COMPATIBILITY AND DEGRADABILITY OF KENAF-FILLED LINEAR LOW DENSITY POLYETHYLENE/POLYVINYL ALCOHOL COMPOSITES

PANG AI LING

UNIVERSITI SAINS MALAYSIA

2018

COMPATIBILITY AND DEGRADABILITY OF KENAF-FILLED LINEAR LOW DENSITY POLYETHYLENE/POLYVINYL ALCOHOL COMPOSITES

by

PANG AI LING

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

August 2018

ACKNOWLEDGEMENT

First and foremost, I would like to express my greatest appreciation to my supervisor, Prof. Dr. Hj. Hanafi Ismail for his valuable guidance, support and consistent encouragement during my study in USM. It is a great opportunity to complete my doctoral programme under his supervision. I would also like to express my gratitude to my co-supervisor, Prof. Madya. Dr. Azhar Abu Bakar, who always support and spending his precious time to teach and help me during my research study.

Most of the results presented in this thesis would not have been accomplished without a close collaboration with few laboratories. Hence, I would like to take this opportunity to thank the technical staffs from laboratories namely, Mr. Shahril, Mr. Suharudin, Mr. Mohamad Hassan, Mr. Rashid, Mr. Khairi, Mr. Faisal, Mr. Shahrizol, and Mr. Azrul. My humble regards to other whose names are not mentioned here for their kind assistance. Furthermore, I wish to thank Dean of the School of Materials and Mineral Resources Engineering (SMMRE), and all administrative as well as technical staffs of SMMRE, who has been kind enough to advise and help me in completing my study.

I am also thankful to my friends especially Dr. Mohsen Ahmadipour, Dr. Norshahida, Dr. Mathialagan, Dr. Sam Sung Ting, Dr. Ooi, Dr. Rohani, Dr. Dalina, Amin Lotfi, Ahmad Fikri, Nurulaizan, Nur Fasihah, for their personal and scholarly interaction. Nice knowing all of you and thanks. Last but not least, my special thanks to my parents and families for their endless care, love and supports.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	xxi
ABSTRAK	xxii
ABSTRACT	xxiv

CHAPTER ONE: INTRODUCTION

1.1. Background	1
1.2. Problem statement	4
1.3. Research objectives	5
1.4. Thesis outlines	5

CHAPTER TWO: LITERATURE REVIEW

2.1. Non-degradable synthetic polymer/biodegradable polymer blend	7
2.1.1. Linear low-density polyethylene (LLDPE)	7

	2.1.2. Polyvinyl alcohol (PVOH)	8
	2.1.3. Linear low-density polyethylene/polyvinyl alcohol	9
	(LLDPE/PVOH) blends and composites	
2.2.	Natural fibers filled polymer composites	11
	2.2.1. Characteristic of natural fibers	11
	2.2.2. Kenaf fiber	15
2.3.	Kenaf-based polymer composites	19
	2.3.1. Introduction	19
	2.3.2. Chemically-treated kenaf-based polymer composites	20
2.4.	Degradation	25
	2.4.1. Introduction	25
	2.4.2. Natural weathering	26
	2.4.3. Soil burial	30

CHAPTER THREE: MATERIALS AND METHODOLOGY

3.1.1	Materials	33
	3.1.1. Linear low density polyethylene	33
	3.1.2. Polyvinyl alcohol	33
	3.1.3. Kenaf bast fiber	34
	3.1.4. Silane coupling agent: 3-(trimethoxysilyl)propyl methacrylate	34
	3.1.5. Epichlorohydrin	34
	3.1.6. Sodium hydroxide	35
	3.1.7. Chromium (III) sulfate	35
	3.1.8. Lysine	36
3.2. 1	Filler treatments	36

	3.2.1.	Silane coupling agent	36
	3.2.2.	Glycidyl ester of fatty acid as eco-friendly coupling agent	37
		(EFCA)	
	3.2.3.	Chromium (III) sulfate treatment	37
	3.2.4.	Lysine treatment	37
3.3.	Fabric	ation of composites	38
	3.3.1.	Melt-mixing process	38
	3.3.2.	Compression moulding	38
3.4.	Measu	rement and analysis	38
	3.4.1.	Tensile properties	38
	3.4.2.	Fourier transform infrared spectroscopy (FTIR)	39
	3.4.3.	Morphological study	39
	3.4.4.	Thermogravimetry analysis (TGA)	40
	3.4.5.	Differential scanning calorimetry (DSC)	40
	3.4.6.	Water absorption	41
	3.4.7.	Weight loss	41
3.5.	Degra	dation Tests	42
	3.5.1.	Natural weathering	42
	3.5.2.	Soil burial	42

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1. Linear low-density polyethylene/poly (vinyl alcohol)/kenaf bast fiber	: 49
(LLDPE/PVOH/KNF) composites: effect of KNF loading	
4.1.1. Processing characteristics	54
4.1.2. Tensile properties	57

	4.1.3. Fourier transform infrared (FTIR) analysis	59
	4.1.4. Morphological studies	
	4.1.5. Thermogravimetric analysis (TGA)	59
	4.1.6. Water absorption	65
4.2.	Effect of natural weathering on properties of LLDPE/PVOH/KNF	67
	composites at different KNF loading	69
	4.2.1. Tensile properties	72
	4.2.2. Fourier transform infrared (FTIR) analysis	74
	4.2.3. Morphological studies	
	4.2.4. Differential scanning calorimetry (DSC)	74
	4.2.5. Weight Loss	79
4.3.	Effect of soil burial on properties of LLDPE/PVOH/KNF composites	80
	at different KNF loading	82
	4.3.1. Tensile properties	85
	4.3.2. Fourier transform infrared (FTIR) analysis	86
	4.3.3. Morphological studies	
	4.3.4. Differential scanning calorimetry (DSC)	
	4.3.5. Weight loss	86
4.4.	Linear low-density polyethylene/Poly (vinyl alcohol)/Kenaf	89
	(LLDPE/PVOH/KNF) Composites: Effect of 3-(trimethoxysilyl)propyl	95
	methacrylate (TMS) as Silane Coupling Agent	97
	4.4.1. Processing characteristics	
	4.4.2. Tensile properties	
	4.4.3. Fourier transform infrared (FTIR) analysis	95
	4.4.4. Morphological studies	97

	4.4.5. Thermogravimetric analysis (TGA)	99
	4.4.6. Water absorption	101
4.5.	Linear low-density polyethylene/poly (vinyl alcohol)/kenaf bast fiber	104
	(LLDPE/PVOH/KNF) Composites: effect of glycidyl ester of fatty acid	
	as eco-friendly coupling agent (EFCA)	104
	4.5.1. Processing characteristics	104
	4.5.2. Tensile properties	106
	4.5.3. Fourier transform infrared (FTIR) analysis	111
	4.5.4. Morphological studies	113
	4.5.5. Thermogravimetric analysis (TGA)	115
	4.5.6. Water absorption	117
4.6.	Linear low-density polyethylene/poly (vinyl alcohol)/kenaf bast fiber	119
	(LLDPE/PVOH/KNF) Composites: effect of chromium (III) sulfate	
	4.6.1. Processing characteristics	119
	4.6.2. Tensile properties	122
	4.6.3. Fourier transform infrared (FTIR) analysis	126
	4.6.4. Morphological studies	128
	4.6.5. Thermogravimetric analysis (TGA)	128
	4.6.6. Water absorption	132
4.7.	Linear low-density polyethylene/poly (vinyl alcohol)/kenaf bast fiber	134
	(LLDPE/PVOH/KNF) composites: effect of lysine	
	4.7.1. Processing characteristics	134
	4.7.2. Tensile properties	136
	4.7.3. Fourier transform infrared (FTIR) analysis	141
	4.7.4. Morphological studies	142

4.7.5. Thermogravimetric analysis (TGA)	144
4.7.6. Water absorption	146
CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK	
5.1. Conclusions	149
5.2. Future recommendations	151
REFERENCES	153

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Chemical composition of different constituents of kenaf fibers	16
Table 2.2	Mechanical properties and density values of selected natural (plant/	17
	lignocellulosic) and synthetic fibers	
Table 3.1	Properties of LLDPE by Lotte Chemical Titan	33
Table 3.2	Properties of PVOH by Sigma-Adrich Co.	33
Table 3.3	Technical specification of TMS by Sigma-Aldrich Co.	34
Table 3.4	Technical specification of C ₃ H ₅ ClO by Sigma-Adrich Co.	35
Table 3.5	Technical specification of NaOH by Sigma-Adrich Co.	35
Table 3.6	Technical specification of $[Cr(H_2O)_6]_2(SO_4)_3.6(H_2O)$ by Sigma-	35
	Adrich Co.	
Table 3.7	Technical specification of $C_6H_{14}N_2O_2$ by Sigma-Adrich Co.	36
Table 4.1	TG-DTG parameters for LLDPE/PVOH/KNF composites with	55
	various KNF loadings	
Table 4.2	Retention of tensile properties of LLDPE/PVOH/KNF composites	65
	with different KNF loadings after being subjected to weathering test	
	for 3 and 6 months	
Table 4.3	DSC results of LLDPE/PVOH/40 phr KNF composites before,	71
	after 3 and 6 months of natural weathering exposure	
Table 4.4	Retention of tensile properties of LLDPE/PVOH/KNF composites	78
	with different KNF loadings after being subjected to soil burial test	
	for 3 and 6 months	
Table 4.5	DSC results of LLDPE/PVOH/KNF composites (at 40 phr KNF)	85
	before, after 3 and 6 months of soil burial exposure	
Table 4.6	TG-DTG parameters of LLDPE/PVOH/KNF composites with	100
	untreated and TMS-treated KNF at 10 and 40 phr loadings	

ix

- Table 4.7
 TGA parameters of LLDPE/PVOH/KNF composites with untreated
 117

 and EFCA-treated KNF at 10 and 40 phr KNF loadings
 117
- Table 4.8TG-DTG parameters of LLDPE/PVOH.KNF composites with131untreated and $Cr_2(SO_4)_3$ -treated KNF at 10 and 40 phr loadings
- Table 4.9TGA parameters of LLDPE/PVOH/KNF composites with untreated146and lysine-treated KNF at 10 and 40 phr KNF loadings

LIST OF FIGURES

Figure 2.1	Classification of natural fibers	11
Figure 2.5	Chemical structure of cellulose	13
Figure 2.3	Kenaf plant	15
Figure 2.4	Schematic synthesis of eco-friendly coupling agent, EFCA	24
Figure 3.1	Average temperature and rainfall data obtained from meteorology	43
	station in Butterworth (year 2017)	
Figure 4.1	Processing torques of LLDPE/PVOH/KNF composites with	45
	different KNF loadings	
Figure 4.2	Stabilization torques of LLDPE/PVOH/KNF composites with	46
	different KNF loadings	
Figure 4.3	Tensile strength of LLDPE/PVOH/KNF composites with different	47
	KNF loadings	
Figure 4.4	Tensile modulus of LLDPE/PVOH/KNF composites with different	48
	KNF loadings	
Figure 4.5	Elongation at break of LLDPE/PVOH/KNF composites with	49
	different KNF loadings	
Figure 4.6	FTIR spectra of LLDPE/PVOH/KNF composites with (a) 0 phr	50
(a)-(c)	KNF (b) 10 phr KNF and (c) 40 phr KNF loadings	
Figure 4.7	SEM micrographs of tensile fractured surfaces of	52
(a)-(d)	LLDPE/PVOH/KNF composites with (a) 0 phr KNF (b) 10 phr	
	KNF (c) 20 phr KNF and (d) 40 phr KNF loadings at magnification	
	of 200x	
Figure 4.8	TG thermograms of LLDPE/PVOH/KNF composites with different	54
	KNF loadings	
Figure 4.9	DTG thermograms of LLDPE/PVOH/KNF composites with	55

different KNF loadings

Figure 4.10	Water absorption of LLDPE/PVOH/KNF composites with	57
	different KNF loadings	
Figure 4.11	Equilibrium water absorption of LLDPE/PVOH/KNF composites	59
	With different KNF loadings	
Figure 4.12	Tensile strength of LLDPE/PVOH/KNF composites at different	61
	KNF loadings before, and after subjected to natural	
	weathering test for 3 and 6 months	
Figure 4.13	Tensile modulus of LLDPE/PVOH/KNF composites at different	63
	KNF loadings before, and after subjected to natural	
	weathering test for 3 and 6 months	
Figure 4.14	Elongation at break of LLDPE/PVOH/KNF composites at different	64
	KNF loadings before, and after subjected to natural	
	weathering test for 3 and 6 months	
Figure 4.15	FTIR spectra of LLDPE/PVOH/KNF composites with (a) before	66
(a)-(c)	(0 month) (b) after 3 months and (c) after 6 months of natural	
	weathering exposure	
Figure 4.16	SEM micrographs of LLDPE/PVOH/KNF composites with (a) 0	68
(a)-(f)	phr KNF (b) 10 phr KNF (c) 40 phr KNF after 3 months of	
	weathering exposure and (d) 0 phr KNF (e) 10 phr KNF (f) 40 phr	
	KNF after 6 months of weathering exposure at magnification of	
	1000X	
Figure 4.17	DSC thermograms (melting) of LLDPE/PVOH/KNF composites	70
	before, after 3 and 6 months of natural weathering exposure	
Figure 4.18	DSC thermograms (cooling) of LLDPE/PVOH/KNF composites	71
	before, after 3 and 6 months of natural weathering exposure	
Figure 4.19	Weight loss of LLDPE/PVOH/KNF composites at different KNF	73

loadings after subjected to natural weathering for 3 and 6 months

- Figure 4.20 Tensile strength of LLDPE/PVOH/KNF composites at different 75 KNF loadings, before and after subjected to soil burial test for 3 and 6 months
- Figure 4.21 Tensile modulus of LLDPE/PVOH/KNF composites with different 76 KNF loadings, before and after subjected to soil burial test for 3 and 6 months
- Figure 4.22 Elongation at break of LLDPE/PVOH/KNF composites with 78 different KNF loadings after subjected to soil burial test for 3 and 6 months
- Figure 4.23 FTIR spectra of LLDPE/PVOH/KNF composites (at 40 phr KNF) 80 before, after 3 and 6 months of soil burial exposure
- Figure 4.24 SEM micrographs of LLDPE/PVOH/KNF composites with (a) 0 81
- (a)-(f) phr KNF (b) 10 phr KNF (c) 40 phr KNF after 3 months of soil
 burial exposure and (d) 0 phr KNF (e) 10 phr KNF (f) 40 phr KNF
 after 6 months of soil burial exposure at magnification of 1000X
- Figure 4.25 DSC thermograms (melting) of LLDPE/PVOH/KNF composites 83 (at 40 phr KNF) before, after 3 and 6 months of soil burial exposure
- Figure 4.26 DSC thermograms (cooling) of LLDPE/PVOH/KNF composites 84 (at 40 phr KNF) before, after 3 and 6 months of soil burial exposure
- Figure 4.27 Weight loss of LLDPE/PVOH/KNF composites with different 86 KNF loadings after subjected to soil burial for 3 and 6 months
- Figure 4.28 Comparison of processing torque of LLDPE/PVOH/KNF 87 composites with untreated and TMS-treated KNF at 10 and 40 phr KNF loading, respectively

Figure 4.29	Comparison of stabilization torque of LLDPE/PVOH/KNF	88
	composites with untreated and TMS-treated KNF at 10 and 40 phr	
	KNF loading, respectively	
Figure 4.30	Tensile strength of LLDPE/PVOH/KNF composites with untreated	89
	and TMS-treated KNF at different KNF loadings	
Figure 4.31	Hydrolysis of TMS	91
Figure 4.32	Proposed possible interaction between TMS and KNF	91
Figure 4.33	Proposed possible interaction between TMS-treated KNF and	92
	PVOH	
Figure 4.34	Proposed possible interaction between intermediate and LLDPE	92
Figure 4.35	Tensile modulus of LLDPE/PVOH/KNF composites with	93
	untreated and TMS-treated KNF at different KNF loadings	
Figure 4.36	Elongation at break of LLDPE/PVOH/KNF composites with	94
	untreated and TMS-treated KNF at different KNF loadings	
Figure 4.37	FTIR spectra of LLDPE/PVOH/KNF composites with (a) untreated	96
(a)-(b)	and (b) TMS-treated KNF at 40 phr KNF loading	
Figure 4.38	SEM micrographs of fractured surfaces of LLDPE/PVOH/KNF	98
(a)-(f)	composites with (a) 10 phr untreated KNF (b) 10 phr TMS-treated	
	KNF (c) 20 phr untreated KNF and (d) 20 phr TMS-treated KNF	
	(e) 40 phr untreated KNF and (f) 40 phr TMS-treated KNF at	
	magnification of 200x	
Figure 4.39	TG thermograms of LLDPE/PVOH/KNF composites with	99
	untreated and TMS-treated KNF at 10 and 40 phr KNF loadings	
Figure 4.40	DTG thermograms of LLDPE/PVOH/KNF composites with	100
	untreated and TMS-treated KNF at 10 and 40 phr KNF loadings	
Figure 4.41	Water absorption of LLDPE/PVOH/KNF composites with	102
	untreated and TMS-treated KNF at 10 and 40 phr KNF loadings	

xiv

- Figure 4.42 Equilibrium water absorption of LLDPE/PVOH/KNF composites 103 With untreated and TMS-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.43 Processing torque of LLDPE/PVOH/KNF composites with 104 untreated and EFCA-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.44
 Stabilization torque of LLDPE/PVOH/KNF composites with
 105

 untreated and EFCA-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.45 Tensile strength of LLDPE/PVOH/KNF composites with untreated 107 and EFCA-treated KNF at different KNF loadings
- Figure 4.46 Proposed possible mechanism during pre-treatment of KNF with 108 EFCA
- Figure 4.47 Proposed possible mechanism between EFCA-treated KNF, PVOH 108 and LLDPE
- Figure 4.48 Tensile modulus of LLDPE/PVOH/KNF composites with 109 untreated and EFCA-treated KNF at different KNF loadings
- Figure 4.49 Elongation at break of LLDPE/PVOH/KNF composites with 111 untreated and EFCA-treated KNF at different KNF loadings
- Figure 4.50FTIR spectra of LLDPE/PVOH/KNF composites with112(a)-(b)(a) 40 phr untreated and (b) 40 phr EFCA-treated KNF

114

- Figure 4.51 SEM micrographs of fractured surfaces of LLDPE/PVOH/KNF
- (a)-(f) composites with (a) 10 phr untreated KNF (b) 10 phr EFCA-treated KNF (c) 20 phr untreated KNF and (d) 20 phr EFCA-treated KNF
 (e) 40 phr untreated KNF and (f) 40 phr EFCA-treated KNF at magnification of 200x
- Figure 4.52 TG thermograms of LLDPE/PVOH/KNF composites with 115 untreated and EFCA-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.53 DTG thermograms of LLDPE/PVOH/KNF composites with 116

untreated and EFCA-treated KNF at 10 and 40 phr KNF loadings

- Figure 4.54 Water absorption of LLDPE/PVOH/KNF composites with 118 untreated and EFCA-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.55 Equilibrium water absorption of LLDPE/PVOH/KNF composites 119 with untreated and EFCA-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.56 Processing torque of LLDPE/PVOH/KNF composites with 120 untreated and $Cr_2(SO_4)_3$ -treated KNF at 10 and 40 phr KNF loadings
- Figure 4.57 Comparison of stabilization torque of LLDPE/PVOH/KNF 121 composites with untreated and Cr₂(SO₄)₃-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.58 Tensile strength of LLDPE/PVOH/KNF composites with untreated 122 and $Cr_2(SO_4)_3$ -treated KNF at different KNF loadings
- Figure 4.59Proposed possible reactions that occurred during $Cr_2(SO_4)_3$ 123Treatment of KNF
- Figure 4.60Tensile modulus of LLDPE/PVOH/KNF composites with124untreated and $Cr_2(SO_4)_3$ -treated KNF at different KNF loadings
- Figure 4.61Elongation at break of LLDPE/PVOH/KNF composites with126untreated and $Cr_2(SO_4)_3$ -treated KNF at different KNF loadings
- Figure 4.62 FTIR spectra of LLDPE/PVOH/KNF composites with (a) 40 phr 127
- (a)-(b) untreated and (b) 40 phr $Cr_2(SO_4)_3$ -treated KNF
- Figure 4.63 SEM micrographs of fractured surfaces of LLDPE/PVOH/KNF 129
- (a)-(f)composites with (a) 10 phr untreated KNF (b) 10 phr $Cr_2(SO_4)_3$ -
treated KNF (c) 20 phr untreated KNF (d) 20 phr $Cr_2(SO_4)_3$ -treated
KNF (e) 40 phr untreated KNF and (f) 40 phr $Cr_2(SO_4)_3$ -treated
KNF at magnification of 200x

- Figure 4.64 TG thermograms of LLDPE/PVOHKNF composites with untreated 130 and $Cr_2(SO_4)_3$ -treated KNF at 10 and 40 phr KNF loadings
- Figure 4.65 DTG thermograms of LLDPE/PVOH/KNF composites with 131 untreated and Cr₂(SO₄)₃-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.66 Water absorption of LLDPE/PVOH/KNF composites with 132 untreated and Cr₂(SO₄)₃-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.67 Equilibrium water absorption of LLDPE/PVOH/KNF composites 133 with untreated and $Cr_2(SO_4)_3$ -treated KNF at 10 and 40 phr KNF loadings
- Figure 4.68
 Processing torques of LLDPE/PVOH/KNF composites with
 134

 untreated and lysine-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.69Stabilization torques of LLDPE/PVOH/KNF composites with135untreated and lysine-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.70 Tensile strength of LLDPE/PVOH/KNF composites with untreated 137 and lysine-treated KNF at different KNF loadings
- Figure 4.71Proposed possible reaction between KNF and lysine138
- Figure 4.72 Proposed possible reaction between lysine-treated KNF and 138 LLDPE/PVOH matrices
- Figure 4.73 Tensile modulus of LLDPE/PVOH/KNF composites with 139 untreated and lysine-treated KNF at different KNF loadings
- Figure 4.74 Elongation at break of LLDPE/PVOH/KNF composites with 140 untreated and lysine-treated KNF at different KNF loadings
- Figure 4.75 FTIR spectra of LLDPE/PVOH/KNF composites with (a) 40 phr 141 (a)-(b) untreated and (b) 40 phr lysine-treated KNF
- Figure 4.76 SEM micrographs of fractured surfaces of LLDPE/PVOH/KNF 143

- (a)-(f) composites with (a) 10 phr untreated KNF (b) 10 phr lysine-treated KNF (c) 20 phr untreated KNF (d) 20 phr lysine-treated KNF
 (e) 40 phr untreated KNF and (f) 40 phr lysine treated KNF at magnification of 200x
- Figure 4.77 TG thermograms of LLDPE/PVOH/KNF composites with 145 untreated and lysine-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.78 DTG thermograms of LLDPE/PVOH/KNF composites with 146 untreated and lysine-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.79
 Water absorption of LLDPE/PVOH/KNF composites with
 147

 untreated and lysine-treated KNF at 10 and 40 phr KNF loadings
- Figure 4.80 Equilibrium water absorption of LLDPE/PVOH/KNF composites 148 with untreated and lysine-treated KNF at 10 and 40 phr KNF loadings

LIST OF ABBREVIATIONS

AFTA **ASEAN Free Trade Area** APTES 3-aminopropyltriethoxysilane ASTM American Society for Testing and Materials COCA Coconut oil coupling agent DSC Differential Scanning Calorimetry DTG Derivative thermogravimetric EFCA Eco-friendly coupling agent EVA Ethylene vinyl acetate FESEM field emission scanning electron microscope FTIR Fourier transform infrared HDPE High density polyethylene KCF Kenaf core fiber **KNF** Kenaf bast fiber KF Kenaf fiber KP Kenaf powder LDPE Low density polyethylene LLDPE Linear low density polyethylene MAPE Maleated polyethylene NaHCO₃ Sodium hydrogen carbonate NaOH Sodium hydroxide NKTB National Kenaf and Tobacco Board NR Natural rubber PA Phthalic anhydride PALF Pineapple leaf fiber PE Polyethylene

PE-g-MA	Polyethylene-grafted maleic anhydride
PLA	Poly (lactic acid)
pMDI	Polymeric methylene diphenyl diisocyanate
PP	Polypropylene
PSP	Peanut shell powder
PU	Polyurethane
PVC	Poly (vinyl chloride)
PVOH	Poly (vinyl alcohol)
rHDPE	Recycled high-density polyethylene
rPP	Recycled polypropylene
SEM	Scanning Electron Microscopy
SS	Sago starch
TGA	Thermogravimetric analysis
TMS	3-3-(trimethoxysilyl)propyl methacrylate
TPSS	Thermoplastic sago starch
UV	Ultra-violet
WMCF	Waste maize cob flour
WTD	Waste tire dust

LIST OF SYMBOLS

E_b	Elongation at break
Kg	Kilogram
cm ³	Centimetre cube
rpm	Revolutions per minute
phr	Parts per hundred resin
wt.%	weight percent
MPa	MegaPascal
C	Degree celcius
mm	Millimetre
μm	Micrometer
N/m	Newton per metre
mW	Miliwatt
$\Delta H_{\rm f}$	Heat of fusion
T _m	Melting temperature
T _c	Crystallization temperature
%	Percentage
X _c	Degree of crystallinity
J/g	Joule per gram
T _{5%}	Temperature at 5% weight loss
T _{50%}	Temperature at 50% weight loss
W _t	Total water absorption (in weight)
\mathbf{W}_1	Weight of specimen before immersion
\mathbf{W}_2	Weight of specimen after immersion
W _b	Weight of sample before degradation test
W _a	Weight of sample after degradation test

KESERASIAN DAN KEBOLEHDEGRADASI KOMPOSIT POLIETILENA BERKETUMPATAN RENDAH LINEAR/POLIVINIL ALKOHOL TERISI KENAF

ABSTRAK

Penyelidikan berkaitan komposit polimer gentian semula jadi sedang meningkat dengan cepat disebabkan permintaan tinggi pada produk polimer yang mesra alam dengan harga yang berpatutan. Usaha-usaha yang berterusan adalah tertumpu untuk meningkatkan sifat-sifat komposit ini. Di dalam kajian ini, adunan polietilena berketumpatan rendah linear (LLDPE)/polivinil alkohol (PVOH) telah digunakan sebagai matrik polimer dengan komposisi yang telah ditetapkan pada 60/40 (wt. %), manakala gentian kenaf bast (KNF) digunakan sebagai pengisi. Kesan pembebanan pengisi dan pelbagai rawatan kimia terhadap pengisi semula jadi tersebut ke atas ciriciri pemprosesan, sifat-sifat tensil, struktur, morfologi, termal dan biodegradasi komposit LLDPE/PVOH/KNF telah dikaji. Komposit LLDPE/PVOH/KNF mengandungi pembebanan KNF yang berbeza (0, 10, 20, 30 and 40 phr) telah disediakan menggunakan pencampuran leburan dan pengacuanan mampatan. Didapati bahawa peningkatan pembebanan KNF, tork pemprosesan, modulus tensil, kestabilan termal dan penyerapan air komposit telah meningkat. Walau bagaimanapun, kekuatan tensil dan pemanjangan pada takat putus komposit telah didapati menurun. Ini menunjukkan lekatan antara muka yang lemah di antara matrik LLDPE/PVOH dan KNF sebagaimana dibuktikan dalam kajian SEM. Pencuacaan semula jadi dan penanaman di dalam tanah telah memberikan kesan negatif kepada sifat-sifat komposit LLDPE/PVOH/KNF, sebagaimana ditunjukkan oleh

kemerosotan di dalam sifat-sifat tensil, kerosakan permukaan yang terdedah, dan peratusan kehilangan berat yang lebih tinggi. Seterusnya, keputusan daripada spektra FTIR mengesahkan kehadiran degradasi dengan kemunculan puncak karbonil yang jelas. Kehadiran perawatan kimia ke atas KNF telah meningkatkan sifat-sifat tensil, morfologi, sifat terma dan juga mengurangkan penyerapan air komposit LLDPE/PVOH/KNF. Perawatan kimia KNF telah disahkan melalui spektroskopi FTIR. Berdasarkan keputusan yang diperolehi, didapati penambahan KNF terawat 3-(trimetosisilil)propil metakrilat (TMS) ke dalam matrik LLDPE/PVOH telah meningkatkan tork pemprosesan, kekuatan tensil, modulus tensil, kestabilan terma dan mengurangkan penyerapan air komposit. Ini dibuktikan dengan peningkatan lekatan antara muka di antara KNF terawat TMS dan matrik LLDPE/PVOH melalui analisis SEM. Penambahan KNF terawat dengan agen pengkupel mesra alam (EFCA), kromium (III) sulfat dan lisin ke dalam matrik LLDPE/PVOH juga didapati tork pemprosesan, sifat-sifat tensil, kestabilan terma meningkatkan dan mengurangkan penyerapan air komposit. Keputusan daripada analisis SEM menunjukkan peningkatan di dalam lekatan antara muka di antara KNF terawat dan matrik LLDPE/PVOH. Keputusan FTIR juga mengesahkan pembentukan ikatan kimia di antara agen-agen pengkupel dan KNF, seterusnya menghasilkan pautan di antara KNF and matrik LLDPE/PVOH.