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PENGAYUN TERKAWAL ARUS INDUKTOR AKTIF 5.0 GHz  

 

ABSTRAK 

 

 Permintaan untuk komunikasi tanpa-wayar dalam bidang suara dan data 

telah berkembang pesat. Tahap integrasi sistem pemancar-penerima radio frekuensi 

(RF) telah menjadi sangat rumit dan usaha untuk menangani hal ini telah meningkat 

hampir secara eksponen. Komunikasi RF pada masa kini memerlukan sistem yang 

amat pantas untuk aplikasi-aplikasi laju sperti 4G and 5G, julat penalaan yang lebar 

bagi pelbagai aplikasi, ralat masa yang minimum dan kos yang rendah. Pengayun 

memainkan peranan yang mustahak dalam menentukan kualiti sistem perhubungan 

RF. Kebanyakan pengayun adalah  berdasarkan voltan dan dikenali sebagai VCO 

(Voltage Controlled Oscillator) dan terdiri terutamanya daripada dua jenis, iaitu 

pengayun tangki LC dan bukan tangki LC. Yang pertama amat baik untuk hingar-fasa 

yang rendah disebabkan pengunaan induktor pasif. Yang kedua seperti pengayun 

cincin adalah jauh lebih kecil saiznya daripada tangki LC, dan dengan itu lebih rendah 

kosnya, tetapi mempunyai hingar-fasa yang lebih tinggi. Walau bagaimanapun, 

sumber arus menjadi lebih popular dan digunakan dalam pengayun untuk membentuk 

pengayun terkawal arus (CCO) disebabkan oleh frekuensi yang lebih laju berbanding 

sumber voltan. Dengan itu, matlamat projek ini adalah untuk mereka pengayun 

terkawal arus yang boleh menjana frekuensi tengah 5 GHz, julat penalaan 500 MHz 

dan hingar-fasa yang lebih baik dari -110 dBc/Hz dengan menggunakan induktor aktif. 

Untuk menzahirkan konsep yang dicadangkan, pengayun cincin 5-peringkat dengan 

induktor aktif yang dikawal oleh litar mod arus telah direka bentuk dan disimulasi 

menggunakan teknologi CMOS 180 nm daripada Silterra. Projek ini diteruskan dengan 



 

 

xvi 

 

mengesahkan dan membuat penambahbaikan kepada parameter prestasi asas reka 

bentuk pengayun tempatan yang menggabungkan laluan dwi  lengah, lengah pencong 

negatif,  sumber arus, transistor terganding silang dan induktor aktif. Analisis 

dilakukan tentang bagaimana transistor terganding silang memainkan peranan dalam 

mempengaruhi corak operasi frekuensi yang tersendiri. Keputusan simulasi 

menunjukkan bahawa frekuensi operasi maksima pengayun adalah pada 5.81 GHz. 

Transistor MOS terganding silang dan induktor aktif dikawal oleh  sumber arus telah 

membantu dalam memperbaiki hingar-fasa dan frekuensi pengayun. Pelbagai 

keputusan simulasi menunjukkan bahawa julat frekuensi pengayun 5-peringkat ini 

adalah antara 3.87 GHz hingga 5.81 GHz. Parameter kritikal sesuatu pengayun, iaitu 

hingar-fasa, ialah -113.2 dBc/Hz pada ofset 1 MHz dengan frekuensi tengah 5.81 GHz. 

Prestasi reka bentuk baru ini telah meningkat, secara umum, sebanyak 36% bagi 

frekuensi manakala 8% bagi hingar-fasa, apabila dibandingkan dengan topologi bukan 

tangki LC. Selain daripada frekuensi dan hingar-fasa, kuasa-keluaran dan saiz reka 

bentuk ini adalah 9.41 dBm dan 0.22 mm2 masing-masing. Ini merupakan peningkatan 

sebanyak 53% bagi kuasa-keluaran dan 33% bagi saiz apabila dibandingkan dengan 

toplogi bukan tangki LC. Kesimpulannya, reka bentuk ini berjaya mencapai sasaran-

sasaran yang telah ditetapkan pada permulaan penyelidikan ini. 
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A 5.0 GHz ACTIVE INDUCTOR CURRENT CONTROLLED OSCILLATOR 

 

ABSTRACT 

 

The demand for wireless communications in the field of voice and data has rapidly 

grown. The integration level of Radio Frequency (RF) transceiver systems have 

become very intricate and efforts to deal with this has risen almost exponentially. 

Communications nowadays require system with extreme speeds to cater for high speed 

applications such as 4G and 5G, wider tuning range to cater for variety of applications, 

minimal timing errors and lower cost. Oscillators play the key role in determining the 

quality of the RF communications system. Most oscillators are voltage based and 

known as Voltage Controlled Oscillator (VCO) and comes mainly in two types, which 

are LC Tank Oscillators and Non LC-Tank Oscillators. The former is very good for 

lower phase noise due the usage of passive inductor. The latter such as ring oscillators 

are much smaller in size than LC-Tank, thus lower cost, but exhibit much higher phase 

noise. However, current sources are becoming more popular and employed in 

oscillator to form Current Controlled Oscillator (CCO) due to its higher frequency as 

compared to voltage source. Hence the goal has been put forth to design a CCO that 

produces 5 GHz center frequency, tuning range of 500 MHz and with phase noise 

better than -110 dBc/Hz by employing active inductor. To demonstrate the proposed 

concept, 5-stage ring oscillator with active inductor design controlled by a current-

mode circuit, were designed and ran through simulation using 180 nm CMOS 

technology provided by Silterra. The work proceeds to validate and make 

improvements to the fundamental performance parameters of a local oscillator design 

that incorporates dual delay path, negative skewed delay, current source, cross-coupled 
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transistors and active inductor. Analysis were done on how the cross-coupled 

transistors play a role in affecting the distinctive frequency operation pattern. Results 

from the simulation show that the oscillator’s maximum frequency obtained without 

distortion is 5.81 GHz. The cross coupled MOS transistors and active inductor 

controlled by current source aided well in improving the oscillator’s phase noise and 

frequency. Various simulation results show that the frequency range of this 5-stage 

oscillator runs between 3.87 GHz to 5.81 GHz. The critical parameter of any oscillator, 

which is the phase noise, is -113.2 dBc/Hz at 1 MHz offset with a center frequency of 

5.81 GHz. The performance of this new design has improved, in general, about 36% 

on the frequency while 8% on the phase noise as compared with the non-LC Tank 

topology. Apart from the frequency and phase noise, the output power and size of this 

design is 9.41 dBm and 0.22 mm2 respectively. This is an improvement of 53% on the 

output power and 33% on the size when comparing with the non-LC Tank topology.   

Conclusively this design has successfully achieved the goals set forth for this research.  
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CHAPTER ONE 

 

INTRODUCTION 

 

1.0 Background 

 

In this era, most of modern communication systems’ timing information, be it 

in the form of clock signals or oscillator signals, it plays a very critical role in the 

system’s performance. Clock or oscillator signals, in most of such applications, are in 

fact used to drive sampling circuits or mixers. This is because the instant variations in 

the sampling, no matter systematic or random are very crucial performance 

parameters. Local oscillator provides the timing information for some systems. At 

times the timing information is provided by timing source that is from external source. 

When this happens, it’s critical to minimize the timing errors. This cannot be done 

without minimizing the noise from the buffering and distribution of clocks in the whole 

system. Quite a numerous different applications possibly require a clock that is local, 

having different frequency or different phase. Such requirements can only be delivered 

by a Phase-Locked-Loop (PLL) or circuits that a very similar to PLL. As explained 

earlier, minimizing the timing error in such PLL systems should be the primary focus. 

For this, a very careful attention in understanding all of the noise sources within the 

PLL and its interacting circuits as a whole is extremely crucial. Due to this very reason, 

PLL applications are very complex and challenging in achieving superior performance 

level. Timing error sources are the worst enemy in PLL systems but employing correct 

techniques will help to alleviate or minimize the issues. PLL is used for data and clock 

recovery in systems such as disk drive, optical communication and local area networks. 
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There are also some other systems that use PLL for synthesizing the frequency. 

These systems include radio receivers and transmitters. Microprocessors, Digital 

Signal Processors and Network routers are more complex systems in which the clocks 

are synchronized, primarily to minimize clock-skew, using either a PLL or DLL 

(Delay-Locked-Loop). Timing errors are often known as timing uncertainty in 

communication systems and it comes in several types. However, the most important 

one is the phase noise, also known as timing jitter. It is nothing but the sampling error 

or more precisely the random variations in the sampling phase of a signal. The source 

for this phase noise/timing jitter is the 1/f and thermal noise in the active and passive 

devices that are part of PLL system’s components, particularly the voltage-controlled-

oscillator (VCO).  

 

Another source for this sampling phase systematic variations is the AC 

variation that happens in phase. This is called spurious tones. This occurs when signals 

inject through the other parts of the circuit. Phase shift/drift or frequency offset can be 

caused by abrupt changes in the substrate. Advanced circuit methods or techniques are 

often employed to minimize these noise sources. However, the performance of such 

advanced circuits get limited by thermal noise of the device, which is very fundamental 

in RF systems. To offset or overcome the noise effect and to boost the optimal 

performance of RF applications of frequency synthesis, a Low-Phase-Noise oscillator 

provides the rescue. This kind of oscillator often formed by an external resonator 

which is nothing but a high quality factor (“Q”) varactor tuned LC-tank. Nevertheless, 

most RF applications are now desiring a conventional oscillator that is fully-

monolithic. Monolithic designs integrate a large numbers of transistors built on single 

semiconductor base material making it much smaller in magnitude but faster and 
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cheaper of those discrete electronic components. But it brings its own set of issues 

because the timing errors described above is now more prone to occur and can easily 

be generated from various means and becomes a bigger threat. The high-Q external 

resonator that was once the problem solver can no longer now be used. Designing a 

monolithic oscillator becomes more difficult and complex. New circuit techniques 

such as using current source instead of voltage source, active inductor as opposed to 

passive inductor need to be implemented on chip to tackle these problems. 

 

Voltage-controlled delay chain and ring-oscillators are now abundantly 

available as on-chip for the clock recovery and synthesis applications. These on-chip 

applications have greatly reduced not only the cost but also the complexity of the 

systems. However, these applications have very restrictive phase noise requirements 

and raising questions of these on-chip designs’ applicability and performance for RF 

frequency synthesis. Current-controlled oscillator, on the other hand, has become more 

attractive due to its faster frequency as compared to voltage controlled (DiClemente 

and Yaun, 2006). CCO also helps greatly in improving the noise performance due to 

the steady state flow of current.  

 

This thesis explains the oscillator fundamentals, performance limit due thermal 

noise in ring-oscillators and their suitability or applicability to RF frequency synthesis 

systems. It further describes the design techniques and approaches for very low phase 

noise and/or low timing jitter circuits, which are technically the basis to most RF 

applications. The dissertation explores the trade-offs at the buffer/delay (Eken and 

Uyemura, 2004) and/or at the oscillator level that a designer can avail. Even options 

at PLL level is analyzed in this thesis. The merits of CCO versus the popular VCO are 
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explained. In addition, this thesis explains the desire of a monolithic oscillator in the 

frequency synthesizers design in radio receivers. Detailed comparisons of the overall 

features of the proposed design are made with other designs including those with on-

chip LC-tuned circuits (Zito et al., 2012).  

 

1.1 Problems Statements 

 

Looking back at the earlier Section 1.0, it is clear that minimizing the timing 

errors in RF circuit by improving the noise performance has been a key problem to 

tackle. Moreover, communications system nowadays require extreme frequency, for 

example, 3G and 4G. Hence circuits that can provide a high frequency has been a 

crucial desire as well. Along with high frequencies, lower phase noise is also of a dire 

need. Using passive inductors to achieve this has been a norm. Works by Chahaboor 

and Gonoodhi (2017), Elkholy and Entesari, 2017 and Allesandro and Ippolito (2012) 

are some references that employs huge passive inductors. However, these inductors 

need to be available in smaller size preferably resulting several nH such that the cost 

is lower. Unfortunately spiral or passive inductors typically are not small hence 

alternate to this passive elements are desired.  Thus, implementation of active inductors 

are recommended. Monolithic integration of the CCO with active inductor in place of 

VCO, could greatly enhance the performance of the oscillator in the aforementioned 

aspects. Works by Ma et. al (2013) and DiClemente et. al (2008) are some good 

references on this front.  
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1.2 Objectives 

 

The objectives of this project are: 

 

 To design an oscillator that operates at 1.8 V and controlled by current source 

instead of voltage source – making it Current Controlled Oscillator (CCO) 

 

 To design a CCO that produces a high speed oscillation preferably up to 5 GHz 

 

 To design a CCO with a wide tuning range, preferably 500 MHz 

 

 To design a CCO with active inductor instead of passive (spiral) inductor to 

boost the phase noise, preferably lower than -110 dBc/Hz 

 

 To design a CCO that dissipates very low power preferably lower than 10 mW 

 

 

 

 

1.3 Thesis Scope 

 

This thesis is confined to the following scope: 

 

1. Extensive study of active-inductor and passive-inductor on their advantages 

and disadvantages with respect to their overall performance, cost and 

complexity. The success of replacement of an active inductor in lieu of passive 

inductor. Passive inductors greatly help phase-noise but at the same time comes 

with distinct disadvantages as previously explained. Active inductor’s 

performance has been very comparable to passive and provides the best of both 

worlds. 

 

 

2. A very deep analysis on possible techniques to generate higher and wider 

operating frequency and range of operating frequency respectively. The deep 

analysis helps us research through the performance of various techniques and 



 

 

6 

 

to settle on one that is most optimum by all means. A thorough comparison on 

CCO versus VCO will also be provided which is used to eventually to prove 

that CCO is far better performing design as compared to VCO.   

 

3. The post-layout design and implementation of ring CCO with active inductor. 

The design will use non LC_tank ring topology using the above mentioned 

techniques, including issues such as coarse and fine tuning, maximum 

frequency of operation, and design of high frequency CCOs. 

4. A detailed literature and simulation work performed on voltage controlled 

versus current controlled circuit was also carried out. Simulations were using 

Cadence HSPICE on Silterra 180 nm process.  

 

1.4 Thesis Outline 

 

 

 This thesis describes the design and analysis of a high frequency oscillator that 

integrates active inductor for phase noise improvement and current controlled circuit 

for added frequency and range. Objectives of this work and the scope and outline of 

this thesis has been explained thus far.  

 

 Chapter Two walks us through the fundamentals of an oscillator and the 

challenges that they come with. It also introduces to the many types of oscillators and 

their respective challenges. Alongside the challenges, the chapter also gives us a peak 

on thus far solutions invented and proposed by many well-known scholars for these 

very challenges.  
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