

FORMATION OF TiO₂ NANOTUBULAR STRUCTURE IN FLUORINATED ETHYLENE GLYCOL ELECTROLYTES CONTAINING ADDITIVES BY ANODISATION

MUSTAFFA ALI AZHAR BIN TAIB

UNIVERSITI SAINS MALAYSIA

2018

FORMATION OF TiO₂ NANOTUBULAR STRUCTURE IN FLUORINATED ETHYLENE GLYCOL ELECTROLYTES CONTAINING ADDITIVES BY ANODISATION

by

MUSTAFFA ALI AZHAR BIN TAIB

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

October 2018

DECLARATION

I hereby declare that I have conducted, completed the research work and written the thesis entitle "Formation of TiO_2 Nanotubular Structure in Fluorinated Ethylene Glycol Electrolytes Containing Additives by Anodisation". I also declare that it has not been previously submitted for the award of any degree or diploma or other similar title of this for any other examining body or University.

Candidate	: Mustaffa Ali Azhar Bin Taib	Signature	:
Date	:		
Witnessed by			
Supervisor	: Assoc. Prof. Dr. Zainovia Lockman	Signature	:
Date	:		

ACKNOWLEDGEMENTS

Alhamdulillah, praise be to Allah, the Most Gracious and Merciful. First and foremost, I would like to express grateful to Almighty Allah for enabling me to complete my Ph.D study. My warmest appreciation to Public Service Department of Malaysia (JPA) for the study leave through HLP 2013 Scholarship support throughout my doctorate study. My sincere gratitude goes to Long Term Research Grant Scheme (LRGS) under OneBAJA project from Ministry of Higher Education Malaysia for partially providing financial support to laboratory expenses for this research work.

I would like to extend my sincere gratitude to my supervisor, Assoc. Prof. Dr. Zainovia Lockman and co-supervisors, Prof. Dr. Khairunisak Abdul Razak and Prof. Dr. Mariatti Jaafar@Mustapha for their continuous encouragement, guidance, and support throughout the research journey and writing of this thesis. Furthermore, special thanks go to my advisors, Prof. Atsunori Matsuda, Dr. Go Kawamura and Dr. Tan Wai Kian for their assistance and encouragement during my collaborative research attachment in Matsuda-Muto-Kawamura Laboratory, Toyohashi University of Technology (TUT), Japan under the Foreign Researcher programme.

I also would like to express my heartfelt thanks to the Dean (Prof. Dr. Zuhailawati Hussain), Deputy Deans (both of my co-supervisors), lecturers, technicians (Mdm. Fong Lee Lee, Mr. Kemuridan Md. Desa, Mr. Mohd Azzam Rejab, Mr. Abdul Rashid Selamat, Mr. Muhammad Khairi Khalid, Mdm. Haslina Zulkifli and Mr. Mohammad Azrul Zainol Abidin), administration staffs of the School of Materials and Mineral Resources Engineering (Mrs. Nor Asmah Md. Nor and Mrs. NurSyalydah Salleh) and IPS USM Engineering staff (Mrs. Siti Norlaila Ahmad) who had assisted and contributed in my research study. Special thanks to all

ii

my postgraduate fellow friends (Dr. Khairul Arifah Saharudin, Dr. Muhammad Syukron, Dr. Mohsen Ahmadipour, Ervina Junaidi and Nurhaswani Alias), GEMs group members (Dr. Monna Rozana, Faisal Budiman and Nurul Izza Soaid), PG5 Civil Engineering group members and other coursemates for their continuous motivations and advices throughout my PhD journey.

Last but not least, my endless gratitude and loving thanks to my beloved soulmate and wife, Nor Samida Hj. Yaacob and the apple of my eyes, Ameer Amjad, for the sacrifices they have made in these many challenging years. My deepest gratitude goes to my parents in law, Hj. Yaacob and Hjh. Fatimah, my brothers and my sisters that were always there for the encouragement and prayers. Thanks for all your precious love, patient, understanding, endless support and du'a during my Ph.D. journey. They have encouraged me toward achieving my research work with wonderful life. I dedicate this thesis to the memoir of my late parents, Hjh. Selamah and Hj. Taib.

May Allah reward all of your good deeds with Jannah. Allahumma aameen.

Thank you. Mustaffa Ali Azhar Bin Taib Oktober 2018

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	Х
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	XX
ABSTRAK	xxii
ABSTRACT	xxiii

CHAPTER ONE : INTRODUCTION

1.1	Background		1
	1.1.1	Photoactive materials for environmental cleaning	4
	1.1.2	Photoactive materials for energy generation	5
	1.1.3	Nanomaterials as photoactive materials for environmental clean-up and renewable energy	7
	1.1.4	TiO ₂ nanotube arrays (TNTs) formation	8
1.2	Problem statements		10
1.3	Objectives of the study		12
1.4	Research scope		12
1.5	Thesis outline		13

CHAPTER TWO : LITERATURE REVIEW

2.1	Introduc	tion	14
2.2	Titaniun	n dioxide (TiO ₂)	14
2.3	Properti	es of TiO ₂	15
	2.3.1	Anatase	16
	2.3.2	Rutile	17
	2.3.3	Electronic and optical properties	18
2.4	Photo-ir	nduced properties of TiO_2	19
	2.4.1	Heterogeneous photocatalysis	19
2.5	TiO ₂ as	photocatalyst	20
	2.5.1	Mechanism of semiconductor photocatalytic water	25

splitting 2.5.2 Nanotubular TiO₂ as photocatalyst 27 2.6 PEC cells 32 2.6.1 TiO₂ for PEC cells 34 Basic principle of PEC for photocurrent density 2.6.2 37 measurement 2.7 Synthesis of TNTs 38 2.8 Formation of TNTs by anodic oxidation process 41 2.8.1 Fundamental of the passive oxide film formation on Ti 41 2.8.2 Growth mechanism of TNTs 42 2.8.2 (a) Field-assisted dissolution growth model 47 2.8.2 (b) Flow mechanism growth model 51 2.8.2 (c) Layer by layer growth model 52 2.8.3 The electrolyte generation for TNT arrays formation 54 First electrolyte generation of TNTs 2.8.3 (a) 54 formation Second electrolyte generation of TNTs 55 2.8.3 (b) formation 2.8.3 (c) Third electrolyte generation of TNTs 56 formation 2.8.4 Factors effecting geometry and composition 58 2.8.4 (a) Effect of voltage 59 2.8.4 (b) Effect of anodisation time 61 2.8.4 (c) Effect of oxidants volume content 63 2.9 Free-standing TNT arrays 64 2.9.1 Mechanical delamination 64 2.9.2 Chemical separation 65 2.9.3 Physical parameter 65 2.10 Crystallisation and phase formation of TNT arrays 66 2.10.1 Thermal annealing 68

CHAPTER THREE : METHODOLOGY

3.1	Introduction	74
3.2	Raw materials and chemical	74
3.3	Experimental procedure and parameter studied	75

	3.3.1	Foil preparation	76
	3.3.2	Electrolyte preparation	77
	3.3.3	Anodisation	77
	3.3.4	Cleaning of TNTs (post cleaning)	81
	3.3.5	Thermal annealing	81
3.4	Characte	erisation and analysis methods	83
	3.4.1	Morphology	83
	3.4.2	Crystallinity	86
	3.4.3	Surface composition and chemical analysis	88
	3.4.4	Optical property	89
3.5	Photo-ir	nduced reaction	90
	3.5.1	Photocatalytic degradation of organic dyes experiments	90
		3.5.1 (a) Adsorbate	90
		3.5.1 (b) Measurement of organic dye decolouration	91
	3.5.2	Photocurrent density measurement	92

CHAPTER FOUR : RESULTS AND DISCUSSION

4.1	Introduct	tion	94
4.2	Anodisat	tion of Ti in pure EG electrolyte	94
4.3	Anodisat	tion of Ti in H_2O and H_2O_2 added EG electrolyte	101
	4.3.1	Current-time	102
	4.3.2	Effect of applied voltage on the nanotube arrays formation	112
	4.3.3	Mechanism of grassy TNTs	118
	4.3.4	Elemental and chemical composition	121
	4.3.5	Phase formation and transformation study	122
4.4	Anodisat	ion of Ti in KOH added EG electrolyte	132
	4.4.1	Effect of KOH molarity in EG/NH ₄ F electrolyte	133
	4.4.2	Effect of anodisation time	136
	4.4.3	Effect of annealing temperature on the phase formation and transformation	143
	4.4.4	Optical properties of TNTs	150
	4.4.5	Chemical state and electronic state	151
4.5	Anodisat	tion of Ti in LiOH added EG electrolyte	154

4.5.1	Morphology of annealed TNTs	155
4.5.2	TEM analysis of as-anodised and annealed TNTs	158
4.5.3	Effect of thermal annealing on anodised TNTs	160
4.5.4	Raman analysis	161
4.5.5	Chemical composition of the nanotube layers	162
Anodisati	ion of Ti in Na ₂ CO ₃ added EG electrolyte	168
4.6.1	Effect of volume of Na ₂ CO ₃	168
4.6.2	TEM images of FSTNTs	175
4.6.3	Crystallinity of FSTNTs	177
	4.6.3 (a) Crystallinity of as-anodised FSTNTs	177
	4.6.3 (b) Crystallinity of annealed FSTNTs	179
4.6.4	Chemical state of FSTNTs	186
Photo-ind LiOH and	luced reactions of TNTs formed in H ₂ O, H ₂ O ₂ , KOH, l Na ₂ CO ₃ added EF/NH ₄ F electrolyte	188
4.7.1	Photocatalytic activity of grassy TNTs	190
	4.7.3 (a) Mechanism of photocatalytic activity of MO dye	194
4.7.2	Photocatalytic activity of FSTNTs	197
4.7.3	Photocatalytic degradation of MB dye	199
4.7.4	Photocurrent density measurement	205
	 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 Anodisati 4.6.1 4.6.2 4.6.3 4.6.4 Photo-ind LiOH and 4.7.1 4.7.2 4.7.3 4.7.4 	4.5.1Morphology of annealed TNTs4.5.2TEM analysis of as-anodised and annealed TNTs4.5.3Effect of thermal annealing on anodised TNTs4.5.4Raman analysis4.5.5Chemical composition of the nanotube layersAnodisation of Ti in Na2CO3 added EG electrolyte4.6.1Effect of volume of Na2CO34.6.2TEM images of FSTNTs4.6.3Crystallinity of FSTNTs4.6.4Crystallinity of FSTNTs4.6.5Chemical state of FSTNTs4.6.4Chemical state of FSTNTs4.6.4Chemical state of FSTNTs4.6.4Chemical state of FSTNTs4.6.4Chemical state of FSTNTs4.6.4Addet EF/NH4F electrolyte4.7.1Photocatalytic activity of grassy TNTs4.7.2Photocatalytic activity of FSTNTs4.7.3Photocatalytic degradation of MB dye4.7.4Photocurrent density measurement

CHAPTER FIVE : CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	211
5.2	Recommendation for future research work	213
REFE	ERENCES	215
APPE	ENDICES	
Apper	ndix A1: Raw data of current density vs. time for TNTs in	
	EG/NH ₄ F/H ₂ O	
Apper	ndix A2: Raw data of current density vs. time for TNTs in	
	EG/NH ₄ F/H ₂ O ₂	
Apper	ndix B1: ICSD data of Anatase TiO ₂ (96-900-8214)	
Apper	ndix B2: ICSD data of Rutile TiO ₂ (96-900-1682)	
Apper	ndix B3: ICSD data of Ti (96-901-1601)	
LIST	OF PUBLICATIONS	

LIST OF TABLES

Table 1.1	Treatment methods used for water/wastewater purification (Dhakras, 2011; Pereira and Alves, 2012; Ratna and Padhi, 2012; Koptsik, 2014)	3
Table 2.1	Properties of anatase and rutile (Hanaor and Sorrell, 2011; Pelaez <i>et al.</i> , 2012)	16
Table 2.2	Characteristics of 1-D TNTs	28
Table 2.3	Organic dye degradation on TNTs from the literature	32
Table 2.4	Summary of photocurrent density using TNTs as photoanode	36
Table 2.5	Fabrication methods to produce TNTs (Kulkarni et al., 2015; Ge et al., 2016)	40
Table 2.6	The evolution of anodic TNTs (Regonini et al., 2013; Alkire and Lipkowski, 2015)	58
Table 2.7	Summary of the nanotube diameter (inner and outer), and length obtained at different voltages for 17 h in fresh EG/NH ₄ F/H ₂ O electrolyte (Prakasam et al. (2007))	59
Table 2.8	Effect of anodisation voltages on anodised Ti (Macak et al., 2008)	60
Table 2.9	Effect of anodisation time on anodised Ti (Macak et al., 2008)	62
Table 2.10	Effect of water volume content on anodised Ti (Wei et al., 2010)	63
Table 2.11	Schematic diagram of detachment and open bottom methods by using different methods (Liu et al., 2012)	66
Table 2.12	Effect of different annealing temperatures on TNTs phase formation and transformation and chemical composition	72
Table 3.1	Raw materials and chemicals used for the preparation of TNTs and FSTNTs and the fabrication samples for photo-induced reaction (PEC and photocatalytic performances evaluations)	75
Table 3.2	The variable and constant parameters for overall experimental	80
Table 3.3	The objectives of each parameter studied in anodisation	81

- Table 4.1 Comparison of TNTs prepared in $EG/NH_4F/H_2O$ and 112 $EG/NH_4F/H_2O_2$ electrolyte at 60 V for 30 min
- Table 4.2Elemental composition of TNTs in various electrolyte 122
composition and applied voltages
- Table 4.3Anatase crystallite size measurement by Scherrer formula at two124different annealing temperatures
- Table 4.4Effect of KOH molarity to the structural characteristics of TNTs135and pH of EG/NH4F/KOH electrolyte
- Table 4.5Structural characteristics of TNTs prepared in EG/NH4F/KOH143electrolyte at 60 V for different anodisation time
- Table 4.6Structural characteristics of TNTs prepared in EG/NH4F/LiOH 158electrolyte at 60 V for 30 min
- Table 4.7Quantitative analysis of anatase and rutile phase presence in 160TNTs through Rietveld refinement method
- Table 4.8Element composition (EDX) on the surface of TNTs165
- Table 4.9 The dimension of TNTs anodised in $EG/NH_4F/H_2O$ and 171 $EG/NH_4F/Na_2CO_3$ electrolyte at 60 V for 60 min
- Table 4.10The dimension of TNTs at different volume of 1.0 M Na2CO3 at17460 V for 60 min
- Table 4.11 EDX analysis of FSTNTs annealed at 400° C in air and N₂ 182 atmosphere
- Table 4.12Summary of annealed FSTNTs dimension at different 184temperature in N2 atmosphere
- Table 4.13The degradation percentage of MO dye of different samples198
- $\begin{array}{ll} \mbox{Table 4.14} & \mbox{Photocurrent density at } 0.5 \ V_{Ag/AgCl} \ \mbox{and } 1.0 \ V_{Ag/AgCl} \ \mbox{of annealed} & 206 \\ & \mbox{TNTs under UV light} \end{array}$

LIST OF FIGURES

Figure 1.1	Typical morphology of TNTs by anodic oxidation process (Su et al., 2013b)	9
Figure 2.1	Crystal structure of anatase and rutile (Haggerty et al., 2017)	18
Figure 2.2	Photocatalytic process over TiO_2 (reproduced and modified from Herrmann (2005))	23
Figure 2.3	Band positions of several metal oxides semiconductors used as photocatalyst and their corresponding relative position of the band edges vs. the standard hydrogen electrode (SHE) and some important redox potential (reproduced and modified from Ghicov and Schmuki (2009))	25
Figure 2.4	Schematic representation of electron path through a percolated and oriented nanostructure (reproduced from Ghicov and Schmuki (2009))	27
Figure 2.5	Principle of PEC cells operation based on n-type semiconductor. (a) Regenerative type cell producing electric current from sunlight, and (b) a cell that generates a chemical fuel, hydrogen, through the photo-cleavage of water (reproduced and modified from Gratzel (2001))	37
Figure 2.6	Timeline and fabrication method of TiO_2 -based nanotubes (reproduced and modified from Kulkarni <i>et al.</i> (2015)	39
Figure 2.7	Schematic illustration of anodic oxidation set-up for TNTs formation (Taib et al., 2017)	41
Figure 2.8	Pourbaix diagram for the Ti-H ₂ O system at 25 $^{\circ}$ C (10 ⁻⁶ mol/ 1 ionic concentration) (Schultze and Lohrengel, 2000; Bhola and Mishra, 2013)	42

- Figure 2.9 Typical current density-time (J-t) characteristics after a voltage 43 step in the absence (compact oxide) and presence (porous oxide) of fluoride ions in the electrolyte (Roy et al., 2011)
- Figure 2.10 (a) Ionic movement of F, OH⁻ and O²⁻ species towards the 46 anode and migration of Ti^{4+} from Ti toward the electrolyte, and (b) the barrier layer thickness, (*d*), at the metal|oxide interface may minimise the oxidation rate and the dissolution process during anodisation will aid the process to keep active at the oxide|electrolyte interface (reproduced from Roy *et al.* (2011))

- Figure 2.11 Transition of nanopores to NTs promoted by FRL on the outer 47 wall of each single TiO₂ cell (reproduced and modified from Berger *et al.* (2011); Yoriya *et al.* (2011); Yoriya and Grimes (2011)
- Figure 2.12 Schematic diagram of the nanotube arrays evolution at constant 49 applied voltage: (a) formation of oxide layer, (b) pit formation on the oxide layer, (c) growth of the pit into scallop shaped pores, (d) metallic part between pores undergoes oxidation and field assisted dissolution, and (e) fully developed nanotube arrays with a corresponding top view (reproduced from Mor *et al.* (2006))
- Figure 2.13 Illustration of the flow mechanism pushing oxide and fluoride 51 layer-up the cell walls by viscous flow (reproduced from Houser and Hebert (2009); Roy *et al.* (2011))
- Figure 2.14 Layer by layer growth model: (a) Formation of anodic oxide 53 layer, (b) Cavities generation, (c) Oxide evolves and grows continuously, (d) Alignment of cavities to orient vertically to the Ti metal substrate, (e) Formation of longer channels at the collapsed parts of the linking cavities, (f) Formation of stacked oxide rings structure, (g) Elongated stacked oxide rings to form a nanotubular structure (Jaroenworaluck *et al.*, 2007; Regonini *et al.*, 2013)
- Figure 2.15 Morphology of nanotubes in first electrolyte generation 55 prepared in (a) chromic acid with HF at 5 V (Zwilling *et al.*, 1999) and 0.5 wt% HF solution at different voltages of (b) 5 V and 20 V at (c) surface and (d) cross-sectional view (Gong *et al.*, 2001)
- Figure 2.16 A comparison of SEM images cross-sectional of nanotubes 57 prepared in (a) an aqueous electrolyte with ripples along the wall and (b) an organic electrolyte with smooth walls (Macak *et al.*, 2005)
- Figure 2.17 XRD patterns of TNTs annealed at temperature range from 230 69 °C to 880 °C for 3 h. A, R and T represent anatase, rutile and titanium, respectively (Varghese *et al.*, 2003)
- Figure 2.18 Schematic represents crystallisation of TNT arrays: (a) 70 nucleation of anatase crystals; (b) growth of the anatase crystals at elevated temperature; (c) nucleation of rutile crystals; (d) growth of rutile crystals at higher temperatures; (e) complete transformation of crystallites in the walls to rutile at temperatures above approximately 620 °C (reproduced from Varghese *et al.* (2003))

Figure 3.1	Flowchart of overall research work	76
Figure 3.2	Flow chart presents the anodic formation of TNTs	78
Figure 3.3	Photograph of the anodisation experiment set-up	78
Figure 3.4	Flow chart presents the anodic formation of TNTs with the detail of characterisation and applications involved	79
Figure 3.5	Heating profile for thermal annealing of TNTs	82
Figure 3.6	Schematic diagram of photodegradation of organic dye under UV irradiation condition	92
Figure 3.7	Experimental set-up for photocurrent measurement (PEC cell)	93
Figure 4.1	Photographs of anodised Ti in EG electrolyte containing 0.45 wt.% NH ₄ F: (a) good adherence oxide, (b) poor adherence oxide on Ti, (c) corroded Ti, and (d) dissolved Ti foil after 30 min of anodisation at 60 V	95
Figure 4.2	<i>J-t</i> curves during anodic oxidation of the Ti in pure EG containing NH_4F which represent different observations: (a) poor adherence, (b) good adherence, (c) corroded Ti foil and (d) dissolved Ti foil	97
Figure 4.3	FESEM images (oxide surface and cross-section), TEM image and EDX analysis of oxide films after 30 min of anodisation in EG/NH ₄ F electrolyte at 60 V for 30 min: (a) TNTs formation, (b) porous oxide and (c) diminished porous oxide. The inset of oxide surface represents the high magnification of each sample	98
Figure 4.4	Schematic diagram of anodised Ti in pure EG containing 0.45 wt% NH_4F at 60 V for 30 min: (a) TNTs formation, (b) peeled-off, (c) corroded Ti and (d) dissolved Ti	100
Figure 4.5	<i>J-t</i> curves of anodised Ti in EG containing 0.45 wt% NH ₄ F and different oxidants. The insets show: (i) the magnified <i>J-t</i> curve in the range of $0 - 3$ min; and TEM images represent the morphology of TNTs formed in (ii) EG/NH ₄ F/H ₂ O ₂ and (ii) EG/NH ₄ F/H ₂ O	103
Figure 4.6	Schematic illustration of the TNTs growth mechanism in organic electrolyte: (a) Ti foil, (b) ejection of Ti ⁴⁺ from Ti, (c) formation of oxide barrier layer, (d) possible reaction mechanism with the presence of additives, (e) formation of pit, (f) formation of pores and (g) formation of TNTs	105

 $\begin{array}{lll} Figure 4.7 & Mechanism \ at \ inner \ tube \ bottom \ of \ anodised \ Ti \ in \ EG \ 110 \\ containing \ 0.45 \ wt\% \ NH4F \ and \ (a) \ 1 \ ml \ H_2O \ and \ (b) \ 3 \ ml \ H_2O_2 \end{array}$

at 60 V for 30 min

- Figure 4.8 FESEM (tube surface and bottom) and TEM images of anodised 111 Ti in EG containing 0.45 wt% NH_4F with: (a) 1 mL H₂O and (b) 3 mL H₂O₂ at 60 V for 30 min
- Figure 4.9 FESEM images (tube surface and cross-section) of anodised Ti 114 in EG/NH₄F/H₂O₂ electrolyte for 30 min at different anodisation voltages: (a) 20 V, (b) 40 V, (c) 60 V and (d) 80 V
- Figure 4.10 Length and diameter of TNTs prepared in EG/NH₄F/H₂O₂ 116 electrolyte at 20 80 V for 30 min
- Figure 4.11 Optical images of the as-anodised Ti foil at different applied 117 voltages for 30 min. Inset images are the electrolyte solution indicating the colour change before and after 30 min of anodisation
- Figure 4.12 Temperature-time variation during anodisation in (a) 118 $EG/NH_4F/H_2O$ at 60 V and $EG/NH_4F/H_2O_2$ at (b) 60 V and (c) 80 V for 30 min
- Figure 4.13 Schematic illustration of grassy TNTs formed in 119 EG/NH₄F/H₂O₂ electrolyte at 60 V for 30 min. The insets show:
 (a) FESEM image of grassy TNTs and TEM images of (b) tubes surface and (c) tubes bottom
- Figure 4.14 XRD patterns of Ti foil, as-anodised and annealed grassy TNTs 123 at different annealing temperatures from 200 °C to 800 °C in air. Inset is the enlarge pattern of 400 °C and 600 °C
- Figure 4.15 FESEM images of grassy TNTs formed in EG/NH₄F/H₂O₂ 125 electrolyte at 60 V for 30 min at different annealing temperatures: (a) as-anodised, (b) 400 °C, (c) 600 °C and (d) 800 °C
- Figure 4.16 Raman spectra of as-anodised and annealed grassy TNT 128 samples (400 °C 800 °C). Inset is the as-anodised spectrum
- Figure 4.17 Phase growth and transformation mechanism (a) anatase growth 129 mechanism, (b) nucleation of rutile phase at neighbouring grain boundaries of anatase crystals; (c) nucleation of rutile inside the bulk anatase crystal and (d) nucleation of rutile at anatase crystal surface
- Figure 4.18 Illustration of anatase crystal presence in 600 °C grassy TNT. 131 The insets show: (a) TEM image (b) HRTEM and (c) FFT pattern

- Figure 4.19 FESEM images of TNTs formed at 60 V for 30 min in EG 133 electrolyte containing 0.45 wt.% NH₄F and 1mL of: (a) 0.5 M, (b) 1.0 M, (c) 2.0 M and (d) 3.0 M KOH. Inset images show the tubes surface of respective morphologies at low magnification
- Figure 4.20 FESEM images of anodised Ti within 3 min at 60 V in 137 EG/NH₄F/KOH (a) surface morphology and (b) cross-sectional view (inset is a TEM image)
- Figure 4.21 (a) FESEM and (b) TEM images of the TNTs bottom part 138
- Figure 4.22 FESEM images of surface (left column) and cross-section (right 139 column) morphology of anodised Ti at different anodisation time (a) 5 s, (b) 10 s, (c) 30 sec, (d) 1 min, (e) 3 min, (f) 5 min, (g) 10 min, (h) 30 min and (i) 60 min
- Figure 4.23 XRD patterns: Ti foil, as-anodised Ti and annealed TNTs at 144 different annealing temperatures (200 °C to 1000 °C in air) all grown in EG/NH₄F/KOH otherwise stated. Inset is the enlarged patterns for TNTs formed in EG/NH₄F/KOH and EG/NH₄F/H₂O annealed at 400 °C
- Figure 4.24 FESEM images of anodised Ti in EG/NH₄F/KOH electrolyte 146 after annealing at 400 $^{\circ}$ C: (a) surface, (b) bottom, (c) cross section and 600 $^{\circ}$ C; (d) surface, (e) bottom and (f) cross section. Insets: high magnification images
- Figure 4.25 Raman spectra of as-anodised and annealed TNTs at 400 °C in 147 air. Inset is the as-anodised spectrum
- Figure 4.26 (a) TEM and (b) HRTEM images of as-anodised sample, (c) 148 TEM and (d) HRTEM images of annealed sample at 400 °C. The inset in (b) shows the corresponding FFT and (d) SAED pattern
- Figure 4.27 Photoluminescence spectrum of annealed TNTs at 400 °C in air 151
- Figure 4.28 XPS spectra of TNTs (a) survey spectrum of as-anodised and 152 annealed samples, (b) Ti 2*p* peaks and (c) O 1*s* scan curves
- Figure 4.29 TEM image of TNTs and EFTEM elemental mapping of (b) Ti, 154 (c) O, (d) F and (e) K.
- Figure 4.30 FESEM images of TNTs (tubes surface, cross-section) and Ti 156 surface of substrate for (a) as-anodised and annealed samples at (b) 200 °C, (c) 300 °C, (d) 400 °C, (e) 500 °C, and (f) 600 °C in air for 2 h

- Figure 4.31 TEM images of nanotube wall at (a) top and (b) bottom region 159 of TNTs grown in EG/NH₄F/LiOH: (i) low magnification of cross-section, (ii) ring structure of TNTs wall and (c) high magnification of cross-section
- Figure 4.32 TNTs grown in EG/NH₄F/LiOH: (a) TEM image, (b) HRTEM 159 image and (c) SAED pattern (annealing at 400 °C)
- Figure 4.33 XRD patterns of as-anodised and annealed TNTs at different 161 annealing temperatures. The inset shows the enlarged 500 $^{\circ}$ C sample at 20: 20 35 $^{\circ}$
- Figure 4.34 Figure 4.35: Raman spectra of as-anodised and annealed TNTs 162 prepared in EG/NH₄F/LiOH electrolyte. The inset shows the Raman peak of 600 $^{\circ}$ C in the range of 300-600 cm⁻¹
- Figure 4.35 Figure 4.36: (a) XPS survey spectra of as-anodised and 163 annealed TNTs at 400 °C, and high resolution peaks of annealed sample of (b) Li 1s, (c) O 1s and (d) C 1s
- Figure 4.36 Figure 4.37: EDX analysis of (a) as-anodised and (b) annealed 164 TNTs at 400 °C
- Figure 4.37 Figure 4.38: TEM images of a single as-anodised TNTs, and its 166 EDX mapping image of (b) Ti element, (c) O element and (d) F element
- Figure 4.38 Figure 4.39: FTIR spectrum of as-anodised and annealed TNTs 167 fabricated in EG/NH₄F/LiOH electrolyte
- Figure 4.39 Figure 4.40: Illustration and optical images of the as-anodised 169 samples grown in (a) EG/NH₄F/H₂O and (b) EG/NH₄F/Na₂CO₃ electrolyte at 60 V for 60 min.
- Figure 4.40 Figure 4.41: FESEM images of tubes surface and cross-section 170 of TNT anodised in EG electrolyte containing 0.45 wt% NH₄F with (a) 2 mL H₂O, and (b) 2 mL Na₂CO₃ at 60 V for 60 min.
- Figure 4.41 Figure 4.42: FESEM images surface morphology and crosssectional of TNTs after anodisation fabricated at 60 V for 60 min in EG/NH₄F containing different volume of Na₂CO₃: (a) 1 mL, (b) 2 mL, (c) 3 mL, (d) 4 mL and (e) 5 mL
- Figure 4.42 Figure 4.43: Mechanism proposed for delamination of TNTs to 174 form FSTNTs in EG/NH₄F/Na₂CO₃ electrolytes: (a) insertion of carbonate ions inside the tubes, (b) reaction between ions, (c) formation of CO₂ gas inside the tubes, (d) self-detachment of oxide and (e) self-healing at fissures

- Figure 4.43 Figure 4.44: (a) FESEM image and (b) TEM images of 176 FSTNTs: (i-v) grown in EG/NH₄F/Na₂CO₃ at 60 V for 60 min
- Figure 4.44 Figure 4.45: (a) XRD, (b) Raman, (c) TEM and (c) HRTEM of 177 as-anodised FSTNTs grown in EG electrolyte containing 0.45 wt% NH₄F and 2 mL of Na₂CO₃. The inset shows the FFT patterns
- Figure 4.45 Figure 4.46: Possible mechanism of bidentate chelating of 179 carbonate on TiO₂ surfaces
- Figure 4.46 Figure 4.47: (a) XRD (annealed at 400 $^{\circ}$ C in air and N₂), (b) 180 TEM and (e) HRTEM of annealed FSTNTs grown in EG electrolyte containing 0.45 wt% NH₄F and 2 mL of Na₂CO₃. The inset shows the FFT patterns
- Figure 4.47 Figure 4.48: FESEM images of annealed FSTNTs at 400 °C in 181
 (a) air and (b) N₂ atmosphere. The images represent the tubes surface, cross-section view (inset is a high magnification) and tubes bottom
- Figure 4.48 Figure 4.49: FESEM images of the FSTNTs annealed at (a) 200 183 $^{\circ}$ C and (b) 600 $^{\circ}$ C in N₂ atmosphere. The images represent the tubes surface, cross-section view (inset is a high magnification) and tubes bottom
- Figure 4.49 Figure 4.50: Schematic diagram of: (a) as-anodised and (b) 184 annealed FSTNTs for the formation mechanism of faceted-shaped particles caused by Rayleigh instability
- Figure 4.50 Figure 4.51: XRD patterns of annealed FSTNTs in N_2 at (a) 185 200 °C and (b) 600 °C
- Figure 4.51 Figure 4.52: XPS spectra of (a) broad survey scan and (b) 186 narrow scan of N 1s of FSTNTs annealed at 600 °C
- Figure 4.52 Figure 4.53: FTIR spectra of FSTNTs annealed at 600 °C in N₂ 188
- Figure 4.53 Figure 4.54: Photocatalytic performance (degradation of MO) of 189 annealed TNTs under UV light
- Figure 4.54 Figure 4.55: UV-Vis spectra of MO dye degraded by grassy 191 TNT annealed at different temperatures: (a) as-anodised, (b) 200 °C, (c) 400 °C, (d) 600 °C and (e) 800 °C. The inset shows the decolouration 30 ppm of MO dyes after illumination
- Figure 4.55 Figure 4.56: Photodegradation efficiency of MO dye at different 192 annealing temperatures. The insets show: (a) FESEM image of grassy TNTs surface morphology (b) TEM image of thin wall grassy TNT and (c) XRD pattern

- Figure 4.56 Figure 4.57: Photodegradation of MO with the presence of 197 different samples; (a) blank, (b) as-anodised FSTNTs, (c) annealed FSTNTs in air and (d) annealed FSTNTs in N₂
- Figure 4.57 Figure 4.58: Photocatalytic degradation of MB dye using (a) 200 blank sample and annealed TNTs at 400 °C for 2 h in air grown in different electrolyte composition, (b) EG/NH₄F/H₂O and (c) EG/NH₄F/KOH. Inset: FESEM images of TNTs cross-section
- Figure 4.58 Figure 4.59: UV-Vis absorbance spectra of MB aqueous 201 decolouration after UV irradiation for annealed TNTs at 400 °C in air. TNTs were fabricated in EG/NH₄F/KOH electrolyte. Inset: (a) enlarge absorbance spectra for 3 5 h and (b) photograph of MB dyes degradation after exposure for 1 5 h (as labeled on the bottle)
- Figure 4.59 Idealized chemical structure for trapping position on anatase 202 TNTs. A, trapped hole with OH group (Ti⁴⁺O[•]Ti⁴⁺OH⁻) and B, inner trapped electron (Ti³⁺)
- Figure 4.60 A band diagram of TNTs and photocatalytic degradation 203 mechanism of MB dye
- Figure 4.61 Photocurrent density potential of annealed TNTs formed in (a) 205 EG/NH₄F/H₂O, (b) EG/NH₄F/H₂O₂, (c) EG/NH₄F/KOH and (d) EG/NH₄F/LiOH at 60 V for 30 min under AM 1.5 solar simulator
- Figure 4.62 Photocurrent density potential of TNTs formed in 207 EG/NH₄F/LiOH annealed at (a) as-anodised, (b) 200 °C, (c) 300 °C, (d) 400 °C, (e) 500 °C, and (f) 600 °C under AM 1.5 solar simulator

LIST OF SYMBOLS

%	Percentage
<	Less than
>	More than
0	Degree
°C	Degree Celsius
° C/min	Degree Celsius per minute
[]	Concentration
θ	Bragg angle
20	Diffraction angle
λ	Wavelength
$^{\bullet}O_2^{-}$	Superoxide radical
•ОН	Hydroxyls radical
•ООН	Hydroperoxyl radical
at%	Atomic percent
А	Ampere
Å	Angstrom (10^{-10} m)
cm	Centimetre
d	Thickness
E _c	Conduction band
Eg	Bandgap energy
E_{v}	Valence band
e	Electrons
e _{CB}	Conduction band electron
eV	Electron volt
g	Gram
h	Hour
\mathbf{h}^+	Holes
hv	Photon energy
h^+_{VB}	Valence band hole
J	Current density
L	Litre

М	Molarity
m	Meter
mA	miliampere
mg	miligram
min	Minute
mL	Millilitre
mm	Millimetre
MW	Megawatt
nm	Nanometer (10^{-9} m)
μm	Micrometer (10^{-6} m)
ppm	Parts per million
S	Second
Т	Temperature
V	Voltage
Vö	Oxygen vacancies
wt%	Weight percent

LIST OF ABBREVIATIONS

a.u.	Arbitrary unit
AAO	Anodic aluminum oxide
ads	Adsorption
AM 1.5	Air Mass Solar Spectrum (1000 W/m ²)
AR	Aspect ratio
ASEAN	The Association of Southeast Asian Nations
BSE	Backscattered electrons
СВ	Conduction band
DC	Direct current
DEG	Diethylene Glycol
DI	Deionized water
DMSO	Dimethyl Sulfoxide
DNA	Deoxyribonucleic acid
DSSC	Dye-sensitized Solar Cells
EDX	Energy Dispersive X-ray
EFTEM	Energy Filtered Transmission Electron Microscopy
EG	Ethylene Glycol
ESCA	Electron Spectroscopy for Chemical Analysis
ESI	Electron Spectroscopic Imaging
FESEM	Field Emission Scanning Electron Microscopy
FiT	Feed-in Tariff
FRL	Fluoride-rich layer
FSTNTs	Free standing TiO ₂ nanotubes
FTIR	Fourier Transform Infrared
FWHM	Full Width High Maximum
GHG	Greenhouse gases
HRTEM	High Resolution Transmission Electron Microscopy
ICSD	Inorganic Crystal Structure Database
ISO	International Organisation for Standardization
J-V	Current density-voltage
J-t	Current density-time transient

Linear sweep voltammetry
Methyl blue
Malaysia Building Integrated Photovoltaic
Methyl orange
Minute
Nanotubes
National Renewable Energy Policy and Action Plan
Powder Diffraction File
Pilling-Bedworth Ratio
Photoelectrochemical
Hydrogen potential
Photoluminescence
Reverse osmosis
Selected Area Electron Diffraction
Secondary electrons
Scanning Electron Microscopy
Standard Hydrogen Electrode
Transmission Electron Microscopy
TiO ₂ nanotubes
Ultraviolet
Ultraviolet- Visible Spectrophotometer
Valence band
X-ray Photoelectron Spectroscopy
X-ray Diffraction

PENGHASILAN STRUKTUR NANOTIUB TiO₂ DI DALAM ETILENA GLIKOL MENGANDUNGI PENAMBAH MELALUI PENGANODAN

ABSTRAK

Rangkaian tiubnano TiO_2 (TNTs) telah menarik minat yang signifikan sebagai calon yang paling sesuai untuk aplikasi tindakbalas terfotoaruh. Komposisi elektrolit adalah salah satu faktor yang penting untuk pembentukan oksida melalui penganodan. TNTs dihasilkan dengan elektrolit etilena glikol (EG)/ammonium fluorida (NH₄F) yang mengandungi pelbagai bahan tambahan (H₂O, H₂O₂, KOH, LiOH and Na₂CO₃) sebagai penyedia O²⁻ dan/atau OH⁻. Ciri-ciri yang disiasat termasuklah morfologi, struktur oksida nanotubular yang terbentuk dan penghablurannya. TNTs yang terbentuk dalam EG/NH₄F/H₂O₂ menghasilkan struktur berumput (ketebalan dinding ~ 10 nm) disebabkan punaran kimia yang tinggi di hujung permukaan tiub. TNTs yang terbentuk dalam elektrolit EG/NH₄F/KOH sebahagiannya adalah berkristal dengan panjang tiub purata 6.1 µm. Ion-ion OH⁻ menghadkan punaran permukaan yang berlebihan di hujung tiub. Sementara itu, penambahan Na₂CO₃ dalam elektrolit EG/NH_4F berjaya membentuk TNTs bebas berdiri (FSTNTs) akibat evolusi gas yang membantu melemahkan lekatan filem anodik pada Ti. FSTNTs mengandungi kristal nano anatase. TNTs berumput menunjukan kecekapan pennyahwarna fotokatalitik MO tertinggi (90.7%) selepas 2 jam disebabkan keupayaan fasa anatase untuk kekal pada 600 °C di hujung struktur berumput.