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Abstract: This paper presents a dynamic deoxyribonucleic acid (DNA) image encryption based on 
Secure Hash Algorithm-512 (SHA-512), having the structure of two rounds of permutation–
diffusion, by employing two chaotic systems, dynamic DNA coding, DNA sequencing operations, 
and conditional shifting. We employed the SHA-512 algorithm to generate a 512-bit hash value and 
later utilized this value with the natural DNA sequence to calculate the initial values for the chaotic 
systems and the eight intermittent parameters. We implemented a two-dimensional rectangular 
transform (2D-RT) on the permutation. We used four-wing chaotic systems and Lorentz systems to 
generate chaotic sequences and recombined three channel matrices and chaotic matrices with 
intermittent parameters. We calculated hamming distances of DNA matrices, updated the initial 
values of two chaotic systems, and generated the corresponding chaotic matrices to complete the 
diffusion operation. After diffusion, we decoded and decomposed the DNA matrices, and then 
scrambled and merged these matrices into an encrypted image. According to experiments, the 
encryption method in this paper not only was able to withstand statistical attacks, plaintext attacks, 
brute-force attacks, and a host of other attacks, but also could reduce the complexity of the 
algorithm because it adopted DNA sequencing operations that were different from traditional 
DNA sequencing operations. 

Keywords: color image encryption; DNA coding; two rounds of permutation–diffusion; SHA-512 
 

1. Introduction 

With the advent of the big data era, numerous digital images, carrying a large amount of 
information, are generated daily. Accordingly, the security issues of digital images have become 
increasingly critical. Traditional data encryption algorithms [1], such as RSA, Data Encryption 
Standard (DES), and Advanced Encryption Standard (AES), however, are not suitable for image 
encryption because of their large data capacity and the strong correlation between pixel points. 
Therefore, researchers have begun to look for new solutions for image encryption [1]. 

As a result of the special characteristics of DNA, excellent parallelism, and large information 
density, DNA coding [2,3] is popular in image encryption research. Hu et al. [4] proposed 
DNA-based image cryptography by implementing the DNA cycle operation in the diffusion process, 
thereby overcoming the limitations of the DNA complementary operation. Chai et al. [5] proposed 
an image encryption algorithm by employing DNA coding for the diffusion of pixel values. 
Meanwhile, Liu et al. [6] proposed a remote-sensing image encryption scheme by utilizing a 
two-dimensional (2D) logistic map to generate DNA masks; this was then used to generate the DNA 
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matrix. Enayatifar et al. [7] proposed a robust multiple-image encryption with a DNA sequence 
operation implemented to diffuse the image. Belazi et al. [8] proposed an efficient medical image 
encryption scheme based on the combination of chaotic systems and DNA computation. Huo et al. 
[9] proposed a two-round image encryption algorithm utilizing DNA complementary rules. 
Furthermore, Revathy et al. [10] proposed an authenticated biomedical image transaction based on 
DNA. Wang et al. [11] used the DNA sequence operation to diffuse the image. Chen et al. [12] 
proposed a DNA-based image encryption algorithm based on the combination of self-adaptive 
permutation–diffusion. Liu et al. [13] proposed a color image encryption based on the dynamic 
DNA and 4-D memresistive hyper chaos. Aashiq et al. [14] presented an image encryption method 
based on chaotic attractors; on the frequency domain they used the integer wavelet transform to 
encrypt the image while on the spatial domain they used the DNA sequence. Ballesteros et al. [15] 
presented a novel method that deviated from traditional schemes, in which variable-length codes 
based on the Collatz conjecture were used to transform the content of the image into unintelligible 
audio. Moreover, Ouyang et al. [16] proposed a color image encryption method using the 
memristive hyperchaotic system and DNA encryption, and Zhu et al. [17] reported an image 
encryption algorithm based on a matrix of Kronecker products and DNA operations over finite 
fields. Zhu et al. [18] constructed a five-dimensional continuous hyperchaotic system, and proposed 
an image encryption scheme based on the hyperchaotic system; this system adopted a dynamic 
DNA coding mechanism and classical scrambling diffusion encryption structure. 

However, some of these DNA-based image cryptography methods pose risks. First, for some 
DNA-based image encryption schemes, their parameters of the chaotic maps remain unchanged. 
Second, dynamic DNA coding with different rules is more secure than using only a single rule. 
Third, a simple confusion or diffusion process is not secure enough. Fourth, an image encryption 
scheme is not secure enough if the key streams are independent of the plain images. 

A secure image encryption scheme should utilize a dynamic permutation and dynamic 
diffusion process. Moreover, dynamic DNA coding utilizing all rules is more secure than using only 
a single DNA coding rule. Furthermore, selecting an appropriate chaotic system is also necessary. In 
addition, the key streams should be dependent of the plain image so that it can resist plaintext 
attacks. To address these limitations, we proposed a new image encryption algorithm with the 
structure of two rounds of permutation–diffusion by employing Secure Hash Algorithm-512 
(SHA-512), two chaotic systems, dynamic DNA coding, DNA sequencing operations, and 
conditional shifting. 

2. Materials and Methods 

2.1. Lorenz System 

In 1963, Lorenz tried to explain the unpredictable behavior of the weather by setting up a 
system of differential equations. In this paper, the image encryption scheme utilizes this system [4]: 𝑐 ˙ = α 𝑐 − 𝑐𝑐 ˙ = γ𝑐 − 𝑐 z − 𝑐𝑐 ˙ = 𝑐 𝑐 − β𝑐  (1) 

where α, β, and γ are the system parameters. When α = 10, β = 8/3, and γ = 28, the system is chaotic. 

2.2. Four-Wing System 

A four-wing system is a four-dimensional hyperchaotic system. The four-wing hyperchaotic 
system is defined as follows [19]: 𝑥˙ = 𝑎𝑥 + 𝑏𝑦𝑧𝑦˙ = 𝑐𝑦 + 𝑑𝑧𝑧˙ = 𝑒𝑥𝑦 + 𝑘𝑧 + 𝑚𝑥𝑤𝑤˙ = 𝑛𝑦  (2) 
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where a, b, c, d, e, k, m, and n are the system parameters. When a = 8, b = −1, c = −40, d = 1, e = 2, k = −14, 
m = 1, n = −2, its Lyapunov exponents are LE1 = 1.3938, LE2 = 0.5096, LE3 = 0, and LE4 = −47.8986. 
Because there are two positive Lyapunov exponents, the system has hyperchaotic characteristics. 

2.3. DNA Coding and Decoding Rule 

A DNA sequence consists of four nucleic acid bases, A (adenine), G (guanine), C (cytosine), and 
T (thymine), which satisfy the Watson–Crick structure [20]. The structure of a DNA sequence is a 
binary string; on each side of the string, every two nucleic acid bases are complementary, following 
the rules that A and T are complementary and G and C are complementary. Based on the Watson–
Crick structure, only eight combinations can be used for DNA coding [20]. These are listed in Table 1. 

TABLE 1. DNA encoding rules. 

Rule 1 2 3 4 5 6 7 8 
00 A A T T G G C C 
01 C G G C A T A T 
10 G C C G T A T A 
11 T T A A C C G G 

2.4. DNA Complementary Rules 

The DNA complementary rule operation is popular for diffusing a DNA matrix. To satisfy the 
Watson–Crick structure of the DNA sequence, the complementary rules are defined as follows [21]: 𝑥 ≠ 𝐿(𝑥) ≠ 𝐿(𝐿(𝑥)) ≠ 𝐿(𝐿 𝐿(𝑥) )𝑥 = 𝐿(𝐿 𝐿 𝐿(𝑥) )  (3) 

In Equation (3), x represents a DNA nucleic acid base. There are six complementary rules [15]: 
Rule 1: (AT)(TC)(CG)(GA) Rule 2: (AT)(TG)(GC)(CA) Rule 3: (AC)(CT)(TG)(GA) Rule 4: 
(AC)(CG)(GT)(TA) Rule 5: (AG)(GT)(TC)(CA) Rule 6: (AG)(GC)(CT)(TA) 

In this paper, the complementary rules are defined as follows: 

B = DNA_complementary_operation(A,times,rules), (4) 

where A and B are the nucleic acid base before and after the DNA complementary operation, 
respectively, and 𝑡𝑖𝑚𝑒𝑠 denotes a matrix which indicates how many times the complementary 
operation is implemented on a nucleic base in the matrix A, and 𝑟𝑢𝑙𝑒𝑠 denotes a matrix about 
which rule is chosen for the operation of the DNA complementary operation. 

2.5. DNA Cycle Operation 

Hu et al. [4] defined another method for DNA matrix diffusion. We use this method in this 
paper. The DNA cycle function is defined as follows: 

New nucleic acid base = L(original nucleic acid base, h), (5) 

Original nucleic acid base = L_1(new nucleic acid base, h), (6) 

where L is the function of the DNA cycle operation, and h is how many times the DNA cycle 
operation is performed on the original nucleic acid base to get the new nucleic acid base. 

Figure 1 shows the process of DNA cycle operation and the inverse DNA cycle operation. To 
explain the Figure 1 in details, for instance, L(A, 3) = T, since mod(3, 4) = 3; and L_1(A, 7) = G, since 
mod(7, 4). 
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Figure 1. DNA cycle operation. 

2.6. Mandelbrot Set 

A Mandelbrot set is a plane in which all points belong to a complex plane and whose boundary 
forms a fractal. The Mandelbrot set is defined as M. Set M is used for the conditional shifting 
operation, which is defined later. A typical M set is defined as follows [22]: lim→ 𝑍( ) = 𝑍 + 𝐶 (7) 

where 𝑍 = 0. 
In this paper, a modified Mandelbrot set is defined as follows: 𝑊(𝑖, 𝑗) = (𝑖 𝑗) + 𝐶, (8) 

where 𝑊() denotes the Mandelbrot set M, 𝑖 = 1,2, …, M and 𝑗 = 1, 2, …, N, and the size of the image 
is M × N; 𝐶 is constant, and 𝐶 can be any large number. Considering the computational precision 
on Matlab, in this paper, set C = 1014, which is the most popular choice [22]. 

2.7. 2D-RT 

To solve the limitation of the traditional Arnold maps (i.e., that it cannot permutate the 
non-square image), this paper used 2D-RT (two-dimensional rectangular transform). The improved 
2D-RT can be defined as follows [23]: 𝑥𝑦 = 𝑎 𝑏𝑐 𝑑 𝑥𝑦 + 𝑟𝑟 𝑚𝑜𝑑 𝑚𝑛  (9) 

and the inverse operation of the improved 2D-RT is expressed as 𝑥𝑦 = 𝑎 𝑏𝑐 𝑑 𝑥 − 𝑟𝑦 − 𝑟 𝑚𝑜𝑑 𝑚𝑛 , (10) 

where m and n are the sizes of the image. Since 2D-RT was derived from the traditional Arnold map, 
2D-RT was an enhanced Tent map and could permutate the non-square image. In this paper, the size 
of the RGB image P is transformed from M × N × 3 into M × 3N. 2D-RT is implemented t times to 
permutate the plain images. In Ref. [23], the system parameters a, b, c, and d satisfy ad − bc = 1. In the 
decryption process, we use the inverse matrix of the original matrix consisting of a, b, c, and d. In the 
encryption process: 𝑃𝑆𝑇(𝑥 ,𝑦 ) = 𝑃(𝑥, 𝑦), (11) 

while in the decryption process: 𝑃(𝑥, 𝑦) = 𝑃𝑆𝑇(𝑥 ,𝑦 ). (12) 

In this paper, P is the plaintext image. In the encryption process, the zero matrix PST with size 
M × 3N is defined in previous then the 2D-RT is performed on P for t times to generate the new 
matrix PST according to Equation (9). 
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3. Proposed Encryption Scheme 

3.1. Initial Values and Intermittent Parameters 

In the proposed scheme, SHA-512 is exploited and all the initial values of the chaotic system 
and the intermittent parameters are generated by the SHA-512 hash function of the plain image. 

When the plain image is input, the hash sequence of the plain image with 512 bits is generated: 
K = [k1, k2, …, k64]. Next, the initial values are generated for the chaotic system. 

First, h1, h2, h3, h4, h5, h6, and h7 are computed as follows: 

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧ ℎ1 = 𝑘1 + 𝑘2 + ⋯+ 𝑘88 ∗ 256ℎ2 = 1 + 𝑘9 ⊕ …⊕𝑘16256ℎ3 = (𝑘17 ⊕𝑘18 ⊕𝑘19 ⊕𝑘20) + (𝑘21 ⊕𝑘22 ⊕𝑘23 ⊕𝑘24)2 ∗ 256ℎ4 = (𝑘25 ⊕𝑘26 ⊕ …⊕𝑘32)256ℎ5 = (𝑘33 + 𝑘34 + 𝑘35 + 𝑘36) + (𝑘37 ⊕𝑘38 ⊕𝑘39 ⊕𝑘40)5 ∗ 256ℎ6 = 𝑘41 + 𝑘42 + ⋯+ 𝑘488 ∗ 256ℎ7 = (𝑘49 ⊕𝑘50 ⊕ …⊕𝑘56) + (𝑘57 + 𝑘58 + ⋯𝑘64)9 ∗ 256

 (13) 

Second, one natural DNA sequence is selected, and then it is converted to a decimal number 𝑑 . According to given values of four bases, the corresponding decimals of all bases in the DNA 
sequence are added. Then, the integer part of the product is removed, and the decimal part is 
retained. We can get the natural DNA sequence in http://www.ncbi.nlm.nih.gov/ according to 
geneID, the starting position and the length. For example, we chose a natural DNA sequence with 
the gene ID of 1054, the starting position of 1022, and the length of 17. The DNA sequence is 
{TGAAGTTTATACTGTAA}. Then, set A to 0.125112478141254, T to 0.58021545574585, C to 
0.98754127451874, and G to 0.96148854586747. The corresponding decimals of all bases in the DNA 
sequence are added, and the sum is 8.68418997118962. Then, the integer part of 8.68418997118962 is 
removed, and the decimal part is retained. We can obtain 𝑑 = 0.68418997118962. Here, given 
values, the gene ID, the starting position and the length can all be regarded as part of the key, and 
they all are set manually. 

Next, h1–h4 defined in Equation (13) and 𝑑  are used to calculate the initial values 𝑥 , 𝑦 , 𝑧 , 
and 𝜔  for the hyperchaotic system, and are is defined as follows: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝑥 = 1 + 𝑚𝑜𝑑 (ℎ1 + ℎ2 + 𝑑 ) ∗ 10 , 256255𝑦 = 1 + 𝑚𝑜𝑑 (ℎ2 + ℎ3 + 𝑑 ) ∗ 10 , 256255𝑧 = 2 + 𝑚𝑜𝑑 (ℎ3 + ℎ4 + 𝑑 ) ∗ 10 , 256255𝑤 = 2 + 𝑚𝑜𝑑 (ℎ1 + ℎ2 + ℎ3 + ℎ4 + 𝑑 ) ∗ 10 , 256255

 (14) 

Meanwhile, h5–h7 defined in Equation (13) and 𝑑  are used to calculate the initial values 𝑐 , 𝑐 , and 𝑐  for the Lorenz system: 
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⎩⎪⎪⎨
⎪⎪⎧ 𝑐 = 1 + 𝑚𝑜𝑑 (ℎ5 + ℎ6 + 𝑑 ) ∗ 10 , 256255𝑐 = 1 + 𝑚𝑜𝑑(ℎ6 + ℎ7 + 𝑑 ) ∗ 10 , 256)255𝑐 = 2 + 𝑚𝑜𝑑 (ℎ5 + ℎ6 + ℎ7 + 𝑑 ) ∗ 10 , 256255

 (15) 

Finally, the intermittent parameters of 𝑖𝑛𝑑𝑒𝑥  to 𝑖𝑛𝑑𝑒𝑥  are calculated by the following: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑜𝑑(𝑘33 + 𝑘34 + ⋯+ 𝑘40,6) + 1𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑜𝑑(𝑘41 + 𝑘42 + ⋯+ 𝑘48,6) + 1𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑜𝑑(𝑘49 + 𝑘50 + ⋯+ 𝑘56,6) + 1𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑜𝑑(𝑘57 + 𝑘58 + ⋯+ 𝑘64,6) + 1𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑜𝑑(𝑘33 ⊕𝑘35 ⊕ …⊕𝑘63,6) + 1𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑜𝑑(𝑘34 ⊕𝑘36 ⊕ …⊕𝑘64,6) + 1𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑜𝑑(𝑘1 ⊕𝑘2 ⊕ …⊕𝑘64,6) + 1𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑜𝑑(𝑘33 ⊕𝑘34 ⊕ …⊕𝑘64,6) + 1

 (16) 

According to Equations (13)–(16), all the initial values of the chaotic systems and the 
intermittent parameters were determined by the plain image. If there was a one-bit difference 
between two images, the initial values of the chaotic systems and the intermittent parameters were 
totally different. Moreover, the chaotic matrices and even the permutated plain images were totally 
different. Hence, the proposed scheme was sensitive to the plain image. 

3.2. Conditional Shifting Operation 

In this section, the Mandelbrot set is used for the conditional shifting operation. The conditional 
shifting operating is defined below Algorithm 1. 

Algorithm 1: The Conditional Shifting Operation 
Input: Mandelbrot set M and the channels R2, G2, and B2. 

1: for I = 1:n 
2: find the maximum value of ith column elements of M and denote it as maxi 
3: find the maximum values of the ith row elements of R2, G2, and B2 and denote them 

as maxri, maxgi and maxbi, respectively, as follows: 
4: case 1: 
5: if maxi < maxbi, then 
6: perform left cyclic shift on ith elements of R2 for maxi times 
7: else 
8: perform right cyclic shift on ith elements of R2 for maxi times 
9: end if 
10: end 
11: case 2: 
12: if maxi < maxri then 
13: perform left cyclic shift on ith elements of G2 for maxi times 
14: else 
15: perform right cyclic shift on ith elements of G2 for maxi times 
16: end if 
17: end 
18: case 3: 
19: if maxi < maxgi then 
20: perform left cyclic shift on ith elements of B2 for maxi times 
21: else 
22: perform right cyclic shift on ith elements of B2 for maxi times 
23: end if 
24: end 
25: end for 
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26: Finally, when the conditional shifting is finished, R3, G3, and B3 are obtained. 

3.3. Whole Image Encryption Process 

The complete encryption algorithm had a two-round permutation–diffusion structure. In the 
first round of the permutation–diffusion process, we implemented 2D-RT for permutating the plain 
image P for t times. Then we decomposed the permutated image P into R1, G1, and B1. The DNA 
complementary operation was used for the diffusion of the encoded plain image; meanwhile, the 
DNA cycle operation was implemented for the diffusion of the encoded chaotic matrices. In the 
second round of the permutation–diffusion process, the conditional shifting was implemented on 
the decoded images R2, G2, and B2, and we obtained the permutated matrices R3, G3, and B3. Finally, 
we used the decoded matrices XR, XG, and XB for diffusing matrices R3 and G3. The whole 
encryption process is demonstrated in Figure 2, and the encryption procedures are described in the 
subsequent subsections. 

 
Figure 2. Flowchart of the proposed encryption scheme. 

3.3.1. First Round of Permutation 

Step 1: Input the RGB plain image PM × N × 3. 
Step 2: Make use of the plain image in the SHA-512 hash function to obtain the initial values for 

the chaotic systems and the intermittent parameters. 
Step 3: Transform the plain image PM ×N ×3 into PM ×3N. Perform 2D-RT on P to permutate the Pt 

times and obtain the PST. 
Step 4: Divide the PST into three channels: R1, G1, and B1. 

3.3.2. Process of DNA Encoding 

Step 1: Iterate the four-wing chaotic system, with the initial values of x0, y0, z0, and w0, 4MN + l0 
times. Remove the first l0 terms to avoid the transient effect. Four sequences X, Y, Z, and W with the 
length of 4MN are obtained. Next, obtain the sequences X1, Y1, and Z1 by: 

⎩⎪⎨
⎪⎧ 𝑋 = 𝑚𝑜𝑑 𝑋 + 𝑌 − 𝑓𝑖𝑥(𝑋 + 𝑌) ∗ 10 , 8 + 1𝑌 = 𝑚𝑜𝑑 𝑌 + 𝑍 − 𝑓𝑖𝑥(𝑌 + 𝑍) ∗ 10 , 8 + 1𝑍 = 𝑚𝑜𝑑 𝑋 + 𝑌 + 𝑍 − 𝑓𝑖𝑥(𝑋 + 𝑌 + 𝑍) ∗ 10 , 8 + 1 (17) 

X1 = [x1, x2, …, x4MN], Y1 = [y1, y2, …, y4MN], Z1 = [z1, z2, …, z4MN] are thus obtained. 
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Step 2: Iterate the Lorenz chaotic system, with the initial values of c1, c2, and c3, 4MN + l0 times. 
Remove the first l0 terms to avoid the transient effect. The three sequences C1, C2, and C3 with the 
length of 4MN are thus obtained. Next, we obtain the sequences L1, L2, and L3: 

⎩⎪⎨
⎪⎧ 𝐿 = floor mod abs(𝐶 + 𝐶 ) − floor(𝐶 + 𝐶 ) ∗ 10 , 256𝐿 = floor mod abs(𝐶 + 𝐶 ) − floor(𝐶 + 𝐶 ) ∗ 10 , 256𝐿 = floor mod abs(𝐶 + 𝐶 + 𝐶 ) − floor(𝐶 + 𝐶 + 𝐶 ) ∗ 10 , 256  (18) 

Step 3: Convert all the pixels of R1, G1, and B1 into binary numbers, and obtain three M × 8N 

matrices R_bin, G_bin, and B_bin. Then, recombine these three matrices into a single matrix T of 3M × 
8N by T = Ti (i = 1, 2, …, 6), where i = index1 and 

T1 =
𝑅_𝑏𝑖𝑛𝐺_𝑏𝑖𝑛𝐵_𝑏𝑖𝑛 ; T2 =

𝑅_𝑏𝑖𝑛𝐵_𝑏𝑖𝑛𝐺_𝑏𝑖𝑛 ; T3 =
𝐺_𝑏𝑖𝑛𝑅_𝑏𝑖𝑛𝐵_𝑏𝑖𝑛 ; 

T4 =
𝐺_𝑏𝑖𝑛𝐵_𝑏𝑖𝑛𝑅_𝑏𝑖𝑛 ; T5 =

𝐵_𝑏𝑖𝑛𝑅_𝑏𝑖𝑛𝐺_𝑏𝑖𝑛 ; T6 =
𝐵_𝑏𝑖𝑛𝐺_𝑏𝑖𝑛𝑅_𝑏𝑖𝑛 . 

Step 4: Transform the sequence X1, X2 and X3 into the M × 4N matrices and transform the 
sequence L1, L2 and L3 into the M × 4N matrices L_1, L_2 and L_3. 

Step 5: Convert matrices L_1, L_2, and L_3 into binary matrices L1_bin, L2_bin, and L3_bin of M × 
8N. Then recombine these matrices into a single 3M×8N binary matrix CT by CT = CTi(i = 1, 2, …, 6), 
where i = index2 and 

CT1 =
𝐿1_𝑏𝑖𝑛𝐿2_𝑏𝑖𝑛𝐿3_𝑏𝑖𝑛  CT2 =

𝐿1_𝑏𝑖𝑛𝐿3_𝑏𝑖𝑛𝐿2_𝑏𝑖𝑛  CT3 =
𝐿2_𝑏𝑖𝑛𝐿1_𝑏𝑖𝑛𝐿3_𝑏𝑖𝑛 ; 

CT4=
𝐿2_𝑏𝑖𝑛𝐿3_𝑏𝑖𝑛𝐿1_𝑏𝑖𝑛  CT5 =

𝐿3_𝑏𝑖𝑛𝐿1_𝑏𝑖𝑛𝐿2_𝑏𝑖𝑛  CT6 =
𝐿3_𝑏𝑖𝑛𝐿2_𝑏𝑖𝑛𝐿1_𝑏𝑖𝑛 . 

Step 6: The parameter index3 is used to construct two DNA encoding rule matrices ER1 and ER2 
and ER1 = ERi1(i1 = 1, 2, …, 6), ER2 = ERi2(i2 = 1, 2, …, 6), i1 = index3,i2 = mod(index3, 6) + 1 and: 

ER1 =
𝑋_1𝑌_1𝑍_1  ER2 =

𝑋_1𝑍_1𝑌_1  ER3 =
𝑌_1𝑋_1𝑍_1 ; 

ER4=
𝑌_1𝑍_1𝑋_1  ER5 =

𝑍_1𝑋_1𝑌_1  ER6 =
𝑍_1𝑌_1𝑋_1 . 

Step 7: For matrix T, recombine the eight binary planes by combing the first bit plane and the 
eighth bit plane into the bit plane matrix T18, and then do the same to the second bit plane and 
seventh bit plane, third bit plane and sixth bit plane, and fourth bit plane and fifth bit plane. 
Through this, we obtained the bit plane matrices T27, T36, and T45. The same operation is performed 
on the matrix CT, yielding matrices CT18, CT27, CT36, and CT45. 

Step 8: The encoding rule matrix ER1 is used to encode matrices T18, T27, T36, and T45. 
ER1(1:2M,:) is used to encode matrix T18 and obtain DNA matrix T_DNA18. ER1(2M + 1:4M,:) is used 
to encode matrix T27 to obtain DNA matrix T_DNA27. ER1(4M + 1:6M,:) is utilized to encode matrix 
T36 to obtain DNA matrix T_DNA36. ER1(6M + 1:8M,:) is utilized to encode matrix T45 to obtain 
DNA matrix T_DNA45. Then the four DNA matrices are integrated into a single DNA matrix 
DNA_T: DNA_T = [T_DNA18, T_DNA27, T_DNA36, T_DNA45]. 

The encoding rule matrix ER2 is used to perform the same operation on matrices CT18, CT27, 
CT36, and CT45; and ER1 is used for matrices T18, T27, T36, and T45. Hence, DNA matrices 
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CT_DNA18, CT_DNA27, CT_DNA36, CT_DNA45, and CT_DNA = [CT_DNA18, CT_DNA27, 
CT_DNA36, CT_DNA45] are obtained. 

3.4. Diffusion and DNA Decoding 

Step 1: Calculate the hamming distance d1–d8 by: 

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ 𝑑 = 𝐻𝐷(𝑇_𝐷𝑁𝐴18,𝑇_𝐷𝑁𝐴27)𝑑 = 𝐻𝐷(𝑇_𝐷𝑁𝐴27,𝑇_𝐷𝑁𝐴36)𝑑 = 𝐻𝐷(𝑇_𝐷𝑁𝐴36,𝑇_𝐷𝑁𝐴45)𝑑 = 𝑑 + 𝑑 + 𝑑3𝑑 = 𝐻𝐷(𝐶𝑇_𝐷𝑁𝐴18,𝐶𝑇_𝐷𝑁𝐴27)𝑑 = 𝐻𝐷(𝐶𝑇_𝐷𝑁𝐴27,𝐶𝑇_𝐷𝑁𝐴36)𝑑 = 𝐻𝐷(𝐶𝑇_𝐷𝑁𝐴36,𝐶𝑇_𝐷𝑁𝐴45)𝑑 = 𝑑 + 𝑑 + 𝑑3

 (19) 

Update the initial parameters x0, y0, z0, w0, c1, c2, and c3 by: 𝑑 = 𝑑3𝑀𝑁  𝑑 = 𝑑3𝑀𝑁  𝑑 = 𝑑3𝑀𝑁  𝑑 = 𝑑3𝑀𝑁 , 
𝑑 = 𝑑3𝑀𝑁  𝑑 = 𝑑3𝑀𝑁  𝑑 = 𝑑3𝑀𝑁  𝑑 = 𝑑3𝑀𝑁 , 

𝑥 = 𝑥 + 𝑑2  𝑦 = 𝑦 + 𝑑2 𝑧 = 𝑥 + 𝑑2 𝜔 = 𝑧 + 𝑑2 , 
𝑐 = 𝑐 + 𝑑 + 𝑑2  𝑐 = 𝑐 + 𝑑 + 𝑑2 𝑐 = 𝑐 + 𝑑 + 𝑑2 . 

(20) 

Step 2: Utilize the updated initial parameters 𝑥 ,𝑦 , 𝑧 , and 𝑤  to iterate the four-wing chaotic 
system 4MN + l1 times. Remove the first l1 times and obtain four sequences 𝑋 , 𝑌 , 𝑍 , and 𝑊  of 
4MN. Next, use 𝑋 , 𝑌 , and 𝑍  to generate sequences X2, Y2, and Z2: 𝑋 = 𝑚𝑜𝑑(𝑓𝑙𝑜𝑜𝑟 𝑋 + 𝑌 ) − 𝑓𝑖𝑥(𝑋 + 𝑌 ) ∗ 10 , 8 + 1𝑌 = 𝑚𝑜𝑑 𝑓𝑙𝑜𝑜𝑟 (𝑌 + 𝑍 )− 𝑓𝑖𝑥(𝑌 + 𝑍 ) ∗ 10 , 8 + 1𝑍 = 𝑚𝑜𝑑 𝑓𝑙𝑜𝑜𝑟 (𝑋 + 𝑌 + 𝑍 ) − 𝑓𝑖𝑥(𝑋 + 𝑌 + 𝑍 ) ∗ 10 , 8 + 1 (21) 

Step 3: Convert sequences X2, Y2, and Z2 into matrices X_2, Y_2, and Z_2 of M × 4N. Next, use 
the intermittent parameter index4 and mod (index4, 6) +1 to construct and select the DNA decoding 
matrix by DR_T = DRi1, DR_CT = DRi2 (i1 = 1, 2, …, 6, i2 = 1, 2, …, 6), i1 = index4, i2 = mod (index4, 6) + 1 
and: 

DR1 =
𝑋_2𝑌_2𝑍_2  DR2 =

𝑋_2𝑍_2𝑌_2  DR3 =
𝑌_2𝑋_2𝑍_2  

DR4 =
𝑌_2𝑍_2𝑋_2  DR5 =

𝑍_2𝑋_2𝑌_2  DR6 =
𝑍_2𝑌_2𝑍_2  

Step 4: Use the initial parameters 𝑐 , 𝑐 , and 𝑐  to iterate the Lorenz chaotic system 4MN + l1 
times. Remove the first l1 terms to obtain the three sequences 𝐶 , 𝐶 , and 𝐶  of 4MN. 𝐶 , 𝐶 , and 𝐶  are used to obtain the three sequences 𝐿 , 𝐿 , and 𝐿  by: 

⎩⎪⎨
⎪⎧ 𝐿 = 𝑓𝑙𝑜𝑜𝑟 𝑚𝑜𝑑 𝑎𝑏𝑠(𝐶 + 𝐶 ) − 𝑓𝑙𝑜𝑜𝑟(𝐶 + 𝐶 ) ∗ 10 , 256𝐿 = 𝑓𝑙𝑜𝑜𝑟 𝑚𝑜𝑑 𝑎𝑏𝑠(𝐶 + 𝐶 ) − 𝑓𝑙𝑜𝑜𝑟(𝐶 + 𝐶 ) ∗ 10 , 256𝐿 = 𝑓𝑙𝑜𝑜𝑟 𝑚𝑜𝑑 𝑎𝑏𝑠(𝐶 + 𝐶 + 𝐶 ) − 𝑓𝑙𝑜𝑜𝑟(𝐶 + 𝐶 + 𝐶 ) ∗ 10 , 256  (22) 
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Step 5: Use 𝑑 , 𝑑 , 𝑑 , and 𝑑  to update the initial parameters 𝑥 ,  𝑦 , 𝑧 , and 𝑤  to obtain 𝑥 ,𝑦 , 𝑧 , and 𝑤  by: 𝑥 =  𝑦 =  𝑧 =  𝑤 = . (23) 

Then, use the updated initial parameters 𝑥 , 𝑦 , 𝑧 , and 𝑤  to iterate the four-wing 
hyperchaotic system 4MN + l2 times. Remove the first l2 terms and obtain the four sequences 𝑋 ′, 𝑌 , 𝑍 , and 𝑊  of 4MN. Employ 𝑋 ′, 𝑌 , and 𝑍  to calculate the new sequences 𝑋 , 𝑌 , and 𝑍 : 𝑋 = 𝑚𝑜𝑑(𝑓𝑙𝑜𝑜𝑟 𝑋 ′ + 𝑌 ) − 𝑓𝑖𝑥(𝑋 + 𝑌 ′) ∗ 10 , 8 + 1𝑌 = 𝑚𝑜𝑑 𝑓𝑙𝑜𝑜𝑟 (𝑌 + 𝑍 ′) − 𝑓𝑖𝑥(𝑌 + 𝑍 ) ∗ 10 , 8 + 1𝑍 = 𝑚𝑜𝑑 𝑓𝑙𝑜𝑜𝑟 (𝑋 + 𝑌 + 𝑍 ) − 𝑓𝑖𝑥(𝑋 + 𝑌 + 𝑍 ) ∗ 10 , 8 + 1 (24) 

Step 6: Transform sequences 𝑊, 𝑊 , and 𝑊  into M × 4N matrices 𝑊_1, 𝑊_2, and 𝑊_3, 
respectively. Then, use the intermittent parameter index5 to construct matrix Times, which is used in 
the DNA complementary operation to determine how many times the operation is performed on a 
nucleic acid base. Times = Timesi (i = 1, 2, …, 6), i = index5 and: 

𝑇𝑖𝑚𝑒𝑠 = 𝑊_1𝑊_2𝑊_3  𝑇𝑖𝑚𝑒𝑠 = 𝑊_1𝑊_3𝑊_2  𝑇𝑖𝑚𝑒𝑠 = 𝑊_2𝑊_1𝑊_3  

𝑇𝑖𝑚𝑒𝑠 = 𝑊_2𝑊_3𝑊_1  𝑇𝑖𝑚𝑒𝑠 = 𝑊_3𝑊_1𝑊_2  𝑇𝑖𝑚𝑒𝑠 = 𝑊_3𝑊_2𝑊_1  

The final matrix Times is calculated by: 

Times = mod(floor(Times-fix(Times)) × 1014,4)+ 1 (25) 

Step 7: Convert sequences 𝑋 ′ , 𝑌 , and 𝑍  into M × 4N matrices X_3, Y_3, and Z_3, 
respectively. Then, use the intermittent parameter index6 to construct and select the complementary 
rule matrix CR, which is used to determine which rule is selected in the DNA complementary 
operation. CR = CRi (i = 1, 2, …, 6), i = index6 and: 

𝐶𝑅 = 𝑋_3𝑌_3𝑍_3  𝐶𝑅 = 𝑋_3𝑍_3𝑌_3  𝐶𝑅 = 𝑌_3𝑋_3𝑍_3  

𝐶𝑅 = 𝑌_3𝑍_3𝑋_3  𝐶𝑅 = 𝑍_3𝑋_3𝑌_3  𝐶𝑅 = 𝑍_3𝑌_2𝑋_1  

Step 8: Convert sequences 𝐿 , 𝐿 , and 𝐿  into matrices 𝐿_1 , 𝐿_2 , and 𝐿_3 , respectively. Then 
utilize the intermittent parameter index7 for the construction of the matrix Cycle, which is used to 
determine how many times the DNA cycle operation is performed on a nucleic acid base. Cycle = 
Cyclei (i = 1, 2, …, 6), i = index7 and: 

𝐶𝑦𝑐𝑙𝑒 = 𝐿_1𝐿_2𝐿_3  𝐶𝑦𝑐𝑙𝑒 = 𝐿_1𝐿_3𝐿_2  𝐶𝑦𝑐𝑙𝑒 = 𝐿_2𝐿_1𝐿_3  

𝐶𝑦𝑐𝑙𝑒 = 𝐿_2𝐿_3𝐿_1  𝐶𝑦𝑐𝑙𝑒 = 𝐿_3𝐿_1𝐿_2  𝐶𝑦𝑐𝑙𝑒 = 𝐿_3𝐿_2𝐿_1  

Step 9: Perform the DNA complementary operation on matrix T_DNA to generate matrix 
DNA_N: 
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DNA_N(i,j) = DNA_complementary_operation(T_DNA(i,j), Times(i,j), CR(i,j)) (26) 

where i = 1, 2, …, 3M and j = 1, 2, …, 4N. 
Step 10: Perform the DNA cycle operation on matrix CT_DNA to generate matrix DNA_C: 

DNA_C(i,j) = DNA_Cylcle_operation(CT_DNA(i,j), Cycle(i,j)), (27) 

where i = 1, 2, …, 3M and j = 1, 2, …, 4N. 
Step 11: Utilize the DNA decoding matrix DR_T to decode DNA matrix DNA_N, which is 

further converted into decimal matrix F of 3M × N. Meanwhile, utilize DNA decoding matrix DR_CT 
to decode matrix DNA_C, which is further converted into decimal matrix X of 3M × N. 

3.5. Second Round of Permutation and Diffusion 

Step 1: Use intermittent parameter index8 to decompose matrix F into R2, G2, and B2 of M × N. 
F_1 = F(1:M,:), F_2 = F(M + 1:2M,:), F_3 = F(2M + 1:3M,:), i = index8, i = (1, 2, …, 6): 

𝐹 : 𝑅𝐺𝐵 = 𝐹_1𝐹_2𝐹_3  𝐹 : 𝑅𝐺𝐵 = 𝐹_1𝐹_3𝐹_2  𝐹 : 𝑅𝐺𝐵 = 𝐹_2𝐹_1𝐹_3 . 
𝐹 : 𝑅𝐺𝐵 = 𝐹_2𝐹_3𝐹_1  𝐹 : 𝑅𝐺𝐵 = 𝐹_3𝐹_1𝐹_2  𝐹 : 𝑅𝐺𝐵 = 𝐹_3𝐹_2𝐹_1 . 

Meanwhile, use intermittent parameter mod (index8, 6) + 1 to decompose matrix X into XR, XG, 
and XB. X_1 = X(1:M,:), X_2 = (M + 1:2M,:), X_3 = X(2M + 1:3M,:), i = mod(index8,6) + 1, i = (1, 2, …, 6): 

X : 𝑋𝑋𝑋 = 𝑋_1X_2X_3  X : 𝑋𝑋𝑋 = X_1X_3X_2  X : 𝑋𝑋𝑋 = X_2X_1X_3  

X : 𝑋𝑋𝑋 = X_2X_3X_1  X : 𝑋𝑋𝑋 = X_3X_1X_2  X : 𝑋𝑋𝑋 = X_3X_2X_1 . 
Step 2: Calculate the Mandelbrot set M by utilizing the introduced method. Use set M for the 

conditional shifting performed on R2, G2, and B2. Finally, R3, G3 and B3 are obtained. 
Step 3: Obtain cipher image C by: 𝐶(: , : ,1) = 𝑅 ⊕ 𝑋𝐶(: , : ,2) = 𝐺 ⊕ 𝑋𝐶(: , : ,3) = 𝐵 ⊕𝑋  (28) 

The proposed cryptosystem was symmetric. We decrypted the encrypted image by applying 
the encryption in reverse order. Note that we implemented the reverse DNA cycle operation, reverse 
DNA complementary operation, and reverse 2D-RT instead of the DNA complementary operation, 
DNA cycle operation, and 2D-RT, respectively. To decrypt the cipher image, the secret keys 
calculated by the SHA-2 algorithm instead of the hash code calculated by the SHA-2 are transmitted 
to another user for the decryption of the cipher images. 

4. Stimulation Results and Security Analysis 

4.1. Stimulation Results 

In this section, we conducted stimulation experiments on Windows 7, with 4.00 GB RAM and 
an i5-4440 CPU. We implemented the scheme in Matlab 2017a (MathWorks, Natick, USA). Images 
256 × 256 in size were used for the encryption and decryption: Lena, Pepper, Baboon, an all-black 
image, and an all-white image. The three images of objects were in color. 
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Figure 3a–e are plain images, Figure 3f–j are encrypted images, and Figure 3k–o are decrypted 
images. As demonstrated in Figure 3, the encrypted images were all noise-like images from which 
we could not obtain any useful information, but the decrypted images were identical to their plain 
images, which illustrated that the algorithm was secure and effective. 

Additionally, Table 2 shows the system parameters of the 2D-RT, four-wing hyperchaotic 
system, and Lorenz chaotic system, and the abandoned numbers of the chaotic sequence. We 
selected one natural DNA sequence (GeneID is 154, and the starting position is 101, and the length 
is 1213.) to calculate the initial values. Aiming at the natural DNA sequence selected, we set A to 
0.125112478141254, T to 0.58021545574585, C to 0.98754127451874, and G to 0.96148854586747. 
Figure 3a–e are the original images, and Figure 3f–j are the encrypted images corresponding to 
Figure 3a–e. Figure 3k–o are the decrypted images corresponding to Figure 3f–j. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

    
(k) (l) (m) (n) (o) 

Figure 3. Stimulation results of the proposed scheme. 

Table 2. System parameters in the proposed scheme. 

Item Value 
System parameters of the four-wing 

hyperchaotic system 
a= 8, b = −1, c = −40, d = 1, e = 2, m = 1, n 

= −2, n = −14 
System parameters of the Lorenz 

chaotic system 
Α = 10, β = 8/3, γ = 28 

System parameters of the 2D-RT 
A = 1, b = 3, c = 5, d = 16, rm = 4, rn = 7, t = 

5 
Abandoned numbers of the sequence l0 = 1000, l1 = 1000, l2 = 1000 

4.2. Key Space Analysis 

We used key space analysis to verify the image encryption scheme’s ability to resist brute-force 
attacks. According to [24,25], the key space must be larger than 2100 to guarantee the security of the 
image encryption scheme. In this paper, there are seven initial conditions. If the precision of the 
computer was 1014, the total key space was 1014×7 = (103)32.6 ≈ (210)32.6 = 2326. The key space of our 
algorithm is much larger than the theoretical value, so it can resist the exhaustive attack very well. 
Comparing our key space with others, our key space is also satisfactory. Table 3 shows the 
comparision of key space. From Table 3, it can be seen that our key space is as good as the key space 
of others’ algorithms, or even better. 

Table 3. Comparison of key space. 

Algorithm Ours Ref. [26] Ref. [27] Ref. [28] 
Key space 1098 2299 1098 1094 



Entropy 2020, 22, 1091 13 of 22 

 

4.3. Key Sensitivity Results 

A secure encryption scheme is sensitive to a slight change of the keys. In the proposed 
encryption scheme, all the keys were generated from the SHA-512 hash function. Therefore, to test 
the key sensitivity of the proposed encryption scheme, we used the new hash value to change the 
last bit of the original hash value. The test image was Lena (256 × 256). In this paper, the hash value 
with the right key was denoted as K (K = 9f63791ec64b3bb5bcf1d6e1272557c9779b37575f33a72e0fbf7 
3a8339bba94d0e3de2ab82ae305ee0a71a122123407227708ff0bc0296768566c2cc59e7d37), with the last 
bit changed being denoted as K1 (K1 = 9f63791ec64b3bb5bcf1d6e1272557c9779b37575f33a72e0fbf73a 
8339bba94d0e3de2ab82ae305ee0a71a122123407227708ff0bc0296768566c2cc59e7d38) and the whole 
new hash value denoted as K2 (K2 = a1100bff91ac78cb8910aafcea1290fc99a3001cbbac73ef31ff23dd 
1347f90 c60ad23fe26bd4133bad0501a273f0170adfe301261dc3df034ad00ff127526ff). The other 
encryption keys of the three experiments are the same. GeneID is 154, and the starting position is 22, 
and the length is 217. Set A to 0.98736273, T to 0.58021545, C to 0.1245737896434, and G to 
0.0002356644. 

Figure 4a–c show the results obtained upon encrypting Figure 3a with K1, K2, and K, 
respectively. Figure 5a–c show the results when K was used to decrypt all encrypted images (Figure 
4a–c), respectively. Table 4 lists NPCR (number of pixels change rate) values between the encrypted 
images with changed keys and the one with the right key. Table 5 lists NPCR values between the 
decrypted images with changed keys and the original image. 

As the figures and tables show, a slight change in the original hash value or a whole new key 
leads to different encryption and decryption results. In Tables 4 and 5, NPCR values with different 
keys are all close to the expected value of 0.9960, demonstrating that only the complete right hash 
value generates the right keys that can encrypt and decrypt the images correctly. Therefore, the 
proposed scheme is sensitive to a slight change in the hash value, which generates totally different 
keys and leads to totally different encryption and decryption results. 

Table 4. NPCR values of the encrypted images. 

Image Changed Key R G B 
Figure 4a K1 0.9963 0.9962 0.9960 
Figure 4b K2 0.9963 0.9957 0.9957 
Figure 4c K 0 0 0 

Table 5. NPCR values of the decrypted images. 

Image Changed Key R G B 
Figure 5a K1 0.9965 0.9964 0.9956 
Figure 5b K2 0.9964 0.9962 0.9960 
Figure 5c K 0 0 0 

 

   
(a) (b) (c) 

Figure 4. Key sensitivity results in the encryption process. 

   
(a) (b) (c) 

Figure 5. Key sensitivity results in the decryption process. 
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4.4. Correlation Analysis 

Because of the strong correlation among pixels, the traditional encryption scheme could not be 
directly applied to the images [1]. However, a secure image encryption scheme could eliminate the 
correlation among pixels. In this section, we used the correlation coefficients to analyze the 
correlation among pixels between the plain image and encrypted image. Equations (29)–(31) are 
used to calculate the correlations between pixels in horizontal, vertical and diagonal directions. 

Figure 6 shows correlation of two adjacent pixels in the R, G, and B channels for the plain and 
encrypted image Lena in the horizontal direction. Figure 6a–c show correlations of the original 
image Lena in the R, G, and B channels respectively, and Figure 6d–f show correlations of the 
encrypted image Lena in the R, G, and B channels respectively. Figure 6 and Table 6 show that the 
correlation coefficients of the encrypted images are pretty low, and every pixel distributes evenly. 
From Table 7, we can see that the proposed scheme is comparable to other schemes in terms of 
correlation coefficients: 𝑟 , = ( ( ) ( ) )( ) ( ) , (29) 𝐸(𝑥) = ∑ 𝑥 , (30) 𝐷(𝑥) = ∑ (𝑥 − 𝐸(𝑥)) . (31) 

 

    
(a) (b) (c) 

    
(d) (e) (f) 

Figure 6. Correlation of two adjacent pixels in the R, G, and B channels for the plain and encrypted 
image Lena (256 × 256). 
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Table 6. Correlation coefficients of the plain and encrypted image with the size of 256 × 256. 

Image Direction 
Plain Image Encrypted Image 

R G B R G B 
 H 0.968 0.949 0.932 0.014 0.011 0.009 

Lena V 0.943 0.896 0.887 0.011 0.020 0.022 
 D 0.918 0.859 0.852 0.035 0.016 0.021 
 H 0.939 0.955 0.925 0.005 −0.015 −0.006 

Pepper V 0.931 0.935 0.905 0.029 −0.010 0.011 
 D 0.887 0.894 0.842 0.012 −0.014 0.025 
 H 0.917 0.919 0.938 −0.013 0.012 −0.011 
 H 0.950 0.895 0.938 −0.014 −0.010 −0.004 

Baboon V 0.944 0.876 0.919 −0.022 0.014 −0.007 
 D 0.921 0.827 0.889 −0.010 −0.018 0.021 

All H #N/A #N/A #N/A −0.011 0.015 0.012 
black V #N/A #N/A #N/A −0.021 −0.016 −0.016 

 D #N/A #N/A #N/A 0.016 −0.002 0.005 
All H #N/A #N/A #N/A 0.001 0.002 0.003 

white V #N/A #N/A #N/A 0.005 0.010 0.003 
 D #N/A #N/A #N/A 0.003 0.004 0.001 

Table 7. Comparison of correlation coefficients across methods. 

Algorithm 
Encrypted Image 

R G B Average 
Ours 0.0011 0.0018 0.0024 0.0018 

Ref. [29] −0.0027 0.0033 −0.0035 0.0031 
Ref. [28] 0.0096 0.0109 0.0122 0.0109 

4.5. Histogram Analysis 

A secure image encryption scheme can resist statistical attacks. The elimination of correlation 
among pixels was necessary, and pixels of the encrypted image had to be distributed evenly. To 
verify whether the proposed scheme could distribute the encrypted image evenly, we conducted a 
histogram analysis. 

Figure 7 shows the R, G, and B channels of the plain image Lena and its encrypted image with 
the size 256 × 256. Table 8 shows the variance of the constructed histograms (calculated by Equation 
(32)), and Table 9 compares our histograms with those produced by other schemes: 

𝑣𝑎𝑟(𝑋) =  1𝑛 12 (𝑥 − 𝑥 )  (32) 

 

 
(a) (b) (c) 
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(d) (e) (f) 

Figure 7. Histograms of the plain and encrypted image Lena. 

From Table 8, we can see that the variances of the original images are very high, while the 
variances of the encrypted images are greatly reduced. All encrypted variances are reduced by at 
least 98% compared to the original image variances. Figure 7 shows histograms of the plain and 
encrypted image Lena. Figure 7a–c are histograms of the plain image Lena in the R, G, and B 
channels, and Figure 7d–f are histograms of the encrypted image Lena in the R, G, and B channels, 
respectively, where x-axis denotes the pixel values in the image while y-axis denotes the frequency 
of the pixels in the image. From Figure 7, the histograms of the original images have obvious peaks, 
and histograms of the encrypted images are very uniform. Attackers cannot use a statistical attack 
to obtain any useful information by analyzing the histogram of the encrypted image. Therefore, our 
method can effectively resist statistical attacks. Table 9 shows comparison of histogram variance 
across methods about image Lena. It can be seen from Table 9 that our algorithm can obtain 
encrypted images with lower histogram variance. 

Table 8. Histogram data of plain and encrypted images. 

Image Lena Pepper Baboon All Black All White 

Plain image 
R 76004.8672 57105.9766 22617.9609 #N/A #N/A 
G 31563.3516 52138.7656 36848.7813 #N/A #N/A 
B 95871.8906 103145.2813 35444.8828 #N/A #N/A 

Encrypted 
image 

R 229.5391 259.8532 272.1654 263.6427 238.7628 
G 231.0976 249.9874 276.7468 263.9653 241.7543 
B 247.1986 264.4899 286.8965 255.3785 271.9436 

Table 9. Comparison of histogram variance across methods about image Lena. 

Algorithm 
Variance 

R G B 
Ours 229.5391 241.9375 248.1328 

Ref. [22] 249.7265 257.4453 256.1875 
Ref. [29] 247.7800 279.6200 265.7100 

4.6. Information Entropy Analysis 

Information entropy is a metric that measures the randomness of an image and the amount of 
information hidden in an image: 

𝐻(𝑚) = − 𝑃(𝑥 ) × 𝑙𝑜𝑔 𝑃(𝑥 ). (33) 

Theoretically, a robust encryption scheme has an entropy value of 8. Table 10 shows the 
information entropy of the plain and encrypted images (size 256 × 256). The entropy is calculated by 
Equation (33). Our results were very close to 8, and thus were satisfactory. Table 11 compares 
information entropy across multiple schemes. Our algorithm was superior to other algorithms and 
was closer to the theoretical value of 8. 
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Table 10. Information entropy of plain and encrypted images. 

Image 
Plain Image Encrypted Image 

R G B R G B 
Lena 7.1655 7.5578 6.8571 7.9974 7.9976 7.9975 

Pepper 7.3009 7.5570 7.0929 7.9974 7.9973 7.9972 
Baboon 7.6987 7.4251 7.5809 7.9970 7.9970 7.9971 

All black 0.0000 0.0000 0.0000 7.9971 7.9971 7.9972 
All white 0.0000 0.0000 0.0000 7.9974 7.9973 7.9970 

Table 11. Comparison of information entropy across methods about image Lena. 

Algorithm 
Information Entropy 

R G B 
Ours 7.9974 7.9976 7.9975 

Ref. [29] 7.9973 7.9969 7.9971 
Ref. [27] 7.9973 7.9972 7.9969 
Ref. [28] 7.9966 7.9972 7.9967 

4.7. Differential Attacks and Chosen Plaintext Attack 

Differential attacks crack the symmetric encryption scheme by analyzing the information 
distribution of the encrypted image. A secure symmetric encryption scheme is capable of resisting 
such attacks. 

The NPCR and UACI (unified average change intensity) values of the R, G, and B channels are 
calculated as follows: 𝑁𝑃𝐶𝑅 = ∑ ∑ 𝐷(𝑖, 𝑗)𝑀 × 𝑁 × 100%, (34) 

𝑈𝐴𝐶𝐼 = 1255 ×𝑀 × 𝑁  𝐶(𝑖, 𝑗) − 𝐶 (𝑖, 𝑗) × 100%, (35) 

𝐷(𝑖, 𝑗) = 0, 𝑖𝑓 𝐶(𝑖, 𝑗) = 𝐶 (𝑖, 𝑗)1, 𝑖𝑓 𝐶(𝑖, 𝑗) ≠ 𝐶 (𝑖, 𝑗). (36) 

Table 12 lists the NPCR and UACI values of encrypted images with a size of 256 × 256. Table 13 
compares these values with those obtained through other schemes. As the tables illustrate, the 
NPCR and UACI of the R, G, and B channels were very close to the ideal values of 0.996 and 0.3346, 
respectively. Furthermore, the values of the proposed scheme were as good as the values obtained 
by the other methods. A secure and efficient encryption method is sensitive to a slight change in the 
plain image, and hence the encryption scheme is capable of resisting plaintext attacks. Usually, 
hackers employ all-black and all-white images to perform the chosen plaintext attack. As seen in 
Table 12, the NPCR and UACI of all-black and all-white images were close to the ideal values, 
thereby illustrating that the proposed scheme was sensitive to the plaintext and therefore could 
resist these attacks. 

Table 12. NPCR and UACI values of different encrypted images. 

Image 
NPCR UACI 

R G B R G B 
Lena 0.9959 0.9960 0.9961 0.3354 0.3344 0.3345 

Pepper 0.9962 0.9960 0.9959 0.3341 0.3339 0.3336 
Baboon 0.9960 0.9961 0.9959 0.3345 0.3340 0.3334 

All black 0.9961 0.9961 0.9958 0.3344 0.3345 0.3341 
All white 0.9963 0.9959 0.9962 0.3344 0.3334 0.3351 
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Table 13. Comparison of NPCR and UACI values across methods about image Lena. 

Image 
NPCR UACI 

R G B R G B 
Ours 0.9959 0.9960 0.9961 0.3354 0.3344 0.3345 

Ref. [29] 0.9960 0.9961 0.9961 0.3356 0.3345 0.3349 
Ref. [28] 0.9961 0.9961 0.9961 0.3343 0.3343 0.3342 
Ref. [30] 0.9963 0.9960 0.9960 0.3360 0.3330 0.3340 

4.8. Noise and Occlusion Attack Analysis 

During image transmission, noise and occlusion attacks are inevitable, but a robust encryption 
scheme can resist them. To verify whether the proposed scheme was capable of resisting noise and 
occlusion attacks, we used the encrypted image of Lena (256 × 256) as the test image. 
Salt-and-pepper noise (SPN) and Gaussian noise (GN) of varying intensities were added to the test 
image. In occlusion attack analysis, we added an occlusion effect to the test images; the occluding 
object occupied different proportions of the image and occurred at different positions. 

In addition, we employed the peak-signal-to-noise ratio (PSNR) to calculate the difference 
between the original image and the decrypted images. The PSNR is calculated as follows: 𝑃𝑆𝑁𝑅 = 10 × log (255 × 255𝑀𝑆𝐸 ) (𝑑𝐵), (37) 

𝑀𝑆𝐸 = 1𝑀𝑁  𝑃 (𝑖, 𝑗) − 𝑃 (𝑖, 𝑗) , (38) 

where M and N are the width and height of an image, respectively, and P1 and P2 are the original 
plain image and the image decrypted from the contaminated cipher image, respectively. 

Figure 8 shows stimulation results of occlusion attacks with Lena. Figure 8a,c,e and g 
respectively represent the images obtained after Figure 3f suffered the different occlusion attack. 
Figure 8b,d,f and h respectively represent the decrypted images of Figure 8a,c,e and g Evidently, 
according to Figure 8 and Table 14, all PSNR values were larger than 27, and the decrypted images 
were all recognizable despite the various sorts of contamination in the encrypted images. Therefore, 
the proposed method was capable of resisting noise attacks and occlusion attacks. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 8. Stimulation results of occlusion attacks with Lena (256 × 256). 
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Table 14. PSNR results with Lena (256 × 256). 

Item R G B 
GN with intensity = 0.02 28.2541 28.5421 28.3041 
GN with intensity = 0.2 27.5014 27.3657 27.4251 

SPN with intensity = 0.0002 57.4214 56.3527 56.8765 
SPN with intensity = 0.0005 66.5047 67.4581 66.5041 
SPN with intensity = 0.001 59.1021 61.1042 61.5384 

1/8 data loss at the lower-left corner 30.6874 34.5478 35.6522 
1/8 data loss at the upper-right corner 33.0001 33.0487 32.6894 
1/4 data loss at the lower-right corner 31.5478 31.2587 31.3586 
1/4 data loss at the upper-left corner 29.9564 32.7532 32.2287 

4.9. Resistance to Some Typical Attacks 

A secure cryptosystem should be capable of resisting cipher-text only attack, chosen-ciphertext 
attack, known-plaintext attack and chosen-plaintext attack. Among them, the chosen-plaintext 
attack is the most powerful. And if a cryptosystem is capable of resisting the chosen-plaintext attack, 
this cryptosystem is capable of resisting three other types of attack and we can declare that this 
cryptosystem is secure enough. In this paper, the encryption algorithm consists of two rounds of 
permutation-diffusion. In which, DNA encoding, DNA diffusion operation, DNA decoding, chaos 
and other techniques are used. And in our algorithm, the SHA-512 algorithm and the natural DNA 
sequence are used to generate the initial values of two chaotic systems. And the different image 
leads to the different initial values for the chaotic systems. Evidently, our algorithm is dependent on 
the plain image directly. In addition, if the hackers use the specific images such as all white and all 
black images to perform chosen-plaintext attack on our algorithm, the stimulation results of the 
all-white image and all-black image show that these two images all noise-like ones. Therefore, we 
can conclude that the proposed algorithm is capable of resisting the above mentioned typical attacks. 

4.10. Contrast Investigation 

Contrast investigation [31,32] is usually to calculate the local intensity variance in the image. 
Contrast is luminescence or color difference, through which objects in the image can be 
distinguished, and because the observer can recognize different objects. A higher contrast value 
indicates that the image has significantly different gray levels, while a constant gray level is 
represented by a lower value. Its mathematical description is: 𝐶 = |𝑖 − 𝑗| × 𝑝(𝑖, 𝑗),  (39) 

where 𝑝(𝑖, 𝑗) indicates the number of gray-level co-occurrence matices (GLCM). 
Table 15 shows contrast values of plain images and encrypted images in R, G, B channels. 

From Table 15, contrast values of encrypted images are higher than ones of plain images. According 
to Ref. [31,32], it can prove that our method is satisfactory in terms of comparative investigation. 

Table 15. Contrast values of plain images and encrypted images in R, G, B channels. 

Image 
Plain Image Encrypted Image 

R G B R G B 
Lena 0.3672 0.3947 0.3405 10.5208 10.4763 10.5223 

Pepper 0.1743 0.2341 0.1668 10.4999 10.4879 10.5112 
Baboon 0.2248 0.2204 0.2430 10.5261 10.5012 10.4987 

  



Entropy 2020, 22, 1091 20 of 22 

 

4.11. Energy 

Energy calculations [31,32] result in the addition of square elements in GLCM. When the entries 
of GLCM are almost equal, the value of energy is lower, and when the amplitude of some entries is 
higher, the value of energy is higher. For encrypted images, the energy must be low: 𝐸 = 𝑝(𝑖, 𝑗),  (40) 

where 𝑝(𝑖, 𝑗) indicates GLCM. 
Table 16 shows energy values of plain images and encrypted images in R, G, B channels. 

According to Ref. [31,32], Table 16 can illustrate that encrypted images have the lower energy, and 
our method is satisfactory in terms of energy. 

Table 16. Energy values of plain images and encrypted images in R, G, B channels. 

Image 
Plain Image Encrypted Image 

R G B R G B 
Lena 0.1391 0.0989 0.1756 0.0156 0.0156 0.0156 

Pepper 0.1499 0.1183 0.1849 0.0156 0.0156 0.0156 
Baboon 0.1047 0.1285 0.1233 0.0156 0.0156 0.0156 

5. Conclusions 

In this paper, we proposed an image encryption method with two rounds of permutation and 
diffusion. First, we employed the SHA-512 algorithm and the natural DNA sequence to generate the 
initial values for the four-wing hyperchaotic system and the Lorenz chaotic system, and the 
intermittent parameters. Since the hash value was determined by the plain image, a slight change in 
the plain image led to a totally different hash value so that the initial values for the chaotic system 
and the intermittent parameters were totally different, thereby leading to a totally different 
encrypted image in the end. Therefore, the proposed method was a one-time key pad scheme and 
was capable of resisting plaintext attacks. Second, we performed 2D-RT on the plain image t times. 
This was the first round of permutation. Since 2D-RT was derived from the traditional Arnold map, 
2D-RT was an enhanced Tent map and could permutate the non-square image. Third, we employed 
the initial values to generate the chaotic sequences and the chaotic matrices for the construction of 
the DNA encoding rule matrices. All the DNA encoding rules depended on the plain image. Fourth, 
we used the intermittent parameters to construct the DNA matrices. Furthermore, the DNA matrices 
were used to calculate the hamming distances to update the initial values and iterate the chaotic 
systems for the second time, which eliminated the risk of using the secret keys several times. Fifth, 
the new chaotic matrices were generated, and the intermittent parameters were used to construct the 
DNA decoding rule matrices, making all the DNA decoding rules determined by the plain image. 
All of the rules were used in the first round of diffusion. In contrast to the traditional diffusion 
operations implemented on DNA matrices, in the proposed scheme, two different DNA diffusion 
operations were implemented on the encoded plain images and the encoded chaotic matrices: the 
dynamic DNA complementary rule operation and the DNA cycle operation. Finally, the eighth 
intermittent parameters were used to decompose the encoded images and encoded chaotic matrices, 
and in the second round of permutation–diffusion, we performed conditional shifting on the 
decomposed images and implemented the XOR calculation with the decomposed chaotic matrices to 
get the final encrypted image. Stimulation results and security analysis illustrated that the proposed 
scheme was secure and capable of resisting various sorts of attacks, and produced satisfactory 
stimulation results on image encryption and image decryption. 
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