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Vivo Coagulation

Megan Patricia Cala, PhD

University of Pittsburgh, 2020

Theories describing the coagulation cascade have been around for decades and have

greatly expanded in functional detail over the past several years. However, there still exists

a void in the literature on the quantification of the microscale contribution of individual

blood cell mechanics on the macroscale behavior of blood clots. This is due, in part, to the

fact that the trans-scale relationships between blood components are not fully understood. In

this work, we aim to bridge the gap between the known cell-scale phenomena of coagulation,

specifically platelet and fibrin interactions, and the measurable mechanics and dynamics of

whole blood clots.

The developed multiscale model consists of two main components: (1) a phenomenolog-

ical model of activated platelet adhesion and contraction and (2) a mechanistic model of

fibrin viscoelasticity and strain-hardening extensibility. The components of the multiscale

model include stand-alone discrete element method (DEM)-based cell-scale models for the

primary components of blood. The unique mechanical and dynamical behaviors observed

experimentally in single-platelet and single-fiber studies can be captured by this technique

due to the inclusion of phenomenological force models, namely piecewise linear functions

for the adhesion exhibited by activated platelets and Hill functions for the nonlinear elastic

modulus of fibrin.

The isolated platelet adhesion and fibrin extension models were developed and calibrated

separately before they were combined to study the emergent behavior of platelet and fibrin

assemblies. The platelet and fibrin compositions were varied between simulations to assess

the morphological and mechanistic differences of in silico-formed aggregates. Applying the

model within a dynamic framework was also used to obtain a macroscale metric of in silico

aggregate behavior that is comparable to one from existing clinical whole-blood diagnostic

devices like the thromboelastogram, or TEG. Specifically, we can quantify the platelet con-
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tribution to the strength of platelet and fibrin in silico aggregates. We observed a nonlinear

relationship between platelet concentration and platelet contribution that corroborates ex-

perimental studies. The culmination of the modeling efforts from this dissertation is a tool

that can be used and expanded to better understand the mechanistic detail of platelet and

fibrin contributions during coagulation.
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1.0 Introduction

Blood clotting, or coagulation, is an essential physiological mechanism that contributes

to homeostasis by stemming blood loss after vascular injury [1]. The complex, multi-step

mechanism of coagulation has been classically termed the “coagulation cascade,” and is

comprised of a sequence of several reactions involving blood cells, blood-cell fragments,

proteins, and other biological factors [41, 83]. Blood is comprised of red blood cells, white

blood cells, and platelets suspended in a protein-rich fluid called plasma [30]. Red blood cells,

present in the highest solids volume fraction, dominate blood rheology, but the concentrations

and interplay of other primary constituents, namely white blood cell fragments (platelets)

and proteinaceous meshes (fibrin), dictate the mechanics and dynamics of coagulation [78,

114]. At the onset of coagulation, platelets spontaneously activate and acquire adhesive

properties that facilitate platelet aggregation and the formation of a plug. The platelet plug

becomes the center of the clot, which is also stabilized by a fibrin mesh that polymerizes

throughout the clot.

The regulation of the coagulation cascade requires the harmonious interplay of several

key players and processes, including blood cell aggregation and adhesion, and the flow and

transport of important cells and clotting factors. It relies on the successful biochemical

communication of the entire network to maintain the spatiotemporal organization necessary

to resolve any imbalances within the system. Any minor disruption to any of these processes

or players can amplify to serious pathologies like hemorrhage or excess clotting.

Within the last century, remarkable progress has been made toward improving our under-

standing of coagulation and resolving the mechanical properties of blood clots [80, 33, 123].

The extent of hemostasis, the process by which bleeding is stopped, falls on a spectrum with

pathologies manifesting at both ends. Normal hemostasis consists of both the formation of

a clot and its subsequent breakdown after healing [107]. A perturbation to hemostasis can

lead to bleeding (hemorrhage) or to obstructive clotting (thrombosis). Hemorrhage results

from the delayed onset or altogether absence of clotting and/or the rapid occurrence of clot

lysis, whereas thrombosis results from excess blood clotting and/or the failure of clot lysis
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[94]. The mechanical properties of blood can be related to hemostatic disorders and are

therefore commonly used in hematological disease diagnosis [95].

1.1 Mechanics and Dynamics of Hemostasis

Under physiological flow conditions, red blood cells have the most significant effect on

the mechanical properties of blood [108]. Round, biconcave, and extremely deformable, red

blood cells are able to squeeze through openings smaller than their 6-8 µm diameter. The

ability of the red blood cells to orient with the flow of blood leads to the non-Newtonian, shear

thinning nature of blood [54]. Specifically, under low shear conditions, blood is highly viscous,

and with increased shear, the viscosity of blood decreases nonlinearly as the red blood cells

deform and orient with the flow [93]. Platelets have a discoid shape that measures 2-3 µm

in diameter and 0.5 µm in height when circulating in their quiescent state [76]. They are

produced from fragmented bone marrow megakaryocytes and have important roles in immune

defense, cancer metastasis, and most relevantly, wound healing [113]. Due to their smaller

size and lower concentration than red blood cells, the effect of platelets on the mechanical

properties of blood under physiological flow conditions is negligible [30]. However, this reality

reverses nearly spontaneously at the onset of hemostasis.

The coagulation cascade begins when platelets are exposed to sub-endothelial collagen

or to high shear forces in the presence of clotting factors, which induces platelet activation.

Activated platelets secrete granules that modify their membrane surface characteristics, in-

ducing particularly adhesive properties and a more spherical structure [91]. Following platelet

activation, a platelet aggregate forms and becomes the center of the clot [24, 42, 43]. Upon

activation, platelet integrins, such as αIIbβ3, switch from low to high affinity states to facili-

tate platelet-fibrinogen interactions [27]. Fibrinogen is a fibrous macromolecule that bridges

platelets via αIIbβ3, allowing the formation of platelet aggregates [49].

At the same time, the activated platelets allow the conversion of endogenous prothrombin

into active thrombin, the enzyme necessary to induce the polymerization of fibrinogen into

fibrin bundles [106]. Thrombin also activates other nearby platelets. Fibrin monomers link
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together to form fibrin sub-units called protofibrils [32]. Protofibrils aggregate laterally and

wrap into fibrin fibers, which branch to make a three dimensional network [123]. Fibrin

serves to strengthen the clot by forming an extensible meshwork that is held together by the

adhesive platelets, where the degree of platelet activation dictates the strength of adhesion

and therefore ultimately the strength of the clot [98].

During clot formation, a process known as clot contraction occurs, in which the viscous

fluid plasma is displaced and much is expelled from the clot [81]. The volume of fluid plasma

expelled from a clot can be collected and measured as a surrogate for the extent of clot

contraction [109]. Although the function of red blood cells in clot contraction is not well

understood, their deformability is particularly noted because as clots contract, red blood cells

can deform through vessel structures smaller than their diameter [51, 60, 75]. Contracting

clots can also undergo subtle platelet and fibrin rearrangements. A shift in platelets and

fibrin to the exterior of the clot reduces the clot permeability and enhances would healing

[16].

The myriad of other cells and tissue components in the blood are capable of interacting

with a growing clot or thrombus and can contribute to its formation, but pale in comparison

to the role of platelets and fibrin [124]. Though the key coagulation contributors are known,

their particular mechanical influence is still only vaguely understood. The mechanical prop-

erties of clots and thrombi are critical to their physiological function and a determinant of

the response to treatment of both hemorrhagic and thrombotic conditions [123].

1.2 Measurements of Blood Mechanical Properties

1.2.1 Isolated cell-scale assessments

From a sample of whole blood, individual cell counts can be measured, such as platelet

count, red blood cell concentration (hematocrit), fibrinogen level, clotting times, and various

clotting factor levels, though these mere quantities do not reveal any insight into their

contribution to the mechanical properties of blood [37].
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With the invention of the atomic force microscope (AFM) in 1986, the study of how

underlying molecular mechanisms connect with macroscopic mechanical behaviors within

biological systems has gained momentum [123, 89]. Quantitative experimental measurements

of the physical properties of particles on the cell-scale can be performed with high resolution.

This technique has been applied to both platelets and fibrin, leading to greater insight into

their unique adhesive and extensible properties, respectively [25, 86].

By measuring the force required to rupture the bond between a platelet-platelet and

platelet-fibrin bond at varying degrees of platelet activation, the dynamics of platelets

throughout the stages of the coagulation cascade are better understood. Through two sem-

inal studies by Nguyen et al. and Lam et al., it was discovered that the adhesive power of

platelets increases with an increase in the degree of platelet activation [77, 56]. AFM has

been coupled with force spectroscopy to measure the extensibility of a single fibrin bundle.

Through a recent experimental study, it was reported that fibrin exhibits viscoelastic and

strain hardening properties, exhibited by nonlinear force versus strain profiles [63]. A single

strand of fibrin can be stretched up to 3.3 times its original length before rupturing.

1.2.2 Ex vivo whole-blood assays

In the clinic, the coagulation status of patients can be assessed using devices such as the

TEG, ROTEM, and hemodyne [78, 123]. These point-of-care devices have subtle differences,

but all evaluate the whole blood clotting process from platelet aggregation to fibrinolysis.

A TEG is the readout of a point-of-care device used in the clinic to obtain functional

coagulation state assessments with the simple addition of a sample of whole blood [96]. As

shown in Figure 1A, the device contains an initially stationary pin that is suspended in an

oscillating cup containing the blood sample. Changes in torque between the pin and the

cup resulting from clot formation are traced through a computer-processed signal of the pin

rotations. Parameter values from the TEG tracings are compared to reference ranges to

guide the treatment of potential coagulopathies [82]. A schematic of a sample TEG with the

labeled parameter values is shown in Figure 1B.
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Figure 1: Schematic of (A) a TEG cup containing a whole-blood sample and suspended pin hanging from a torsion wire and (B)

a normal TEG tracing (not to scale) resulting from an outline of the pin oscillations during coagulation with the five labeled

key parameters used to assess the coagulation state of its subject.
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The five key parameters characterizing a TEG tracing are the time to initiation of coag-

ulation (R), the rate of formation of the clot (α-angle), the maximal amplitude (MA) of the

oscillation, the time required for the oscillation to reach the maximal amplitude from the

start of clot formation (K ), and percentage decrease in amplitude at thirty minutes post-MA

(LY30 ). Traditionally, R depends on soluble clotting factors, K on surface active factors,

α on fibrinogen and platelets, MA on platelet count and functional clot strength, and LY30

on the degree of fibrinolysis [78, 9].

The dynamic parameters obtained from these tests are compared to standard ranges

obtained from a healthy control reference so that appropriate treatments or treatment cor-

rections can be designed and administered. Because MA represents contributions of various

blood components to the clot, including platelets and fibrin/fibrinogen, it is not the most

sensitive indicator of a platelet deficiency. Alternatively, the platelet component of clot

strength can be derived from the comparison of TEG tests performed with and without

platelet inhibition [98]. While the simple and straight-forward nature of the TEG is appeal-

ing to clinicians, the suggested treatments for coagulopathies are rarely precise, which often

leads to patients receiving a transfusional cocktail of blood-product therapies [9].

The dynamic capacity of the measurements made by these devices provides a distinct

advantage over static quantitative clinical tests [96, 82]. However, the meaningfulness of

the parameters measured by these devices is limited to the realm of the respective device

because the exact connection between the microscale in vivo mechanistic contributions of

whole blood constituents to the macro-observable parameters from these devices is not fully

understood.

1.3 Existing In Silico Models of Coagulation

Despite the vast advancements surrounding hemostasis and thrombosis over the past

three decades, bleeding complications are still the major immediate cause of morbidity and

mortality in the world [6]. To enhance the study of the complexities surrounding coagula-

tion, mathematical and computational modeling has been increasingly used in parallel with
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experimental studies [97]. Though simplifying assumptions and approximations are part

of every model, an improved understanding of coagulation physiology and more powerful

computing have led to the development of more accurate models in recent years.

Within the computational biomechanical framework, simulation objectives for hemato-

logical models typically guide the selection from continuum- and/or discrete-based methods

[115, 33, 2]. Continuum methods usually involve systems of coupled differential equations

whose solutions and applicability may be limited to a narrow scope of simulation condi-

tions and often represent oversimplified systems [30]. Alternatively, to bypass some of the

limitations and abstractions of continuum methods, more intuitive discrete methods can be

employed at the cost of increasing computational complexity [23, 117]. These methods ex-

plicitly define each particle as a specific type with distinct properties and laws that govern

the possible constituent interactions, enabling the fine control of heterogeneous systems. The

mechanical forces acting upon each particle are remembered and particle positions are reas-

signed at each time step [34]. Until the verge of instability is reached, decreasing the time

step of discrete models increases the model accuracy, but further increases the computational

cost.

There are several variations of discrete approaches, including adhesive dynamics (AD),

discrete element method (DEM), molecular dynamics (MD), smoothed particle hydrody-

namics (SPH), and dissipative particle dynamics (DPD) [122, 67, 38, 50, 26]. All of these

methods are grounded in the solution to Newtonian physics across a collection of particles.

Further coarse graining discretized systems can increase the utility in capturing emergent

behavior of complex collections of a large number of cells [33, 23, 117]. Several existing hema-

tological models have successfully captured the in vivo dual behavior of platelet margination

combined with the deformation of red blood cells in high shear scenarios [4, 85, 84]. The work

of Wang et al. has shown promise for capturing the interplay between a small number of cells

within a network or matrix, while accurately capturing the impact of fluid mechanical forces

from surrounding blood plasma [122]. The correlation between the dynamics of adhesion

and bond characteristics, such as association and elasticity, was an insightful advancement

made by Chang et al. in their model of platelets and white blood cells [12].
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A fluid dynamics technique known as Lattice Boltzmann Method (LBM) has been com-

bined with discrete particle-based methods to increase the accuracy of the solid-fluid inter-

action beyond that possible of continuum methods or discrete particle-based methods alone

[19, 64]. The fluid in a LBM framework is described with a distribution function defined as

the probability density of locating a given number of molecules with a certain velocity at

a certain place and time in the three-dimensional simulation frame [14]. The distribution

functions can propagate along neighboring nodes of the discretized simulation in a collision

and streaming fashion [11, 35].

Several groups have applied LBM to model the response of the vascular occlusion in

intracranial aneurysms to changes under various flow conditions [36, 40, 79, 132]. In sil-

ico models of ex vivo coagulation in three-dimensional space is an under-developed area of

computational hematological research, therefore motivating the work herein [8]. The multi-

scale and multiphase nature of blood motivates the use of a combinational model of a fluid

dynamics technique along with a discretized particle-based method [128, 129].

1.4 Relevant Computational Methods

A combinational method can capture the two-way phenomena of how the fluid dynamics

are influenced by the presence of particles, and how the displacement of the particles is

driven by the fluid-induced forces [28]. In our framework, solid-fluid coupling is computed

at each time step by first obtaining the fluid solution with LBM, and then updating the

particle positions using DEM. From the resulting increase in resolution of the fluid flow and

increase in accuracy of the force calculations at the solid-fluid boundary, a unique insight

into the interplay between biophysics and the details of blood is expected [22, 59].

1.4.1 Discrete Element Method (DEM)

In DEM, the bulk evolution of particle assemblies is calculated through the integration

of the forces of interacting particle pairs [21, 130]. The solution to Newton’s equations of
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motion are used to calculate the particle trajectories. Equations 1.1 and 1.2 describe the

linear and angular particle motion, respectively,

mp
d~vp
dt

= −mp~g + ~Fn + ~Ft (1.1)

Ip
d~ωp

dt
= ~R× ~Ft (1.2)

where mp, ~vp, ~g, Ip, and ~ωp are the mass, translational velocity, gravity vector, moment of

inertia, and rotational velocity of particle p. ~Fn and ~Ft are the normal and the tangential

forces, respectively, and ~R is the vector between the center of particle p and the contact

point where ~Ft is applied.

Several force-displacement models have been developed based on theoretical contact me-

chanics [20]. The accuracy of calculations depends on the contact models selected. The

work herein follows the theory developed by Hertz [47]. The normal component of a collision

between two particles is chosen according to the elastic properties of the solids. Considering

pairwise interactions among particles, the normal force, assumed to be elastic during the

initial stages of loading, is described by Equation 1.3,

F e
n = kenα

3/2 (1.3)

where α is the amount of particle-particle overlap or particle deformation and can be calcu-

lated from Equation 1.4,

αi = (Ri +Rj)− δij (1.4)

where Ri and Rj are the undeformed radii of particles i and j, respectively, and δij is the

distance between the two geometric centers of each particle. The elastic normal contact

stiffness, ken, can be related to the particles’ mechanical properties, including their Young’s

moduli (E) and Poisson’s ratios (v), according to Equation 1.5,

ken =
4

3
E∗
√
R∗ (1.5)

where E∗ and R∗ are
1

E∗ =
1− v2

i

Ei

+
1− v2

j

Ej

(1.6)
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1

R∗ =
1

Ri

+
1

Rj

(1.7)

respectively [47].

The tangential force model used for the work herein was derived by Walton and Braun

[119]. For each time-step, the new tangential force, Ft, acting at the interparticle contact

point is defined as Equation 1.8

Ft = Ft,old − kt∆s (1.8)

where Ft,old is the tangential force from the previous time-step and kt∆s is the incremental

change in the tangential force during the present time-step due to relative particle motion

[118]. In other words, ∆s is the relative surface displacement between the contacting particles

during the current time-step and can be calculated from the component of the velocity that

is tangent to the contact surface, vt (i.e. ∆s = vtdt, where dt is the time-step). The frictional

stiffness, kt, is defined as Equation 1.9

kt = 8G∗a (1.9)

where G∗ is the effective shear modulus defined as Equation 1.10 and a is the contact radius.

1

G∗ =
2− vi
Gi

+
2− vj
Gj

(1.10)

1.4.2 Lattice Boltzmann Method (LBM)

LBM is a class of computational fluid dynamics methods used to simulate fluid flows with-

out directly solving the equations of continuum fluid mechanics [3, 65, 101]. It is based on

the microscopic particle models and mesoscopic kinetic equations and assumes that macro-

scopic behavior of a fluid system is not very sensitive to the underlying microscopic particle

behavior if only collective macroscopic flow behavior is of interest [99]. The fundamental

idea of LBM is to incorporate the essential physics of the micrscopic process in a mescopic
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kinetic model so that the relationship among average properties at the macroscale conforms

to the Navier-Stokes equations. In the theoretical studies and simulations of LBM, various

lattice discretization schemes have been proposed in one, two, and three dimensions. The

standard nomenclature used to classify the different schemes is DiQj, where i represents the

number of dimensions (1D, 2D, or 3D) and j represents the number of discrete directions (3

for 1D, 6 or 9 for 2D, and 15, 19, or 27 for 3D) [3]. D3Q19, 3D with 19 discrete velocities,

has been shown to provide a suitable combination of computational stability and accuracy,

thus the chosen scheme for this work. A schematic of the D3Q19 lattice velocities is shown

in Figure 2.

The governing equation for the evolution of the LBM fluid distribution functions is

defined as Equation 1.11

fi(x+ eiδt, t+ δt)− fi(x, t) = fi(x, t) + Ωi(x, t) (1.11)

where Ωi(x, t) is the collision operator. The most widely implemented LBM model, which

utilizes the Bhatnagar-Gross-Krook (BGK) approximation for the collision operator, was

chosen for the work herein [5, 87]. The evolution of the fluid can be calculated from a

modified Equation 1.11, included as Equation 1.12, which contains two sub-steps that are

executed during each computational iteration: streaming and collision.

fi(x+ eiδt, t+ δt)− fi(x, t) = −1

τ
[fi(x, t)− f eq

i (x, t)] (1.12)

In the governing equation, fi, x, t, ei, and δt are the probability distribution function (PDF)

of a node in direction i, position, time, microscopic velocity, and time step, respectively [7].

The left-hand-side of Equation 1.12 represents the streaming step, in which fluid particles are

propagated across the lattice. The right-hand-side of Equation 1.12 is the collision operator,

where τ is the dimensionless relaxation time that controls the rate that fi approaches f eq
i ,

the equilibrium probability distribution function (EDF). The EDF can be related to the fluid

density (ρ), the fluid velocity vector (~u), a weighting factor (wi), and the lattice speed (c)

according to Equation 1.13.

f eq
i (x, t) = wiρ

[
1 + 3

~e · ~u
c2

+
9

2

(~e · ~u)2

c4
− 3

2

~u · ~u
c2

]
(1.13)
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Figure 2: The 19 lattice velocities (~ci) used in the D3Q19 discretization scheme of LBM.
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When the D3Q19 lattice discretization scheme is used, 19 discrete particle velocities in

directions ~ei are introduced and defined according to Equation 1.14.

~ei =



e0 = c(0, 0, 0)

e1 = c(0, 1, 0)

e2 = c(0,−1, 0)

e3 = c(0, 0, 1)

e4 = c(0, 0,−1)

e5 = c(1, 0, 0)

e6 = c(−1, 0, 0)

e7 = c(0, 1, 1)

e8 = c(0,−1,−1)

e9 = c(0, 1,−1)

e10 = c(0,−1, 1)

e11 = c(1, 0, 1)

e12 = c(−1, 0,−1)

e13 = c(−1, 0, 1)

e14 = c(1, 0,−1)

e15 = c(1, 1, 0)

e16 = c(−1,−1, 0)

e17 = c(−1, 1, 0)

e18 = c(1,−1, 0)



(1.14)

The density (ρ) and velocity vector (~u) are related to the PDF and EDF according to

Equations 1.15 and 1.16.

ρ =
∑
i

fi =
∑
i

f eq
i (1.15)

ρ~u =
∑
i

~eifi =
∑
i

~eif
eq
i (1.16)
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The pressure (p) is calculated directly from the equation of state of an ideal gas according

to Equation 1.17,

p = c2
sρ (1.17)

where cs is the speed of sound, related to the lattice speed (c), given by cs = c/
√

3.

In the GBK model, viscosity (ν) is defined as Equation 1.18.

ν = c2
s(τ −

1

2
)δt (1.18)

The bounce-back rule applies for nodes designated as solid to reflect the fluid in the

opposite direction at the collision stage. If boundaries are set to be periodic in a particular

direction, the last face of nodes is contiguous with the opposing face to ensure the lattice is

closed in the periodic direction [3].

1.5 Dissertation Overview

This dissertation outlines the development, validation, and application of a multiscale

discrete element method (DEM)-based in silico model of platelet and fibrin interactions

during ex vivo blood coagulation. Chapter 2 focuses on the development of a model that

captures the mechanics and dynamics of activated platelets, namely platelet-platelet, and

platelet-fibrin interactions. Parallel to Chapter 2, the focus of Chapter 3 is the development

of a mechanistic model that captures the viscoelastic and strain-hardening behavior of fibrin,

the polymer that forms an integrated meshwork throughout a growing clot. Chapter 4

combines the platelet model from Chapter 2 and the fibrin model from Chapter 3 with

a fluid dynamics technique called the Lattice Boltzmann Method (LBM) to evaluate the

emergent behavior of pre-assembled clots with varied concentrations of activated platelets in

the presence of both implicitly and explicity modeled fibrin bundles. Chapter 5 applies the

multiscale model from Chapter 4 to a dynamic framework to measure the physical strength of

the platelet-fibrin networks upon exposure to a linear stretching force. The resulting dynamic

14



multiscale model provides the underlying framework for a tool that can be used to understand

the in vitro microscale contribution of fibrin and platelets on the macro-observables of whole

blood point-of-care devices.

The focus of Chapter 2 is the development of a phenomenological model of activated

platelet adhesion. Though far less numerous than red blood cells in the circulatory system,

platelets play a critical role in coagulation [73, 92]. As the first responders to a bleeding

or thrombotic event, platelets form small aggregate plugs that become the center of the

clot [55]. Platelets are also active recruiters of downstream procoagulant activity, including

the activation of nearby platelets and clotting factors [4]. We seek to capture the adhesive

characteristics of platelets in silico by including two distinguishable forces that act between

a platelet and its adherent substrate. The adhesive force resists platelet separation and the

contractive force induces particle-particle overlap at the equilibrium position of a platelet

and its neighbor. Three levels of platelet activation can be modeled, whereby the adhesive

capacity increases with each level of activation. Chapter 2 functions as a cell-scale build-

ing block of the multiscale model established in Chapters 4 and 5. Model validation is

performed with the availability of rupture force-strain information obtained from in vitro

isolated platelet-platelet and platelet-fibrin interaction studies.

Chapter 3 covers the development of a mechanistic model of fibrin viscoelasticity and

strain-hardening extensibility. Fibrin strands assemble during the early stages of the coag-

ulation cascade to form the fibrinous networks that extend throughout clots and maintain

clot integrity in vivo under high arterial pressure [10, 111, 112]. Several distinct mechanical

properties of individual fibrin strands, including viscoelasticity and strain-hardening exten-

sibility, facilitate the physiological functionality of these polymers [17, 100]. From in vitro

extension-retraction studies of single fibrin bundles, the distinct mechanical properties can

be quantified and used to validate our model. Specifically, the degree of strain-hardening is

observed by a comparison of the increased slope at increased strain to the initial slope on

the stress-strain curves [63]. The viscoelastic behavior is evident by the hysteresis, or the

departure between the extension and retraction curves, where the area between the curves is

proportional to the energy dissipated [57, 95]. In silico, we can model both of these mechan-

ical properties of fibrin by mathematically defining the elastic modulus as a Hill function.
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Since fibrin becomes more viscous with increased strain, the parameters of the Hill function

that correspond to the retraction portion of the stress-strain curves are modified as the strain

increases [68]. The Hill function parameters for the extension and retraction curves are all fit

to experimental data. Similar to Chapter 2, Chapter 3 also functions as a cell-scale building

block of the multiscale model proposed in Chapters 4 and 5.

In Chapter 4, a platelet and fibrin combination model is developed and validated with in

vitro clot properties. By combining the two cell-scale models of platelets and fibrin, described

in Chapters 2 and 3, respectively, with a fluid dynamics technique called Lattice Boltzmann

Method (LBM), we take the first steps toward a multiscale model of coagulation. From

simulations of the combined model, we demonstrate that variations in blood composition of

key blood components leads to different qualitative and quantitative descriptors, similar to

the observables in permeability and contractility in vitro experiments [126, 108]. A patho-

logical fibrin scenario is simulated by incorporating fibrin as implicit entities to investigate

the effect of compromised fibrin on aggregation. With our validated model, we define rela-

tionships between the concentrations of blood coagulation contributors and corresponding

clot permeabilities and pore size distributions.

Chapter 5 extends the static model of ex vivo platelet and fibrin assemblies from Chapter

4 to a dynamic framework by applying a uni-axial stretch to the aggregates. By simulating

ex vivo clot dynamics, we avoid multiple degrees of complexity associated with coagulation

in vivo revolving around the modular flow conditions during bleeding and thrombotic events

as well as the myriad of biophysical and biochemical signals and cues that stem from the

exposure of the damaged sub-endothelial matrix [41, 24]. From the simulations of stretching

aggregates, we generate an in silico aggregate metric, specifically the platelet contribution,

that is comparable to one from existing clinical whole-blood diagnostic devices like the TEG.

The culmination of the modeling efforts within this chapter is a tool that can be used and

expanded to better understand the mechanistic detail of platelet and fibrin contributions

during coagulation.

The key contributions of this dissertation include the following:

• a calibrated DEM-based model of platelet adhesion with the capacity to vary platelet

activation
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• progress toward traversing the gap to the macroscale with a platelet aggregate formation

model

• development of methods to quantify the emergent aggregate morphologies, i.e. pore size

distribution

• two approaches of fibrin inclusion, i.e. immobile lines and flexible strands of tethered

particles

• application of LBM to quantify the platelet and fibrin aggregate permeabilities

• application of the platelet and fibrin aggregates to a dynamic framework to quantify their

strength

• development of a method to quantify the platelet contribution to the aggregate strength
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2.0 Phenomenological Model of Activated Platelet Adhesion

2.1 Background

The focus of Chapter 2 is the development of a stand-alone, DEM-based model of acti-

vated platelets that accurately captures the mechanics of platelet-platelet and platelet-fibrin

interactions. Platelets are the first responders to an induction of hemostasis, such as vascular

injury. In the bloodstream, platelets interact with hundreds of biochemical and biophysical

signals, including fibrin networks [31]. Platelets can sense certain aspects of their mechanical

microenvironments, such as substrate stiffness, and respond by releasing dense granules and

undergoing membrane surface conformational changes [88]. The dense granules can activate

nearby platelets and the membrane surface conformational changes can expose the GPI-

IbIIIa integrin complex, the platelet-fibrin mediator [77]. The exposure to stiff substrates

increases platelet activation, and therefore platelet adhesion and contraction [61]. The abil-

ity of platelets to sense microenvironments in the bloodstream and decipher the biochemical

and biophysical signals into stages of platelet activation provides a possible physiological

explanation of the heterogeneity of clots and thrombi during the coagulation cascade [88].

Since platelets are the building blocks of clots and thrombi, accurately capturing platelet

interaction mechanics and dynamics is critical to building a meaningful multiscale model of

coagulation. A computational model developed by Mori et al. combined a Stokesian fluid

dynamics technique with a viscoelastic model to capture the role that implicitly-modeled fib-

rin plays in explicitly-modeled platelet-platelet aggregation within in a simple shear scenario

[74]. Again in simple shear-flow, Mody et al. performed a series of studies using Platelet

Adhesive Dynamics (PAD) to model the traction forces associated with platelet adhesion to

an exposed injured vessel wall [69, 71, 70, 72].

18



We develop a model to capture the primary adhesive role that platelets have in hemosta-

sis. We simulate platelet mechanics in an ex vivo environment, i.e. in the absence of flow

and surrounding vasculature, with the explicit inclusion of both platelets and fibrin as a

means to capture the interplay of platelet-platelet and platelet-fibrin interactions at a higher

resolution than existing models.

2.2 Model Development

The DEM-based model of activated platelets captures the mechanics of platelet-platelet

and platelet-fibrin adhesion by accounting for the forces from biochemical bonds associated

with coagulation, in addition to the frictional and normal forces that are classically considered

in execution of this method. Platelets are treated as the explicit discrete elements. The forces

acting on a given platelet, i, are calculated according to Equation 2.1, which is modified

from Equation 2.1 to include ~Fs, a calibrated adhesive spring force that is unique to this

implementation of DEM.

mi
d~vi
dt

=
∑

(~Fn + ~Ft + ~Fs) (2.1)

Similar to Equation 2.1, m is the particle mass, ~v is the particle velocity, and ~Fn and ~Ft

are the normal and tangential body forces, respectively. In this work, the non-adhesive

interparticle contacts are modeled using the dampened JKR model for Hertzian contact

mechanics [103]. The radius of the contact spot, a, can be expressed as

a =
3

√
3R∗Fn

4E∗ (2.2)

where R∗ is the effective particle radius and E∗ is the effective Young’s modulus. The

decrease in the normal contact force due to damping is proportional to the product of the

normal velocity and the overlap distance of particles in contact. Rotational phenomena

is assumed to be small in the presence of adhesion and although the precise modeling of

platelet deformation is not considered, a good approximation of the mechanical behavior is

still possible.
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Platelet membrane surface receptors give rise to the strong adhesive properties of acti-

vated platelets that enable the platelet-substrate connections [13]. To capture this adhesive

property of platelets in silico, we simulate platelets as single particles with implicit springs

that represent mediators and membrane receptors. The variable lengths of the mediators

are modeled by defining concentric spheres about the in silico platelets, whereby the me-

diator lengths are equal to the radial difference between an outer sphere and the surface

of the platelet. Figure 3 shows a schematic of the various mediator lengths defined by the

concentric spheres surrounding a platelet.

2.2.1 Rupture Forces

We used the force-distance curves obtained from an AFM experimental investigation of

platelet-platelet bond rupture as the basis for the mediator lengths and adhesive contribu-

tions [77]. We used a similar experimental study to obtain the platelet-fibrin rupture infor-

mation to calibrate our model [56]. A schematic of the experimental study used to calibrate

the platelet-fibrin interactions within our model is included as Figure 4. To calibrate the

platelet-platelet interactions, the fibrin-coated surfaces seen in Figure 4 were replaced with

platelet-activating materials and two platelets were positioned within the plates, allowing

the platelet-platelet rupture force to be measured. Upon initialization of the experiment, the

platelet attached to the top plate was placed in contact with either the fibrin-coated surface

or another platelet before the bottom plate was lowered at a constant velocity until the top

platelet became detached. The point of detachment was determined by a clear separation

between either the top platelet and the fibrin-coated surface or the two platelets.
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Figure 3: Schematic of a simulated platelet with the four mediator lengths defined by concen-

tric spheres of increasing diameter with Roman numeral labels at the edges of the mediator

lengths that correspond to the endpoints of Equation 2.3. The mediator lengths are defined

by the distance between the platelet surface and the outer edge of the concentric spheres.

Note that the depicted mediator lengths represent a general case and are therefore not to

scale.
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Figure 4: Schematic of the AFM experiment used to measure the resistance force of platelet-

platelet and platelet-fibrin adhesive interactions. An activated platelet is placed in contact

with either a fibrin-coated surface or another activated platelet and the force required to

separate the plates is tracked as the upper plate remains stationary and the lower plate

moves in the vertical direction away from the upper plate at a constant velocity. The curve

represents the measured force as a function of the separation distance. The colored phases

of the force-distance diagram correspond to the ruptured platelet mediators aligned with

Figure 3. This figure was adapted from [56].
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To implement the different adhesive behaviors, i.e. platelet-platelet and platelet-fibrin,

we introduce an implicit spring between a platelet and an adherent substrate, such as fib-

rin or another platelet. Prior to initializing a simulation, the particle types are designated

as either platelet particles or fibrin particles so that the pairwise adhesive interaction is

classified correctly as either platelet-platelet or platelet-fibrin. Fibrin-fibrin interactions are

handled as described in Chapter 3. The spring forces for each type of adhesive interaction

are mathematically defined by continuous piecewise linear functions, where the interval end-

points correspond to the lengths of the mediators. The piecewise linear function for activated

platelet interactions is defined as

~Fs(x) =



mIx+ bI, 0 ≤ x ≤ I

mIIx+ bII, I < x ≤ II

mIIIx+ bIII, II < x ≤ III

mIVx+ bIV, III < x ≤ IV

(2.3)

where mI-IV and bI-IV are the slopes and intercepts, respectively, of the corresponding

mediator lengths, x is the distance between a platelet particle surface and another adherent

surface, and I-IV are the endpoints of the concentric adhesive annuli and/or the platelet

mediator lengths. In practice, ~Fs functions to resist the separation between two particles,

either two platelets or a platelet and fibrin particle, only after their surfaces have overlapped

or the distance between their centers meets a defined adhesive criteria as discussed in Chapter

2.2.2.

2.2.2 Adhesive Loading

Platelet surfaces are coated with filopodial extensions that function to grab nearby

platelets or other adhesive surfaces in order to facilitate platelet aggregation [52]. The

actomyosin-based contraction mechanics and dynamics of platelets are known to influence

the mechanical properties of clots and thrombi by shrinking, stiffening, and rearranging [56].

To gain insight into the mechanism of platelet contraction, single-platelet measurements

taken at the point of platelet activation, when the first platelet contractions are possible, are

particularly useful [48]. In order to simulate the effects of the platelet filopodial extensions
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in silico, we incorporated a capture radius about the platelets. The capture radius is defined

as the length of the first mediator, which ranges from 1.9 to 3.1 µm. The adhesive loading

force is assumed to be elastic and follows Equation 2.3.

We extended our model to perform platelet contraction, which was observed in an ex-

perimental study performed by Lam et al. The study reported the spontaneous platelet

activation and contraction of unactivated platelets in the presence of fibrin [56]. In order

to capture a desired rate of platelet contraction, we tuned the viscous contribution of the

repulsive normal force, Fn, to balance the constant attractive spring force, Fs, which are

related by Equation 2.1. Increasing the viscous contribution of Fn, dampens the oscillations

that arise from the strong contraction force and the opposing normal force. After validating

the platelet-contraction portion, our platelet model captures the mechanics and dynamics of

platelet-platelet and platelet-fibrin interactions resulting from the adhesive and contractive

power of platelets as shown in Figure 5A. In Figure 5A, a positive force corresponds to an

attractive force between interacting particles and a negative force corresponds to a repulsive

force. We adjusted the equilibrium position of an adhesive particle pair to account for their

soft and flexible nature that results in a small platelet-platelet or platelet-fibrin overlap at

equilibrium. The equilibrium spring length or distance between adherent particle centers

is less than the diameter of a particle, resulting in particle-particle overlap at equilibrium

shown schematically in Figure 5B. Additionally, the spring force governing contraction is

zero until a platelet or fibrin particle enters another platelet’s contact radius.

2.3 Simulation Results of Rupture Force Studies

2.3.1 Platelet-Fibrin and Platelet-Platelet Adhesion

To capture platelet-fibrin and platelet-platelet adhesion in silico, the parameters corre-

sponding to the slopes, intercepts, and endpoints included in Equation 2.3 are fit to the

corresponding curves in Figure 6. The fitted parameter values are listed in Table 1. The

resulting piecewise linear curves of platelet-fibrin and platelet-platelet adhesive rupture me-
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Figure 5: (A) Simulated contact force calculated by the difference between the normal

repulsive force and the contraction force between a simulated platelet and a non-platelet

particle plotted against the distance between the 2 µm particle centers and (B) the simulation

visualization of the equilibrium position between a contracted platelet (black) and a non-

platelet particle (green), demonstrating the particle overlap at equilibrium.
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Table 1: Parameter values from Equation 2.3 used to fit curves in Figure 6.

Parameters I II III IV mI mII mIII mIV bI bII bIII bIV

(Units) (µm) (nN/µm) (nN)

Platelet-fibrin 3.1 4.5 5.0 11.0 -22.2 24.6 38.1 0.01 -20.0 -167.5 -227.0 -64.5

Platelet-platelet 1.9 2.2 5.8 6.1 -1.5 2.6 -0.1 1.5 0.0 -9.0 -1.2 -18.0

chanics are included as the colored dashed lines in Figure 6a and 6b, respectively. The colors

of the dashed lines correspond to the colored platelet mediators that are depicted in Figure

3.

An observation of the digitized data included in Figure 6a of the platelet-fibrin rupture

forces and Figure 6 of the platelet-platelet rupture forces, from Lam et al. and Nguyen et

al. respectively, reveals that platelet-fibrin bonds are nearly thirty times stronger than the

strongest platelet-platelet bonds [56, 77]. A platelet’s maximum rupture force is governed

by the shortest (red) mediator and the rupture force measured at the greatest distance is

the spring force associated with the longest (blue) mediator before complete separation or

rupture. The in silico reproduction of the rupture force-distance curves of platelet-fibrin

and platelet-platelet adhesion demonstrates that our model is able to phenomenologically

capture the mechanics of platelet adhesive interactions as shown in Figure 6.

2.3.2 Platelet-Platelet Subject to Varied Activation

To capture varied platelet activation in silico, we implement the same implicit spring

between platelet-platelet interactions, but fit the parameters corresponding to Equation 2.3

using experimental force-distance curves obtained by Nguyen et al. in a study of platelet-

platelet bond rupture at various degrees of platelet activation. To induce different degrees of

activation experimentally, platelets were exposed to glass surfaces passivated with collagen,

fibronectin, and poly-L-lysine. The same AFM technique depicted in Figure 4 was performed
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Figure 6: Simulated (– –) and experimental [56, 77] (—) rupture force of platelet-fibrin (a)

and platelet-platelet (b) adhesion versus separation distance. The colors of the dashed lines

correspond to the colored platelet mediators depicted in Figure 3.

Table 2: Parameter values from Equation 2.3 used to fit curves in Figure 7.

Parameters I II III IV mI mII mIII mIV bI bII bIII bIV

(Units) (µm) (nN/µm) (nN)

Non-/weakly-activated 1.3 1.6 2.3 4.2 -1.3 0.0 2.3 -4.4 -0.7 0.3 0.7 -2.9

Partially-activated 1.8 2.4 5.0 5.4 -1.2 0.0 2.6 -6.5 -0.3 0.2 3.1 16.9

Activated 1.9 2.2 5.8 6.1 -1.5 2.6 -0.1 1.5 0.0 -9.0 -1.2 -18.0

using the aformentioned passivated glass surfaces in place of fibrin-coated surfaces. We used

the experimental force-distance curves obtained in that study to define three distinct de-

grees of activation, namely non-/weakly-activated, partially-activated, and activated, which

correspond to the respective passivated glass surfaces.
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The fitted parameter values from Equation 2.3 that correspond to the different degrees

of activation are listed in Table 2. The simulation results of the rupture force between

two activated platelets at the three degrees of activation are included as the dashed curves

in Figure 7. The degree of activation increases in the subplots from left to right. From

both experimental and simulation results in Figure 7, it is clear that the strongest platelet

adhesive bonds are governed by the platelets activated to the highest degree signified by

the curve with the greatest force magnitude on the y axis. Additionally, the initial capture

radius and the maximum range of the adhesive interactions increases with each degree of

activation. The initial capture radius corresponds with the length of the shortest mediator,

as explained in Chapter 2.2.2, is located at the global minimuma of the curves in each

subplot of Figure 7. The maximum range of the adhesive interactions, which occurs just

before the platelet-platelet bonds completely rupture, corresponds to the point with the

greatest distance on the curves in Figure 7. The rupture force curve that corresponds to

the activated platelet scenario in Figure 7 is initial platelet-platelet interaction presented in

Figure 6. The in silico reproduction of the rupture force-distance curves of platelet-platelet

adhesion demonstrates that our model is able to phenomenologically capture the mechanics

of varied platelet activation.
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The simulation results of platelet-platelet and platelet-fibrin rupture forces are included in

Figures 4 and 5, respectively.
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Figure 4: Simulated and experimental rupture forces of platelet-platelet interactions between a
non-/weakly activated platelet and (A) a non-weakly activated platelet, (B) a partially-activated
platelet, and (C) an activated platelet, plotted against the distance between the two adhering
platelet surfaces. Experimental data was digitized from [43].
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Figure 5: Simulated and experimental rupture force of a platelet-fibrin interaction plotted against
the distance between the platelet and the fibrin outer edges. Experimental data was digitized
from [44].
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Figure 7: Simulated and experimental rupture forces of platelet-platelet interactions between a non-/weakly activated platelet

and (A) a non-weakly activated platelet, (B) a partially-activated platelet, and (C) an activated platelet, plotted against the

distance between the two adhering platelet surfaces. Experimental data was digitized from [77].
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2.4 Summary

In total, we can implement four levels of platelet activation ranging from inactive (no

adhesion) to fully-active (strongest adhesion) that governs platelet-platelet interactions. To

do so in silico, we introduce a spring force between interacting active platelets. The spring

forces for each activation level are mathematically defined by piecewise linear functions,

where the Roman numerals or piecewise linear endpoints correspond to the lengths of the

mediators. If platelets with dissimilar activation degrees are interacting, the spring force

resulting from their interaction corresponds to the piecewise function of the platelet activated

at the highest level. Platelet and fibrin interactions can also be modeled in the same manner

as platelet-platelet interactions by incorporating a unique piecewise linear description that

is calibrated to experimental data from the literature. The spring force that describes the

aforementioned platelet adhesive interactions follows Equation 2.3, where x is the distance

between a platelet particle surface and either another platelet particle or fibrin. The fitted

parameter values that correspond to Equation 2.3 can be found in Table 2 for platelet-platelet

interactions of the various activation levels and Table 1 for platelet-fibrin interactions.

A platelet’s maximum possible rupture force, which is governed by the shortest mediators,

increases with the level of activation [77]. The rupture force measured at the largest distance

is the spring force associated with the longest mediator between a platelet and its adherent

substrate before complete separation. An observation of the digitized data included in Figure

7 of the platelet-platelet rupture forces and Figure 6 of the platelet-fibrin rupture forces, from

[77] and [56] respectively, reveals that platelet-fibrin bonds are nearly thirty times stronger

than the maximum platelet-platelet bonds. The level of platelet activation, dictated by its

mechanical microenvironment, is the likely determinant of the quantity of granules released

and the extent of membrane-surface change, which in turn, could manifest in the variations

observed in the rupture force dynamics [77]. The in silico reproduction of the rupture

force-distance curves corresponding to various levels of platelet activation demonstrates that

our model is able to broadly capture the mechanics and dynamics of platelet-platelet and

platelet-fibrin interactions.
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Our model assumes that all mediators within a given concentric circle shown in Figure

3 rupture and reform simultaneously, thus resulting in the reduced noise compared to the

experimental counterpart. A consequence of the simplifying assumption is the absence of

the mechanistic detail of platelet-platelet and platelet fibrin interactions. In order to expand

the mechanistic accuracy and therefore the goodness of fit of our model to the experimental

data, the structure of the single mediator per concentric circle would need to include multiple

mediators whose lengths and connectivity vary with a certain degree of stochasticity for each

colored concentric circle. With the aim of utilizing the developed cell-scale model as the

foundation of a larger, multiscale model, the taken phenomenological approach satisfies the

computational feasibility concerns that arise during scale-up of highly mechanistic cell-scale

counterparts. The phenomenological cell-scale model of platelet-platelet and platelet-fibrin

adhesion presented herein is essential to capturing the micro-mechanical contributions in

a multiscale model of coagulation. This model serves as the foundation to examine the

collective behavior of platelet and fibrin aggregates that is discussed in subsequent chapters

of this dissertation.
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3.0 Mechanistic Model of Fibrin Viscoelasticity and Strain-Hardening

Extensibility

3.1 Background

Fibrin is a polymer that forms when activated thrombin exceeds a threshold concentra-

tion in the presence of endogenous fibrinogen [45]. Fibrin strands assemble during the early

stages of the coagulation cascade to form the fibrinous network that spreads throughout a

clot and helps to maintain clot integrity in vivo under high arterial pressure [112]. Further

stabilization can occur through the addition of covalently bonded crosslinks between adja-

cent fibrin monomers [63]. The formation of fibrin networks contributes to the cessation of

bleeding by coupling and contracting nearby platelets to generate a gel-like assembly. The

unique mechanical properties of individual fibrin strands, including viscoelasticity and strain-

hardening extensibility, facilitate the physiological functionality of these polymers [18, 100].

At the microscale, changes in protein folding and cross-linking can alter downstream fibrin

formation and function. At the macroscale or whole-blood level, fibrin stretching and align-

ment are responsible for changes in blood clot mechanical properties and can be related to

disorders and disease [95]. An understanding of the contribution of single fibrin fibers on the

whole-blood mechanics is critical for an accurate multiscale model of clot behavior.

Unlike fully elastic solids that deform proportionally under stress and independently of

the rate of strain, the deformation of viscous materials, like fibrin, behaves in a way that

stress is proportional to the rate of strain but not necessarily proportional to the strain itself

[46]. The fractional elastic and viscous components of fibrin will determine the response of a

clot or thrombus to an applied external force [53]. Stiff clots and thrombi are able to resist

deformation and those with a greater viscous component will return to their original shape

more slowly, if at all, once the external force is released [123]. The most widely accepted

theory to describe the physiological source of the viscoelastic behavior is the presence of

distinct domains within the bundle that expand and contract with dissimilar dynamics [63].
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The objective of Chapter 3 is to develop an in silico model using Discrete Element

Method (DEM) that captures the extensible, strain-hardening, and viscoelastic behavior of

individual fibrin bundles. Similar to 2, this chapter also functions as a cell-scale building

block of the multiscale model elaborated upon in subsequent chapters.

3.2 Model Development

3.2.1 Fibrin as Springs in Series

Fibrin bundles can exceed a 330% strain before rupturing, though the fibrin integrity

is threatened when the elastic limit of the bundle is exceeded, which occurs prior to the

point of rupture [63]. In silico, we can capture the highly extensible nature of fibrin by

modeling fibrin as a chain of adjacent solid spheres or particles connected in series via implicit

mechanical springs. The equilibrium spring length (distance between particle centers) is less

than the diameter of a particle, resulting in substantial particle overlap at equilibrium. The

purpose of the overlapping particles at equilibrium or prior to an extension event is to

mitigates physical gaps between adjacent particles at full extension. Aside from the implicit

spring interaction between adjacent fibrin particles within a given strand, fibrin particles do

not physically interact. Avoiding or ignoring intra-strand fibrin interactions is particularly

important because the substantial overlap forced upon adjacent fibrin particles violates the

laws of physics and therefore could not be carried out with DEM.

An atomic force microscopy (AFM) experimental investigation was performed by Liu

et al. and used to guide the calibration of the in silico fibrin particles and strand length

[63]. Fibrin particles were assigned a diameter of 0.2 µm, or ten times smaller than the

in silico platelet particles. The AFM stage from extension study had a width of 12 µm,

which corresponds to 59 in silico particles when the particles have an initial overlap of two

thirds with respect to their diameter. A schematic of a single fibrin bundle at equilibrium is

included as Figure 8A.

33



We can execute an extension-retraction case study on a single in silico fibrin strand

by freezing the end-point fibrin particles and forcing the center particle to have a specific

positive velocity in the vertical direction, followed by the same velocity in the negative

vertical direction until the strain of the entire strand returns to zero. Five snapshots of a

visualization of the extension portion of this in silico case study are compiled as Figure 8,

showing the progression from 0-225% strain.
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A B C D E

Figure 8: Simulation visualization of (A) the unstretched equilibrium stage of a fibrin strand composed of overlapping particles

tethered together by an attractive force between adjacent particles and three intermediate snapshots (B-D) of the progression

to 225% strain (E).
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3.2.2 Hooke’s Law and Hill functions

To capture the strain-hardening and viscoelasticity of the in silico fibrin strand, we

can mathematically describe the implicit spring that tethers adjacent fibrin particles as a

Hookean spring with an elastic modulus of Hill functional form. Since fibrin becomes more

viscous with increased strain, the parameters of the Hill function that correspond to the

retraction portion of the stress-strain curves are modified as the strain increases [68]. The Hill

function parameters for the extension and retraction curves are mapped to experimentally

generated data.

We used the force-strain curves obtained from an AFM experimental investigation per-

formed by Liu et al. as the basis for the structure and calibration of our model [63]. Because

the experimental data was formatted as force versus strain (ε), the modular spring coefficient

is also a function of strain, where strain is defined as Equation 3.1,

ε =
∆L

L0

(3.1)

where ∆L is the total elongation of the intra-fibrin spring length and L0 is the equilibrium

intra-fibrin spring length. To capture the strain-hardening phenomena in our model, we have

incorporated a modular spring coefficient, of Hill-type functional form, into the calculation

for the force resulting from the spring between two adjacent particles within a single fibrin

strand.

F (t) = F (t− 1) + k(ε)∆x+ ζccv (3.2)

k(ε) = k0 +
kmax × (ε)n

εMn + (ε)n
(3.3)
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The modular spring coefficient, k as defined in Equation 3.3, is a sigmoidal function of the

strain of the spring. The k0 term is the minimum spring coefficient measured at zero strain.

kmax defines the maximum spring coefficient measured at large strains. εM corresponds to

the strain at which half maximal force is achieved, and n, the Hill coefficient, determines

the rate by which the spring coefficient changes. Equation 3.2 describes the incremental

force resulting from the spring that is resolved at each time step by adding the product of

the spring coefficient and the displacement (k(ε)∆x) to the force at the previous time-step

(F (t− 1)).

Simple harmonic motion results when there is a restoring force proportional to the dis-

placement, so the third term on the right hand side of Equation 3.2, ζccv, incorporates the

dashpot that accounts for the dampened oscillations that are observed in vitro. In the third

term, v is the velocity of the spring elongation and ζ is the damping ratio defined as Equation

3.4,

ζ =
c

cc
(3.4)

where c is the actual damping coefficient and cc is the critical damping coefficient. The critical

damping coefficent, derived from Newton’s second law, is equal to 2
√
m× k(ε), where m

is the intra-fibrin particle mass. The damping ratio can vary from undamped (ζ = 0),

underdamped (ζ < 1), critically damped (ζ = 1), and overdamped (ζ > 1). Assuming a

critically damped system, the magnitude of the actual damping coefficient was equal to that

of the critical damping coefficient, or 2
√
m× k(ε).

3.3 Results of Fibrin Simulations

3.3.1 Single Extension-Retraction Cycle

We used the extension portion of the force-strain data collected by Liu et al., digitized

and included in Figure 9, to heuristically fit the parameters of 3.3. The corresponding

modular spring coefficient is plotted versus strain in Figure 10.
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Figure 9: The experimental and simulated force required for a single fibrin strand to extend

approximately 225% strain before retracted to complete a single pull for the modular spring

coefficients corresponding to Figure 10. Experimental data was digitized from [63].

38



Figure 10: Spring coefficient trajectories used in the attractive force calculation between

neighboring particles in a simulated fibrin bundle of three particles extended (red) to ap-

proximately 225% strain, prior to retracting (black) to complete a single pull.
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Table 3: Spring coefficient Hill function parameters corresponding to Figure 10 for the single

extension-retraction scenario of a fibrin strand.

Parameters k0 kmax εM n

(Units) (kg/s2) (kg/s2) (% strain) (unitless)

Extension 0.01 0.24 75 5

Retraction 0.0025 1.12 190 15

To capture the viscoelastic behavior of fibrin, observed on force-strain curves by the

presence of an area between the extension and retraction curves, the Hill function parameters

are modified upon retraction when the previous extension exceeds the elastic limit of fibrin

(50% strain). From the retraction portion of the curve collected by Liu et al., digitized and

included in Figure 9, we know that fibrin has a much higher elastic modulus immediately

upon retraction, justifying the increase in kmax upon retraction. The slope of the retraction

curve changes much faster upon retraction compared to extension, justifying an increase in

εM and n. Finally, the terminal slope of the retraction curve is less steep than the initial

slope of the extension portion, justifying a decrease in k0 upon retraction. The retraction

portion of the force-strain curve in Figure 9 was used to fit the parameters of 3.3 when the

spring is retracting. The in silico reproduction of the force-strain curve generated in [63]

for the constant velocity single extension-retraction case, shown in Figure 9, demonstrates

that our model is able to capture the mechanics of fibrin extensibility and strain-hardening

viscoelasticity when we simulate a fibrin bundle composed of 59 particles. We first calibrated

the system with a strand of three particles before lengthening the in silico fibrin strands to

contain anywhere from 20-200 particles per strand. Independent of the strand length, in

silico fibrin strands exhibit the same dynamics upon stretching that are observed with the

system used to generate Figures 9-12.
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3.3.2 Consecutive Extension-Retraction Cycles

Liu et al. also observed interesting single fibrin strand dynamics during an experiment

by extending and retracting the same strand consecutively, increasing the maximum strain

with each cycle from 45% to 85% to 125% [63]. With the same Hill-type functional form

of the spring coefficient between adjacent fibrin particles within a bundle, we aim to simu-

late consecutive extension-retraction cycles and observe similar dynamics. Using the same

parameter fits for the extension portion of each cycle obtained in Chapter 3.3.1, and fitting

the parameters of Equation 3.3 for the retraction portion of the individual cycles in the

consecutive extension-retraction case, we can capture the increased energy dissipation that

is observed upon consecutive extension-retraction cycles with increasing maximum strain.

Following the same justification described in Chapter 3.3.1, the retraction portions of the

experimental force-strain curves in Figure 11 were used to heuristically fit the parameters

of Equation 3.3 when the spring is retracting in the simulation. The spring coefficient ver-

sus strain curves for the three consecutive extension-retraction constant-velocity case are

included as Figure 12.

As in Chapter 3.3.1, we first calibrated the system using a strand composed of three

particles before extending the in silico fibrin strand to contain 59 particles. Noting the

departure of our simulation from the experimental data for each cycle of the consecutive

extension-retraction case, observed in Figure 11, we can both increase k0 and simultaneously

decrease kmax for the extension case. Increasing K0 alone would improve the model fit in the

low-strain elastic regime, but worsen the fit at larger strains. The steps in the Hill function

parameters of the retraction spring coefficient (kmax, εM , and k0), which result from fitting

the individual cycles independently, create inherent discontinuities that would be observed if

a simulated fibrin bundle were to be retracted between the strain ranges simulated in Figure

11. To eliminate the steps between the model parameters, general functional forms of kmax,

εM , and k0 with respect to the maximum strain of the bundle as means to create continuity

and promote model stability. In doing so, predictions of the behavior of fibrin strands that

are extended and retracted between and beyond the strain ranges reported experimentally

by [63] would be possible. Following the justification described in Chapter 3.3.1 and from an
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Figure 11: The experimental and simulated force required for a single fibrin strand to extend

to a maximum 45% strain on the first pull (left), 85% strain on the second pull (center),

and 125% strain on the third pull (right) for the modular spring coefficients corresponding

to Figure 12. Experimental data was digitized from [63].

Figure 12: Extension and retraction spring coefficient trajectories used in the attractive

force calculation between neighboring particles in a simulated fibrin bundle of three particles

extended to a maximum 45% strain on the first pull (left), 85% strain on the second pull

(center), and 125% strain on the third pull (right).

42



Table 4: Spring coefficient Hill function parameters corresponding to Figure 10 for the

consecutive extensions-retractions scenario of a fibrin strand.

Parameters k0 kmax εM n

(Units) (kg/s2) (kg/s2) (% strain) (unitless)

Extend/1st Retract 0.01 0.24 75 5

2nd Retract 0.005 0.45 75 15

3rd Retract 0.0033 0.75 110 15

observation of the current fitted parameter values included in Table 4, k0 will be a decreasing

function of the maximum strain, while both kmax and εM will be increasing functions of the

maximum strain.

3.4 Summary

In Chapter 3, the unique mechanical properties of fibrin can be captured in silico by

modeling fibrin strands as chains of small particles linked together with implicit springs. The

springs behave according to Hooke’s Law with a variable spring coefficient that is mapped

to experimental data. The isolated fibrin strand in silico model is capable of capture the

high extensibility, strain-hardening, and viscoelastic behavior of in vitro fibrin.

The modular elastic modulus of fibrin at increased strains is evident by a nonlinear slope

on the extension portion of its stress-strain curve [63, 44]. Specifically, the slope of the

stress-strain curve increases in magnitude or steepness with increased strain. At low strains,

the slope, or elastic modulus is constant because stress is directly proportional to strain.

At large strains, the slope increases dramatically, exhibiting a phenomena known as strain-

hardening. Strain-hardening behavior is believed to result from the increased availability of

contact sites on fibrin at large strains and consequently enables clots and thrombi to stiffen

in scenarios with increased deformation that could otherwise induce clot breakdown [123].
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We calibrated the implicit spring force between neighboring particles of the same strand

to extension-retraction data from in vitro fibrin. The mechanical properties can be measured

from stress-strain curves obtained by applying a stress, or a force per unit area, to the

polymer and recording the resulting strain, or the stretch of the polymer normalized to its

initial length [123]. From in vitro extension-retraction studies of single fibrin bundles, the

distinct mechanical properties can be quantified. Specifically, the degree of strain-hardening

is observed by a comparison of the steeper slope at larger strains to the initial slope steepness

of stress-strain curves [63]. The viscoelastic behavior is evident by the departure between

the extension and retraction curves, where the area between the curves is proportional to

the energy dissipated [62].

The calibrated single in silico fibrin strand mechanics from Chapter 3 results in an

in silico DEM-based model that captures the extremely extensible, strain-hardening, and

viscoelastic behavior of individual fibrin bundles. The model from this chapter functions

not only as a stand-alone entity, but also as a building block for a multiscale model that

includes fibrin networks composed of hundreds to thousands of strands. The fibrin network

simulations are explored in Chapters 4 and 5.
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4.0 Ex Vivo Platelet Aggregate Formation

4.1 Background

The focus of Chapter 4 is the development of a model that incorporates fibrin networks

into the cell-scale adhesive mechanics model from Chapter2. The trans-scale gap is tra-

versed to study the emergent behavior of assemblies of platelets and fibrin. Specifically, we

investigated how variations in blood composition of key blood components lead to differ-

ent qualitative and quantitative descriptors and pathologies. We can define relationships

between the concentrations of blood coagulation contributors and corresponding aggregate

morphologies, void size distributions, and permeabilities.

Several other models have been developed in recent years that are also motivated by the

essential role of platelet adhesive interactions during coagulation. These studies have focused

on the aggregatory behavior of activated platelets under various hemodynamic conditions.

Pivkin et al. have developed a 3D model using Dissipative Particle Dynamics (DPD) that

captures the reduced accumulation of platelets in the presence of red blood cells [84]. Other

studies developed continuum platelet aggregation models, based on PDEs, by considering

only the fluid phase and tracking platelets concentrations [29, 120]. While the contribu-

tions of these platelet aggregation models are noteworthy in this space, the rules governing

the platelet attachment and activation stage are not validated by experimental work. Xu

et al. developed a 2D discrete model that combined the discrete Cellular Potts Model

(CPM) of platelet and blood cell aggregation with continuous partial differential equations

(PDEs) describing the hydrodynamics of blood flow and the kinetics of coagulation reac-

tions [127]. Despite the biological detail that was incorporated into the CPM hybrid model,

the morphologies of the resulting simulated clots were not aligned with their experimental

counterparts. Mody and King constructed a 3D platelet aggregation model, named Platelet

Adhesive Dynamics (PAD), which captures a growing thrombus by considering individual

receptor-ligand bonds under simple shear flow. Although the PAD model does not incorpo-

rate the effect of platelet activation, the model accounts for the non-sphericity of platelets,

45



which is typically ignored in most coarse-grained models [69]. Mori et al. applied Voigt’s

model, a spring and dashpot pair, to capture the adhesive behavior between platelets and two

plasma proteins, vonWillebrand Factor (vWF) and Fibrinogen [74]. Though a simple model,

it provides mechanistic insight on thrombus formation and rupture. These researchers have

used different computational approaches to model platelet adhesion and aggregation, but

few have investigated the effect that component concentrations have on aggregate properties

[58, 105, 116].

Using a discrete element method (DEM)-based approach, the three-dimensional model

developed herein investigates the morphological and mechanistic differences of aggregates

formed from varied compositions of platelets and fibrin. We considered platelets to be solid

spheres and describe the adhesive platelet-platelet and platelet-fibrin bonds using implicit

springs. The adhesive interactions were first calibrated to experimental data from isolated

platelet experiments [56, 77] before the simulations were expanded to include hundreds to

thousands of platelets, aligned with the conditions at the core of a clot or thrombus.

We considered two general scenarios of fibrin incorporation in our model that we believe

provide a simple yet effective manner to identify the critical role that fibrin plays during

coagulation and the diverse effect it can have on resulting clot morphology. In both fibrin

scenarios, we varied the platelet concentration from roughly 0.8-32 percent solid by volume.

The simulation results allow us to observe and compare the aggregates as a function of fibrin

structure and platelet concentration. The spatial variation was quantified by calculating the

void size distribution within the aggregates and their corresponding permeabilities. This

model as a whole can provide insight on the mechanism of platelet aggregation and the

potential effect of pathologic fibrin on aggregate formation.
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4.2 Model Development

4.2.1 Platelet and Fibrin Aggregate Generation

To investigate the aggregatory behavior of activated platelet assemblies, we expanded

our simulations from isolated platelet-platelet and platelet-fibrin interactions at the cell-

scale to include hundreds to thousands of platelets within a 4.2e5 µm3 three-dimensional

periodic framework. The number of in silico platelets included in each simulation was

determined by the desired solid volume fraction of platelets, which ranged from 0.008-0.32

and assumed 2 µm-diameter spherical platelet particles. The set platelet range corresponds

to a platelet count that would be representative of the concentration present at a clot core

or platelet plug. To initiate the simulations, the platelets were randomly placed within the

3D simulation box by assigning their x, y, and z coordinates from a uniform distribution

and ensuring that no two particles overlapped. At runtime, the platelets were given a slow

random velocity to facilitate the particle collisions. Particle interactions resulted when any

pair of particle centers had three radii of separation. The additional halo of adhesive contact

allowed particles to spontaneously interact before their surfaces made physical contact, which

is aligned with a platelet’s ability to grab nearby platelets [15]. Each simulation was run to

a pseudo-steady state, defined by a 25 µs or longer plateau of the median interaction force

across all of the simulation contacts.

To execute the implicit handling of fibrin within the simulations, platelet-platelet in-

teractions simply behaved as platelet-fibrin interactions, aligned with the platelet-fibrin pa-

rameter values listed in Table 1 from Chapter 2 to define the magnitude of the piecewise

spring force from Equation 2.3. The initial conditions for the implicit fibrin scenario for four

different simulations with platelet concentrations ranging from 0.008-0.32 solid by volume

are included in Figure 13a. Each of the four concentrations was simulated in triplicate with

uniquely randomized initial particle positions and velocities.

To handle fibrin explicitly, fibrin was included as rigid and immobile cylinders of finite

length. The diameter assigned to the fibrin cylinders was an order of magnitude smaller

than the platelet particles, or 0.02 µm. The network of fibrin cylinders was generated prior
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(a) 

0.8% 8.0% 16.0% 32.0% 

(b) 

0.8% 8.0% 16.0% 32.0% 

Figure 13: Initial conditions of aggregates within a 75 µm x 75 µm x 75 µm simulation

framework for both the implicit (a) and explicit (b) inclusion of fibrin and 0.8%, 8.0%,

16.0%, and 32.0% platelets by volume. Platelets are represented as colored dots and explicit

fibrin as blue lines.
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to placing the in silico platelet particles into the system. Each fibrin cylinder was defined

by its two endpoints whose positions were assigned at random to one of the six faces of

the simulation box. Fibrin cylinders were added to the system until the solid fibrin volume

fraction reached 0.03. The random assignment of the fibrin endpoints created variability in

the overall organization of the aggregates between each simulation, which can be qualitatively

explained by differences in the quantity, orientation, and length of the fibrin cylinders. An

example of the background fibrin mesh is included in Figure 14 for the 4.2e5 µm3 system.

In the simulations with explicit fibrin, platelet-platelet and platelet-fibrin adhesive in-

teractions followed their respective spring force parameter values that are listed in Table 1

of Chapter 2. The initial conditions for the explicit fibrin scenario with 0.03 solid fibrin by

volume and 0.008-0.32 solid platelets by volume are included in Figure 13b. Each of the

four platelet concentration conditions was simulated in triplicate with uniquely randomized

initial platelet positions, platelet velocities, and fibrin cylinder positions.

4.2.2 Platelet Nearest Fibrin Neighbors Search

Because the simulations were executed with periodic boundary conditions and fibrin was

modeled as cylinders of finite length, an additional step in the traditional nearest neighbor

search was required to identify the potential fibrin cylinders that were interacting with

platelets located near the simulation boundaries. We developed an automated search method

that is summarized schematically in Figure 15 for the instance that a platelet is located in

the corner of the simulation framework.

49



Figure 14: Example of the fibrin network made up of system-spanning cylinders with end-

points located at the system walls of a 75 µm x 75 µm x 75 µm framework. The fibrin

cylinders are represented as blue lines.
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Figure 15: Schematic of the search method used to detect the nearest fibrin neighbors to platelets (orange particle) located near

a vertex of a simulation unit cell with periodic boundaries. Nearest fibrin neighbors are first identified in the original unit cell

(I) before they are identified in the adjacent unidirectional unit cells (II), bidirectional cells (III), and lastly the diagonal unit

cell (IV).
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Table 5: The seven adjacent and “self” unit cells that correspond to the example scenario

from Figure 15 and are searched within for interacting fibrin cylinders. Each adjacent search

cell is named by the coordinate direction it is positioned with respect to the “self” or the

original unit cell. The search cells are assigned a one or zero if interactions are possible or

not with the platelet of interest.

Search Box self X Y Z X + Y X + Z Y + Z X + Y + Z

Yes/No 1 1 1 1 1 1 1 1

In general, when a platelet is located near a vertex, the method searches in the seven

neighboring simulation frames. Due to the periodicity of the simulations, the neighboring

frames are repetitions of the unit cell. If a platelet lies near an edge, the method searches

in three neighboring cells (two unidirectional and one bidirectional), and if a platelet is near

a face, just one (unidirectional) neighboring cell is searched. The adjacent unit cells to

be searched are assigned as true as shown in Table 5. To execute the actual search in a

given adjacent cell, the in silico platelet is effectively repositioned by adjusting its position

according to Table 6. The inclusion of this additional step to the nearest neighbors search

algorithm enables the aggregates to form system-spanning networks in the presence of high

platelet concentrations.

4.3 Results of Platelet Aggregate Simulations

4.3.1 Morphology and Porosity

The steady-state DEM results for the platelet aggregates formed from both the implicit

and explicit inclusion of fibrin are included as Figure 16. Qualitative morphological differ-

ences can be observed across fibrin inclusion scenarios and platelet concentrations. These

differences can be quantified and provide pathological implications. Particularly apparent
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Table 6: The adjustments to the in silico platelet position that are necessary for the corre-

sponding “self” or imaginary nearby search boxes to be searched, where Nx, Ny, and Nz

are the simulation sizes in the X, Y , and Z directions, respectively, if the values in Table 5

indicate true.

X Y Z

self 0 0 0

X ±Nx 0 0

Y 0 ±Ny 0

Z 0 0 ±Nz

X + Y ±Nx ±Ny 0

X + Z ±Nx 0 ±Nz

Y + Z 0 ±Ny ±Nz

X + Y + Z ±Nx ±Ny ±Nz

in the 8.0% and 16.0% solid platelets by volume cases shown in Figure 16a, the absence of

explicit fibrin enables the formation of large voids as platelets aggregate into separate iso-

lated clusters or network-like structures. The spatial arrangement of the aggregates formed

in the lowest (0.8%) and highest (32.0%) concentrations for both fibrin scenarios are very

similar from a qualitative perspective. In the low concentration regime, the initial platelet

positions are far apart, so little particle-particle adhesion occurs. In the high concentration

regime, independent of fibrin inclusion method, the higher packing fraction and resulting

close proximity of the platelets facilitates a higher frequency of adhesive interactions.

To quantify the spatial arrangement of the aggregates, the pore size distributions (PSDs)

were estimated by calculating the three-dimensional Delaunay Triangulations from the final

platelet positions using the delaunayTriangulation function in MATLAB as validated by

Zhang et al. [131]. The probability density functions (PDFs) of the PSDs and cumulative

PDFs of the PSDs that correspond to the aggregate results shown in Figure 16 are included
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(a) 

0.8% 8.0% 16.0% 32.0% 

(b) 

0.8% 8.0% 16.0% 32.0% 

Figure 16: Resulting aggregates within a 75 µm x 75 µm x 75 µm simulation framework

formed from implicit (a) and explicit (b) inclusion of fibrin and 0.8%, 8.0%, 16.0%, and

32.0% platelets by volume. Platelets are represented as colored dots and explicit fibrin as

blue lines.
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Figure 17: Probability density functions of pore size distributions (top) and cumulative

probability densities of pore size distributions (bottom) of platelets only within aggregates

formed from implicit and explicit consideration of fibrin in silico at 0.8%, 8.0%, 16.0%, and

32.0% platelets by volume.
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as Figure 17. The line color distinguishes the fibrin scenario (implicit versus explicit) and

the line style distinguishes the platelet concentrations. In Figure 17, the fibrin particles are

excluded from the PSD calculation for the explicit fibrin scenario, leaving only platelets to

be considered in the PSDs for both fibrin scenarios. Figure 17 summarizes the effect that fib-

rin structure has on platelet organization during aggregation. The PSD results recapitulate

the qualitative spatial arrangement observations. In general, as the platelet concentrations

increase and void volumes decrease, the distributions become increasingly right-skewed as

the platelet concentration increases, corresponding to a decrease in the dominant pore diam-

eter. The variance across the distributions decreases with increasing platelet concentration,

indicating that the maximum pore size decreases with increasing platelet concentration. In

the highest and lowest platelet concentrations considered, the PSDs for both fibrin scenarios

nearly overlap, indicating no spatial dependency of aggregate formation on fibrin length,

stiffness, or mobility when the platelet concentration is above 32.0% or below 0.8% by vol-

ume.

On the contrary, the PSDs for the 8.0% and 16.0% platelet concentration cases do show

a sensitivity to the fibrin scenario. As seen in Figure 17, the tails of the PSDs for these

concentrations in the implicit fibrin scenario extend further to the right than the respective

tails belonging to the explicit fibrin scenario. By modeling the fibrin implicitly, physical

fibrin in this scenario could be either extremely short or long and flexible, thereby providing

an environment that would facilitate the formation of large pores or void volumes during

platelet aggregation. The multimodal distributions associated with the implicit inclusion of

fibrin stem from the existence of the isolated aggregates. The smaller intra-aggregate pores

form the left-most peaks and the inter-aggregate pores form the broader secondary peaks.

Figure 18 is included to show the effect of stiff and immobile fibrin (green curves) on the

PSD within the aggregates. The red curves are the same across Figures 17 and 18. When

the fibrin particles are considered in the calculation of the aggregate PSDs, the largest pores

shrink to 2 µm in diameter, the size of a single platelet, which is 5x smaller than the pores

within the aggregates formed from the implicit fibrin scenario. The overlap of the four

green PSD curves indicates that the pores are largely governed by the fibrin structure and

have little sensitivity to platelet concentration. The aggregates formed from the explicit
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Figure 18: Probability density functions of pore size distributions (top) and cumulative

probability densities of pore size distributions (bottom) calculated from platelets only (red)

and platelets and fibrin (green) within aggregates formed from the explicit inclusion of fibrin

at 0.8%, 8.0%, 16.0%, and 32.0% platelets by volume.
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inclusion of fibrin lack the large voids that are observable in the implicit fibrin scenario

because the rigid and immobile fibrin cylinders provide a stiff scaffold that sterically hinders

the aggregating platelets. The distinguishable PSDs that evolve from the simulated platelet

aggregates identify the platelet gap sizes that regulate the transport of signaling factors and

control downstream clot integrity [105].

4.3.2 Permeability of Aggregates

Aggregate permeabilities were calculated by employing D3Q19 LBM simulations with

the Bhatnagar-Gross-Krook single relaxation time collision operator approximation, which

was explained in Chapter 1.4.2.

Cylindrical solid boundaries were defined around the aggregates generated from the DEM

simulations and a periodic boundary was defined in the direction of the cylinder length.

The interface of a fluid-solid boundary was handled as a no-slip boundary by implementing

bounce-back (reflected) velocities. To minimize error in the permeability measurements, the

radius of the cylinder boundary was ten nodes less than the length of the DEM samples.

This ensured that the aggregates spanned the radius of the cylindrical opening and that no

gaps existed between the aggregates and the walls, aside from the expected voids within the

aggregates. Poiseuille flow, parallel to the length of the cylinder, was induced via a constant

pressure gradient boundary condition. In the direction of flow, additional fluid nodes were

added at both ends of the cylinder.

The platelet aggregates were coupled with LBM by assigning at least ten lattice nodes to

each platelet diameter. In the case of explicit fibrin inclusion, it was necessary to increase the

node to platelet resolution from ten to thirty lattice nodes in order to accommodate the order

of magnitude diameter differential that exists between platelets and fibrin. As a means to

increase the lattice resolution while maintaining a computationally feasible system, a smaller

sample with comparable solid volume fraction of platelets and fibrin was first extracted from

the larger platelet-fibrin aggregates. The samples extracted from the larger platelet-fibrin

aggregates were ten platelet diameters in length in order to eliminate the effect of media

length on permeability [121]. The fibrin cylinders from the DEM simulations were replaced
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0.8% 8.0% 

16.0% 32.0% 
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Y 

Z 

Figure 19: Cross-sections (X > 1
2
Xmax) of LBM solid nodes represented as filled voxels of

platelet-fibrin aggregate samples extracted from larger DEM-generated aggregates composed

of 0.8%, 8.0%, 16.0%, and 32.0% platelets (white) and 3.0% fibrin (blue) by volume within

a cylindrical solid boundary (red).
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with chains of adjacent spheres that were ten times smaller in diameter than the platelet

spheres. The corresponding aggregate samples can be visualized by filling the solid voxels

from the LBM simulations, as shown in Figure 19. The cylinder wall is red, platelets are

white, and fibrin is blue. Voxels with X > 1
2
Xmax are not shown in order for the interior of

the cylinder to be visible.

The permeability of porous media can be calculated with Darcy’s law, which is defined

as,

q = −k
µ
∇p (4.1)

where q is the interstitial flux, k is the permeability, µ is the dynamic viscosity of the

percolating fluid, and p is the pressure. In the constant pressure gradient boundary condition

scenario that we implement, any changes in permeability that results from changes in both

aggregate organization and void fraction are observed as changes in the measured fluid flux

at steady state. A pressure drop of 3e−10 Pa/m was chosen to ensure laminar flow and a

Mach number less than 0.1 so that compressibility of the fluid could be ignored.

The LBM simulation results are included in Figure 20 for the implicit (a) and explicit

(b) fibrin inclusion scenarios. The permeabilities of the DEM-generated platelet and fib-

rin aggregates that were calculated from LBM simulations are plotted in Figure 21, along

with experimental permeabilities of in vitro platelet and fibrin aggregates from literature

[125]. Consistent with the literature, the permeability of the simulated aggregates decreases

exponentially with increasing platelet concentration. The implicit and explicit inclusion of

fibrin in our model influenced the structural morphology and pore size distributions within

the emergent aggregates, which directly affected the aggregate permeabilities. The reduced

overall permeability that is observed in the case of explicit inclusion of fibrin when compared

to the implicit fibrin case is a result of both the lowered void volume and the small pore

sizes that are introduced by the presence of the fibrin particles.

For the LBM-derived permeabilities, the different rates of change of permeability with

respect to platelet concentration within the two classes of fibrin inclusion are correlated to the

sensitivity of the pore size distribution to changes in the platelet concentration. Exemplified

in Figure 17 by the distinguishable blue curves, the PSD of aggregates formed from implicit

fibrin are highly sensitive to the platelet concentration. Dissimilarly, the overlapping green
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(a)

(b)

0.8% 8.0% 16.0% 32.0%

Figure 20: X-Y cross sectional visualization of steady-state simulation results from LBM

simulations of flow through aggregates formed via implicit (a) and explicit (b) fibrin scenarios

at 0.8%, 8.0%, 16.0%, and 32.0% solid platelets by volume. Solid nodes are represented as

gray squares and fluid nodes as arrows in the direction of the flow with colors showing the

normalized magnitude of the flow velocity. The velocity field within each frame of this figure

was normalized independently.
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Figure 21: Absolute permeabilities of aggregates calculated from LBM simulations of flow

through aggregates formed via implicit and explicit fibrin scenarios and experimental per-

meabilities obtained from [125].

curves in Figure 18 indicate a lower sensitivity of PSD to platelet concentration. From

Figure 21, it is apparent that for the same increase in platelet concentration or decrease

in void fraction, the decrease in permeability of aggregates formed from the implicit fibrin

scenario is greater than the decrease in permeability for the explicit fibrin inclusion. The

reason for this is that in the implicit fibrin scenario, the mean pore size and the variance of

the distribution decreases with increasing platelet concentration, but for the explicit fibrin

scenario, the PSDs remain the same.

The departure of the experimental permeabilities from the simulated permeabilities is a

result of the assumed sphericity of platelets. In reality, platelets are soft and flexible. Upon

activation and during aggregation, the deformation of platelets enables their small volumes

to cover larger surface areas to impede blood loss and effectively reduce the aggregate perme-

abilities [77]. However, if platelet activation is compromised or a certain pathology induces

platelet hardening, the simulated results from our model propose that these pathologies

would result in leaky clots with weak or compromised coagulation capacity.
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4.4 Summary

Through the development of a DEM-based model of platelet aggregation, we have in-

vestigated the influence of platelet concentration and fibrin inclusion on the emergent clot

morphologies. Grounding the platelet adhesive mechanics in isolated single platelet experi-

mental results from the literature, we first calibrated individual interactions before scaling-up

our simulations to capture aggregatory behavior. We manipulated the method of fibrin in-

corporation in our model to simulate two pathological scenarios. We handled fibrin implicitly

to identify the influence of extremely flexible and/or short fibrin bundles and explicitly to

investigate the effect of inflexible and immobile fibrin.

After simulating the formation of aggregates across the fibrin inclusion scenarios and

the desired platelet concentrations of 0.8-32.0% by volume, the morphological differences of

the emergent platelet plugs were quantified. We calculated the aggregate permeabilities by

executing LBM simulations of fluid flow through the resulting aggregates. Despite the de-

parture from experimental counterparts due to the assumed platelet sphericity, we identified

a greater sensitivity of the aggregate permeabilities to platelet concentration in the implicit

fibrin scenario. The increased sensitivity of the aggregate permeabilities in the case of im-

plicit fibrin can be explained from the underlying variability of the PSDs. Without stiff and

immobile fibrin, increasing in the platelet concentration decreases the mean and variance of

the corresponding PSDs. However, in the presence of stiff and immobile fibrin, the number

of pores decreases, but the PSDs are insensitive to an increase in platelet concentration.

The simulated fibrin scenarios herein create the bounds of expected platelet behavior

during aggregation. The results allow us to observe and compare aggregate formation as

a function of fibrin structure and platelet concentration. These findings have important

implications for mass transport during clot formation. This model as a whole provides

insight into the mechanism of platelet aggregation and the potential effect of pathological

fibrin on aggregate formation. Furthermore, it can be used to support the design of drug

delivery strategies to control the formation and lysis of blood clots.
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5.0 Platelet and Fibrin Aggregate Dynamics

5.1 Background

The focus of Chapter 5 is the development of a model that translates the combined

platelet and fibrin adhesive mechanics from the previous chapter (Chapter 4) into a dy-

namic framework, as a means to study the sensitivity of platelet concentration and adhesive

capacity on overall aggregate strength. The first step toward a more dynamic framework

includes the implementation of the flexible and mobile fibrin model, calibrated in Chapter

3, into network-like fashion. Modeling the fibrin network as a rigid scaffold of immobile

rods, as implemented in Chapter 4, provided the foundation for the conversion to a flexible

and mobile network explained in this chapter. Using a discrete element method (DEM)-

based approach, the three-dimensional model developed herein investigates the mechanical

differences of aggregates formed from varied platelet concentrations and adhesive capacities.

Consistent throughout this thesis, we considered platelets and fibrin to be solid spheres and

describe the adhesive platelet-platelet and platelet-fibrin bonds using implicit springs. The

adhesive interactions were first calibrated to experimental data from isolated platelet exper-

iments [38, 53] before the simulations were expanded to include hundreds to thousands of

platelets and fibrin strands, aligned with the conditions at the core of a clot or thrombus.

To investigate the in silico platelet and fibrin aggregate dynamics, we used the model

from Chapter 4 to generate a pseudo-steady state arrangement of the aggregates at various

specified conditions. After replacing the stiff and rigid fibrin cylinders with flexible chains

of fibrin particles, we simulated a uni-axial stretching experiment by forcing the velocity of

the top wall of the simulation box in an upward direction. We tracked the force on the wall

that resisted the wall displacement as a metric for the aggregate strength. By executing a

fibrin-control scenario in the absence of platelets, we can compare the relative increase in

the magnitude of the resistance stress upon the addition of platelets to calculate the platelet

contribution to the aggregate strength.
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In vitro, the platelet component of clot strength can be inhibited with the application

of glycoprotein IIb/IIIa receptor antagonist [90]. The platelet component of clot strength is

measured in the clinic by comparing TEG tracings with and without the platelet adhesion

antagonist. The difference in the TEG tracings before and after the application of the

platelet adhesion antagonist is equated to the platelet component of clot strength, which is

then used to guide the transfusion of platelets in the treatment of coagulopathies [98]. We

can use platelet component metrics from in vitro samples, reported in Ranucci et al., to

calibrate the comparable in silico outcomes from the dynamic platelet and fibrin aggregate

simulations explored in this chapter [90].

5.2 Model Development

5.2.1 Initial Condition Generation

To investigate the dynamical and mechanical properties of the in silico-formed aggre-

gates of platelets and fibrin from Chapter 4, we monitored the response of a simulated

continuous uni-axial stretch on the system and tracked the force that resisted the aggregate

expansion. To generate the initial conditions for the aggregate extension studies, we exe-

cuted the same aggregate formation simulations with three-dimensional periodic boundary

conditions according to Chapter 4.2.1. The volume of the simulation framework was 5.6e3

µm3 with a length to width to height ratio of 3:3:5. The fibrin concentration was 3% and

the platelet concentrations ranged from 0.8 to 32% solid by volume. The network of fibrin

was held constant across the extension studies so as to eliminate the effect of fibrin organi-

zation and arrangement on the resistance stress measurements. The constant fibrin network

arrangement enabled the isolated effect of platelet concentration and activation level.

To capture the unique dynamics that fibrin exhibits upon stretching, the immobile fibrin

strands, modeled as rigid cylinders in Chapter 4, were replaced with chains of small particles

linked together with implicit springs as established in Chapter 3. The fibrin particles that

composed each fibrin strand were positioned equidistantly along the lines defined by two end
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points. The endpoints of the lines were assigned at random to the faces of the simulation

framework. Given the two endpoints, pa = (xa, ya, za) and pb = (xb, yb, zb), and the fibrin

equilibrium spring length, s0, the fibrin particles were added in the direction of pa to pb

according to Equations 5.1 and 5.2.

pn+1 = (1− u)× pn + u× pb, (5.1)

where u =
s0√

(xb − xn)2 + (yb − yn)2 + (zb − zn)2
(5.2)

Fibrin particles were added in sequence until the euclidean distance between the current fibrin

particle, pn+1, and the final, pb, was less than or equal to the equilibrium spring length. The

number of fibrin particles that filled each strand varied across the set of strands depending

on the length of the original fibrin line/cylinder. The adjacent fibrin particles within the

same strand were connected by implicit springs that behaved according to Equation 3.2,

where the modular spring coefficient was defined as Equation 3.3. The parameter values of

Equation 3.3 are listed in Table 3. A schematic of the resulting fibrin network with fibrin

strands composed of adjacent particles is shown in Figure 22A.

To capture the cross-linked nature of the in silico fibrin networks, we modified the initial

condition of the fibrin network by fusing fibrin strands that intersected. In practice, one of

the two most-overlapped particles from intersecting strands is removed and the remaining

particle becomes tethered to the two nearest neighbors of the particle that was removed. Fol-

lowing Figure 23IA, this means the two most-overlapped particles from intersecting Strands

1 and 2 are fibrin particle 4 from Strand 1 and fibrin particle 9 from Strand 2. In this case,

fibrin particle 9 from Strand 1 is removed and the particle indices from Strand 2 are adjusted

accordingly. Fibrin particle 4 (blue) from Strand 1 gains two spring neighbors, particles 8

and 9 (gold) from Strand 2, aligned with Figure 23IB. Multiple strands can be involved in a

single cross-linking site, similar to the schematic representation shown in Figure 23II. In this

case, the three most-overlapped particles from the three intersecting strands are determined

and the fibrin particles with the greater indices (9 and 15) are removed and the remaining

fibrin particle (4) is assigned four new spring neighbors (8, 9, 13, and 14). There is no limit
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A B

Figure 22: Schematic of the fibrin network used for simulations within Chapter 5 with fibrin

strands composed of adjacent green spheres in A and crosslinked particles highlighted as

larger black spheres and non-crosslinked particles as white spheres in B for the same fibrin

network. There are a total of 45,387 particles within this system.
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Figure 23: Three cases (I, II, and III) of fibrin strand overlap that were considered for cross-

linking within the larger fibrin network. Row A shows the original fibrin strands with all

fibrin particles included and row B shows cross-linked strands, where the particle highlighted

in blue gains the two gold neighbors that belonged to the particle that the blue replaced.
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to the number of spring neighbors a given fibrin particle can have. A particular fibrin strand

can also intersect nearby strands at separate sites as shown schematically in Figure 23III.

In this case, the particle replacement and new spring neighbor assignments are determined

as they were in case I from Figure 23. The fibrin network used for the simulations within

this chapter is shown in Figure 22, where the cross-linked fibrin particles are highlighted in

part B by representing them as enlarged black spheres and the remaining fibrin particles as

smaller white spheres.

interacting pairs =
N × (N − 1)

2
(5.3)

interacting pairs =
P × (2×N − P − 1)

2
(5.4)

For simplification and computational feasibility purposes, we ignored the inter-strand

fibrin particle interactions, which reduces the possible fibrin interactions to the nearest-

neighbor interactions within a strand or intersecting strands and platelet-fibrin adhesive

interactions. As a result, the number of potential interactions that can occur is substantially

reduced, which increases the speed of the simulations. When the fibrin-fibrin interactions

are not considered, the number of possible interacting pairs reduces from Equation 5.4 to

Equation 5.3, where N is the number of total particles (platelets + fibrin) and P is the

number of platelets.

pair index = j − i+
i× (i+ 1)

2
(5.5)

pair index = i×N + j − i× (i+ 1)

2
− 1 (5.6)

Schematically, the reduced number of interactions can be visualized by eliminating the

fibrin-fibrin interactions from the lower right section of the grid of interaction indices shown

in Figure 24. The indices of the interaction pairs must then be adjusted to eliminate the

fibrin-fibrin interactions by filling the grid in a row-wise manner instead of column-wise. To

accommodate the change in the grid filling direction from vertical to horizontal, Equation
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Figure 24: Schematic of the interaction index grid for a test system composed of 10 particles,

including 3 platelets and 7 fibrin. The indices identifying the unique interaction pairs of A

are calculated with Equation 5.5 and the pair indices of B are calculated with Equation 5.6,

where in both cases i corresponds to the index of the particle along the row, j to the index

of the particle along the column, and N to the total number of particles.
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5.6 is used in place of Equation 5.5, where i and j correspond to the indices of the interacting

particles, i > j, and N is again the total number of particles (platelets + fibrin).

Fusing the sites where fibrin strands intersect fosters the network connectivity, even

in the absence of fibrin-fibrin interactions. The effective cross-linking allows any and all

perturbations to the system to be felt throughout the network in a computationally feasible

manner.

5.2.2 Aggregate Extension Simulation Setup

To implement a continuous uni-axial stretch of the platelet and fibrin aggregates, a layer

of particles parallel to the x-z plane and located at the bottom of the fibrin network was

colored red and frozen in place to ground the platelet and fibrin aggregate. A separate

layer of particles that was also parallel to the x-z plane, but located at the top of the fibrin

network, was colored yellow and given a positive velocity in the y-direction of approximately

0.74 m/s. A visualization of the fibrin network with colored layers to identify the wall

particles is included as Figure 25A. As the yellow band of particles moved in the positive

y-direction and effectively stretched the system, the resistance to the stretch was measured

by adding the force of the particle interactions at the wall interface. The simulations were

run until the displacement of the system was stretched a total distance of 4 µm.

Prior to implementing the bands of frozen particles, an alternative simulation setup for

the continuous system stretching was considered in which two additional layers of parti-

cles designated as wall particles were positioned around the aggregate. One layer was placed

above the aggregate to simulate the top wall with a forced velocity in the positive y-direction

and the second layer was placed beneath the aggregate to simulate the bottom wall that was

frozen in place to keep the aggregate grounded during the extension studies. A visualization

of the fibrin network with additional layers of particles to function the aggregate walls is

included as Figure 25B. The addition of non-biological particles to function as the system

walls introduced complexities that were eliminated by deeming portions of the aggregates

that were already present as wall layers. The unnecessary complexities included the prop-

erties of the particles themselves, which could have artificially altered the results away from
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physiology. The biggest concern was how to handle the wall-aggregate interface because it

was somewhat artificial and would be challenging to calibrate. In the end, the principle is the

same with respect to including walls on the aggregate ends that are parallel to the direction

of the stretching motion, but the interactions with the wall are grounded in physiology and

either platelet-fibrin, platelet-platelet, or fibrin-fibrin interactions.

The thickness of the wall of the fibrin aggregate was varied to determine the minimum

wall thickness that maintained a reasonable degree of connectivity throughout the aggregate.

The range of explored thicknesses corresponded to the sizes of the particles included in the

simulations. The smallest wall thickness of 0.2 µm aligns with the in silico fibrin particle

diameter and 2.0 µm is the diameter of the in silico platelet particles. Two additional wall

thicknesses of 0.4 and 0.8 µm were also investigated. Schematics of the initial conditions of

the four cases of varied wall thickness are included as Figure 26.

As a metric of the aggregate connectivity, the number of contacts with the wall and

the force on the wall resisting aggregate extension were measured as a function of the wall

thickness for the four aforementioned wall thickness scenarios. The measurements were

taken at the endpoint of the simulations, defined as a displacement of the top wall equal

to 4 µm. The number of contacts with the wall and the corresponding force on the wall

increases with respect to the wall thickness, but at different rates. The secondary y-axis

for both plots included in Figure 27 shows the normalized ratio of remaining contacts and

remaining force on the wall relative to the thickest wall scenario of 2 µm for 27a and 27b,

respectively. When the wall thickness decreases from 2 µm to 0.8 µm, 14 contacts with

the wall are lost, or ∼90% of the contact points remain. However, the force resisting the

aggregate extension reduces by ∼40%, meaning that the interactions responsible for the 10%

increase in wall contacts when the wall thickness increases from 0.8 µm to 2.0 µm hold a

significant weight with respect to the aggregate connectivity that they facilitate. The shift

from a linear relationship with respect to contact and force reduction in the 0.2 µm to 0.8 µm

range to a nonlinear relationship in the 0.8 µm to 2.0 µm range justified using 2.0 µm-thick

walls for the simulations executed herein.

The initial positions of the platelets within the fibrin networks were taken from the

pseudo-steady state positions of the aggregate formation simulations explained in Chapter
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A B

Figure 25: Schematic of the fibrin network with two variations of wall particle inclusion. In

A, two layers of intra-network fibrin particles are designated as the walls. In B, two layers

of additional non-fibrin particles are incorporated to act as the walls. In both wall inclusion

scenarios, the top wall particles are colored yellow, the bottom wall particles are colored red,

and the non-wall fibrin particles are green. Yellow particles are assigned a velocity in the

positive y-direction (up) and red particles remain stationary to ground the aggregate during

the stretching simulations. For the simulations executed within this work, the wall inclusion

scenario from A was implemented.
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0.2 µm 0.4 µm 0.8 µm 2.0 µm

Figure 26: Schematic of the initial condition of the fibrin network with four different wall

thicknesses increasing (from left to right) from 0.2 µm to 2.0 µm, where particles composing

the bottom wall are colored red, particles composing the top wall are colored yellow, and

non-wall fibrin particles are colored green. Moving from left to right, the thickness of the

walls correspond to 1x, 2x, 4x, and 10x the diameter of the in silico fibrin strands.
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Figure 27: Number of contacts vs wall thickness (left) and wall force vs wall thickness (right)

for four fibrin aggregate wall thickness scenarios, including 0.2, 0.4, 0.8, and 2.0 µm that

correspond to the schematics of the fibrin aggregates depicted in Figure 26. Measurements

were recorded when the top wall displacement reached 4 µm, corresponding to the maximum

point of extension. The secondary y-axis for both of the plots shows the normalized ratio

with respect to the value at 2.0 µm.
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Table 7: Number of platelet particles included in the in silico aggregates shown in Figure

28 for various platelet concentrations within a 5.6e3 µm3 simulation framework. Platelet

particles were assumed to be spherical with a diameter of 2 µm.

Volume % 0.8 8 16 32

Platelets (count) 6 55 110 220

4. The platelet activation level was tuned to simulate the effect of varied activation and

adhesive capacity on aggregate strength or resistance to stretching. The activation level was

incorporated as a discrete parameter to discriminate between non-/weakly-, partially-, and

fully-activated states. The three levels correspond to those observed experimentally in [77]

that were used to calibrate the platelet-platelet adhesive interactions in Chapter 2. The

platelet activation level was uniform across all platelets within a given run and held constant

throughout the duration of each simulation. The number of platelet particles included for

each of the four simulated concentration scenarios are listed in Table 7. The platelet counts

were calculated to satisfy the appropriate volume fraction by assuming platelets to be spher-

ical with a 2 µm diameter and the simulation framework to have a volume of 5.6e3 µm3.

Schematics of the initial platelet and fibrin particle positions for the five platelet concentra-

tion scenarios are included as Figure 28. Simulations were performed in triplicate for each

combination of activation level and platelet concentration condition and a single execution

of the fibrin only control, amounting to a total of 37 unique runs.

5.3 Results and Discussion of Aggregate Stretching Simulations

5.3.1 Effect of Varied Platelet Concentration

The force resisting the vertical displacement of the top wall (yellow particles) of the

platelet and fibrin aggregates shown in Figure 28 was tracked as a function of the distance
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0.0% 0.8% 8.0% 16.0% 32.0%

Figure 28: The initial conditions of the aggregates with 0-32% solid platelets (black particles)

by volume and 3% solid fibrin (green particles) by volume. The wall layers are colored in

yellow (top) and red (bottom) and the fibrin network structure is consistent across the

platelet concentration scenarios.

the aggregate was stretched. Schematics of the final condition of the aggregates after a

displacement of 4 µm are included in Figure 29. The green portions of the fibrin strands,

visible in Figure 29, exhibit bends and curves, demonstrating the successful implementa-

tion of flexible and mobile fibrin strands. The emergent fibrin network rearrangement upon

stretching is variable and depends on the platelet concentration and platelet positions within

the aggregates. In the absence of platelets, the fibrin networks tend to rearrange first at the

cross-linked sites, shown in Figure 22B, and the subsequent particle rearranging occurs in

worm-like fashion as the perturbations travel along isolated fibrin strands and eventually

throughout the fibrin network. Without any platelets present and in the low platelet con-

centration regime (0.8% platelets), the connectivity within the aggregates is not expected

to be complete, meaning that some fibrin strands, especially ones oriented parallel to the

simulation faces, are not connected to the rest of the aggregate and do not rearrange during

the simulation.

When platelets are present within the aggregates, the platelets attract nearby fibrin

strands and the network effectively collapses around the platelets to form tighter networks.
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0.0% 0.8% 8.0% 16.0% 32.0%

Figure 29: The final conditions of the aggregates from Figure 28 with 0-32% solid platelets

(black particles) by volume and 3% solid fibrin (green particles) by volume after a 4 µm

vertical displacement of the top wall. The wall layers are colored in yellow (top) and red

(bottom) and the fibrin network structure is consistent across the platelet concentration

scenarios.

This effect can be observed qualitatively in the three highest platelet concentration regimes,

specifically 8-32% platelets, where the aggregates display a slight hour glass shape after

a 4-µm stretch as seen in the three right-most schematics of Figure 29. The qualitative

simulation results are supported by the physiological role of platelets in coagulation; platelets

contribute to overall clot strength by binding and tightening nearby fibrin fibers via their

strong contraction and adhesive forces [56].

78



The dynamics of the resistance stress on the ascending aggregate wall are reported in

Figure 30 as a function of displacement in µm for the mean of three trials with the corre-

sponding 95% confidence interval about the mean for platelet concentrations ranging from

0-32%. A new random initial condition of platelet positions was generated for each trial

while maintaining the same fibrin network and the platelet activation level was controlled as

fully-activated. The plot shows that the magnitude of the force that resists the stretching of

the aggregates generally increases as function of the top wall displacement or the extent of

stretching. The magnitude of the resistance stress also increases as a function of the platelet

concentration.

As the platelet concentration increases, the inclusion of more platelets increases the num-

ber of possible platelet-platelet and platelet-fibrin adhesive interactions, thereby increasing

the aggregate strength or the force required to stretch the aggregate. The complete sepa-

ration of the 95% confidence interval bands from 0.8 to 32% indicates that the resistance

stress mechanics are highly sensitive to platelet concentration. The exception to this is

the 0% platelets or the fibrin-only scenario and the 0.8% platelets, whose curves overlap

slightly along the 4-µm trajectory. Those overlapped wall-force curves result because the

0.8% platelet scenario is not dense enough with respect to the platelets to result in any

platelet-platelet interactions, hence not enhancing the connectivity throughout the aggre-

gate to distinguish the dynamics from the fibrin-only scenario.

The large initial decrease in the resistance stress is likely due to high local strain that

is imposed on the wall-aggregate interface when the wall first begins to move, which is then

relaxed as the force creeps through the rest of the aggregate network. The tracked force in

Figure 30 is the sum of all platelet-fibrin and intra-strand fibrin-fibrin interaction forces in

the positive y-direction (up). Aligned with Figure 29, these interactions include yellow fibrin

particles with black platelet particles (platelet-fibrin) and yellow fibrin particles with green

fibrin particles (intra-strand fibrin-fibrin). Yellow fibrin particles with either black platelets

or green fibrin were excluded from the wall force calculation because their misaligned position

from the yellow-green interface and forced velocity imposed an aphysiological condition on

the yellow platelets and caused an erroneous contribution to the wall-force metric.
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Figure 30: Mechanics of resistance stress in dyne/cm2 on top wall of simulated platelet

and fibrin aggregates as a function of displacement in µm. The mean of three trials with a

shaded 95% confidence interval band are plotted for the fully-activated platelet condition of

platelet concentrations ranging from 0-32% solid by volume and 3% solid fibrin. Schematics

in Figures 28 and 29 correspond to displacements of 0 and 4 µm, respectively.
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5.3.2 Effect of Platelet Activation Level

As a means to investigate the effect of platelet activation level on aggregate strength,

we varied the platelet activation level from non-weakly-activated, partially-activated, and

fully-activated as explained in Chapter 2 for the platelet-platelet adhesive interactions. For

each subplot of Figure 31, the dynamics of the resistance stress on the ascending aggregate

wall are reported as a function of displacement in µm for the mean of three trials with

the corresponding 95% confidence interval about the mean for each of the three activation

levels. The title of each subplot from Figure 31 corresponds to the platelet concentration of

the aggregates.

Within each subplot, the curves corresponding to the three levels of activation are nearly

indistinguishable, indicating that the resistance stress mechanics within the in silico aggre-

gates are insensitive to platelet activation or platelet function. Mechanistically, this can

be explained by the magnitude of the adhesive forces between the platelet-fibrin interac-

tions and the platelet-platelet interactions. Platelet-fibrin adhesive interactions are nearly

thirty times stronger than the strongest platelet-platelet interactions [56, 77]. The magni-

tude of the platelet-fibrin interactions was not adjusted with the platelet activation level as

it likely would be in vivo or in vitro. However, regardless of changes in the strength of the

platelet-platelet adhesive interactions as the activation level varies from fully-activated to

partially-activated to non-weakly-activated, the platelet-fibrin interactions remain dominant

and govern the overall resistance stress magnitude and dynamics.

Platelet function or activation level affects the degree of platelet aggregation and fibrin

accumulation [77]. Both physiological changes alter the formation phase of the platelet and

fibrin aggregates, which are steps in the coagulation cascade that occur prior to the stage

of coagulation where this model is relevant. The simulation results demonstrate that after

platelets form aggregates within a fibrin network, the degree of platelet activation or the

platelet functionality has no effect on the overall strength of the aggregate.
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Figure 31: Mechanics of resistance stress in dyne/cm2 on top wall of simulated platelet and

fibrin aggregates as a function of displacement in µm. The mean of three trials with a shaded

95% confidence interval band are plotted for three platelet activation scenarios including non-

/weakly-activated, partially-activated, and fully-activated within each subplot that is titled

with the platelet concentration in solid volume percent, ranging from 0.8-32%.
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5.3.3 Quantifying Platelet Contribution

The curves from the aggregate extension simulations with nonzero platelet concentrations

from Chapter 5.3.1 and 5.3.2 can be normalized with respect to the fibrin-only case to

generate a metric that is comparable to the clinical measurement known as the platelet

contribution or the platelet component of clot strength. By subtracting the output of the

in silico aggregate extension studies from the fibrin-only scenario from the output with

platelets, the effect of platelets can be isolated.

In the clinic, the platelet component of clot strength is calculated by comparing TEG

tracings before and after the application of glycoprotein IIb/IIIa receptor antagonist, which

inhibits platelet adhesion [90]. In the presence of the platelet inhibitor, the magnitude of the

pin amplitude from a TEG run is smaller, so the envelope of the pin tracing, or the TEG

output, lies beneath the envelope of the pin tracing from the uninhibited platelet scenario.

The area between the curves, or the difference in the TEG tracings before and after the

application of the platelet inhibitor is equated to the platelet component of clot strength,

which is then used to guide the transfusion of platelets in the treatment of coagulopathies

[98].

Similarly, the area between the output curves from simulated aggregate extension studies

with and without platelets can be calculated using Equation 5.7. The area between curves

is the difference in the area under the curves.

platelet contribution =
AUCplatelets + fibrin − AUCfibrin

AUCplatelets + fibrin

× 100% (5.7)

The in silico platelet contribution can be depicted schematically as the highlighted region

of Figure 32, which corresponds to the difference in the AUC from the platelet + fibrin

aggregate extension curve and the AUC from the fibrin-only aggregate extension curve.

Equation 5.7 was used to generate the platelet contribution of all of the simulated aggregates

from Chapter 5.3.1 and 5.3.2, where the fibrin-only curve was constant, but the platelets +

fibrin curve varied based upon the simulation conditions.

In Figure 33, the results of the platelet contribution calculation are plotted as a func-

tion of the platelet concentration for 36 in silico aggregate extension simulations. Each of
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Figure 32: Visualization of the platelet contribution to aggregate strength highlighted as

the area between fibrin-only and fibrin + platelets curves, corresponding to Equation 5.7.

This particular fibrin + platelet scenario corresponds to a 32% solid platelets by volume,

but the area between curves can be calculated across all simulated platelet concentrations

and platelet activation scenarios.
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the explored platelet concentration and platelet activation level scenarios was performed in

triplicate. The AUCs from each simulation were calculated using the trapz function in MAT-

LAB. The mean platelet contribution (%) are reported with corresponding 95% confidence

intervals. As expected from the results reported in Chapters 5.3.1 and 5.3.2, the platelet

contribution is highly sensitive to the platelet concentration, but insensitive to the platelet

activation status.

According to Harr et al., the component contributions of platelets and fibrin to the clot

strength are estimated to be 80% and 20%, respectively, for normal hemostasis [39]. The

ratio of the component contributions can be calculated from the clot elasticity or the clot

amplitude TEG output metric. Dependent upon the contribution method, the ratio varies

nonlinearly with respect to the platelet count because clot elasticity and strength do not have

a linear relationship [90]. Although the methodology for measuring platelet contribution to

clot strength is somewhat debated, the general 80%/20% rule tends to apply, however, careful

attention must be paid when using the platelet component for transfusion guidance [98].

The results from the in silico platelet and fibrin aggregate extension scenarios, reported

in Figure 33, produced platelet contributions beneath the 80% threshold for normal platelet

component, meaning that all of the explored in silico scenarios align with a thrombocytope-

nia diagnosis, or low platelet count pathology. Even though the quiescent platelet volume is

less than one percent of blood, the local platelet concentration after platelet activation and

aggregation is much higher [102]. The 32% solid platelets by volume was the upper bound

of feasible in silico platelet concentrations due to the assumed rigid spherical structure and

the manner in which the initial condition was generated; By establishing the fibrin network

prior to placing the platelets within the simulation framework, the number of possible platelet

particle positions are restricted due to the steric hindrance that the fibrin network imposes.

However, despite not fully capturing the breadth of physiological platelet concentrations,

the model developed herein successfully captures the sensitivity of platelet contribution to

aggregate strength with respect to the platelet concentration.

The insensitivity of platelet contribution with respect to the platelet activation level or

platelet function observed from the in silico aggregate extension studies corroborates with in

vitro studies [90]. Platelet function and platelet count are known to be highly coupled, so it
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Figure 33: The mean platelet contribution to aggregate strength of three trials and corre-

sponding 95% confidence intervals about the mean plotted as a function of platelet concen-

tration ranging from 0.8-32% solid by volume for three platelet activation scenarios, including

non-weakly-activated, partially-activated, and fully-activated.
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is challenging both experimentally and computationally to isolate the two. In vivo, platelet

function influences all stages of the coagulation cascade, including the degree of platelet

aggregation and fibrin accumulation, which occurs upstream from the scope of the scenarios

modeled herein [77]. By focusing on the stage of coagulation after fibrin accumulation and

platelet aggregation, alterations in the platelet functionality may not manifest in silico to

the extent that they might in vivo.

5.4 Summary

Through the development of a DEM-based model of platelet and fibrin aggregate dynam-

ics, we have investigated the influence of platelet concentration and platelet activation level

on the contribution of platelets to the strength of in silico aggregates. By first expanding

the in silico platelet aggregation model from Chapter 4 to include flexible and mobile fibrin

strands, the model developed herein can be used to simulate platelet and fibrin aggregate ex-

tension scenarios. By grounding the platelet and fibrin adhesive mechanics and fibrin strand

extension mechanics in isolated experimental results from the literature, we have a calibrated

model appropriate for scaling-up our simulations to capture the dynamics of platelet and

fibrin aggregates.

The scale-up method for translating fibrin strands from rigid lines to chains of adjacent

particles connected by implicit springs in series was developed in a general manner that

can accommodate changes in fibrin strand length and individual fibrin particle sizes. The

crosslinking capacity of fibrin networks was also incorporated into the model development

through the design of an algorithm that considers the points of intersecting strands and ef-

fectively fuses overlapping particles through a remove-replace-reconnect sequence explained

in Chapter 5.2.1. Fusing the intersecting fibrin particles captures the fibrin network connec-

tivity, which enables the network extension simulations to exhibit the emergent behavior of

fibrin assemblies.

The influence of platelet concentration, in the range of 0.8-32% solid platelets by volume,

on the overall aggregate strength can be studied by modifying the number of platelet particles

87



included in the simulation framework. The in silico aggregate extension studies show that

increasing the platelet concentration also increases the strength of the aggregates, which

was measured by tracking the force that resisted a uni-axial stretching motion. The platelet

activation level was also modified with the in silico aggregates, but no significant effect was

observed on the resulting aggregate strength with respect to the activation level changes.

We calculated the platelet contribution to the strength of the aggregates by comparing the

force versus distance curves for each platelet concentration and activation level scenario

combination to the force versus distance curve of the lone fibrin network. The resulting

range of platelet contribution values falls beneath hemostatic thresholds, identifying that

the simulated range of platelet concentrations correspond to a thrombocytopenia pathology.

Despite the small breadth of simulated platelet concentrations due to the assumed platelet

sphericity, the model can still capture the effect of platelet concentration on the platelet

contribution to aggregate strength that is observed clinically.

The model developed herein combined an independent platelet and fibrin adhesive me-

chanics model with another independent model of extensible fibrin to yield a model with the

capacity to model platelet and fibrin aggregate dynamics. The resulting model is grounded

in experimental isolated platelet adhesion studies and fibrin extension studies that serve to

calibrate the independent contributions. Together, this model as a whole provides insight

into the mechanism of platelet and fibrin aggregate dynamics. Furthermore, the resulting

model bridges the gap to the macroscale by approximating comparable metrics, like the

platelet contribution to clot strength, to those obtained from whole-blood assays.
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6.0 Summary and Outlook

6.1 Model Utility

6.1.1 Platelet Adhesive Mechanics

In Chapter 2, a DEM-based platelet adhesive mechanics model was developed that cap-

tures the phenomenological behavior of platelet-platelet and platelet-fibrin adhesion. The

cell-scale model serves as the foundation for the development of a multiscale model of co-

agulation by including the micro-mechanical contributions that influence downstream clot

formation. The platelet adhesion model is suitable to simulate the collective and emergent

behavior of platelet and fibrin interactions.

Within the platelet adhesive mechanics model, the platelet activation level is modifi-

able to accommodate four levels that govern platelet-platelet interactions. The levels range

from inactive (no adhesion) to fully-active (strongest adhesion). Both platelet-platelet and

platelet-fibrin adhesion is incorporated via implicit springs that are mathematically defined

as piecewise linear functions. The piecewise linear functions that describe the adhesive in-

teractions were calibrated to experimental data from the literature [77, 56]. With the aim

of utilizing the developed cell-scale model as the foundation of a larger, multiscale model,

the phenomenological nature of the model provides the computational feasibility required

for scale-up.

6.1.2 Fibrin Extensibility Mechanics

In Chapter 3, the unique mechanical properties of fibrin were modeled in silico by sim-

ulating fibrin strands as chains of small particles linked together with implicit springs. The

springs behave according to Hooke’s Law with a variable spring coefficient that is mapped to

experimental data. The isolated fibrin strand in silico model captures the high extensibility,

strain-hardening, and viscoelastic behavior of in vitro fibrin.
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We calibrated the implicit spring force between neighboring particles of the same strand

to extension-retraction data from in vitro fibrin studies [63]. The mechanical properties can

be measured from stress-strain curves obtained by applying a stress, or a force per unit area,

and recording the resulting strain, or the stretch normalized to its initial length [123]. The

model from this chapter functions not only as a stand-alone entity, but also as a building

block for a multiscale model that includes fibrin networks composed of hundreds to thousands

of strands.

6.1.3 Platelet and Fibrin Aggregate Mechanics

In Chapter 4, a DEM-based model of platelet aggregation was developed by scaling-

up the platelet adhesive mechanics model from Chapter 2 to include hundreds of activated

platelets. It was used to investigate the influence of platelet concentration and fibrin inclusion

on the emergent collective behavior and subsequent clot morphologies. We manipulated the

method of fibrin incorporation in our model to simulate two pathological scenarios. We

handled fibrin implicitly to identify the influence of extremely flexible and/or short fibrin

bundles and explicitly to investigate the effect of inflexible and immobile fibrin.

We characterized the morphological differences of the emergent in silico platelet and

fibrin plugs. We calculated the aggregate permeabilities by executing LBM simulations

of fluid flow through the resulting aggregates. Despite the departure from experimental

counterparts due to the assumed platelet sphericity, we identified the role that fibrin plays

in the flow through the aggregates. The stiff and immobile implementation of in silico fibrin

restricted the mobility of the platelets and also the pore size, thus limited the aggregate

permeabilities. The results from the simulated fibrin scenarios created the bounds of expected

platelet behavior during aggregation and enabled a comparison of aggregate formation as

a function of fibrin structure and platelet concentration. This model as a whole provides

insight into the mechanism of platelet aggregation and the potential effect of pathological

fibrin on aggregate formation.
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6.1.4 Platelet and Fibrin Aggregate Dynamics

In Chapter 5, the platelet and fibrin mechanical model was translated into a dynamic

framework to investigate the influence of platelet concentration and platelet activation level

on the contribution of platelets to the strength of in silico aggregates. By first expanding

the in silico platelet aggregation model from Chapter 4 to include flexible and mobile fibrin

strands, the resulting model can be used to simulate platelet and fibrin aggregate extension

scenarios. By grounding the platelet and fibrin adhesive mechanics and fibrin strand exten-

sion mechanics in isolated experimental results from the literature, we calibrated the model

components separately, prior to combining them to capture the dynamics of platelet and

fibrin aggregates.

We used the static fibrin network model as the scaffold for converting the rigid fibrin

cylinders to chains of adjacent particles connected by implicit springs in series. The known

geometry of the scaffold framework facilitated the crosslinking algorithm development within

the fibrin networks. The resulting crosslinked/fused particle locations provided the fibrin

network connectivity, allowing the network extension simulations to exhibit the emergent

behavior of fibrin assemblies.

The influence of platelet concentration on the overall aggregate strength was studied

by modifying the number of platelet particles included in the simulation framework. We

developed a method to calculate the platelet contribution to the strength of the aggregates

by comparing the force versus distance curves for each platelet concentration and activation

level scenario combination to the force versus distance curve of the lone fibrin network.

The resulting model provides insight into the mechanism of platelet and fibrin aggregate

dynamics and bridges the gap to the macroscale by approximating comparable metrics, like

the platelet contribution to clot strength, to those obtained from whole-blood assays. By

taking a bottom-up approach to the problem, the trans-scale relationships among the model

components were elucidated through the emergent behavior of the combined models. The

model functions as a general tool that can be expanded and used to predict the effects that

changes in blood composition have on hemostasis.
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The in silico aggregate extension studies performed herein were executed on a local server

and each run required several weeks to generate the included results. Because the acceleration

of the particles within these systems is possibly small, a quasi-static assumption could be

considered, which is appropriate for modeling slow deformations of granular materials [110].

In the case of very dense materials, the quasi-static assumption means that the normal force

calculations can be replaced with constants to drastically reduce the computational cost

of the simulations. However, if the assembly is loose and the particle impacts cannot be

ignored, the force terms must evolve according to classical DEM.

6.2 Future Work

The model that stands as the culmination of the work from this dissertation provides

the foundation for a general model that can be tailored toward a specific application or

expanded to include more functional detail. Including the influence of fluid blood plasma

is a logical consideration that can be explored through coupled LBM-DEM simulations of

platelet aggregation under flow. Results from studies of platelet aggregation under flow can

be used to inform the initial conditions of the platelet and fibrin aggregate studies from

Chapter 5, in place of the existing assumptions regarding initial platelet concentrations. It

is known that platelet activation levels influence the rate and capacity of platelet aggregation

and the ultimate packing density of platelet plugs in vitro [66]. The varied platelet activation

model developed in Chapter 2 can be coupled with a model of platelet aggregation under

flow as an avenue to explore this effect.

We can simulate platelet aggregation under a couette flow scenario to approach the

inclusion of an additional plasma component and to study the effect of platelet activation

level on aggregation. The model can be calibrated with a comparable experimental study that

measured the contractile forces in platelet aggregates within a microfluidic device [104]. In

vitro, the activation capacity of platelets was controlled by modifying the shear rate and the

concentration of inhibitory agents. Ting et al. designed a microfluidic system that contained

an array of fibrin-coated flow barriers that acted as the substrate for platelet aggregation. We
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can simulate the microfluidic array by including a single flow barrier set and implementing

periodic boundaries to execute repeated unit cells of the simulation framework. A schematic

of the unit cell of the described microfluidic array is included in Figure 34.

We can vary the platelet concentration as well as the platelet activation level at the

beginning of the LBM-DEM simulations and define a pressure drop across the x dimension

to initiate a constant flow rate in the direction of the flow. A schematic of the initial

condition with 40 platelets within the cross-sectional view is included as Figure 35. During

the simulations, the frequency of platelet adhesion and the force due to platelet contraction

can be tracked to investigate the sensitivity of those metrics to changes in the platelet count

and platelet function. A schematic of the steady-state flow scheme is included as Figure 36

where the fluid flows from left to right. The capture radius of the activated in silico platelets

can be tuned in order to fit the aggregation rate of the platelets to the data available in the

literature [104].

A fibrin polymerization model could also be developed that generates the strands and

networks that align with the model from Chapter 5. By incorporating fibrin polymerization,

the expanded model will be equipped to simulate platelet and fibrin aggregate formation

under flow. Such a model could be used to generate TEG tracings in silico. In modeling

the TEG in silico, specific relationships between the blood coagulation participants and

the measurable parameters of the TEG could be defined. A combined LBM-DEM in silico

model of an entire TEG would be unrealistic to simulate due to the computational expense

of calculating the interactions of the billions of blood cell particles across a time frame on

the order of minutes. Instead, we could model a volume fraction of a to-scale TEG as a unit

cell with periodic boundary conditions.

Through a dynamic in silico model of a TEG, the clot assembly and organization of the

blood particles could be visualized in real-time, which is not possible with existing TEGs

in the clinic. The organization of simulated clots could be paired with the TEG outputs to

establish certain patterns that result in specific TEG shapes. By recreating TEG tracings and

simulating various coagulopathic states, the model could also be used to explore and design

more precise treatments. It is possible and not unlikely that by incorporating the mechanistic

details into the cell-scale models, the computational framework could be used to identify
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Figure 34: Schematic of a three-dimensional 60 µm x 30 µm x 50 µm unit cell of the LBM-

DEM simulation framework with two solid, fibrin-coated flow barriers. Simulation boundary

conditions are periodic in x and z and fluid flows in the x-direction.
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Figure 35: Cross-section of initial condition of a three-dimensional LBM-DEM simulation

of the activation, aggregation, and adhesion of 40 platelets (in view) under flow with two

solid, fibrin-coated boundary walls impeding the flow. Simulation boundary conditions are

periodic in the x and z direction, and finite in y.
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Figure 36: Cross-section of fluid steady-state of a three-dimensional LBM-DEM simulation

of flow with two solid boundary walls impeding the flow. Simulation boundary conditions

are periodic in the x and z direction, and finite in y.
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several possible treatment designs. The model could then be used to determine patient

responses to treatments in silico, prior to administration in the clinic, so the traditional

heuristic cocktail of blood-product therapies given to patients with abnormal TEGs becomes

extinct.

The mechanistic cell-scale models of fibrin and platelets can be easily modified so as

to simulate coagulopathies. For instance, thrombocytopenia can be simulated by lowering

the platelet concentration; hemophilia would result in non-/weakly activated platelets; and

disfibrinogenemia, which is clinically defined as low fibrin functionality, can be simulated by

a decreased fibrin concentration. If hundreds of TEG shapes could be reproduced by varying

the initial blood composition as in Chapters 4 and 5, multiplicities in the readouts could be

sought to develop blood composition probability distributions for each TEG shape. More

precise treatments could be designed by observing the sensitivity of the blood composition

on the TEG shapes in response to changes in particular concentrations. From the hundreds

of simulated TEGs, subtle differences in TEG shapes could also be able to identified that

would indicate a strong benefit from a specific therapy. The model could be used to sim-

ulate enough TEGs with corresponding treatment trajectories to establish a database-type

reference for clinicians to use to inform treatment times and dosage regimens for patients

with coagulopathies as a means to improve their outcomes by moving the patient into an

acceptable clotting performance range.
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