

ADSORPTION STUDIES OF HEAVY METALS ON ACTIVATED CARBON PREPARED FROM AGRICULTURAL WASTE

MUHAMAD FAIZAL BIN PAKIR MOHAMED LATIFF

UNIVERSITI SAINS MALAYSIA

2018

ADSORPTION STUDIES OF HEAVY METALS ON ACTIVATED CARBON PREPARED FROM AGRICULTURAL WASTE

by

MUHAMAD FAIZAL BIN PAKIR MOHAMED LATIFF

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

March 2018

ACKNOWLEDGEMENTS

In the name of Allah, The Most Beneficent and The Most Merciful. All praises to Allah the Almighty for giving me the strengths, guidance, and patience in completing this thesis. First and foremost, I would like to express my deepest gratitude to my family for their endless love and support for me to pursue my PhD degree. My deepest appreciation goes to Professor Dr Ismail Abustan and Associate Professor Dr Mohd Azmier Ahmad for serving as successful supervisors of this research project and for providing me with the insights and guidance to recognise my mistake. Their valuable suggestion and encouragement enable me to handle this project with confidence. Furthermore, I would like to thank both of them for landing me adequate freedom and flexibility while working on this project. Their understanding, comprehensive experience, and personal guidance have provided an excellent basis for the present thesis.

I would like to express my thanks to Mr Zaini and Mr Syamsul for their technical guidance and support towards my experimental work in the laboratories at School of Civil Engineering and School of Chemical Engineering. Besides, special acknowledgement goes to all PhD students; for sharing their knowledge, professional advice and guidelines throughout the whole project. Useful discussions and suggestions from them are deeply appreciated. Last but not least, I would like to express the deepest appreciation to those who have directly and indirectly contributed to the accomplishment and outcome of this project. Thank you so much.

Muhamad Faizal Pakir Mohamed Latiff March 2018

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvii
ABSTRAK	xviii
ABSTRACT	XX

CHAPTER ONE: INTRODUCTION

1.1	Research Overview	1
1.2	Industrial Wastewater Pollution	1
1.3	Use of Activated Carbons for Heavy Metal Removal	2
1.4	Problem Statement	2
1.5	Research Objectives	3
1.6	Scope and Limitation of Work	4

CHAPTER TWO: LITERATURE REVIEW

2.1	Heavy Metals Effluent from Industry		
	2.1.1	Zinc	5
	2.1.2	Copper (II)	6
2.2	Heavy M	letals Wastewater Treatments Via Adsorption Process	6

2.3	Precurso	Precursors for Preparation of Activated Carbon	
	2.3.1	Rubber Seed Coat	11
	2.3.2	Corncob	12
2.4	Activate	d Carbon Preparation	12
	2.4.1	Carbonisation	14
	2.4.2	Activation	14
		2.4.2(a) Physical Activation	15
		2.4.2(b) Chemical Activation	18
		2.4.2(c) Physiochemical Activation	20
	2.4.3	Optimisations of Operating Conditions for	21
		Activated Carbon Preparation	
2.5	Characte	erisation of Activated Carbon	24
	2.5.1	Activated Carbon Yield	24
	2.5.2	Surface Area and Pore Volume	25
	2.5.3	Surface morphology	27
	2.5.4	Elemental Analysis	28
	2.5.5	Surface chemistry	28
2.6	Adsorpti	on Isotherms	28
	2.6.1	Langmuir Isotherm	29
	2.6.2	Freundlich Isotherm	31
	2.6.3	Temkin Isotherm	32
2.7	Adsorpti	on Kinetics	32
	2.7.1	Pseudo-First-Order Kinetic Model	33
	2.7.2	Pseudo-Second-Order Kinetic Model	33
2.8	Column	Adsorption Studies	34

CHAPTER THREE: MATERIALS AND METHODS

3.1	Introduction	1		36
3.2	Materials			36
	3.2.1	Precursors	5	36
	3.2.2	Chemicals	5	36
	3.2.3	Gases		37
3.3	General Des	scription of	Equipment	37
	3.3.1	Activated	Carbon Preparation	37
	3.3.2	Batch Ads	orption System	41
	3.3.3	Characteri	sation System	41
		3.3.3(a)	Surface Area and Pore Volume	41
		3.3.3(b)	Surface Morphology	42
		3.3.3(c)	Elemental Analysis	42
		3.3.3(d)	Surface Chemistry	43
3.4	Experiment	al Procedure	2	43
	3.4.1	Activated	Carbon Preparation	43
		3.4.1(a)	Carbonisation	44
		3.4.1(b)	Potassium Hydroxide Impregnation	44
		3.4.1(c)	Carbon Dioxide Gasification	45
	3.4.2	Experimer	ntal Design for Preparation of Activated	45
		Carbons		
		3.4.2(a)	Model Fitting and Statistical Analysis	48
	3.4.3	Batch Eq	uilibrium Studies	49
		3.4.3(a)	Effect of Solution Temperature	50
		3.4.3(b)	Effect of solution pH	50

	3.4.3(c)	Adsorption Isotherm	5	51
3.4.4	Batch Kin	etic Studies	5	51
	3.4.4(a)	Adsorption Kinetics	5	52
3.4.5	Column F	ixed Bed Study	5	52

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Experimen	tal Design		55
	4.1.1	Preparati	on of RSCAC by Design of Experiment	55
		4.1.1(a)	Development of Regression Model	57
			Equation for Preparation of RSCAC	
		4.1.1(b)	Cu (II) Removal of RSCAC	61
		4.1.1(c)	Zn (II) Removal of RSCAC	63
		4.1.1(d)	RSCAC Yield	64
	4.1.2	Preparation	on of CCAC using Design of Experiment	65
		4.1.2(a)	Development of Regression Model	67
			Equation for Preparation of CCAC	
		4.1.2(b)	Cu (II) Removal of CCAC	71
		4.1.2(c)	Zn (II) Removal of CCAC	73
		4.1.2(d)	CCAC Yield	74
	4.1.3	Optimisa	tion of Operating Parameters	76
4.2	Characteri	sation of Pre	epared Activated Carbons	79
	4.2.1	Surface A	Area and Pore Characteristics	80
	4.2.2	Surface M	Iorphology	82
	4.2.3	Elementa	l Analysis	85
	4.2.4	Surface C	hemistry	86

4.3	Batch Ads	Batch Adsorption Studies of Cu (II) and Zn (II) on Prepared		
	RSCAC a	nd CCAC		
	4.3.1	Batch Eq	uilibrium Studies	88
		4.3.1(a)	Effect of Contact Time and Initial	88
			Concentration of Adsorbate	
		4.3.1(b)	Effect of Solution Temperature	95
		4.3.1(c)	Effect of Initial pH	97
	4.3.2	Adsorptio	on Isotherm	98
		4.3.2(a)	Cu (II) Adsorption Isotherm	99
		4.3.2(b)	Zn (II) Adsorption Isotherm	105
	4.3.3	Batch Ki	inetic Studies	110
		4.3.3(a)	Cu (II) Adsorption Kinetic	110
		4.3.3(b)	Zn (II) Adsorption Kinetic	114
4.4	Continuou	is flow exper	iment of RSCAC and CCAC	118
	4.4.1	Effect of	of bed height on adsorption of metals	118

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATION

5.1	Conclusions	123
5.2	Recommendations	125

REFERENCES

126ta

ble

APPENDICES

Appendix A: Plots of Adsorption Uptake Versus Time

Appendix B: Isotherm Model Parameters and Correlation Coefficients

Appendix C: Plots of Separation Factor Versus Adsorbate Initial

Concentration

LIST OF TABLES

Sources of heavy metals pollutants and its effects on health Example of agricultural wastes as adsorbents for the removal of heavy metal ions from aqueous solution

Page

5

10

37

Table 2.3Contrast of a single-step and two-step pyrolyses in the
preparation of activated carbon13Table 2.4Carbonization process (Joshi et al., 2015)14

Table 2.1

Table 2.2

Table 3.2

Lists of gases

- Table 2.5Summary of previous works on preparation of activated
carbon from agricultural waste using physical activation
method17
- Table 2.6Summary of previous works on preparation of activated
carbon from agricultural waste using chemical activation
method19
- Table 2.7Summary of previous works on preparation of activated
carbon from agricultural waste using physiochemical
activation method23
- Table 2.8Physical properties on the activated carbons from several
agricultural residues26
- Table 3.1List of chemicals37
- Table 3.3Independent variables and their coded levels for the CCD46Table 3.4Experimental design matrix47
- Table 4.1Experimental design matrix for preparation of RSCAC56
- Table 4.2Analysis of variance (ANOVA) for response surface58quadratic model for Cu (II) removal of RSCAC58
- Table 4.3Analysis of variance (ANOVA) for response surface59quadratic model for Zn (II) removal of RSCAC59
- Table 4.4Analysis of variance (ANOVA) for response surface60quadratic model for RSCAC yield60
- Table 4.5Experimental design matrix for preparation of CCAC66

Table 4.6	Analysis of variance (ANOVA) and for response surface quadratic model for Cu (II) removal of CCAC	68
Table 4.7	Analysis of variance (ANOVA) and for response surface quadratic model for Zn (II) removal of CCAC	69
Table 4.8	Analysis of variance (ANOVA) for response surface quadratic model for CCAC yield	69
Table 4.9	Model validation for activated carbons prepared for Cu (II) removal	78
Table 4.10	Model validation for activated carbons prepared for Zn (II) removal	78
Table 4.11	Activated carbon preparation conditions	79
Table 4.12	Surface area and pore characteristics of the prepared activated carbons	80
Table 4.13	Elemental analysis	85
Table 4.14	Langmuir, Freundlich and Temkin isotherm model parameters and correlation coefficients for adsorption of Cu (II) on RSCAC-CU and CCAC-CU at 30 °C	103
Table 4.15	Maximum adsorption capacity of various adsorbents on Cu (II)	105
Table 4.16	Langmuir, Freundlich and Temkin isotherm model parameters and correlation coefficients for adsorption of Zn (II) on RSCAC-ZN and CCAC-ZN at 30 °C	108
Table 4.17	Maximum adsorption capacity of Zn (II) of various adsorbents on Cu (II)	109
Table 4.18	Pseudo-first-order kinetic model values for adsorption of Cu (II) on RSCAC-CU and CCAC-CU at 30 $^{\circ}$ C	113
Table 4.19	Pseudo-second-order kinetic model values for adsorption of Cu (II) on RSCAC-CU and CCAC-CU at 30 °C	113
Table 4.20	Pseudo-first-order kinetic model constants, correlation coefficients and normalized standard deviation values for adsorption of Zn (II) on RSCAC-ZN and CCAC-ZN at 30 $^{\circ}C$	117

Table 4.21Pseudo-second-order kinetic model constants, correlation118coefficients and normalized standard deviation values for
adsorption of Zn (II) on RSCAC-ZN and CCAC-ZN at 30
°C°C

LIST OF FIGURES

		Page
Figure 2.1	SEM images (1000 x) of coconut shell (a) precursor and (b) activated carbon (Mohd Din et al., 2009)	27
Figure 3.1	Experimental rig for activated carbon preparation	38
Figure 3.2	A Schematic diagram of the experimental setup for activated carbon	39
Figure 3.3	Vertical tubular furnace and reactor (not to scale)	40
Figure 3.4	(a) Rubber seed coat (RSC) and (b) Corncob (CC)	44
Figure 3.5	Schematic diagram of fixed bed study	53
Figure 3.6	Schematic flow diagrams of experimental activities	54
Figure 4.1	Predicted versus experimental Cu (II) removal of RSCAC	60
Figure 4.2	Predicted versus experimental Zn (II) removal of RSCAC	61
Figure 4.3	Predicted versus experimental of RSCAC	61
Figure 4.4	Three-dimensional response surface plot of Cu (II) removal (Effect of activation temperature and IR, t=2h) of RSCAC	62
Figure 4.5	Three-dimensional response surface plot of Zn (II) removal (Effect of activation temperature and IR, $t = 2h$) of RSCAC	64
Figure 4.6	Three-dimensional response surface plot of RSCAC yield (a) Effect of activation temperature and activation time, $IR = 2.25$; (b) Effect of activation temperature and IR, t = 2h	65
Figure 4.7	Predicted versus experimental Cu (II) removal of CCAC	70
Figure 4.8	Predicted versus experimental Zn (II) removal of CCAC	70
Figure 4.9	Predicted versus experimental CCAC yield	71
Figure 4.10	Three-dimensional response surface plot of Cu (II) removal (Effect of activation temperature and IR, $t = 2h$) of CCAC	72

Figure 4.11	Three-dimensional response surface plot of Zn (II) removal (Effect of activation temperature and IR, $t = 2h$) of CCAC	73
Figure 4.12	Three-dimensional response surface plot of CCAC yield (a) Effect of activation temperature and activation time, $IR = 2.25$; (b) Effect of activation temperature and IR, t = 2h	76
Figure 4.13	(a) RSC, (b) RSC char, (c) RSCAC-CU and (d) RSCAC-ZN	83
Figure 4.14	(a) CC, (b) CC char, (c) CCAC-CU and (d) CCAC-ZN	84
Figure 4.15	FTIR spectrums; (a) RSC and (b) RSCAC	86
Figure 4.16	FTIR spectrums; (a) CC and (b) CCAC	87
Figure 4.17	Cu (II) adsorption uptake versus adsorption time at various initial concentrations at 30 $^{\circ}C$ on (a) RSCAC-CU and (b) CCAC-CU	89
Figure 4.18	Cu (II) percent removal versus adsorption time at various initial concentrations at 30 °C on (a) RSCAC-CU and (b) CCAC-CU	90
Figure 4.19	Zn (II) adsorption uptake versus adsorption time at various initial concentrations at 30 $^{\circ}C$ on (a) RSCAC-ZN and (b) CCAC-ZN	93
Figure 4.20	Zn (II) percent removal versus adsorption time at various concentrations at 30 $^\circ C$ on (a) RSCAC-CU and (b) CCAC-CU	94
Figure 4.21	Effect of solution temperature on Cu (II) adsorption capacity of RSCAC-CU and CCAC-CU	95
Figure 4.22	Effect of solution temperature on Zn (II) adsorption capacity of RSCAC-ZN and CCAC-ZN	96
Figure 4.23	Effect of initial pH on the Cu (II) removal onto RSCAC-CU and CCAC-CU	98
Figure 4.24	Effect of initial pH on the Zn (II) removal onto RSCAC-ZN and CCAC-ZN	98
Figure 4.25	Plots of (a) Langmuir; (b) Freundlich; (c) Temkin isotherms for Cu (II) adsorption on RSCAC-CU at 30, 45 and 60 $^{\circ}$ C	100

- Figure 4.26 Plots of (a) Langmuir; (b) Freundlich; (c) Temkin 101 isotherms for Cu (II) adsorption on CCAC-CU at 30, 45 and 60 °C
- Figure 4.27 Plots of separation factor, RL versus Cu (II) initial 104 concentration for adsorption of Cu (II) on RSCAC-CU and CCAC-CU
- Figure 4.28 Plots of (a) Langmuir; (b) Freundlich; (c) Temkin 106 isotherms for Zn (II) adsorption on RSCAC-ZN at 30, 45 and 60 °C
- Figure 4.29 Plots of (a) Langmuir; (b) Freundlich; (c) Temkin 107 isotherms for Zn (II) adsorption on CCAC-ZN at 30, 45 and 60 °C
- Figure 4.30 Plots of separation factor, RL versus Zn (II) initial 109 concentration for adsorption of Zn (II) on RSCAC-ZN and CCAC-ZN
- Figure 4.31 Linearized plots of pseudo-first-order kinetic model for 111 Cu (II) adsorption on (a) RSCAC-CU and (b) CCAC-CU
- Figure 4.32Linearized plots of pseudo-second-order kinetic model for
Cu (II) adsorption on a) RSCAC-CU and (b) CCAC-CU112
- Figure 4.33 Linearized plots of pseudo-first-order kinetic model for 115 Zn (II) adsorption on (a) RSCAC-ZN and (b) CCAC-ZN
- Figure 4.34 Linearized plots of pseudo-second-order kinetic model for 116 Zn (II) adsorption on a) RSCAC-ZN and (b) CCAC-ZN
- Figure 4.35 Cu (II) breakthrough curve onto RSCAC-CU at different 119 bed depth of 4 and 8 cm and constant flow rate of 25 mL/min
- Figure 4.36 Cu (II) breakthrough curve onto CCAC-CU at different 120 bed depth of 4 and 8 cm and constant flow rate of 25 mL/min
- Figure 4.37 Zn (II) breakthrough curve onto RSCAC-ZN at different 120 bed depth of 4 and 8 cm and constant flow rate of 25 mL/min
- Figure 4.38 Zn (II) breakthrough curve onto CCAC-ZN at different 121 bed depth of 4 and 8 cm and constant flow rate of 25 mL/min

LIST OF SYMBOLS

В	Constant for Temkin isotherm	mg/g h
Ce	Concentration of adsorbate at equilibrium	mg/L
Ct	Concentration of adsorbate at time, t	mg/L
Co	Initial/inlet adsorbate concentration	mg/L
K _F	Adsorption or distribution coefficient for Freundlich isotherm	mg/g $(L/mg)^{1/n}$
KL	Rate of adsorption for Langmuir isotherm	L/mg
\mathbf{k}_1	Adsorption rate constant for pseudo-first-order	1/h
k 2	Adsorption rate constant for pseudo-second-order	g/mg h
Ν	Total number of experiments required/data point	-
n	Constant for Freundlich isotherm	-
Qo	Adsorption capacity for Langmuir isotherm	mg/g
q _e	Amount of adsorbate adsorbed per unit mass of adsorbent at equilibrium	mg/g
qt	Amount of adsorbate adsorbed per unit mass of adsorbent at time, t	mg/g
qt, cal	Calculated adsorption uptake at time, t	mg/g
qt, exp	Experimental adsorption uptake at time, t	mg/g
R	Universal gas constant	8.314 J/mol K
RL	Separation factor	-
\mathbb{R}^2	Correlation coefficient	-
\mathbf{S}_{BET}	BET surface area	m²/g
V _{meso}	Mesopore volume	cm ³ /g
V_{T}	Total pore volume	cm ³ /g

Wc	Dry weight of prepared activated carbon	g
Wo	Dry weight of precursor	g
WKOH	Dry weight of potassium hydroxide	g

LIST OF ABBREVIATIONS

- AC Activated carbon
- ANOVA Analysis of variance
- CC Corncob
- CCAC Corncob Activated Carbon
- BET Brunauer-Emmett-Teller
- CCD Central composite design
- EA Elemental analysis
- GAC Granular activated carbon
- IR Impregnation ratio
- IUPAC International Union of Pure and Applied Chemistry
- PAC Powder activated carbon
- RSC Rubber seed coat
- RSCAC Rubber seed coat activated carbon
- RSM Response surface methodology
- SEM Scanning electron microscopy
- 2FI Two-factor interaction

KAJIAN PENJERAPAN LOGAM BERAT OLEH KARBON TERAKTIF DISEDIAKAN DARIPADA SISA PERTANIAN

ABSTRAK

Karbon teraktif (KT) komersial yang didapati sekarang masih dianggap mahal disebabkan oleh penggunaan bahan mentah yang tidak boleh diperbaharui seperti arang batu bitumen. Oleh itu, penyelidikan ini menyiasat potensi penggunaan sisa pertanian seperti kelongsong biji getah (KBG) dan tongkol jagung (TJ) yang terdapat di Malaysia sebagai pelopor untuk penyediaan karbon teraktif dimana ianya boleh diguna bagi menyingkirkan dua jenis logam berat iaitu Cu (II) dan Zn (II) daripada larutan akuas. Pengaktifan fiziko-kimia yang merangkumi penjerapan isi dengan kalium hidroksida (KOH) diikuti oleh gasifikasi karbon dioksida (CO2) telah digunakan untuk penghasilan karbon teraktif. Keputusan rekabentuk eksperimen mendedahkan bahawa suhu pengaktifan karbon dioksida, masa pengaktifan CO2 dan nisbah jerap isi (NJI) adalah faktor-faktor penting yang mempengaruhi hasil karbon teraktif dan prestasi penjerapan untuk logam Cu (II) dan Zn (II). Keadaan optima yang diperolehi untuk menyediakan KBGKT-CU adalah pada suhu 793 °C, tempoh pengaktifan 1 jam dan NJI 2.46. Bagi KBGKT-ZN, kondisi optima penyediaan adalah pada suhu 797 °C, tempoh pengaktifan 1 jam dan NJI 2.61. Bagi TJKT-CU, kondisi optima penyediaan adalah pada suhu 762 °C, tempoh pengaktifan 2.7 jam dan NJI 3.25. Untuk TJKT-ZN, kondisi optima penyediaan adalah pada suhu 768 °C, tempoh pengaktifan 3 jam dan NJI 3.5. Semua karbon teraktif yang telah terhasil luas permukaan (>500 m²/g) yang tinggi dan isipadu liang (>0.41 m³/g). KBGKT dan TJKT masing-masing menunjukkan jenis struktur liang yang homogen dan heterogen. Kesan-kesan kepekatan awal bahan jerap (10-100 mg/L), masa sentuh, suhu larutan (30-60 °C), pH larutan (2-6), garis sesuhu dan kinetik dan bagi sistem-sistem penjerapan tersebut dinilai melalui kajian penjerapan kelompok. Penjerapan logam Cu (II) dan Zn (II) meningkat dengan peningkatan kepekatan awal dan masa sentuh. Penjerapan logam Cu (II) dan Zn (II) pada kesemua KT adalah terbaik dipadankan oleh model garis sesuhu Freundlich. Penjerapan logam Cu (II) dan Zn (II) bagi semua karbon teraktif dipadankan dengan baik oleh model Freundlich dan model kinetik pseudo tertib kedua. Kajian lapisan tetap menunjukkan bahawa tempoh kelesuan untuk Zn (II) adalah lebih besar daripada Cu (II) dan peningkatan dalam ketinggian lapisan menghasilkan tempoh keletihan yang lebih tinggi.

ADSORPTION STUDIES OF HEAVY METALS ON ACTIVATED CARBON PREPARED FROM AGRICULTURAL WASTE

ABSTRACT

Commercially available activated carbon (AC) is still considered expensive due to the use of non-renewable and relatively expensive starting material such as bituminous coal. Therefore, this study investigates the potential use of agricultural waste such as rubber seed coat (RSC) and corncob (CC) that available in Malaysia, as the precursor for the preparation of AC which can be applied for the removal of two types of heavy metal, which are Cu (II) and Zn (II) from aqueous solution. Physiochemical activation consisting of potassium hydroxide (KOH) impregnation plus carbon dioxide (CO₂) gasification was used to prepare the ACs. The optimum preparation conditions of RSCAC-CU were found at activation temperature of 793 °C, activation time of 1h and KOH impregnation ratio (IR) of 2.46. As for RSCAC-ZN, the optimum preparation conditions were at activation temperature of 797 °C, activation time of 1h and IR of 2.61. Meanwhile, the optimum preparation conditions of CCAC-CU were found at activation temperature of 762 °C, activation time of 2.7h and IR of 3.25. For CCAC-ZN, the optimum preparation conditions were at activation temperature of 768 °C, activation time of 3h and IR of 3.5. All the activated carbons prepared were high BET surface area (>500 m²/g) and pore volume (>0.41 m³/g). RSCAC and CCAC demonstrated homogeneous and heterogeneous type pore structures, respectively. The effects of adsorbate initial concentration (10-100 mg/L), contact time, solution temperature (30-60 °C), solution pH (2-6), isotherms and kinetics of the adsorption systems were evaluated through batch adsorption test. The Cu (II) and Zn (II) adsorption uptakes increased with increasing initial concentration and optimum contact time. Adsorptions of Cu (II) and Zn (II) on all ACs were best fitted by the Freundlich isotherm model. Adsorption kinetics of Cu (II) and Zn (II) followed pseudo-second-order on all the ACs. Fixed bed study showed that the exhaustion period for Zn (II) was greater than Cu (II) and the increase in bed heights resulted in higher exhaustion period.

CHAPTER ONE INTRODUCTION

1.1 Research Overview

This chapter covers the scenario on heavy metal water pollution in Malaysia. The needs to find a more effective way to solve the problem by applying adsorption process using activated carbons produced from agricultural waste are provided. The problem statement, objectives and the organisation of the thesis are highlighted.

1.2 Industrial Wastewater Pollution

Water is the most precious resources for living things on the earth. Human started their civilisation besides the rivers because of the water source. The revolution towards industrially based economy has changed the lifestyle of human. A variety of toxic and harmful matters that brings severe impacts to human as well as flora and fauna is discharged by industrial activities (Charles et al., 2016). The industry of textile mill products, mining, tanneries, petrochemical, electroplating and electronics projects. electroplating and metal finishing contributes to effluent containing heavy metals such as plumbum, copper, zinc and chromium pollutants (Lee et al., 2016). These metals cause significant pollution load of water resources and increase the severe consequences for the environment. In addition heavy metals are not decay into nonhazardous harmless final component but continuously build up in living organisms, causing a lot of various ailments diseases and syndromes to human (Vareda et al., 2016).

1.3 Use of Activated Carbons for Heavy Metal Removal

Several methods are used for the removal and retrieval of heavy metals from wastewaters such as precipitation, ion exchange, electrolysis, coagulation, solvent extraction, filtration and membrane technology (Qi et al., 2016). Most of the methods applied are reported to be complicated for low heavy metal concentration of wastewater (Jian et al., 2015). Activated carbon adsorption is a considerable way to remove heavy metal from the aqueous state.

Emphasis on the adsorbent with low-cost precursors particularly from agrowastes for the heavy metals removal attracted more attention (Yahya et al., 2015). These biomaterials signify a fascinating and attractive alternative as adsorbents due to their high surface area and low-cost (Khanday et al., 2016). Furthermore, agrowastes are plentiful, renewable, and biodegradable resources that have the capability to adsorb heavy metals from wastewater (Gokce and Aktas, 2014). Certain agrowastes such as fern (Rosales et al., 2015), sawdust (Kazemi et al., 2016), rice bran (Zafar et al., 2015), wheat straw (Kaya et al., 2014), corncobs (Jiang et al., 2016) have been used for the removal of heavy metals from aqueous solution.

1.4 Problem Statement

Due to the high usage of water by the industry such as metal finishing, electronics, tanneries, electroplating, petrochemical and textile mill, heavy metals contamination has become one of the largest problems which demand a smart solution. Activated carbon adsorption has been established to be advanced contrasted to other methods in the concept of its ease of design, simple operation, and high efficiency. Thus, to overcome the problem, producing activated carbon with high adsorption performance from an alternative material that readily available is a need.