segmented 15 different white matter tracts (12 bilateral,
3 singular) and obtained mean FA and MD in these tracts,
with subsequent combination of left and right measures.24 In
general, lower FA and higher MD values are considered
indicative of lower microstructural integrity and as such
reflecting disconnectivity. Missing data for tract-specific
measurements due to tractography or segmentation failures
were limited to 33–78 participants (0.8%–1.8%) per tract.
Tracts were categorized, based on anatomy or presumed
function, into brainstem tracts (middle cerebellar peduncle,
medial lemniscus), projection tracts (corticospinal tract,
anterior thalamic radiation, superior thalamic radiation,
posterior thalamic radiation), association tracts (superior
longitudinal fasciculus, inferior, longitudinal fasciculus, in-
ferior fronto-occipital fasciculus, uncinated fasciculus), lim-
bic system tracts (cingulate gyrus part of cingulum,
parahippocampal part of cingulum and fornix), and callosal
tracts (forceps major, forceps minor).24

We obtained tract volumes and tract WMH volumes by
combining the tissue and tract segmentations. Tract-specific

WMH volumes were natural-log transformed, to account for
their skewed distribution.

Between February 2007 and May 2008, an erroneous swap of
the phase and frequency encoding directions for the diffusion
acquisition led to a mild ghosting artifact, which was
addressed by adjustment in the analysis.24 There was only
partial coverage of one of the brainstem tracts (medial lem-
niscus) due to incomplete coverage of the cerebellum in the
field of view, and we used alternative seed masks for trac-
tography and adjustment in the model to overcome this
problem.24

Dementia screening and surveillance
All participants were screened for dementia at baseline and
during subsequent center visits using the Mini-Mental State
Examination (MMSE) and the Geriatric Mental Schedule
(GMS) organic level.25 Participants with an MMSE score
<26 or a GMS score >0 underwent further cognitive exam-
ination and informant interview, including the Cambridge
Examination for Mental Disorders of the Elderly. In addi-
tion, the entire cohort was under continuous surveillance for
dementia through electronic linkage of the study database
with medical records from general practitioners and the re-
gional institute for outpatient mental health care. Clinical
neuroimaging was used when required for dementia subtype
diagnosis. A consensus panel led by a consultant neurologist
established the final diagnosis in accordance with standard
criteria for dementia (DSM-III-R) and AD (National In-
stitute of Neurological and Communicative Disorders and
Stroke–Alzheimer’s Disease and Related Disorders Associ-
ation). Follow-up until January 1, 2016, was virtually com-
plete (96% of potential person years). Participants were
censored at date of dementia diagnosis, death, loss to follow-up,
or January 1, 2016, whichever came first.

Assessment of cognitive function
During center visits, all participants underwent routine cog-
nitive assessment comprising a word fluency test (number of
animal species within 1 minute), 15-word learning test (im-
mediate and delayed recall of 15 items), letter–digit sub-
stitution task (number of correct digits in 1 minute), Stroop
test (error-adjusted time in seconds taken for completing
the reading, color naming, and interference tasks), and the
Purdue Pegboard task for manual dexterity.21 To obtain a
composite measure of test performance, we calculated the
G-factor by principal component analysis,21 which explained
49%–54% of variance in cognitive test scores at each exami-
nation round in our population. For each participant, Z scores
were calculated for each test separately, by dividing the dif-
ference between individual test score and population mean by
the population SD. Scores for the Stroop tasks were inverted
such that higher scores indicated better performance.

Other measurements
Information on smoking habits, educational attainment, and
use of antihypertensive and lipid-lowering medication was
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ascertained at baseline by structured questionnaires. Blood
pressure was measured twice in sitting position using a
random-zero sphygmomanometer and the mean of 2 read-
ings was used in the analyses. Total serum cholesterol and
high-density lipoprotein (HDL) cholesterol were de-
termined in fasting blood samples. Presence of type 2 di-
abetes at baseline was determined on the basis of fasting
serum glucose level (≥7.0 mmol/L) or, if unavailable, non-
fasting serum glucose level (≥11.1 mmol/L) or the use of
antidiabetic medication.26 Body mass index (BMI) was cal-
culated, dividing weight in kilograms by the squared height
in meters. History of stroke was assessed by interview, and
verified in medical records, and participants were continu-
ously monitored for incident stroke through computerized
linkage of medical records from general practitioners and
nursing home physicians with the study database. We used
the validated Dutch version of the Center for Epidemiologic
Studies Depression Scale (CES-D) for assessment of de-
pressive symptoms.27

APOE genotype was determined using PCR on coded DNA
samples (original cohort) and using a bi-allelic TaqMan assay
(rs7412 and rs429358; expansion cohort). In 179 participants
with missing APOE status from this blood sampling, genotype
was determined by genetic imputation (Illumina 610K and
660K chip; imputation with Haplotype Reference Consor-
tium reference panel [v1.0] with Minimac 3).

Statistical analysis
Analyses included all eligible participants, with the exception
of 15 participants whose diffusion measures deviated >7 SDs
from the mean, leaving 4,415 participants for analysis. We
used Cox proportional hazard models to determine the eti-
ologic association of global and tract-specific diffusion MRI
measures (FA and MD) with incident dementia. The pro-
portional hazard assumption was met. We assessed risk of
dementia per SD increase in FA and MD. We repeated the
analyses (1) for AD only, (2) after excluding participants with
prevalent stroke while censoring at time of incident stroke,
(3) excluding persons with MRI-defined, subclinical cortical
infarcts at baseline, and (4) stepwise excluding the first 5 years
of follow-up from the analysis.

We then determined the association of global and tract-
specific diffusion MRI measures with change in cognitive
performance using linear regression models. Cognitive
test scores at follow-up were adjusted for baseline cogni-
tive test results. These analyses were repeated after ex-
clusion of all participants who developed dementia during
follow-up.

All models were adjusted for age, sex, education, ICV, white
matter volume, and the log-transformed volume of WMHs
and the correction for swapping gradients and varying
field of view (model I), and in addition for education, de-
pressive symptoms (CES-D score), and cardiovascular risk
factors (systolic blood pressure, diastolic blood pressure,

antihypertensive medication, serum cholesterol, HDL
cholesterol, lipid-lowering medication, diabetes, smoking,
and BMI) and APOE e4 allele carriership (model II). We
adjusted for both ICV and white matter volume to take
both developmental and neurodegenerative markers into
account.

For the tract-specific analyses, we corrected the p value (α
level of 0.05) for multiple comparisons with the number of
independent tests on the basis of the variance of the ei-
genvalues of the correlation matrix of all 30 variables used
in the main analysis (i.e., FA and MD for the 15 tracts). The
following formula was used: Meff = 1 + (M − 1) (1 − var
(λobs)/M), in which M is the number of variables, λobs is the
variance of the eigenvalues of the correlation matrix, and
Meff is the number of independent variables.28,29 This
resulted in anMeff of 17.45, which then, using the Šidák formula
(α sidak = 1 − ((1 − α)̂(1/Meff))), translated into a significance
level of p < 0.0029 for the tract-specific analyses with dementia
as outcome.28

For the analyses assessing global diffusionMRI measures with
the separate cognitive tests as outcome, the above-mentioned
method generated a significance level of p < 0.008.

All analyses were carried out using SPSS Statistics 21.0 (IBM,
Armonk, NY) or R version 3.0.3 (packages GenABEL, sur-
vival, stargazer, and data.table).

Data availability
Requests for anonymized data will be considered by the
corresponding author.

Results
Table 1 presents the baseline characteristics of the study
population. Mean age of the 4,415 participants was 63.9 years
(SD ± 11.1 years), and 55.0% were women. During a median
follow-up of 6.8 years (interquartile range 5.8–8.0 years), 101
persons developed dementia, of whom 83 had AD.

Lower microstructural integrity, reflected in lower values of
global FA and higher values of global MD, was associated
with a higher risk of dementia (fully adjusted hazard ratio
[HR] [95% confidence interval] per SD increase in FA 0.65
[0.52–0.80] and for MD 1.79 [1.44–2.23]; table 2). Results
were similar for clinical AD only, and unaltered after ex-
cluding participants with prevalent stroke while censoring at
time of incident stroke, or excluding participants with sub-
clinical MRI-defined cortical infarcts (table 2). Stepwise
exclusion of the first 5 years of follow-up from the analysis
did not alter the risk estimates (figure 1). Further adjustment
for hippocampal volume mildly attenuated the effect esti-
mates (MD [HR] for all-cause dementia 1.67 [1.33–2.10],
and for clinical AD 1.58 [1.23–2.04]) (data available from
Dryad, table e-1, 10.5061/dryad.7wm37pvpq).
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In tract-specific analyses, the strongest associations with de-
mentia risk were observed for MD in the projection tracts,
association tracts, and limbic system tracts (per SD increase
HR of 2.35 [1.53–3.62] for the superior thalamic radiation,
1.79 [1.36–2.37] for the inferior fronto-occipital fasciculus,
and 1.62 [1.41–1.86] for the parahippocampal part of the
cingulum, respectively; table 3 and figure 2). Similarly, lower
FA in the association tracts and in the limbic system tracts
were most profoundly associated with a higher risk of de-
mentia (per SD increase HR 0.59 [0.45–0.76] for the

uncinated fasciculus and HR 0.67 [0.53–0.84] for the para-
hippocampal part of the cingulum, respectively, in the fully
adjusted model; table 3). Similar patterns were seen for a
clinical diagnosis of AD only (data available from Dryad, table
e-2, 10.5061/dryad.7wm37pvpq).

The association between global white matter microstructure
and cognitive decline is presented in table 4. Higher values of
global MD were associated with greater decline in global
cognition, driven by worse performance on theWord Fluency
Test and Stroop reading and interference subtasks. Results
were unaltered by exclusion of all incident dementia cases
(table 5). Similar associations, albeit somewhat attenuated,
were observed for FA.

Discussion
In this longitudinal population-based study, we found that
structural disconnectivity is associated with increased risk of
dementia and withmore pronounced cognitive decline. These
associations were most profound for the projection, associa-
tion, and limbic system tracts, and extended into the pre-
clinical phase of the disease.

Longitudinal studies provide higher evidence for causal re-
lations. Our main results provide evidence for the discon-
nection hypothesis, which states that loss of brain
connections precedes cognitive decline and dementia. In line
with this hypothesis, our results suggest that disconnectivity
plays a role already in the preclinical stages of dementia. The
findings in this study also extend results from clinical studies
in patients with cerebral small vessel disease to the general
population,14–17 suggesting that measures of FA/MD may
improve prognostic accuracy of existing prediction models
to identify persons at high risk of dementia in the commu-
nity. Furthermore, knowledge of tract-specific effects on
cognition and risk of dementia may allow clinicians to better
understand why specific patients with only small, but stra-
tegically located brain infarcts develop cognitive impairment,
and which patients after stroke are most likely to develop
dementia.30,31

Various potential pathways could lead to disconnectivity.
A vascular pathway has been proposed in which reduc-
tion in white matter perfusion, e.g., due to impaired
autoregulation, may result in white matter damage.32

Oligodendrocytes might shrink because of hypoxia and
ischemia in white matter, with subsequent loss of
myelin.33,34 However, in our fully adjusted model, we
corrected for several cardiovascular risk factors and
the estimates did not change substantially. This may be
explained by residual confounding (due to age-specific
effects of vascular factors or subclinical vascular factors),
or a more complex, multifaceted pathway, in which there
is a complex interplay of traditional vascular risk fac-
tors, hypoxia, and neuroinflammation.35 Inflammation-induced

Table 1 Population characteristics

Characteristics
Values
(total n = 4,415)

Age, y 63.9 ± 11.0

Female 2,426 (55.0)

White 3,864 (97.3)

Smoking

Never 1,367 (31.0)

Former 2,120 (48.0)

Current 928 (21.0)

Lower education 1,266 (28.7)

Middle education 2,107 (47.7)

Higher education 1,042 (23.6)

Systolic blood pressure, mm Hg 140.0 ± 21.5

Diastolic blood pressure, mm Hg 83.2 ± 10.9

Antihypertensive medication 1,573 (35.6)

Total cholesterol, mmol/L 5.5 ± 1.1

HDL cholesterol, mmol/L 1.5 ± 0.4

Lipid-lowering medication 1,113 (25.2)

Diabetes mellitus 531 (12.0)

BMI, kg/m2 27.4 ± 4.1

CES-D 8 (2–12)

APOE «4 carriership 1,216 (28.3)

FA 0.34 ± 0.02

MD 0.74 ± 0.03

Intracranial volume, mL 1,142.0 ± 116.4

White matter volume, mL 409.3 ± 60.7

WMHs volume, mL 2.90 (1.6–6.3)

Abbreviations: BMI = body mass index; CES-D = Center for Epidemiologic
Studies Depression Scale; FA = fractional anisotropy; HDL = high-density
lipoprotein; MD = mean diffusivity × 10−3 mm2/s; WMH = white matter
hyperintensity.
Continuous variables are presented as mean ±SD and categorical variables
as n (%), except for WMHs volume and CES-D score, which are presented as
median (interquartile range).
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disconnectivity may be caused by inflammation-related cyto-
kines (tumor necrosis factor–α, interleukin-8, interleukin-10,
interferon-γ) and growth factors (IGFBP2, PDGF-BB),
which have been associated with a lower integrity of
myelin sheaths.36,37 Yet reverse causality as an explanation
for our findings is unlikely since the risk estimates
did not change after excluding the first 5 years of follow-up.
Also, disconnectivity associated with cognitive decline
also in individuals who did not develop dementia dur-
ing the study duration, suggesting an association al-
ready in the preclinical phase of dementia and with normal
aging.

We found that structural disconnectivity, indicated by a low
FA and high MD throughout the brain, but in particular in

the projection, association, and limbic system tracts, related
to a higher risk of dementia. This is in line with previous
research in cross-sectional studies that found lower FA in
white matter tracts including the association tracts38,39 and
projection tracts40,41 associated with dementia. Lower FA
values in limbic system tracts (in particular in the para-
hippocampal cingulum) and the association with dementia,
more specifically AD, has been most consistently reported in
previous studies.40,42,43

A small number of studies reported higher FA values in
specific regions in AD.44,45 This counterintuitive finding
may be explained by selective degeneration of a fiber
population in regions with crossing white matter tracts,
leading to paradoxical higher FA.46 MD is therefore
thought to be a more sensitive and reliable measure in
these crossing fiber regions (and therefore also globally),47

and presumably more sensitive to white matter damage.11,12

Moreover, in a small group of patients with AD, increases
in MD preceded changes in FA, which only occurred
in a more progressive disease state.11 Accordingly, in our
study we found stronger associations with MD than
with FA.

The exact pathologic substrate underlying the changes in
FA and MD leading to disconnectivity is unknown. There is
pathologic evidence that changes in diffusion MRI mea-
sures correlate with myelin damage and axonal count,48

that myelin is increasingly suggested as an important fac-
tor in AD pathology, and that myelin breakdown is at
the core of the earliest changes involved in dementia.49

However, the presence of other possible processes such as
an increased water content in white matter due to loss of
connectivity or inflammation generates difficulties in as-
signing change in diffusion MRI measures to a specific

Figure 1 Global mean diffusivity and incident dementia,
with exclusion of the first 5 years of follow-up

CI = confidence interval.

Table 2 Global white matter microstructure and incident dementia

Model FA MD

All dementia (n = 101) Model I 0.65 (0.53–0.80)a 1.77 (1.43–2.17)a

Model II 0.65 (0.52–0.80)a 1.79 (1.44–2.23)a

AD (n = 83) Model I 0.70 (0.55–0.88)a 1.71 (1.35–2.16)a

Model II 0.69 (0.54–0.88)a 1.76 (1.38–2.24)a

Censoring for stroke (n = 98) Model I 0.65 (0.53–0.80)a 1.75 (1.41–2.16)a

Model II 0.64 (0.52–0.80)a 1.76 (1.42–2.20)a

Exclusion cortical infarcts (n = 97) Model I 0.63 (0.51–0.78)a 1.75 (1.41–2.17)a

Model II 0.61 (0.49–0.77)a 1.79 (1.43–2.24)a

Abbreviations: AD = Alzheimer disease; FA = fractional anisotropy; MD = mean diffusivity.
Data are presented as hazard ratio (95% confidence interval) per SD increase of FA and MD. Model I: adjusted for age, sex, education, intracranial volume,
white matter volume, and the log-transformed white matter hyperintensity volume. Model II: model I and in addition adjusted for Center for Epidemiologic
Studies Depression Scale score, cardiovascular risk factors (systolic blood pressure, diastolic blood pressure, antihypertensivemedication, serum cholesterol,
high-density lipoprotein cholesterol, lipid-lowering medication, diabetes, smoking, body mass index), and APOE e4 allele carriership.
a Significant at p < 0.05.
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underlying pathologic process causing the observed structural
disconnectivity.50,51

Strengths of the study are the population-based setting, the
large sample size, the automated publicly available diffusion
MRI processing methods that facilitate replication,8 and
the longitudinal assessment of cognitive performance with
meticulous follow-up for dementia. Some limitations need
to be considered. First, the averaging of FA and MD mea-
sures over the normal-appearing white matter for analyses
discards some spatial information. Second, given the long
preclinical phase of dementia, our median follow-up time
of 6.8 years is still relatively short, and longer duration
studies with repeated imaging are required to further
map changes in diffusion MRI in the process of neuro-
degeneration. Nevertheless, our results were unaffected by

excluding the first 5 years of follow-up and independent of
macrostructural white matter pathology (i.e., WMH vol-
ume). Third, although we found associations similar for all-
cause dementia and clinical AD, confirmation of subtype
diagnosis by (CSF) biomarkers or pathologic examination
was not available and clinical diagnosis of AD has a low
specificity for AD pathology. Fourth, we cannot rule out
some partial volume effects by CSF contamination driving
the observed change in diffusion metrics. Fifth, depression
and vascular factors were assessed at baseline only, and
some residual confounding by changes over time cannot be
excluded.

Structural disconnectivity increases the risk of dementia and
more pronounced cognitive decline. Our study suggests that
diffusion MRI may be useful in risk prediction.

Table 3 Tract-specific white matter microstructure and incident dementia

Fractional anisotropy Mean diffusivity

White matter tracts Model I Model II Model I Model II

Brainstem tracts

Middle cerebellar peduncle 1.05 (0.85–1.30) 1.08 (0.87–1.35) 1.05 (0.85–1.30) 1.04 (0.83–1.30)

Medial lemniscus 1.09 (0.86–1.39) 1.11 (0.86–1.44) 1.06 (0.88–1.28) 1.06 (0.87–1.29)

Projection tracts

Corticospinal tract 1.17 (0.95–1.44) 1.19 (0.96–1.47) 1.52 (1.13–2.06)a 1.52 (1.11–2.08)a

Anterior thalamic radiation 0.85 (0.66–1.09) 0.87 (0.67–1.13) 1.68 (1.23–2.30)a,b 1.73 (1.26–2.38)a,b

Superior thalamic radiation 1.17 (0.95–1.45) 1.20 (0.97–1.50) 2.29 (1.49–3.52)a,b 2.35 (1.53–3.62)a,b

Posterior thalamic radiation 0.69 (0.52–0.90)a 0.74 (0.56–0.97)a 1.41 (1.15–1.72)a,b 1.42 (1.15–1.75)a,b

Association tracts

Superior longitudinal fasciculus 0.77 (0.60–1.00) 0.79 (0.60–1.04) 1.65 (1.30–2.11)a,b 1.65 (1.28–2.14)a,b

Inferior longitudinal fasciculus 0.79 (0.62–1.01) 0.84 (0.65–1.09) 1.73 (1.36–2.21)a,b 1.69 (1.31–2.18)a,b

Inferior fronto-occipital fasciculus 0.66 (0.50–0.86)a,b 0.71 (0.53–0.93)a 1.75 (1.34–2.27)a,b 1.79 (1.36–2.37)a,b

Uncinate fasciculus 0.60 (0.47–0.77)a,b 0.59 (0.45–0.76)a,b 1.67 (1.39–2.00)a,b 1.73 (1.42–2.10)a,b

Limbic system tracts

Cingulate gyrus part of cingulum 0.69 (0.54–0.87) 0.71 (0.55–0.90)a 1.55 (1.26–1.92)a,b 1.58 (1.26–1.97)a,b

Parahippocampal part of cingulum 0.67 (0.54–0.84)a,b 0.67 (0.53–0.84)a,b 1.61 (1.41–1.85)a,b 1.62 (1.41–1.86)a,b

Fornix 0.76 (0.59–0.99)a 0.78 (0.60–1.02) 1.13 (0.80–1.58) 1.06 (0.75–1.50)

Callosal tracts

Forceps major 0.77 (0.59–1.00)a 0.79 (0.61–1.04) 1.15 (0.93–1.41) 1.12 (0.90–1.38)

Forceps minor 0.78 (0.60–1.01) 0.80 (0.61–1.06) 1.38 (1.12–1.71)a 1.39 (1.11–1.75)a

Data are presented as hazard ratio (95% confidence interval) per SD increase of fractional anisotropy and mean diffusivity. Model I: adjusted for age, sex,
education, intracranial volume, white matter volume, and the log-transformed white matter lesion volume of the investigated tract. Model II: model I and in
addition adjusted for Center for Epidemiologic Studies Depression Scale score, cardiovascular risk factors (systolic blood pressure, diastolic blood pressure,
antihypertensive medication, serum cholesterol, high-density lipoprotein cholesterol, lipid-lowering medication, diabetes, smoking, body mass index), and
APOE e4 allele carriership.
a Significant at p < 0.05.
b Significant at p < 0.0029.
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Figure 2 Tract-specific microstructural integrity and in-
cident dementia

Tracts that were significantly associated with dementia risk are color-coded.
Other tracts are presented in gray. ATR = anterior thalamic radiation; CGC =
cingulate gyrus part of cingulum; CGH = parahippocampal part of cingulum;
IFO = inferior-fronto-occipital fasciculus; ILF = inferior longitudinal fascicu-
lus; PTR = posterior thalamic radiation; SLF = superior longitudinal fascicu-
lus; STR = superior thalamic radiation; UNC = uncinate fasciculus.

Table 4 Global white matter microstructure and cognitive decline

FA MD

G-factor 0.02 (−0.004 to 0.041) −0.04 (−0.07 to −0.01)a

Immediate recall −0.002 (−0.04 to 0.03) −0.03 (−0.07 to 0.02)

Delayed recall 0.007 (−0.03 to 0.04) −0.03 (−0.07 to −0.01)

Stroop reading task 0.04 (0.01 to 0.07)a,b −0.06 (−0.09 to −0.02)a,b

Stroop color naming task 0.02 (−0.001 to 0.05) −0.02 (−0.05 to 0.02)

Stroop interference task 0.04 (0.01 to 0.07)a,b −0.09 (−0.12 to −0.05)a,b

Letter-digit substitution task 0.004 (−0.02 to 0.03) −0.004 (−0.04 to 0.03)

Word fluency test 0.03 (0.001 to 0.06) −0.06 (−0.10 to −0.02)a,b

Purdue pegboard 0.03 (0.005 to 0.06)a −0.04 (−0.07 to −0.00)

Abbreviations: FA = fractional anisotropy; MD = mean diffusivity.
Data are presented as mean difference in Z score (95% confidence interval) per SD increase of FA and MD.
a Significant at p < 0.05.
b Significant at p < 0.008.
Model adjusted for age, sex, education, intracranial volume, whitematter volume, the log-transformedwhitematter lesion volume, Center for Epidemiologic
Studies Depression Scale score, and in addition adjusted for cardiovascular risk factors (systolic blood pressure, diastolic blood pressure, antihypertensive
medication, serum cholesterol, high-density lipoprotein cholesterol, lipid-lowering medication, diabetes, smoking, body mass index) and APOE e4 allele
carriership.
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