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ALGORITMA PERKEMBANGAN STRUKTUR BAHARU UNTUK SISTEM 

KABUR 

 ABSTRAK 

Pada masa kini, isu kompromi antara kejituan dan penafsiran semakin mendapat 

perhatian dalam merekabentuk sistem kabur yang baharu. Dalam tesis ini, tiga model 

kabur berkembang iaitu peningkatan pengenalan istilah kabur (EFTI), kaedah 

pengenalan struktur (SIM) dan pendekatan perkembangan struktur (SEA) dicadangkan 

untuk menangani isu kompromi antara kejituan dan penafsiran. EFTI, SIM dan SEA 

direkabentuk berdasarkan kaedah-kaedah pengurangan ralat. EFTI dibangunkan untuk 

disesuaikan dengan masalah-masalah masukan tunggal keluaran tunggal (SISO) (iaitu 

satu dimensi), manakala SIM dan SEA dibangunkan untuk disesuaikan dengan 

masukan berbilang keluaran tunggal (MISO) (iaitu dimensi sederhana dan tinggi). 

EFTI bermula dengan struktur kabur mudah yang terdiri daripada dua istilah kabur 

dalam ruang masukan. Kemudian, EFTI terus berkembang dengan mengenal pasti 

titik-titik pemisahan pada ruang masukan yang serasi dengan parameter-parameter 

yang dihasilkan. Sebaliknya, SIM dan SEA bermula dengan satu peraturan kabur yang 

tidak mempunyai istilah-istilah kabur dalam ruang masukan tanpa mengira tahap 

dimensi masukan. Kemudian kedua-dua kaedah berkembang berdasarkan proses 

penutupan atau pemisahan untuk sifat masukan yang terpilih pada subkawasan yang 

dipilih. Sekiranya sifat yang terpilih tidak mempunyai istilah kabur, penutupan 

dilakukan, tetapi jika berlaku sebaliknya, pemisahan dilaksanakan. Proses 

perkembangan berlanjutan sehingga kejituan yang memuaskan dipenuhi atau bilangan 

subkawasan maksimum dicapai. Teknik pemetakan berdasarkan ciri persamaan dan 

teknik pemilihan-pemetakan statik dibangunkan untuk SIM. Manakala, teknik 
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pemetakan berdasarkan pemisahan subkawasan yang terpilih kepada dua subkawasan 

dengan ralat purata maksimum dan minimum dan teknik pemilihan pemetakan yang 

dinamik dibangunkan untuk SEA. Selain itu, teknik pemangkasan berdasarkan tahap 

kepentingan peraturan kabur dicadangkan untuk mengecilkan asas peraturan SEA. 

Berbanding dengan model SISO dan dengan menggunakan tiga set data, EFTI 

menghasilkan RMSE terendah dengan bilangan peraturan yang paling rendah. Bagi 

model MISO pula dan dengan menggunakan sembilan set data penanda aras, SIM 

mencapai RMSE terendah dengan saiz terkecil sistem asas-peraturan. Demikian juga 

untuk model-model terkini MISO dan dengan menggunakan enam set data penanda 

aras, SEA juga menghasilkan RMSE terendah dengan saiz terkecil sistem asas-

peraturan. Sebagai kesimpulan, keputusan yang diperolehi membuktikan bahawa 

EFTI, SIM dan SEA dapat menghasilkan kompromi yang ketara antara kejituan dan 

penafsiran. 
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NEW STRUCTURAL EVOLVING ALGORITHMS FOR FUZZY SYSTEMS  

ABSTRACT 

Recently, the issue of accuracy and interpretability trade-off has been getting 

more attention when designing new fuzzy systems. In this thesis, three evolving fuzzy 

models, namely enhancement of fuzzy term identification (EFTI), structure 

identification method (SIM) and structural evolving approach (SEA) are proposed to 

spot the best trade-off between accuracy and interpretability. EFTI, SIM and SEA are 

designed based on error reducing methods. EFTI is developed to fit with single input 

single output (SISO) problems (i.e. one dimension), while SIM and SEA are developed 

to fit with multi input single output (MISO) (medium and high dimension). EFTI 

begins with a simple fuzzy structure that is composed of two fuzzy terms in the input 

space. Then EFTI continues evolving by identifying splitting points of the input space 

that are compatible with the consequent parameters. On the other hand, SIM and SEA 

start with one fuzzy rule that has no fuzzy term in the input space regardless of the 

degree level of input dimension. Then they evolve on the basis of either closure or split 

processes for the selected input attribute of the selected subregion. If the selected 

attribute has no fuzzy terms, closure is performed, otherwise split is done. The 

evolving continues until a satisfactory accuracy is fulfilled or maximum number of 

subregion is reached. A partitioning technique based on the similarity feature and a 

static partition-selection technique are developed for SIM. While, a partitioning 

technique based on splitting the selected subregion into two subregions with maximum 

and minimum average error and a dynamic partition-selection technique are developed 

for SEA. Furthermore, a pruning technique based on the importance level of the fuzzy 

rules is proposed to shrink the rule-base of SEA. Compared with SISO models and 
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using three datasets, EFTI produces the lowest RMSE with lowest number of rules. 

For MISO models and using nine benchmark datasets, SIM achieves the lowest RMSE 

with the smallest size of rule-base systems. Similarly, for MISO state-of-the-art 

models and using six benchmark datasets, SEA also produces the lowest RMSE with 

the smallest size of rule-base systems. In conclusion, the results proved that EFTI, SIM 

and SEA are able to produce a significant trade-off between accuracy and 

interpretability.  
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INTRODUCTION 

1.1 Introduction 

Fuzzy modelling is considered one of the main techniques used in 

computational intelligence. It is widely known that it can represent systems with 

semantic description. Fuzzy systems are designed to produce a rule-base composed of 

many fuzzy rules (i.e. IF THEN). Natural language is used to express the terms 

involved in these rules. In fact, the reasoning form of fuzzy rules expressed by human 

language offers a significant feature that helps users, who are in charge to make crucial 

decisions, understand how the systems’ outputs are concluded. From users view, this 

feature (i.e. interpretability) which is provided by fuzzy set theory, grants any created 

systems with more reliability. 

Fuzzy rules of any fuzzy system are mainly generated from two different types, 

namely designed by human expert or by data. Fuzzy systems designed by human 

experts were popular in the early approaches. These approaches exploit the knowledge 

and experience of the human experts to form the IF-THEN fuzzy rules. The lack and 

difficulty of knowledge acquisition has led the researchers to move to design fuzzy 

systems using input-output (I/O) data by applying some machine learning techniques. 

The fuzzy rules generated from numerical data result a better performance than the 

ones generated by human experts (Alonso et al., 2015). However, these data-driven 

models suffer from lack of interpretability that the models, built by human expert, 

have.  Subsequently, an issue of accuracy and interpretability trade-off has emerged. 
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As a result, fuzzy systems have been divided on the basis of accuracy and 

interpretability trade-off into two different tracks as follow: 

Linguistic fuzzy modelling (LFM) (Ahmed and Isa, 2017): the main goal of this 

type is to build fuzzy rule based systems (FRBSs) with high interpretability using 

linguistic fuzzy rules. Mamdani structure is usually utilized to build LFM models due 

to the use of linguistic variables in both the antecedent and consequent parameters 

(Gacto et al., 2011).  

Precise fuzzy modelling (PFM) (Ahmed and Isa, 2017): the main goal of this 

type is to build fuzzy rule based systems (FRBSs) with high accuracy. PFM models 

are mainly designed based on Takagi–Sugeno structure which build approximate 

FRBSs that use non-linguistic fuzzy sets for the antecedent and consequent parameters 

(Gacto et al., 2011).  

In this work, the main focus is to find the best trade-off between accuracy and 

interpretability. These two characteristics have a conflict relation. They are 

contradicting each other. Therefore, identifying the best trade-off between accuracy 

and interpretability, which means to produce systems that have low RMSE with small 

and high interpretable rule-base, is considered a real challenge. 

Many fuzzy systems have been proposed regarding the issue of accuracy and 

interpretability trade-off. These fuzzy systems can be categorized into three types 

namely, fuzzy clustering, nonlinear parameters optimization and grid and tree 

partitioning methods based on error reduction mechanism (i.e. error reducing 

methods).   
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