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Abstract
Aging is associated with a decrease in body and brain function 
and with a decline in insulin-like growth factor 1 levels. The 
observed associations between alterations in insulin-like growth 
factor 1 levels and cognitive functioning and Mild Cognitive 
Impairment suggest that altered insulin-like growth factor 1 
signaling may accompany Alzheimer’s disease or is involved 
in the pathogenesis of the disease. Recent animal research 
has suggested a possible association between insulin-like 
growth factor 1 levels and the Apolipoprotein E ε4 allele, a 
genetic predisposition to Alzheimer’s disease. It is therefore 
hypothesized that a reduction in insulin-like growth factor 
1 signaling may moderate the vulnerability to Alzheimer’s 
disease of human Apolipoprotein E ε4 carriers. We address 
the impact of age-related decline of insulin-like growth factor 
1 levels on physical and brain function in healthy aging and 
Alzheimer’s disease and discuss the links between insulin-like 
growth factor 1 and the Apolipoprotein E ε4 polymorphism. 
Furthermore, we discuss lifestyle interventions that may 
increase insulin-like growth factor 1 serum levels, including 
physical activity and adherence to a protein rich diet and 
the possible benefits to the physical fitness and cognitive 
functioning of the aging population.
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Introduction

It is well known that the process of aging is 
associated with physical and mental changes. In 
the body, normal aging is primarily associated 

with a decrease in muscle mass and strength. In the 
brain, normal aging is mainly characterized by metabolic 
changes in the prefrontal cortex and associated with a 
decrease in brain size and synaptic plasticity (1). These 
changes in body and brain lead to alterations in physical, 
as well as cognitive functioning in elderly people, such as 
increased frailty and decreased cognitive performance (1, 
2).     

When age-related cognitive decline becomes 
qualitatively severe and progresses rapidly, it is likely 
to progress into a clinical diagnosis of dementia. The 

most common form of dementia is Alzheimer’s disease 
(AD). While there are some medications that decelerate 
the neuropathological progression of AD or offer some 
symptomatic relief, there is no cure available. In the 
absence of a cure for AD, research has focused on the 
most common risk factors and preventive strategies. 
Important non-modifiable risk factors for AD that have 
been investigated include age and genetics. Potentially 
modifiable factors are risk factors that are associated with 
lifestyle like socioeconomic factors, diet, cerebrovascular 
disease, and physical inactivity (3). 

In the development of preventive strategies, it is 
important to understand the interplay between 

neurobiological and lifestyle factors. One important 
factor that is both influenced by lifestyle factors like 
physical activity and diet (4, 5) and plays a role in 
the maintenance of physical fitness (6) and cognitive 
functioning (7) is insulin-like growth factor 1 (IGF-1). 
This review will discuss the impact of age-related decline 
of IGF-1 levels on physical and cognitive functioning 
in healthy aging and AD. In addition, we discuss the 
possible link between IGF-1 and ApoE-ε4. Furthermore, 
we explore how lifestyle interventions focusing on 
physical activity and diet may be useful to improve 
physical fitness and cognitive functioning by increasing 
IGF-1 serum levels. 

Insulin-like growth factor 1 is a peptide growth 
hormone, with a structure similar to insulin, encoded 
by the IGF-1 gene located on chromosome 12. As part of 
the growth hormone (GH)/ IGF-1 axis, IGF-1 plays an 
essential role in growth of the body and development 
of the brain. IGF-1 is mainly produced in the liver, 
stimulated by GH, which is secreted from the anterior 
pituitary gland. IGF-1 can also be produced in local 
peripheral tissues such as muscle and bone tissue when 
GH binds to its Growth Hormone Receptor (GHR) (8). As 
IGF-1 is GH dependent and, unlike GH, circulating IGF-1 
levels do not fluctuate widely over time, IGF-1 is a more 
reliable measure and appropriate marker for GH status 
(9). Therefore, this review focuses on neurobiological 
processes and lifestyle factors related to IGF-1. 
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IGF-1 and the aging body 

Throughout the body, IGF-1 regulates the development 
and function of cells. It promotes cell growth and 
contributes to cell proliferation, stress resistance and 
survival in many cell types (10). IGF-1 can bind with high 
affinity to the IGF-1 receptor (IGF-1R), but also to the 
insulin receptor (11) as its structure is closely related to 
insulin. The IGF-1R is expressed in many distinct tissues 
in the body. For this reason IGF-1 can have different 
effects, such as the promotion of neuronal survival in the 
central nervous system and the facilitation of peripheral 
muscle regeneration (12). Because of the essential role of 
IGF-1 in muscle growth and the involvement of IGF-1 in 
many mechanisms and functions of the body, IGF-1 is an 
important factor for embryonic and childhood growth 
(13) and anabolic processes in adults (14).

Aging is associated with a decline in IGF-1 (10). The 
progressive decline has been termed the ‘somatopause’, 
which may be caused by potential alterations of the 
hypothalamic regulation of GH secretion, in particular 
an age-dependent decrease in endogenous hypothalamic 
GHRH output, contributing to the age-associated GH 
and IGF-1 decline (15). Moreover, low physical fitness 
and higher adiposity in older individuals also contribute 
to the decreased GH secretion and associated IGF-1 
decline (16). Low levels of IGF-1 are associated with 
decreased skeletal muscle mass and function (17). Studies 
have shown that IGF-1 serum levels are positively 
associated with muscular strength and walking speed 
and are negatively associated with self-reported difficulty 
in mobility tasks (18). Systemic infusion of GH over 
8 hours led to increased GH and IGF-1 concentration 
levels and increased muscle protein synthesis in eight 
healthy young adults aged 18 to 24 years (19). In addition, 
Rudman et al. (20) demonstrated increased lean body 
mass, average vertebral bone density, IGF-1 levels, and 
decreased body fat following GH administration over 
6 months in nine healthy adults that were not observed 
in 12 untreated healthy adult men. Mauras et al. (14) 
used recombinant human IGF-1 (rhIGF-1) treatment to 
increase IGF-1 plasma levels in 10 patients with Laron’s 
syndrome, characterized by GH receptor deficiency, 
and showed that increased IGF-1 plasma levels were 
associated with increased lean body mass and decreased 
fat mass. Furthermore, Dik et al. (21) demonstrated that 
higher IGF-1 serum levels were associated with fewer 
functional limitations (e.g. difficulties with climbing 
stairs, cutting toenails, use of public transport) in 1318 
healthy participants aged 65 to 88 years. This association 
suggests that reduced IGF-1 levels in older people might 
make them more prone to these functional limitations. 

The influence of IGF-1 on bone development has been 
demonstrated using mouse models. Bikle et al. (22) found 
a 24% decrease in cortical bone size and reduced femoral 
lengths, but increased connectivity and trabecular bone 
density, in IGF 1 deficient (Igf-1 -/-) mice. In addition, 

a study by Courtland et al. (23) used inducible liver 
IGF-1 deficient mice to deplete IGF-1 serum levels at 
varying times in mice development and demonstrated 
that depletion of serum IGF-1 levels at four weeks in male 
mice resulted in reduced trabecular and cortical bone 
acquisition by 16 weeks. Depletion of serum IGF-1 levels 
in mice of eight weeks resulted in decreased cortical bone 
properties at 32 weeks, whereas depletion of IGF-1 serum 
levels after peak bone acquisition at 16 weeks did not lead 
to detrimental effects on bone. 

Finkenstedt et al. (24) demonstrated that 12 months 
of recombinant human GH (rhGH) treatment of 18 
adult male and female patients, with adult onset GH 
deficiency, and an average age of 44 years, resulted in 
increased markers of bone formation and resorption and 
elevated IGF-1 levels compared to the untreated group. 
Following rhGH treatment for 12 months, markers for 
bone turnover, including bone formation and resorption, 
increased relative to baseline in those patients who were 
treated with rhGH. In addition, after 12 months, IGF-1 
was significantly increased in all patients treated with 
rhGH, and bone mineral density in the lumbar and 
proximal spine was increased in this group, particularly 
in patients with low bone mass. Furthermore, one 
month of recombinant human GH administration in 
10 healthy older men, with an average age of 68 years, 
led to improved balance and stair climb time as well as 
increased muscle IGF-1 gene expression (25). Ohlsson 
et al. (26) also showed that low IGF-1 serum levels in 
elderly men were associated with increased risk of bone 
fractures (e.g. hip, spine), which are partly caused by 
falls and are a clear marker of physical frailty. Muscle 
weakness, functional limitations, and age are substantial 
contributors to the risk of falls in elderly and these factors 
are all associated with a decrease in IGF-1. Hence, the 
age-related decrease in IGF-1 may play an important role 
in the increased incidence of falls in elderly.  

IGF-1 and the aging brain 

IGF-1 produced by the liver has the ability to cross the 
blood-brain barrier and can subsequently bind to IGF-1 
receptors expressed throughout the brain. High densities 
of IGF-1 receptors are observed in various brain areas 
including the amygdala, thalamic nuclei, hippocampus, 
superficial and deep cortical layers, olfactory bulb, 
cerebellum, cerebral cortex, caudate nucleus, frontal 
cortex and the putamen (27). In addition, IGF-1 is also 
produced in brain tissues and can thereby act locally 
via paracrine or autocrine mechanisms. IGF-1 plays an 
important role in neuronal growth, the maintenance 
of synapses and the protection of neurons in the brain 
(28). Furthermore, IGF-1 has been found to enhance and 
maintain myelination, essential for the propagation of 
neuronal impulses, in the central nervous system (CNS) 
as well as in the peripheral nervous system. 

Age-related decline of IGF-1 levels is associated 
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with altered brain function. Sonntag et al. (29) showed 
age-related decreases in IGF-1 receptor density in 
hippocampal and cortical regions in rats. The authors 
found that IGF-1 mRNA levels were reduced in the 
cerebellum in older rats, compared to younger ones. This 
decline was associated with an increase in cell death (30). 
As IGF-1 is involved in maintaining myelination in the 
CNS, age-related IGF-1 decline may be associated with 
the breakdown of myelination which in turn may have 
a negative impact on cognition in humans (31). This age-
related breakdown of myelin can lead to decreased signal 
transmission speed in neurons, essential for integration 
of information between highly distributed neural 
networks that underlie higher cognitive functions, such 
as executive processing (32).

IGF-1, cognition and MCI 

Evidence thus far has supported the idea that IGF-1 
plays an essential role in cognition. In healthy men and 
women, IGF-1 serum levels have been shown to be 
positively related to working memory (33), selective 
attention, executive function (34), verbal fluency and 
performance on the Mini-Mental State Examination 
(MMSE) (35). A recent study by Maass et al. (36) 
demonstrated that an increase in IGF-1 serum levels was 
positively associated with hippocampal volume and 
verbal memory recall in a population of healthy elderly. 
In childhood-onset GH deficient men GH substitution 
improved both mood and memory. These improvements 
were maintained during the 10 year follow-up period 
(37).

With respect to pathological cognitive aging, IGF-1 
levels have been found to be reduced in people with 
MCI compared to cognitively healthy people. MCI is 
associated with reduced performance in various 
cognitive domains, including attention, executive 
function, processing speed, visuospatial skill and 
memory. Doi et al. (38) conducted a population survey 
in 3355 participants with an average age of 71.4 years 
and found that people with MCI showed decreased 
IGF-1 serum levels compared to cognitively healthy 
people. Furthermore, Calvo et al. (39) showed a positive 
association between IGF-1 serum levels and cognitive 
performance, mainly in the domains of learning and 
memory, in elderly people with MCI, suggesting IGF-1 
may be neuroprotective in elderly people susceptible 
to AD. This notion is supported by the finding that the 
cognitive impairments in AD may be partly related to 
reduced IGF-1 serum levels (40).

IGF-1 and AD

At a neurobiological level AD is characterized by 
several neurotoxic effects caused by senile plaques (SPs) 
and neurofibrillary tangles (NFTs) that lead to synaptic 
dysfunction, neuronal cell death and cerebral atrophy, 

mainly in the hippocampus and temporal and parietal 
lobes. The main elements of SPs are beta-amyloid (Aβ) 
aggregates. These Aβ aggregates form plaques outside 
neurons that intervene with communication between 
neurons at synapses and contribute to neuronal cell 
death. NFTs, on the other hand, are primarily composed 
of hyperphosphorylated tau protein. Deviant abnormal 
tau proteins inside neurons (tau tangles) block the 
transports of essential molecules, such as nutrients 
in the neuron, thereby contributing to cell death. The 
abundance of NFTs is positively associated with the 
severity of AD (41). These brain alterations impede the 
transfer of information between synapses and cause a 
reduction in the number of synapses. The progression 
of the disease eventually leads to neuronal cell death 
causing a substantial shrinkage of the brain.

In 2007, Alvarez et al. (40) showed subnormal IGF-1 
levels in adults diagnosed with AD. Additionally, 
Westwood et al. (42) showed that lower IGF-1 serum 
levels are associated with an increased risk of developing 
AD in older- and middle-aged people. This study also 
demonstrated that higher levels of IGF-1 are associated 
with greater brain volumes, even among cognitively 
healthy older and middle-aged people, suggesting a 
protective effect of IGF-1 against neurodegeneration. 
Recent evidence showed that IGF-1 resistance in the brain 
is increased in AD (43). Moloney et al. (44) demonstrated 
that alterations in IGF-1 receptors (IGF-1Rs) in the AD 
temporal cortex, including reduced expression as well 
as an aberrant distribution of IGF-1Rs in the neurons, 
contribute to impaired IGF-1R signaling in AD neurons. 
The deviant distribution of IGF-1Rs in neurons away 
from the plasma membrane suggests that IGF-1Rs are less 
able to respond to extracellular IGF-1 in AD, contributing 
to possible IGF-1R signaling resistance in neurons that 
degenerate (44). A decrease in IGF-1 signaling can 
contribute to loss of myelin function, which is thought to 
result in nerve fiber conduction delays found in people 
with AD (45). Furthermore, deficits in IGF-1 signaling 
have been related directly to AD pathology like increased 
accumulation of Aβ, phosphorylated tau, increased 
neuro-inflammation and apoptosis (28), suggesting that 
impaired IGF-1 signaling plays a role in the pathogenesis 
of AD. In contrast to this idea it has also been suggested 
that downregulation of IGF-1 signaling is a consequence 
of neuropathology and alterations in IGF-1 signaling 
could be seen as a compensatory response to attenuate 
the effects of aging and neurodegeneration. This idea 
is supported by the assocation between suppression of 
IGF-1 signaling and longevity in humans (46) and the 
observation that low IGF-1 levels predict life expectancy 
in exceptionally long-lived individuals (47). 

In model organisms in which IGF-1 signaling was 
attenuated increased lifespan and a delayed process 
of aging has been observed (48, 49). For instance, in 
AD mouse models the long-term suppression of IGF-1 
signaling reduced neuronal loss and increased resistance 
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to oxidative stress and neuro-inflammation. In line with 
these findings, lowerd IGF-1 serum levels in transgenic 
mouce models, induced by a protein restriction diet, 
alleviated AD pathology (50). 

In human observational studies, a recent meta-analysis 
by Ostrowski and colleagues could not confirm the 
hypothesized association between serum IGF-1 and AD. 
From 3540 studies that analyzed the relation between 
IGF-1 and AD, only 10 studies provided serum IGF-1 
values. These 10 studies included 850 AD patients and 
871 controls. From these studies 5 reported that AD 
subjects had higher IGF-1 levels, 2 reported no difference 
in IGF-1 levels and 3 reported lower IGF-1 levels in 
AD. The authors conclude that serum IGF-1 may be 
a personalized factor reflecting differential influence 
of genetic polymorphisms, age of onset or disease 
progression of AD patients (51). It is important to note 
that the number of included studies poses limitations to 
the generalizability of the results and more studies are 
needed to clarify the possible relationship between IGF-1 
levels and AD. 

Potential interactions of IGF-1 and ApoE-ε4 in 
the development of AD 

The Apolipoprotein E gene, APOE, is the largest 
genetic risk factor associated with cognitive decline in 
late-onset AD (52). ApoE is involved in lipid transport 
in the central and peripheral nervous system, and brain 
injury repair. The three most common alleles of APOE 
(ε2, ε3, ε4) encode for the three major isoforms (ApoE-ε2, 
ApoE-ε3, ApoE-ε4) of the apolipoprotein E (ApoE), a 
protein that plays a central role in brain injury repair, 
lipid transport and metabolism. The ε2, ε3 and ε4 alleles 
have a worldwide frequency of 8.4%, 77.9% and 13.7%, 
respectively (53). 

The strength of the effects of the different APOE 
genotypes on AD risk differs between ethnic groups. 
In the present study, we will focus on Caucasians. 
ApoE-ε3 is often considered the neutral allele with 
regard to AD risk. Compared to the ApoE-ε3, ApoE-ε4 
is associated with both an increased incidence rate and 
an earlier onset of AD. One copy of ApoE-ε4 increases 
the risk of developing AD threefold, while those who 
are homozygous for ε4 have an approximately 13-fold 
increased risk (54). ApoE-ε4 carriers also have an 
enhanced risk for developing vascular dementia and mild 
cognitive impairment (MCI) (55) and studies have shown 
that the ApoE-ε4 allele is involved in the acceleration of 
cognitive decline (56). The accelerated cognitive decline 
observed in ApoE-ε4 carriers could be an important 
clinical precursor of AD. It has been shown that ApoE 
promotes the proteolytic breakdown of the Aβ aggregates 
appearing in AD, whereas the isoform ApoE-ε4 is less 
effective in enhancing this breakdown (57). Moreover, 
Kumar et al. (58) demonstrated that neurofibrillary tangle 
density was increased in ApoE-ε4 carriers relative to non-

carriers of the allele. Hence, carrying the ApoE-ε4 allele 
increases the vulnerability of the brain to AD pathology.

As described earlier, IGF-1 has an opposite effect to 
ApoE-ε4 on N-methyl-D-aspartate receptor (NMDAR) 
signaling and Aβ clearance in the brain (59). With respect 
to NMDAR signaling, Liu et al. (60) demonstrated that 
the ApoE-ε4 allele enhanced an age-related decline in 
cognitive function in mice by decreasing NR2B subunit 
levels which in turn down-regulates the NMDAR 
pathway. Specifically, NR2B may play a role in spatial 
learning and long-term potentiation (61, 62). In contrast, 
IGF-1 has been found to positively affect the NMDARr 
pathway in rats by increasing NR2B subunits (62).  

Impairments in Aβ clearance are a major hallmark in 
early as well as late AD. People carrying the ApoE-ε4 
allele are more vulnerable to disturbances in Aβ clearance 
than people not carrying this allele (63). IGF-1 supports 
Aβ clearance in the healthy brain (64). 

A recent study by Keeney et al. (65) was the first to 
report a direct association between the three isoforms 
of ApoE (ε2, ε3 and ε4) and IGF-1 by demonstrating 
deficient IGF-1 gene expression and reduced IGF-1 
protein level in mice carrying the human ApoE-ε3 and 
ApoE-ε4, compared to mice carrying the human ApoE-ε2 
allele. This association indicates that the three isoforms 
of ApoE affect IGF-1 signaling differently, suggesting 
a potential mechanism that might contribute to the 
differences in AD risk of ApoE isoforms (65). 

Moderation of the association between IGF-1 signaling 
and AD by APOE genotype has previously been 
suggested in experimental studies. Using microarray 
analysis of the astrocyte transcriptome, Simpson and 
colleagues demonstrated that as AD pathology 
progresses, downregulation of gene transcription 
in astrocytes leads to a reduction in the expression 
of intra-cellular insulin and IGF signaling pathways, 
particularly in individuals expressing the ApoE-ε4 allele 
(66). Impaired IGF-1 signaling in human astrocytes is 
associated with a reduced ability to protect neurons 
from oxidative stress, which has been identified as 
an important factor in the promotion of tau and Aβ 
pathology in AD (67). 

Therapeutic approaches targeting insulin resistance 
by increasing IGF-1, insulin, or insulin sensitivity have 
been promising, but do suggest differential effects in 
people with or without genetic susceptibility to AD. 
More specifically, intravenous and intranasal insulin 
administration in patients with AD, reduced amyloid 
precursor protein (APP) levels and improved memory 
scores only in those without the ApoE-ε4 allele (68, 69). 

Previously, our group reported tentative evidence 
of an interaction between the ApoE-ε4 allele and IGF-1 
receptor stimulating activity in an elderly cohort (59). 
IGF-1 receptor stimulating activity in the median and top 
tertiles was related with increased dementia incidence in 
hetero- and homozygotes of the ApoE-ε4 allele, but did 
not show any association with dementia risk in people 
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without the ApoE-ε4 allele (59). The observed elevation 
in IGF-1 receptor stimulating activity may have marked 
a compensatory response to neuropathological changes 
associated with the ApoE-ε4 genotype. Additionally, we 
found that the ApoE-ε4 homozygotes, with a lifetime 
risk of Alzheimer’s Disease of 80% (70), have the lowest 
IGF-1 levels (59). Similarly, a genome-wide association 
study on longevity by Deelen et al. (2001) showed that 
the ApoE-ε4 allele was related to lower IGF-1 levels 
in middle-aged women. Hence, the increased risk of 
developing AD in ApoE-ε4 carriers might partially be 
attributed to alterations in IGF-1 signaling (71).

Physical activity and IGF-1 

As mentioned earlier, IGF-1 serum levels can be 
influenced by lifestyle factors, such as physical activity 
(5). Aerobic and anaerobic exercise interventions have 
been shown to influence IGF-1 levels. The positive effect 
of aerobic exercise on IGF-1 levels has been shown in 
a mouse study that demonstrated upregulated mRNA 
levels of IGF-1 in mice after 15 days of voluntary wheel 
running. Protein levels of IGF-1 in the dentate gyrus had 
also increased (72). Replication of these results in human 
participants was provided by several studies that showed 
an increase in IGF-1 serum levels following aerobic 
exercise in adults (73, 74). Likewise, a study concerning 
the effect of anaerobic exercise on IGF-1 serum levels 
reported positive effects of anaerobic training on IGF-1 
levels in healthy older men (75). There is, however, still 
much controversy concerning the association between 
physical exercise and IGF-1 levels. A systematic review of 
experimental studies on the effect of physical activity on 
measures of IGF-1 and cognitive functioning in healthy 
elderly concluded moderate intensity aerobic training 
and moderate and high intensity resistance training may 
improve circulating IGF-1 and cognition, depending on 
the sex of the participant and duration of the training. 
However, disparities in the type of exercise, protocols 
and samples hinder comparison of the results and the 
establishment of consensus (76). 

Furthermore, negative associations between IGF-1 
levels and physical activity, could also be explained 
by favorable neuromuscular anabolic adaption, which 
is a normal short-term adaptive response of the body 
to increased physical exercise (Rarick et al., 2007). It 
has been thought that during episodes of active muscle 
building IGF-1 serum levels decrease (78), but local 
muscle gene expression and production of IGF-1 increase 
(79). Longitudinal studies on exercise interventions 
indicate that IGF-1 serum levels may only decline 
temporarily and may increase after longer duration of 
intensive training and are maintained when training is 
reduced (74). The long-term effect of physical activity on 
IGF-1 levels may be explained by epigenetic alterations. 
It is known that physical activity can contribute to 
changes in various physiological systems by epigenetic 

mechanisms (80). Physical activity may induce epigenetic 
modifications to the IGF-1 gene, leading to sustained 
increased IGF-1 levels (6, 80). There is evidence showing 
that these types of alterations can be inherited (81). 
In light of epigenetics and the influence of prolonged 
physical activity on IGF-1 levels, the current decrease in 
the number of physically active people, mainly in high-
income countries, is alarming. 

Regular engagement in physical activity could be of 
special importance to those with a genetic susceptibility 
to AD. Several studies have indicated that the negative 
association between regular physical activity and 
cognitive decline is limited to those with one or more 
copies of the ApoE-ε4 allele. Schuit et al. registered 
engagement in physical activity in a group of elderly 
Dutch men and found that while risk of cognitive decline 
did not differ between active and inactive ApoE-ε4 non-
carriers the risk was 4 times higher in inactive ApoE-ε4 
carriers compared to active ApoE-ε4 carriers (82). A 
similar finding, indicating that inactivity is especially 
detrimental to cognitive abilities for ApoE-ε4 carriers, 
was reported in a longitudinal study in a Finnish cohort 
(83). Rovio et al. found a significant relationship between 
physical activity at midlife and risk of developing AD 
at a 21-year follow-up for ApoE-ε4 carriers, but not for 
ApoE-ε4 non-carriers. Additionally, Kivipelto et al. (84) 
demonstrated that physical inactivity increased the risk of 
AD mainly among ApoE-ε4 carriers. 

Several brain-imaging studies have reported support 
for these findings. Deeny et al. found that in the middle-
aged, sedentary ApoE-ε4 carriers exhibited lower 
activity levels in the temporal lobe, a region known to 
be vulnerable to early decline in AD, relative to active 
ApoE-ε4 carriers, while activity level did not distinguish 
between AD risk for ApoE-ε4 non carriers (85). In 2012 
Head et al. demonstrated that in cognitively normal 
older adults those who were sedentary and ApoE-ε4 
carriers showed more Aβ deposition than active ApoE-ε4 
carriers, whereas this association was not present in 
non-carriers (86). Subsequently, Smith et al. observed 
that the hippocampal volume of those ApoE-ε4 carriers 
that displayed low levels of physical activity was on 
average 3% lower in comparison to non-carriers, and 
in comparison to ApoE-ε4 carriers who displayed high 
levels of physical activity (87), indicating that physical 
inactivity may be related to brain atrophy in ApoE-ε4 
carriers. Together, these studies suggest that ApoE-ε4 
carriers may be more susceptible to the negative effects of 
physical inactivity, and that sedentary ApoE-ε4 carriers 
may be at increased risk of developing AD.

In contrast, in a functional MRI study Smith et al. 
observed that among ApoE-ε4 carriers being engaged 
in higher levels of physical activity was associated with 
greater regional brain activation during a semantic 
memory task in comparison to non-carriers and ApoE-ε4 
carriers who displayed lower levels of physical activity 
(88), suggesting that ApoE-ε4 carriers do not suffer more 
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from inactivity than any other group but do experience 
more benefits from physical activity.

On the other hand, studies have shown that the 
interaction between physical activity and cognitive 
decline is restricted to ApoE-ε4 non-carriers. In a 
prospective study among older adults Podewils 
et al. found an inverse association between physical 
activity and risk of AD after a 5 year follow-up that 
was confined to ApoE-ε4 non-carriers, indicating that 
benefits of exercise may be confined only to ε4 non-
carriers (89). A similar finding was reported after a 5 year 
follow-up in cognitively healthy elders (90). Fenesi et al. 
found a significant protective effect of physical activity 
regarding dementia risk in ApoE-ε4 non-carriers, and 
no significant effect in ApoE-ε4 carriers. One randomly 
controlled trial supported these two observational 
studies (91). Lautenschlager et al. studied the effect of 
an exercise intervention on cognitive functioning in a 
randomized trial in healthy older adults with subjective 
memory impairment. The researchers found a modest 
improvement in cognitive functioning in those treated 
with the intervention. In a post-hoc comparison, 
treatment response interacted with APOE genotype, 
as ApoE-ε4 non-carriers showed a significantly larger 
improvement compared to both carriers and non-carriers 
in the control condition, while no other significant 
differences were found (91). 

One study did not find a significant interaction effect 
between physical activity and cognition and ApoE-ε4 
carrier status (92). Luck et al. failed to find an interaction 
between physical activity in late life and risk of AD in an 
observational study after a 4.5-year follow-up in a group 
of healthy elderly aged 75 years and over. However, the 
authors did note that the interaction between ApoE-ε4 
and low physical activity for AD risk verged on the 
border of significance.

With regard to physical fitness, it has been found 
that the presence of the ApoE-ε4 allele is associated 
with motor decline (e.g. motor performance) in older 
people (93) and the strength of this relationship increases 
with age. Further analysis showed that this association 
was mainly due to a greater age-related decrease in 
upper and lower limb muscle strength in people carrying 
the ApoE-ε4 allele. This study showed that ApoE-ε4 
carriers are at greater risk of rapid motor decline relative 
to non-carriers, particularly later in life. Considering 
that limited physical activity is associated with motor 
decline, and physical activity is potentially protective 
against cognitive decline, physical activity is argued to be 
especially relevant to ApoE-ε4 carriers (86, 93). 

Diet and IGF-1

In addition to the effect of physical activity on IGF-1 
levels, diet is an important lifestyle factor affecting IGF-1 
levels. Norat et al. (4) demonstrated that protein intake 
was positively associated with IGF-1 serum levels. This 

study showed that intake of milk, calcium, magnesium, 
phosphorus, potassium, vitamin B6, and vitamin B2 was 
positively related to IGF-1 serum levels and that the 
intake of vegetables and beta-carotene was negatively 
associated with IGF-1 serum levels in women. In line 
with this study, a study by Allen et al. (94) demonstrated 
that in adult women aged 20 to 70 a plant-based (vegan) 
diet was related to lower IGF-1 serum levels compared 
to women with a meat-eating or lacto-ovo-vegetarian 
diet. The difference in IGF-1 serum levels between the 
groups was mainly explained by protein intake consisting 
of essential amino acids. Long-term caloric restriction 
for a duration of 1 and 6 years was not associated with 
with reduced IGF-1 serum levels in healthy middle 
aged men and women, if protein intake is high (95). In 
addition, a recent study by Fontana et al. (96) showed 
that 2 years of caloric restriction did not affect IGF-1 
serum levels in healthy non-obese young and middle-
aged men and women, suggesting no sustained effects of 
caloric restriction on IGF-1 serum levels. Though, other 
studies demonstrated that short term caloric restriction 
for 6 days lowers IGF-1 serum levels (97), indicating that 
particularly short term fasting lowers IGF-1 serum levels. 

Exercise combined with diet and IGF-1

Few studies have examined the influence of physical 
activity combined with a specific diet on IGF-1 levels. A 
negative caloric balance induced by physical exercise or 
caloric restriction, were both associated with equivalent 
decline in IGF-1 levels (98). Smith et al. (98) concluded 
that a decline in IGF-1 levels is mainly explained by 
an energy deficit, irrespective whether this deficit was 
induced by caloric restriction or physical exercise. A 
study by Rarick et al. (77) demonstrated a decline in 
IGF-1 serum levels after 7 days of increased physical 
activity in healthy men. However, the decrease in IGF-1 
serum level was not moderated by fitness intensity, 
energy balance, or dietary protein intake. This study 
therefore challenges the concept of Smith et al. (98)
and suggests that yet unknown mechanisms related to 
physical activity, such as enhanced energy flux, may 
affect IGF-1 levels independently.

IGF-1 in relation to other AD risk factors

When investigating the association between IGF-1 and 
Alzheimer’s disease it is important to consider the limited 
role of epidemiological evidence in causal inference 
and the possible confounding influence of a myriad 
of factors that are related to both AD risk and altered 
IGF-1 signaling. Among these potential confounders are 
lifestyle factors, like alcohol and nicotine consumption 
(99–101), and several conditions associated with 
alterations in insulin or IGF-1 signaling such as type 2 
diabetes, obesity, cardiovascular disease, cerebral infarcts 
(102–107) and depression (108, 109). These cross-links 
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between altered IGF-1 signaling and increased risk of 
AD highlight the importance of experimental and meta-
analytic evidence, replication studies and a thorough 
consideration of potential confounders in the association 
between IGF-1 signaling and Alzheimer’s disease. 

Conclusion and future perspectives 

Although there are contradictory findings on the 
association between physical exercise, diet and IGF-1 
it can be argued that promoting physical activity and a 
protein rich diet could be promising interventions that 
may increase IGF-1 levels, thereby increasing physical 
fitness and counteracting age-related neurodegeneration 
and AD. Further research, including experimental, 
epidemiological and multi-omic approaches (110), is 
warranted to investigate the prospective value of 
different biomarker profiles for future dementia risk. 
Findings can be applied to improve early diagnostics 
and to increase the efficiency of lifestyle interventions 
targeting IGF-1 signaling to delay or prevent the 
development of physical and cognitive decline, in 
particular for those most vulnerable for AD.

Highlights

- IGF-1 is associated with cognitive deficits and 
pathological alterations in the brain that accompany 
AD

- Decreased IGF-1 levels are a possible moderator of 
genetic vulnerability to AD

- Increasing physical activity and adherence to a protein 
rich diet may be useful interventions to increase IGF- 
serum levels, thereby increasing physical fitness and 
cognitive functioning
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