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Rotator Cable Strain and the Abduction Force after Transection of the Cable Insertions

 Christopher S. Spicer, M.S. 

University of Pittsburgh, 2020 

 The goal of this study was to assess the functionality of the rotator cable in stress-

shielding the rotator crescent region. The hypothesis was that releasing the rotator cable would 

significantly increase strain in the rotator crescent and significantly decrease abduction force. 

Surface strain and abduction force were measured for 8 cadaveric specimens for three 

different states of the rotator cable: intact, anterior or posterior insertion released, and both 

anterior and posterior insertions released. A custom-built shoulder simulator applied a 

physiological loading pattern to the rotator cuff muscles to simulate abduction. For each cable 

state, the specimen was fixed in place at both 0 and 30 degrees of abduction. Four specific 

regions were analyzed for strain: two areas towards the center of the rotator crescent and an area 

on both the supraspinatus and infraspinatus tendons. Statistical analysis was performed with 

anterior and posterior separated and with the two groups combined comparing the intact state to 

the fully released state. 

No significant change was found in major principal strain across any of the four regions 

or two abduction angles when analyzing both the anterior and posterior groups separated and 

combined. A significant increase in abduction force was found at 0 degrees of abduction when 

the groups were combined. No other significant changes in abduction force were found. 



 v 

The increase in abduction force indicates that the rotator crescent area is a better abductor 

than the rotator cable and is not stress-shielded by the cable. The results of the strain analysis 

also demonstrate this by showing no significant change upon cable release. Therefore, the rotator 

cable should not be relied upon to shield tears in the rotator crescent, and these tears should be 

surgically repaired. 
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1.0 Introduction  

1.1 Motivation 

The rotator crescent was first described by Burkhart et al. as the area of the rotator cuff 

covering the distal insertions of the supraspinatus and infraspinatus tendons [1]. The rotator cable 

was described as a thick bundle of fibers bounding the crescent on its proximal side. Burkhart 

claimed the cable served as a suspension bridge-like stress shield for the rotator crescent and the 

rest of the rotator cuff. This protects these areas from tears by distributing forces away from the 

area. This claim is relevant due to the fact that most rotator cuff tears occur near the junction of 

the infraspinatus and supraspinatus, which occurs in the crescent region [2]. Knowledge of the 

role the rotator cable plays in load distribution could help inform how surgeons repair the rotator 

cuff after injury.  

 

1.2 Goals 

The goal of this project was to analyze the mechanical significance of the rotator cable in 

stress-shielding the rotator cuff during abduction. This study analyzed the force at the humerus 

and the strain in the rotator cuff during abduction, specifically focusing on the rotator crescent 

area and the rotator cable. 
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2.0 Background  

2.1 Anatomic Definitions 

Given that the human body has various possible orientations, a standard anatomical 

position for humans has been defined, shown in Figure 1. Several terms are used to define 

locations on the body relative to this position. Superior and inferior mean closer and further from 

the head, respectively. Anterior and posterior refer to front and back, respectively. Medial means 

closer to the vertical midline of the body, lateral means further from the midline. Internal rotation 

refers to rotation toward the midline, and external rotation refers to rotation further away from 

the midline. Distal and proximal refer to location relative to extremities: distal being further 

away from the trunk, and proximal being closer. 

 

Figure 1. Standard Anatomic Position (en.wikipedia.org) 
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2.2 Shoulder Anatomy 

 The focus of this research is the tissues of the rotator cuff, which are located in the 

shoulder. The shoulder joint is made up of the humerus and the scapula bones, where the 

humerus articulates in the socket of the scapula (glenoid). Upper extremity skeletal anatomy is 

shown in Figure 2. This joint is known as a ball-and-socket joint, which allows for a wide range 

of motion. 

 

Figure 2. Skeletal Anatomy of the Shoulder (en.wikipedia.org) 

An illustration of the muscular anatomy of the shoulder is shown in Figure 3. This set of 

muscles control the movements of the shoulder. Flexion is controlled by the pectoralis major, the 

biceps, and anterior deltoid. Extension is controlled by the posterior deltoid, latissimus dorsi and 

teres major. Abduction is controlled by the middle deltoid and supraspinatus. Internal rotation is 
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provided by the subscapularis, pectoralis major, latissimus dorsi, teres minor and anterior deltoid. 

External rotation is controlled by the infraspinatus and teres minor. The overall stability of the 

joint is managed by a group of four muscles (teres minor, infraspinatus, supraspinatus and 

subscapularis) that make up a structure known as the rotator cuff. 

 

 

Figure 3. Muscular Anatomy of the Shoulder (en.wikipedia.org) 

 

2.3 Rotator Cuff Anatomy 

The rotator cuff is made up of four muscles (listed posterior to anterior): the teres minor, 

infraspinatus, supraspinatus, and subscapularis. Each muscle is defined with an origination point 

and an insertion point, and all muscles are oriented from medial to lateral. The teres minor 

originates on the upper two-thirds of the lateral border of the scapula and inserts below the 
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interior facet of the greater tubercle of the humerus. The infraspinatus originates on the fossa of 

the scapula and inserts at the posterior aspect of the greater tuberosity of the humerus and the 

capsule of the shoulder joint. The supraspinatus originates at the supraspinatus fossa and inserts 

on the greater tuberosity of the humerus at the superior facet. The subscapularis originates at the 

subscapular fossa on the anterior surface of the scapula and inserts into the lateral tuberosity of 

the humerus and the front of the shoulder joint capsule. 

The region near the supraspinatus and infraspinatus tendons of the rotator cuff is broken 

up into five layers [3]. The first layer is made up of the fibers of the coracohumeral ligament 

(CHL). The second layer is made up of the parallel fibers of the supraspinatus and infraspinatus 

tendons. Layer three is a thick cross-hatched tendinous structure. The fourth layer is made up of 

collagen fibers, and is known as the rotator cable. Layer five is known as the capsule, which 

serves as a thin sheath around the humeral head, attaching laterally at the neck of the humerus 

and medially on the glenoid and labrum. 

The aforementioned rotator cable was first described by Burkhart et al in an anatomical 

study [1]. In this study, Burkhart proposed that the cable was mechanically significant, stress-

shielding the rest of the crescent area. Burkhart et al likened the cable to a suspension bridge in 

this way (Figure 4), making tears in the area in the cuff directly inferior to the cable (crescent 

area) biomechanically insignificant. 
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Figure 4. Illustration comparing rotator cable to suspension bridge [1] 

 

2.4 Injuries of the Rotator Cuff 

As a central structure in upper extremity function, the rotator cuff can be susceptible to 

injury, specifically tears. Much of the time, these tears are not mechanically relevant enough to 

be impactful, and therefore do not require surgery [4,5]. Tears that cause loss of mechanical 

function (often instability) or cause pain in the individual are impactful enough to require 

surgery. Some tears of the cuff, known as massive tears, cannot be surgically repaired. Often 

times they are irreparable due to tendon retraction with muscle atrophy, fatty infiltration and 

inelasticity. 
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2.5 Previous Strain Methodologies 

Previous biomechanical studies have used various methods to asses strain. In an early 

experiment by Renström et al, a Hall effect strain transducer (HEST) was used to measure strain 

in the anterior cruciate ligament (ACL) during hamstring activity, quadriceps activity and 

combined activity of the two (Figure 5) [6]. The study concluded that independent hamstring 

activity decreased ACL strain. A later test performed by Reilly et al used a differential variable 

reluctance transducer (DVRT) to calculate strains of supraspinatus tendon in vitro on both bursal 

and articular sides [7]. The study found that strain was significantly different between the bursal 

and articular sides during both static loading and abduction. A similar study was performed by 

Mazzocca et all to determine the effect of partial-thickness tears on the supraspinatus tendon [8]. 

The study concluded that the tendon strain on the articular side increased significantly with 

simulated tears of increasing size. HESTs work using a magnet and measuring the voltage output 

proportional to the strength and therefore change in relative distance to the magnetic field. 

DVRTs also use a magnetic field but instead achieve this field with a coiled wire.  Both HEST 

and DVRT involve the attachment of a strain gauge to the specimen.   
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Figure 5. An HEST measuring strain in the ACL [6] 

 

A study published in 2008 documented the use of a digital image correlation (DIC) 

system to measure strain on sheep tendons. This study found correlation between tear size and 

magnitude of the strain [9]. DIC does not use a strain gauge and instead involves a random 

speckle pattern painted on the surface of a specimen. DIC does not affect the specimen 

mechanically, giving it an advantage over other strain methods. HEST and DVRT both need to 

be attached to the specimen, potentially altering the mechanical properties and overall strain. 

DIC also has an advantage over strain transducers in its ability to capture multi-directional strain 

over an area. HEST and DVRT measure strain in one fixed dimension, while DIC measures 

strain over areas in two dimensions. This allows for major and minor principal strains to be 

found, as well as their directions.  
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2.6 Previous Rotator Cuff Strain Studies 

A study published in 2002 used magnetic resonance imaging (MRI) to measure strain in 

the rotator cuff [10]. Strain was measured in the supraspinatus tendon using measurements on the 

MRI at three locations (superior, middle, inferior) and four abduction angles (15, 30, 45 and 

60°), shown in Figure 6. The study concluded that strain was consistent across different regions 

of the supraspinatus and the position of the humerus in the glenoid played a large role in the 

overall mechanics of the rotator cuff. 

 

Figure 6. MRI of the supraspinatus tendon at four different abduction angles [10] 

 

 A recent study measured strain in the rotator cuff using a set of fixed strain markers 

shown in Figure 7 [11]. This study analyzed the effect of a supraspinatus tear on the distribution 

of strain and the propagation of the tear during cyclic loading. It was found that the strain shifted 

with tear propagation and that the tear propagation remained isolated to the tendon. Another 

study by the same lab used finite-element modeling and simulation to analyze strain around 

supraspinatus tears and concluded that anterior tears were more likely to propagate [12].  
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Figure 7. Strain markers on the rotator cuff [11] 

 

2.7 Previous Rotator Cuff Reaction Force Studies 

Other studies examined stability in the glenohumeral joint in relation to the rotator cable. 

A study by Pinkowsky et al. examined the effect of releasing the rotator cable on shoulder 

stability. An anterior load was applied to the humerus and glenohumeral translation was 

measured at 30, 60, 90 and 120 degrees of external rotation. The study determined that tears with 

a thickness greater than 50% involving the cable increased glenohumeral translation [13]. 

Another study examined strain, tear progression and tendon stiffness in relation to the release of 

the cable. This was achieved by clamping the rotator cuff muscles and cyclically loading the 

supraspinatus. The study concluded that tears that involved both the cable and the crescent had 

higher strain, higher gap formation and lower tendon stiffness than tears in just the crescent [14]. 

Another study examined the effect of different loading ratios on glenohumeral abduction. This 

study found consistent abduction between trials when the same loading ratio was used, but did 



 11 

not determine an ideal loading ratio to simulate abduction [15]. A 2002 study examined the 

reaction forces at the glenohumeral joint when the supraspinatus and infraspinatus were torn. The 

study found that tears in the supraspinatus did not have a significant effect on the resulting 

forces, but tears stretching more anteriorly and posteriorly had a significant change on the 

magnitude and direction of the resulting forces [16]. 
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3.0 Methods 

3.1 Overview 

The goal of this study was to determine the mechanical relevance of the rotator cable in 

regards to shoulder abduction by applying a physiological load to the rotator cuff muscles while 

measuring strain and humeral abduction force. 

Eight cadaveric shoulder specimens were mounted and fixed in a custom-built shoulder 

simulator. The simulator consisted of a proportional-integral feedback control system with five 

actuators and a pulley system to apply loads in physiological directions. These loads were 

applied to the individual rotator cuff muscles while strain on the surface of the rotator cuff and 

abduction force at the humeral end were recorded. This testing was performed with the humerus 

fixed at both 0° and 30° of abduction. The cable’s anterior or posterior insertions were released, 

and the tests were repeated. The cable was then fully released by cutting the opposing insertion 

site, and the final tests were performed. 

Statistical analysis was performed using a one-factor repeated measures ANOVA, and if 

the ANOVA was significant, followed by post-hoc Bonferroni correction for the abduction 

forces and strain regions of interest to determine if the release of the rotator cable had any 

mechanical effect. 

 

3.2 Shoulder Simulator 

 Mechanical loading and fixture of cadaveric specimens was achieved using a custom 

shoulder simulator shown in Figure 8. Five actuators applied muscle loads with wires, and 
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physiological force lines of action were achieved by routing the wires through a system of 

pulleys and attaching them to sutures sewn into the muscles of the specimens. Feedback control 

was achieved by attaching a single degree-of-freedom load cell (MLP-100, Transducer 

Techniques, Inc.) to each actuator. A large arc centered vertically at the front of the simulator 

allowed the humerus to be set at different angles of abduction. 

 

 

Figure 8. The simulator used for testing 
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3.3 Data Acquisition 

 Loading of the cadaveric specimens in the shoulder simulator was achieved using a 

proportional-integral controller (DMC-4080, Galil Motion Control). Single degree-of-freedom 

load cells were connected to signal conditioners (LCA-RTC, Transducer Techniques) which 

provided the control system with the load being applied by the actuator. This allowed the 

proportional integral control to continuously calculate the error signal between the input loads 

and the actual loads and adjust the servo drives (Compax3, Parker Hannifin Corp.) for each 

actuator accordingly. 

Abduction force was measured using a six degree-of-freedom load cell that was fixed 

between the arc of the simulator and the humerus of the cadaveric specimens. The output of this 

load cell was connected to an external digital-to-analog converter and fixed gain analog amplifier 

(AM6501, Bertec Corp.) and then to a data acquisition board (NI USB-6008, National 

Instruments, Inc.). This data acquisition board was connected to the control system computer to 

store the data output files. 

A Digital Image Correlation (DIC) system (Vic-3D, Correlated Solutions) was used to 

measure the strain on the surface of the rotator cuff. DIC is an optical tracking system which 

takes a series of images of a specimen undergoing a deformation and uses those images to 

measure the strain on the surface of the specimen. The system accomplishes this using a 

contrasting speckle pattern applied to the specimens, splitting this pattern into smaller areas 

known as subsets, and tracking how each of the subsets move and deform. 

To take these images, two cameras were mounted to the simulator and were positioned so 

that the surface of the rotator cuff near the cable was in view. Prior to testing, the system was 
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calibrated by capturing a series of images (Vic-Snap, Correlated Solutions) of a calibration plate 

(5mm, Correlated Solutions) and processing the images using Vic-3D. 

 

3.4 Cadaveric Specimen Preparation 

Eight fresh-frozen human cadaveric shoulder specimens with no rotator cuff pathology 

were used in this study.  Prior approval was obtained from the University’s Committee for 

Oversight of Research and Clinical Training Involving Decedents (CORID #1012). Specimens 

were thawed to room temperature. The distal humerus was removed below midshaft, and soft 

tissues were removed leaving the rotator cuff and the shoulder capsule intact. The medial half of 

the humeral head was removed in order to mark the outside of the rotator cable with black suture 

(Figure 9). This was done because the fibers of the cable are visible from the inferior side, but 

not the bursal. The humeral head was then reattached using a screw. Krakow stiches were sewn 

in each of the rotator cuff muscles, dividing the subscapularis into an upper and lower section. 

Eyelet screws were attached into the scapula to give anatomic lines of action to the sutures. The 

scapula was secured into a custom-built aluminum box using polyester resin (Bondo, 3M), and 

the humeral head was similarly secured into a section of PVC pipe. 
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Figure 9. A specimen with its rotator cable stitched 

 

3.5 Test Protocol 

The aluminum scapula box was positioned on the custom-built shoulder simulator with 

the joint centered in the arc, and the humeral shaft was fixed at 0 degrees of abduction. The 

sutures on the rotator cuff muscles were attached to the cables of the actuators. A speckle pattern 

was applied to the surface of the rotator cuff by first staining the specimens with a methylene 

blue solution and then speckling the specimens with waterproof white ink, using a toothbrush to 

spray a random pattern (Figure 10). The cameras were then positioned above the specimen to 
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capture the strain pattern on the bursal side of the cuff. A pre-load of 5N was applied to all of the 

rotator cuff muscles. Once the pre-load was applied, static physiologic loads emulating abduction 

(Table 1) were then applied to the rotator cuff muscles for one minute. The muscle loads were 

calculated using published data on physiological cross-sectional area and electromyography 

activity [15]. The separation of the subscapularis loads into upper and lower was achieved using 

existing data on measured sugar intake during activity using positron emission tomography [17]. 

 

 

Figure 10. A specimen stained with dye and speckled with paint 
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Table 1. Muscle Loads Used for Testing 

Muscle Lower 

Subscapularis 

Upper 

Subcapularis 

Supraspinatus Infraspinatus Teres 

Minor 

Load (N) 127 108 80 90 97 

 

During the test, strain was measured using a DIC (Digital Image Correlation) system and 

the resulting humeral abduction force was measured at the distal humerus using a six degree of 

freedom force sensor. After the specimen was tested with the cable intact, the rotator cable was 

released (Figure 11) at either the anterior or posterior end. Randomization of which insertion was 

released first was determined with a random number generator. The previous testing steps were 

then repeated at 0 and 30 degrees of abduction for the single-release specimen. The opposite 

insertion of the cable was then released, and the test procedure was again repeated for 0 and 30 

degrees of abduction. 

 

Figure 11. A specimen with an incision made for cable release (incision circled) 
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3.6 Data Analysis 

 The forces at the distal humeral end of the specimens for every test were determined from 

output values in the direction of interest from the 6-DOF load cell. The abduction force was 

defined as the force on the axis perpendicular to the midline of the humerus pointing directly in 

the medial direction. The forces were continuously recorded throughout the test, so total 

abduction force was found by subtracting the abduction force before loading from the abduction 

force after loaded. 

 To calculate the strain, the DIC system required an overall region of interest to be drawn 

over the initial image in the set of images (Figure 12). This region needed to be selected to be 

used for the two specimen abduction positions, so the region was drawn to include the crescent 

area, the cable, and the tendinous insertions to the cable, specifically around the supraspinatus 

and infraspinatus. An image was taken of the specimen before the stain and speckle were applied 

to use as reference for the cable location.  

 

Figure 12. The region of interest over which strain was calculated 
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 Four smaller regions of interest were identified on each specimen, shown in Figure 13. 

The first regions, labeled A and B on the figure, were in the crescent area within the rotator 

cable. To help with standardization of regions A and B, a line was drawn down the middle of the 

supraspinatus tendon and the sutured cable was used (highlighted in blue on the figure). The 

length of this line between the two sides of the cable was used to select regions A and B. 

Measuring from the top section of the cable, the center of region A was one full cable length 

away, and the center of region B was one half of a cable width away. The third and fourth 

regions, labeled C and D, were just outside the rotator cable on the infraspinatus and 

supraspinatus, respectively. All four of the regions were on tendon as opposed to muscle to 

ensure the measured strain was on the cuff itself as opposed to the surrounding muscles. 

 

 

Figure 13. Specific regions strain was observed 
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The strains in the identified regions of interest were found by using the “inspect” tool in 

the DIC software to find the average strain within a circle (Figure 14). The sizes of the circles 

were measured using pixel measurements given from the program, and those pixel measurements 

were converted to mm using the calibration output from the software. A standardization of 4mm 

in diameter was used for each circle.   

 

 

Figure 14. Strain plot with circular regions of interest 
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The DIC software reported directional strains based on a coordinate system, shear strain 

based on these coordinates, major principle strain and minor principal strain. The major principle 

strain, referred to as “e1,” was chosen for analysis.  

 

3.7 Statistical Analysis 

 The data for the specimens was separated into an anterior release first group and a 

posterior release first group, with four specimens in each group. The data for the 0 and 30 degree 

abduction angles was analyzed separately within these groups. Statistical comparisons for 

abduction force and the four strain regions of interest were performed in each group by 

comparing both the single release and the full release values to the native. Statistical analysis was 

performed using a one-factor repeated measures analysis of variance (ANOVA) with the cable 

state as the factor, followed by post hoc analysis using a Bonferonni correction with statistical 

significance at p<0.05 (SPSS, IBM) if the ANOVA showed significance. 
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4.0 Results 

4.1 Abduction Force Results 

Anterior and posterior abduction force results are shown in Figure 15. Single release is 

referred to as “1Cut,” and full release is referred to as “2Cut.” No significant differences were 

found in either the anterior or posterior groups, with the smallest p-value being 0.062 between 

the intact and full release states at 0 degrees in the anterior release group. Combined abduction 

force results are shown in Figure 16. Significance was found at zero degrees of abduction 

between the intact and released groups with a p-value of 0.003. 

 

 

Figure 15. Anterior and Posterior Groups Abduction Force Results 

 

Figure 16. Combined Anterior and Posterior Group Abduction Force Results 
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4.2 Strain Results 

Anterior and posterior strain results in four different locations are shown in Figures 17-

20. Major principal strain was used for analysis, referred to in the graphs as “e1.” No significant 

differences were found in either the anterior or posterior groups at any of the strain locations, 

with the smallest p-value being 0.250 in the infraspinatus between the intact and single release 

states at 0 degrees in the anterior release group. Combined strain results are shown in Figures 21-

24. No significant differences were found at any of the strain locations, with the smallest p-value 

being 0.237 at the medial crescent between the intact and full release states at 0 degrees. 

 

Figure 17. Anterior and Posterior Groups Medial Crescent Strain Results 

 

Figure 18. Anterior and Posterior Groups Lateral Crescent Strain Results 
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Figure 19. Anterior and Posterior Groups Infraspinatus Strain Results 

 

Figure 20. Anterior and Posterior Groups Supraspinatus Strain Results 

 

Figure 21. Combined Medial Crescent Strain Results 
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Figure 22. Combined Lateral Crescent Strain Results 

 

Figure 23. Combined Infraspinatus Strain Results 

 

Figure 24. Combined Supraspinatus Strain Results 
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5.0 Discussion 

 According to Burkhart’s hypothesis, the rotator cable acts as a stress shield for the rotator 

crescent. This means that as force is applied to the rotator cuff muscles to cause abduction, the 

rotator cable diverts these forces away from the rotator crescent by bearing the load itself. Based 

on this hypothesis, it can be concluded that releasing the cable from its intact state should show 

some significant increase in strain or decrease in abduction force. 

Neither the anterior nor posterior groups of the abduction force results showed any 

significance between release states at 0 or 30 degrees of abduction. This is contrary to Burkhart’s 

hypothesis from which a decrease in abduction force would be expected. Unlike the separated 

results, the combined abduction force results showed significance at 0 degrees of abduction. This 

shows that the crescent area where the supraspinatus and infraspinatus insert transmits abduction 

force from the muscles to the humerus. The main finding that can be concluded about the rotator 

cable from this is that the crescent area may be a more effective abductor than the cable. 

 When looking at the anterior and posterior groups separately, the results from this study 

showed no significant change in major principal strain in the supraspinatus, infraspinatus, or 

either crescent region. Furthermore, there was little consistency between the regions and release 

progression groups as to whether the strain increased or decreased in a region with cable release 

progression. Most of the release progressions fell into one of three categories: the strain 

decreasing over the progression of the cable release, the strain decreasing only in the single 

release stage, or the strain decreasing in the single release phase. Similar to the separate anterior 

and posterior results, the results of the combined analysis for the strain groups showed no 

significant change. The lack of change in strain in any of the findings of this study is contrary to 

Burkhart’s hypothesis that the cable serves as a stress shield for the rotator crescent.  
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6.0 Conclusion and Future Work 

 

6.1 Conclusions 

 The findings of this study suggest that the rotator cable does not function as a stress 

shield to the rotator crescent region. Therefore, tears in the rotator crescent should be treated as 

mechanically significant regardless of the rotator cable. 

 

6.2 Future Work 

 The abduction force increasing significantly at 0 degrees of abduction can likely be 

explained by the crescent area being a more effective abductor than the cable. However, to draw 

any further conclusions, further testing should be done to examine exactly why the abduction 

force increases. Examining the effect releasing the rotator cable has on other shoulder motion 

aside from abduction might reveal if something is lost from the abduction force that is gained. 
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Appendix A Abduction Force Data 

 

Table 2. Anterior Specimen Abduction Force Data 

Specimen # Intact (N) Partial Release (N) Full Release (N) 

 0° 30° 0° 30° 0° 30° 

1 19.84 7.40 31.42 8.04 32.13 8.70 

2 8.51 4.10 23.65 4.62 23.30 7.51 

3 18.52 4.75 17.02 4.16 22.33 4.28 

4 16.06 8.54 24.08 10.93 27.57 10.30 

 

 

Table 3. Posterior Specimen Abduction Force Data 

Specimen # Intact (N) Partial Release (N) Full Release (N) 

 0° 30° 0° 30° 0° 30° 

5 19.11 6.72 21.95 6.61 23.76 9.75 

6 5.58 3.17 5.76 4.46 4.67 4.54 

7 9.28 5.67 11.61 5.30 12.71 4.24 

8 21.38 6.41 25.96 6.77 27.87 6.31 
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Appendix B Major Principal Strain Data 

 

Table 4. Anterior Specimen Medial Crescent Major Principal Strain Data 

Specimen # Intact Partial Release Full Release 

 0° 30° 0° 30° 0° 30° 

1 1.53E-02 2.00E-02 2.26E-02 1.45E-02 1.46E-02 1.10E-02 

2 4.88E-03 1.52E-02 4.61E-03 2.66E-02 7.45E-03 2.34E-02 

3 9.68E-03 1.16E-02 1.44E-02 7.99E-03 1.24E-02 9.79E-03 

4 1.47E-02 2.07E-02 1.90E-02 1.72E-02 1.55E-02 1.51E-02 

 

 

Table 5. Posterior Specimen Medial Crescent Major Principal Strain Data 

Specimen # Intact Partial Release Full Release 

 0° 30° 0° 30° 0° 30° 

5 8.58E-03 1.15E-02 8.53E-03 6.16E-03 8.62E-03 1.09E-02 

6 5.75E-03 6.91E-03 7.19E-03 6.02E-03 6.19E-03 5.04E-03 

7 1.37E-02 2.33E-02 1.24E-02 2.46E-02 1.27E-02 2.42E-02 

8 1.04E-02 1.38E-02 8.46E-03 1.56E-02 1.05E-02 1.58E-02 

 

 

Table 6. Anterior Specimen Lateral Crescent Major Principal Strain Data 

Specimen # Intact Partial Release Full Release 

 0° 30° 0° 30° 0° 30° 

1 9.27E-03 6.54E-03 1.77E-02 3.51E-03 8.10E-03 7.47E-03 

2 6.04E-03 6.27E-03 2.27E-03 8.47E-03 3.68E-03 1.05E-02 

3 7.37E-03 3.04E-03 8.07E-03 2.30E-03 7.90E-03 2.36E-03 

4 1.48E-02 1.86E-02 1.81E-02 1.47E-02 1.35E-02 1.48E-02 

 

 

Table 7. Posterior Specimen Lateral Crescent Major Principal Strain Data 

Specimen # Intact Partial Release Full Release 

 0° 30° 0° 30° 0° 30° 

5 8.76E-03 9.67E-03 7.93E-03 5.21E-03 7.47E-03 9.53E-03 

6 6.05E-03 5.52E-03 7.90E-03 5.26E-03 6.40E-03 3.78E-03 

7 1.15E-02 1.73E-02 1.11E-02 1.77E-02 1.16E-02 1.78E-02 

8 1.31E-02 1.79E-02 1.23E-02 1.80E-02 1.56E-02 1.76E-02 
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Table 8. Anterior Specimen Infraspinatus Major Principal Strain Data 

Specimen # Intact Partial Release Full Release 

 0° 30° 0° 30° 0° 30° 

1 2.25E-02 2.50E-02 3.85E-02 1.81E-02 1.13E-02 6.23E-03 

2 1.81E-02 6.97E-03 2.68E-02 1.22E-02 3.37E-02 9.99E-03 

3 7.26E-03 1.25E-02 1.16E-02 1.41E-02 9.87E-03 2.13E-02 

4 2.47E-02 3.07E-02 2.69E-02 1.84E-02 2.30E-02 2.13E-02 

 

Table 9. Posterior Specimen Infraspinatus Major Principal Strain Data 

Specimen # Intact Partial Release Full Release 

 0° 30° 0° 30° 0° 30° 

5 3.46E-02 4.73E-02 5.31E-02 5.84E-02 2.23E-02 3.85E-02 

6 2.04E-02 1.61E-02 1.58E-02 1.62E-02 1.46E-02 2.23E-02 

7 1.71E-02 3.75E-02 1.72E-02 2.54E-02 1.92E-02 2.38E-02 

8 3.20E-02 3.53E-02 2.99E-02 2.73E-02 3.58E-02 3.74E-02 
 

Table 10. Anterior Specimen Supraspinatus Major Principal Strain Data 

Specimen # Intact Partial Release Full Release 

 0° 30° 0° 30° 0° 30° 

1 8.14E-03 3.25E-02 1.04E-02 2.21E-02 1.20E-02 9.68E-03 

2 1.51E-02 1.16E-02 3.00E-02 1.25E-02 2.52E-02 1.54E-02 

3 1.81E-02 1.56E-02 1.98E-02 1.20E-02 1.74E-02 1.36E-02 

4 1.65E-02 2.03E-02 1.05E-02 1.96E-02 1.26E-02 2.09E-02 

 

Table 11. Posterior Specimen Supraspinatus Major Principal Strain Data 

Specimen # Intact Partial Release Full Release 

 0° 30° 0° 30° 0° 30° 

5 1.77E-02 3.48E-02 1.53E-02 1.74E-02 1.48E-02 3.57E-02 

6 1.49E-02 1.10E-02 1.73E-02 1.32E-02 1.36E-02 1.28E-02 

7 2.06E-02 1.70E-02 1.46E-02 1.76E-02 1.31E-02 2.07E-02 

8 1.78E-02 2.86E-02 1.51E-02 2.05E-02 2.47E-02 2.91E-02 
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