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Abstract  23 

Background: Genome-wide and clinical studies have linked the 677C→T polymorphism in 24 

the gene encoding methylenetetrahydrofolate reductase (MTHFR) with hypertension, whilst 25 

limited evidence shows that intervention with riboflavin (i.e. the MTHFR co-factor) can lower 26 

blood pressure (BP) in hypertensive patients with the variant MTHFR 677TT genotype. We 27 

investigated the impact of this common polymorphism on BP throughout adulthood and 28 

hypothesised that riboflavin status would modulate the genetic risk of hypertension.  29 

Methods: Observational data on 6076 adults of 18-102 years were drawn from the Joint Irish 30 

Nutrigenomics Organisation project, comprising the Trinity-Ulster Department of Agriculture 31 

(TUDA; volunteer sample) and the National Adult Nutrition Survey (NANS; population-based 32 

sample) cohorts. Participants were recruited from the Republic of Ireland and Northern Ireland 33 

(UK) in 2008-2012 using standardised methods. 34 

Results: The variant MTHFR 677TT genotype was identified in 12% of adults. From 18-70 35 

years, this genotype was associated with an increased risk of hypertension (i.e. systolic BP 36 

≥140 and/or a diastolic BP ≥90mmHg): odds ratio (OR) 1.42, 95% confidence interval (CI) 37 

1.07 to 1.90; P=0.016, after adjustment for antihypertensive drug use and other significant 38 

factors, namely, age, male sex, BMI, alcohol and total cholesterol.  Low or deficient biomarker 39 

status of riboflavin (observed in 30.2% and 30.0% of participants, respectively) exacerbated 40 

the genetic risk of hypertension, with a 3-fold increased risk for the TT genotype in 41 

combination with deficient riboflavin status (OR 3.00, 95% CI, 1.34-6.68; P= 0.007) relative 42 

to the CC genotype combined with normal riboflavin status. Up to 65 years, we observed poorer 43 

BP control rates on antihypertensive treatment in participants with the TT genotype (30%) 44 

compared to those without this variant, CT (37%) and CC (45%) genotypes (P<0.027). 45 

Conclusions: The MTHFR 677TT genotype is associated with higher BP independently of 46 

homocysteine and predisposes adults to an increased risk of hypertension and poorer BP control 47 
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with antihypertensive treatment, whilst better riboflavin status is associated with a reduced 48 

genetic risk. Riboflavin intervention may thus offer a personalised approach to prevent the 49 

onset of hypertension in adults with the TT genotype, however, this requires confirmation in a 50 

randomised trial in non-hypertensive adults. 51 

Keywords: Hypertension; blood pressure; folate polymorphism; MTHFR; riboflavin; 52 

personalised treatment; prevention. 53 

54 
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Background 55 

Hypertension is the leading risk factor contributing to all-cause death in every region in the 56 

world, estimated to affect 1.13 billion people globally and account for over 9 million deaths 57 

annually, predominantly from cardiovascular disease (CVD) [1–3]. The relationship of blood 58 

pressure (BP) with disease is age-specific and most pronounced in adults 40-69 years, where 59 

the risk of CVD is estimated to double for each 20mmHg rise in systolic BP [4]. Recent reports 60 

have highlighted the importance of targeting lifestyle and treatments strategies at the individual 61 

level in order to improve cardiovascular health [1, 5], and genome-wide association studies 62 

(GWAS) have identified specific genes linked with BP which could lead to personalised 63 

treatments for hypertension based on genetic characteristics. The earliest of such studies tested 64 

2.5 million single nucleotide polymorphisms (SNPs) and identified eight genetic loci 65 

associated with BP, including a region near the gene encoding the folate-metabolising enzyme 66 

methylenetetrahydrofolate reductase MTHFR [6], findings confirmed by subsequent GWAS 67 

[7].  68 

Of greater relevance to health, clinical studies have linked this gene with BP, with  meta-69 

analyses of case-control studies showing that the 677C→T polymorphism in MTHFR is 70 

associated with an increased risk of hypertension by 36-87% [8–10]. Previously the role of this 71 

polymorphism in CVD has been studied extensively in relation to the well-recognised 72 

phenotype, elevated homocysteine, whilst the relationship with BP is relatively under-73 

investigated. The variant MTHFR 677TT genotype, which affects 10% of adults worldwide 74 

[11], is however reported to increase the risk of CVD (especially stroke) by up to 40%, albeit 75 

with a large geographical variation in the extent of excess risk, consistent with a gene-76 

environment interaction [12–14]. In this regard only folate was previously considered,  but 77 

emerging evidence suggests that riboflavin - required in the form flavin adenine dinucleotide 78 

(FAD) as a cofactor for MTHFR - may be a key modifying factor linking this polymorphism 79 
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with CVD via a novel and genotype-specific effect on BP [14]. In three small randomised 80 

controlled trials, we previously demonstrated lowering of systolic BP by 6 to 13 mmHg in 81 

response to riboflavin when targeted at hypertensive patients with the variant MTHFR 677TT 82 

genotype [15–17]. 83 

No previous study has investigated the contribution of the MTHFR 677C→T 84 

polymorphism to BP within generally healthy adults or identified a potential prevention 85 

strategy to reduce the onset of hypertension in those genetically at-risk. The aim of this study 86 

was therefore to examine the impact of this polymorphism on BP throughout adulthood, and to 87 

assess the role of riboflavin in modulating the genetic risk of hypertension. We hypothesised 88 

that this polymorphism is associated with high BP independently of its association with 89 

homocysteine, and that riboflavin status would modulate the genetic risk of hypertension. 90 

 91 

Methods 92 

Design and participants 93 

Data for this investigation were drawn from two cohorts, the Trinity-Ulster Department of 94 

Agriculture (TUDA) cohort study and the National Adult Nutrition Survey (NANS) of Ireland, 95 

both forming part of an All-Ireland initiative under the Joint Irish Nutrigenomics Organisation 96 

(JINGO) project (http://www.ucd.ie/jingo/; accessed May 2020). The TUDA study 97 

(ClinicalTrials.gov Identifier: NCT02664584) comprises a cross-sectional cohort of 5186 older 98 

adults (≥60 years), with the primary aim of investigating nutritional factors and gene-nutrient 99 

interactions in the development of chronic diseases of ageing. Eligible participants were 100 

community dwelling, non-institutionalised adults, born on the island of Ireland. Participants 101 

were recruited using standardised protocols during the period of 2008 to 2012, either from GP 102 

practices in the Northern and Western Trusts in Northern Ireland (UK), or from hospital 103 

outpatient clinics at the Department of Medicine for the Elderly at St. James’s Hospital Dublin 104 

http://www.ucd.ie/jingo/
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in the Republic of Ireland, as previously detailed [18]. Over a similar period (2008 to 2010), 105 

detailed dietary, biomarker, health and lifestyle data were collected for the NANS cohort, a 106 

nationally representative sample of Irish adults. Eligible participants were healthy adults aged 107 

18-102 years, not pregnant or breast-feeding. Full sampling and methodological details for 108 

NANS 2008-2010 have been described elsewhere [19]. Approval for both studies was granted 109 

from the relevant ethics committees in the UK and the Republic of Ireland and all participants 110 

provided written informed consent at the time of recruitment. 111 

 112 

Study measurements 113 

For both the TUDA and NANS cohorts, relevant health and lifestyle information was obtained 114 

in face-to-face interviews conducted by trained researchers. Detailed information concerning 115 

medication and vitamin supplement usage was collected. Confirmation of medication details 116 

was obtained by referring to the participant’s prescription; where this was unavailable during 117 

the interview, the details were collected from the participant via telephone shortly after the 118 

appointment. Blood samples collected at the time of the appointment were analysed for routine 119 

laboratory measurements in the participating local laboratories, whereas B vitamin status 120 

biomarkers were analysed centrally in specialist research laboratories at Ulster University or 121 

Trinity College Dublin using standardised procedures [16]. Of particular relevance, the analysis 122 

included the riboflavin biomarker, erythrocyte glutathione reductase activation coefficient 123 

(EGRac), widely accepted as the gold-standard measure of riboflavin status. This coefficient 124 

provides a measure of glutathione reductase enzyme saturation with its riboflavin-derived 125 

cofactor and is thus a functional biomarker of riboflavin status; a low EGRac value is 126 

considered to be normal, while higher values are indicative of suboptimal riboflavin status. 127 

DNA samples were analysed for several SNPs, including MTHFR 677C→T (rs1801133), by 128 

LGC Genomics (Hoddesdon, UK).   129 
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Trained researchers measured BP using standard operating procedures and clinical 130 

guidelines, using an A&D UA-787 digital blood pressure monitor (Cardiac Services, Belfast, 131 

UK) or OMRON M6 (Milton Keynes, UK), for TUDA and NANS cohorts respectively, with 132 

the participant in the supine position following a 5 minute rest. In accordance with clinical 133 

guidelines [20], two BP measurements were taken from the reference arm, with a 5-10 minute 134 

interval between each measurement to generate a mean BP value. In the case of a >5 mmHg 135 

difference, a third BP measurement was taken after 10-15 minutes and the mean of the two BP 136 

measurements in closest agreement was used. 137 

 138 

Study outcomes 139 

The primary outcomes were systolic and diastolic BP, and occurrence of hypertension, by 140 

MTHFR genotype and MTHFR-riboflavin interaction.  In accordance with British and 141 

European guidelines, hypertension was defined when a participant’s systolic BP was ≥140 142 

mmHg and/or their diastolic BP was  ≥90 mmHg; as per clinical guidance, these BP categories 143 

applied to all adults (>18 years) [1, 20]. An additional study outcome was BP control on 144 

antihypertensive treatment by MTHFR genotype. Treatment was defined as taking medication 145 

to lower BP, as verified by the researcher against prescription details during or following the 146 

interview. Treated and controlled was defined as taking medication to lower BP and a recorded 147 

systolic BP of <140 and/or diastolic BP <90 mmHg.  148 

 149 

Statistical analysis 150 

Analysis was limited to participants with available MTHFR genotype and valid BP (Fig 1). 151 

Before statistical analysis, tests for normality were performed and variables were log-152 

transformed as appropriate. Participant characteristics were examined by MTHFR genotype 153 

and differences between groups were analysed using one-way between-groups analysis of 154 
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variance (ANOVA) for continuous variables and χ2 tests for categorical parameters. To account 155 

for multiple testing, the null hypothesis was rejected for P<0.05 after post-hoc Bonferroni 156 

correction at a family level. Logistic regression analysis was used to predict hypertension (as 157 

the categorical dependent variable) using relevant independent variables, and examined the 158 

association of MTHFR genotype with the risk of hypertension after independently adjusting for 159 

established risk factors, including antihypertensive drug use (as a binary yes/no covariate 160 

adjustment). Multinomial regression was performed to enable the effect of the interaction 161 

between MTHFR genotype and biomarker status of riboflavin (i.e. deficient versus low versus 162 

normal) on the risk of hypertension to be assessed; odds ratios were calculated using MTHFR 163 

677CC genotype combined with normal riboflavin status as the reference category. Statistical 164 

analysis was performed using the Statistical Package for Social Sciences (SPSS, version 21, 165 

SPSS UK Ltd, Chertsey Road, Surrey, UK). 166 

 167 

Fig. 1 Identification of study participants from two cohorts under the Joint Irish Nutrigenomics (JINGO) 168 

Initiative.  169 
*National Adult Nutrition Survey of Ireland 170 

†Trinity-Ulster and Department of Agriculture cohort study 171 
≠
CC (wild type), CT (heterozygous), TT (homozygous), genotypes for the 677C→T polymorphism in 172 

MTHFR 173 

 174 

Results 175 

Study participants 176 

From an original dataset of 6360 participants (i.e. combined TUDA [n = 5186] and NANS [n 177 

= 1174] cohorts), complete data for the current analysis were available for a total of 6076 178 

participants (Fig 1). Homozygosity for the MTHFR 677C→T polymorphism (TT genotype) 179 

was identified in 12% of the overall study sample (12.1% and 12.3 % for TUDA and NANS 180 

cohorts respectively; Additional File 1: Table S1 showing characteristics separately presented 181 

for TUDA and NANS cohorts).  There were no significant differences in general participant 182 
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characteristics among MTHFR genotype groups (Table 1). The expected phenotype was 183 

however evident in B vitamin biomarkers, with significantly higher plasma homocysteine and 184 

lower red blood cell folate concentrations in the TT compared to CC or CT genotypes. General 185 

participant characteristics split by study sub-cohorts (i.e. TUDA and NANS cohorts) are 186 

provided as Supplementary material (Additional File: Table S1). 187 

 188 

Table 1 General participant characteristics by MTHFR genotype 189 

 MTHFR Genotypea  

 CC 

(n = 2677) 

CT 

(n = 2660)  

TT 

(n = 739) 

p 

valueb 

MTHFR genotype, n (%) 2677 (44) 2660 (44) 739 (12)  

Age, years 68.9 (15.1) 69.0 (15.5) 68.6 (15.6) 0.806 

Sex, male 943 (35%) 961 (36%) 256 (35%) 0.678 

Waist, cm 94.5 (13.9) 94.5 (14.1) 94.7 (14.7) 0.982 

Height, cm 162.6 (10.2) 162.9 (10.1) 162.6 (10.0) 0.619 

Weight, kg 73.7 (16.5) 73.7 (16.8) 74.2 (17.3) 0.853 

Body mass index, kg/m2 27.8 (5.2) 27.7 (5.4) 27.9 (5.2) 0.458 

Current smokers, n (%) 359 (13%) 355 (13%) 89 (12%) 0.530 

Alcohol Intake, units/week 8.6 (12.2) 8.8 (12.7) 8.0 (11.3) 0.402 

Serum triglycerides, mmol/L 1.51 (0.84) 1.56 (0.88) 1.55 (0.78) 0.087 

Serum total cholesterol, mmol/L 4.68 (1.03) 4.68 (1.06) 4.73 (1.05) 0.383 

Serum HDL, mmol/L 1.51 (0.49) 1.48 (0.45) 1.49 (0.47) 0.439 

Calculated LDL, mmol/L 2.50 (0.88) 2.50 (0.89) 2.54 (0.88) 0.472 

Serum Creatinine, µmol/L 86.3 (27.4) 86.0 (26.4) 85.9 (27.2) 0.928 

B-vitamin Biomarkers     

Red blood cell folate, nmol/L 1095 (579)a 1088 (626)a 971 (563)b <0.001 

Serum vitamin B12, pmol/L 295 (155) 295 (238) 296 (238) 0.194 

Riboflavin status, EGRacc 1.35 (0.21) 1.35 (0.21) 1.34 (0.21) 0.769 

Plasma homocysteine, µmol/L 14.2 (5.4)a 14.3 (5.4)a 15.7 (6.8)b <0.001 

Data are expressed as mean (standard deviation) or n (%). 190 
aCC (wild type), CT (heterozygous), TT (homozygous variant), genotypes for the MTHFR 677C→T 191 

polymorphism.  192 
bP-value from one-way ANOVA comparing genotype groups, following log-transformation of data for 193 

normalisation purposes, as appropriate. Different superscript letters (i.e. a, b) within a row indicate 194 

significant differences by Bonferroni post-hoc test, whilst the same letter (i.e. a, a) indicates no 195 

significant differences. Level of significance (P<0.003) adjusted for Bonferroni correction (n = 16). 196 

Categorical variables assessed using chi-square analysis. 197 
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cBiomarker status of riboflavin determined by the functional assay, erythrocyte glutathione reductase 198 

activation coefficient (EGRac); higher EGRac values indicate lower riboflavin status. 199 

 200 

Impact of MTHFR genotype on blood pressure and risk of hypertension  201 

Irrespective of MTHFR genotype, systolic BP showed an increase with age up to approximately 202 

80 years, whereas diastolic BP increased until about age 60 years and then declined (Fig 2). 203 

Examination of BP by MTHFR genotype, however, showed higher BP in the TT genotype 204 

group up to approximately 65 years compared to adults of the same age with CC or CT 205 

genotypes, with systolic and diastolic BP in the TT genotype observed to be typical of an adult 206 

several years older without this genetic variant. From about 65 years onwards, however, the 207 

BP phenotype associated with this polymorphism was less evident.  208 

 209 

Fig. 2 Systolic and diastolic blood pressure in adults 18-90 years by MTHFR genotype 210 

(n=6070).  211 

Data grouped by deciles of age from the youngest 10%, to the oldest 10%, of study participants. Each 212 

line illustrates median systolic or diastolic blood pressure for adults by age: CC (green line), CT (amber 213 

line) and TT (red line) genotypes for the MTHFR 677C→T polymorphism. 214 

 215 

Among adults 18-70 years, logistic regression analysis showed that the MTHFR 677TT 216 

genotype was associated with an increased risk of hypertension: odds ratio (OR) 1.42, 95% 217 

confidence interval (CI) 1.07  to 1.90, after adjustment for antihypertensive drug use (as a 218 

binary covariate) and other significant covariates, namely, age, male sex, BMI, alcohol, total 219 

cholesterol and study cohort (Table 2), whereas homocysteine was not independently 220 

associated with the risk of hypertension (apart from in treated adults). The OR for risk of 221 

hypertension associated with the TT genotype remained similar whether the logistic regression 222 

analysis was performed in all participants up to 70 years, or split into those treated or not treated 223 

with antihypertensive drugs, albeit the relationship failed to reach statistical significance within 224 

either treated or untreated categories (owing to the loss of statistical power as a result of a 50% 225 

reduction in the sample size when split and considering that the variant TT genotype is 226 
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represented by just 12% of the overall cohort).  In contrast, when this analysis was conducted 227 

in the total sample (i.e. adults up to 90 years), MTHFR genotype was not significantly 228 

associated with hypertension, whilst all other determinants of hypertension were similar to 229 

those found in adults up to 70 years (not shown). 230 

 231 

Table 2 Factors associated with risk of hypertension in adults 18-70 years 232 

  
All 

 (n = 2566) 

 On antihypertensive drugs 

(n = 1255) 

 Not on antihypertensive 

drugs (n = 1311) 

    OR 95% CI Pb  OR 95% CI Pb  OR 95% CI Pa 

Age, years  1.04 1.03-1.05 <0.001  1.01 0.98-1.04 0.568  1.05 1.03-1.06 <0.001 

Sex, male  
1.86 1.50- 2.32 <0.001  1.69 1.28-2.25 0.001  1.77 1.23-2.56 0.002 

BMI, kg/m2 1.06 1.04-1.08 <0.001  1.03 1.01-1.05 0.009  1.11 1.07-1.15 <0.001 

Alcohol Intake, units per week 1.01 1.00-1.02 0.005  1.01 1.00-1.02 0.325  1.03 1.01-1.04 <0.001 

Antihypertensive medication useb 2.01 1.60-2.52 <0.001         

Serum Creatinine, µmol/l 1.00 0.99-1.00 0.307  1.00 0.99-1.00 0.189  1.01 0.99-1.02 0.340 

Total Cholesterol, mmol/l 1.26 1.15-1.38 <0.001  1.25 1.11-1.41 <0.001  1.23 1.07-1.41 0.004 

Smoking  Past  0.98 0.80-1.19 0.826  0.97 0.75-1.26 0.834  1.02 0.74-1.41 0.888 
 Current 1.03 0.79-1.33 0.845  0.92 0.64-1.31 0.630  1.10 0.75-1.62 0.618 

Study Cohortc 1.79 1.29-2.48 <0.001  2.40 1.40-4.11 <0.001  2.09 1.31-3.32 0.002 

Plasma Homocysteine, µmol/l 1.00 0.98-1.02 0.958  0.98 0.96-1.00 0.074  1.06 1.02-1.10 0.002 

MTHFR genotyped CT 1.18 0.98-1.43 0.082  1.35 1.05-1.73 0.018  0.98 0.73-1.32 0.889 

 TT 1.42 1.07-1.90 0.016  1.40 0.95-2.06 0.093  1.37 0.88-2.11 0.161 

CI, Confidence Interval; OR, odds ratio 233 
aData analysed by Logistic Regression to predict hypertension as the categorical dependent variable; 234 

hypertension defined as systolic BP of ≥140 and/or a diastolic BP of ≥90mmHg [1]. 235 
bas a binary (yes/no) covariate. 236 
cComparing TUDA cohort with NANS cohort (reference category). See supplementary Table S1 for 237 

participant characteristics presented separately for each study cohort. 238 
dCT (heterozygous) and TT (homozygous variant) genotypes for the MTHFR 677C→T 239 

polymorphism; reference category is the CC genotype. 240 

 241 

Likewise no significant effect of MTHFR genotype on BP was observed when the total cohort 242 

was analysed, but among adults 18 to 70 years, those with the TT genotype had significantly 243 

higher systolic and diastolic BP after adjustment for relevant covariates including 244 

antihypertensive drug use (Table 3).  Among participants up to 70 years, 49% (n=1255) were 245 

being treated with one or more antihypertensive drugs. Details of antihypertensive drug use 246 

and drug combinations among treated participants are shown in Table 4. Almost 60% of treated 247 

participants were treated with two or more medications (57%, 57% and 59% for CC, CT and 248 
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TT genotypes). For BP results among participants being treated/not treated with 249 

antihypertensive drugs by MTHFR genotype, see Additional File 1: Table S2). 250 

 251 

Table 3 Blood pressure and rates of hypertension in adulthood by MTHFR genotype 252 

 MTHFR genotype  

 CC CT TT p valueb 

Total cohort (up to 90 

years) 
n = 2635 n = 2606 n = 719  

Age, years 68.9 (68.3, 69.5) 69.0 (68.4, 69.6) 68.6 (67.5, 69.7) 0.806 

Systolic BP, mmHg 140.7 (139.8, 141.5) 141.5 (140.8, 142.4) 141.1 (139.6, 142.6) 0.373 

Diastolic BP, mmHg 78.0 (77.6, 78.4) 78.5 (78.0, 78.9) 78.4 (77.6, 79.2) 0.258 

Hypertension, n (%) 1373 (51%) 1411 (53%) 373 (50%) 0.302 

Adults 18 to 70 years n = 1124 n = 1138 n = 313  

Age, years 56.3 (55.4, 57.1) 56.4 (55.6, 57.3) 55.8 (54.2, 57.5) 0.835 

Systolic BP, mmHg 135.0 (133.9, 136.0)a 136.1 (135.0, 137.2)ab 137.6 (135.5, 139.6)b 0.026 

Diastolic BP, mmHg 79.4 (78.9, 80.0)a 80.0 (79.4, 80.5)ab 81.4 (80.3, 82.5)b 0.013 

Hypertension, n (%) 464 (40) 514 (44) 149 (46) 0.072 

Abbreviations: BP, blood pressure; CC (wild type), CT (heterozygous), TT (homozygous variant), 253 

genotypes for the MTHFR 677C→T polymorphism.  254 

Data are expressed as mean (95% CI) for age, as adjusted mean (95% CI) for blood pressure, and n (%) 255 

for hypertension  256 
aHypertension defined as systolic BP of ≥140 and/or a diastolic BP of ≥90mmHg [1]. 257 
bDifferences in blood pressure between genotype groups were assessed by one-way ANCOVA with 258 

adjustment for age, sex, BMI, alcohol, total cholesterol, antihypertensive drugs use and study cohort 259 

following log-transformation of data for normalisation purposes, as appropriate. Different superscript 260 

letters (i.e. a, b) within a row indicate significant differences by Bonferroni post-hoc test, whilst the 261 

same letter (i.e. a, a) indicates no significant differences. Categorical variables were assessed using chi-262 

square analysis. 263 

 264 

  265 

 266 

 267 

 268 

 269 

 270 

 271 
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Table 4. Antihypertensive drug use in treated participants up to 70 years  272 

Values are n (%).  273 

Abbreviations: CC (wild type), CT (heterozygous), TT (homozygous variant), genotypes for the 274 

MTHFR 677C→T polymorphism; ARB, angiotensin II receptor blockers; ACE, angiotensin-converting 275 

enzyme; CCB, calcium-channel blockers 276 

 277 

In younger and middle-aged adults (18-65 years), significantly lower Treated and Controlled 278 

rates (defined as taking antihypertensive drugs and a recorded BP within the target range i.e. 279 

systolic BP of <140 and diastolic BP <90mmHg) were observed in the TT genotype (30%; n = 280 

24) compared to CT (37%; n = 114) or CC (45%; n = 120) genotypes (P<0.027); not shown. 281 

 282 

MTHFR genotype and riboflavin status in relation to hypertension 283 

The influence of riboflavin status in modifying the genetic risk of hypertension was then 284 

examined (Fig 3). Based on functional status and response to low-dose riboflavin from 285 

previous reports [17], participants were categorised as having normal (EGRac ≤1.26), low 286 

(EGRac 1.26-1.40) or deficient (EGRac ≥1.40) riboflavin. Low or deficient riboflavin status 287 

(observed in 30.2% and 30.0%, respectively) exacerbated the risk of hypertension associated 288 

 MTHFR genotype 

 CC 

(n = 536) 

CT 

(n = 590) 

TT 

(n = 154) 

Drug class     

ARB 149 (28) 167 (28) 53 (34) 

ACE 185 (35) 221 (37) 52 (34) 

CCB 188 (35) 207 (35) 61 (40) 

Diuretic 224 (42) 260 (44) 59 (39) 

-Blocker 180 (34) 187 (32) 54 (35) 

α-Blocker 38 (7) 35 (6) 7 (5) 

Central alpha antagonist 3 (1) 6 (1) 2 (1) 

Drug combination     

1 medication 230 (43) 257 (44) 64 (41) 

2 medications 200 (37) 205 (35) 52 (34) 

>= 3 medications 106 (20) 128 (22) 38 (25) 
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with this polymorphism, with a 3-fold increased risk (OR 3.00) for the TT genotype in 289 

combination with deficient riboflavin status (95% CI, 1.34-6.68; P= 0.007) relative to the CC 290 

genotype combined with normal riboflavin status as the reference category (Fig 3). Among 291 

participants with the TT genotype, better riboflavin status was associated with a reduced risk 292 

(OR 1.62 (95% CI, 0.80-3.29; P= 0.179); and normal riboflavin status with no excess genetic 293 

risk of hypertension. In contrast, deficient versus low versus normal riboflavin status did not 294 

alter the risk of hypertension among adults with CC or CT genotypes.  295 

Fig. 3 Influence of riboflavin status on the risk of hypertension by MTHFR genotype.  296 

Values are odds ratios (95% confidence intervals) for risk of hypertension for CC (left panel, green), 297 

CT (middle panel, amber) or TT (right panel, red) genotypes for the MTHFR 677C→T polymorphism. 298 

Data analysed by multinomial regression adjusted for relevant covariates: age, sex, BMI, alcohol, 299 

antihypertensive drug use, total cholesterol, creatinine, smoking, study cohort, plasma homocysteine, 300 

red blood cell folate. Compared to the reference category (CC genotype combined with normal 301 

riboflavin status), values for the TT genotype combined with deficient riboflavin status are: OR 3.00 302 

(95% CI, 1.34-6.68; P= 0.007); or with low riboflavin status: OR 1.62 (0.80-3.29; P= 0.179); or with 303 

normal riboflavin status: OR 0.98 (0.47-2.04; P= 0.957). Riboflavin status determined by the functional 304 

biomarker, erythrocyte glutathione reductase activation coefficient (EGRac); participants categorised 305 

as having normal (EGRac ≤1.26; filled circles), low (EGRac >1.26 to <1.40; open circles) or deficient 306 

(EGRac ≥1.40; open squares) riboflavin status.  307 

 308 

Discussion 309 

Our study shows that from young adulthood to 70 years, the MTHFR 677TT genotype 310 

predisposes an individual to a systolic BP typical of an adult several years older without this 311 

genetic variant. Although this polymorphism was previously linked with BP, this is the first 312 

study to examine the genetic risk of hypertension throughout adulthood, and to identify the 313 

potential for riboflavin to modify the phenotype in affected adults at a younger age and before 314 

the onset of hypertension. The observed effect of MTHFR and its modulation by riboflavin in 315 

relation to hypertension risk were found to be independent of homocysteine, the typically 316 

reported phenotype linking this polymorphism with CVD. 317 

We observed a pattern in the current study (irrespective of MTHFR genotype), whereby 318 

systolic BP increased into older age whereas diastolic BP increased until about 60 years and 319 
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then declined, as previously reported [21, 22]. The results however showed that adults with the 320 

variant MTHFR 677TT genotype have higher systolic and diastolic BP compared to others of 321 

the same age with CC or CT genotypes. The BP phenotype was not evident above 70 years, 322 

presumably as a result of the confounding effect of other age-related determinants of BP. The 323 

reason we focussed on the period up to 70 years, is because this is a time during which the 324 

relationship of BP with disease is most pronounced, with a reported doubling in the risk of 325 

CVD for each 20 mmHg rise in systolic BP [4]. The MTHFR 677TT genotype was associated 326 

with a 42% increased risk of hypertension in adults up to 70 years, after adjustment for 327 

antihypertensive drug use and other significant factors, namely, age, male sex, BMI, alcohol 328 

and blood cholesterol, whereas plasma homocysteine was not independently associated with 329 

hypertension risk. The extent of excess hypertension owing to this polymorphism is in good 330 

agreement with previous estimates from clinical studies, with reported odds ratios in meta-331 

analyses ranging 1.36 (95% CI, 1.20-1.53) to 1.87 (1.31 to 2.68), for worldwide and Chinese 332 

populations, respectively [8, 10]. Our findings however show that from young adulthood this 333 

polymorphism contributes to higher BP, suggesting that affected adults could potentially 334 

develop hypertension at an earlier age than those without this genetic risk.  335 

Of particular relevance to cardiovascular medicine is the finding that response to routine 336 

BP treatment appears to be suboptimal in adults with the MTHFR 677TT genotype.  Overall 337 

49% of participants 18-70 years in this study were under current treatment with 338 

antihypertensive drugs, a rate of treatment similar to that reported for adults 20-80 years in 339 

England (51%) and considerably less than in adults 20-80 years in the US (74%) or Canada 340 

(80%) [21]. In the current study, in line with our previous observations [17], BP control was 341 

poorer in the TT genotype, with only 30% of treated adults with the TT compared to 37% in 342 

CT and 45% in CC genotypes, achieving BP control. Similarly, reported BP control rates for 343 

all treated adults are 37% in England [23], and higher in North America, at 54% in the US [5] 344 
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and 65% in Canada [23]. Irrespective of prevailing rates of treatment or BP control however, 345 

our findings suggest that within a given population, adults with the TT genotype compared to 346 

others without this gene variant will be less likely to achieve target BP with routine treatment, 347 

but neither the patient nor the physician will be aware of this. The economic implications of 348 

suboptimal BP control are considerable, with the direct costs of hypertension estimated in 2009 349 

at $370 billion annually, representing 10% of healthcare expenditures worldwide [24].  350 

Uniquely this study enabled the genetic risk of hypertension owing to this polymorphism 351 

to be considered in relation to riboflavin (the MTHFR cofactor). Unlike other B vitamins (e.g. 352 

folate and vitamin B12), riboflavin biomarkers are rarely measured in human studies and no 353 

previous cohort study to have investigated this polymorphism has considered riboflavin [25]. 354 

We estimated a 3-fold increased risk of hypertension when the variant TT genotype occurred 355 

in combination with deficient riboflavin status (relative to the CC genotype and normal 356 

riboflavin status), whereas better riboflavin status was associated with reducing the excess 357 

hypertension risk, and normal riboflavin status with no genetic risk. In contrast, among adults 358 

with CT or CC genotypes, riboflavin status did not influence the risk of hypertension, evidence 359 

that riboflavin has a genotype-specific role in BP. The finding that riboflavin has the potential 360 

to modify blood pressure in adults affected by this polymorphism is entirely consistent with 361 

our earlier studies in hypertensive patients, which showed a lowering of systolic BP by 6 to 13 362 

mmHg in response to riboflavin supplementation specifically in the TT genotype [15–17], 363 

resulting in a marked increase in blood-pressure control from 32% to 57% (pre versus post 364 

riboflavin intervention for 16 weeks), despite no change in antihypertensive treatment over the 365 

intervention period [17].  Here we show the potential of riboflavin to modify BP in genetically 366 

at-risk adults at an earlier age and the data suggest that the onset of hypertension could be 367 

delayed through intervention with riboflavin. Ideally, such intervention would occur prior to 368 

commencing antihypertensive treatment and along with lifestyle interventions as per ESC/ESH 369 
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guidelines for hypertension management [1], especially given that riboflavin has no known 370 

adverse effects even at doses of 100-fold higher than typical dietary intakes [26]. Alternatively, 371 

riboflavin could be co-administered with an antihypertensive drug as a novel combination 372 

therapy targeted at patients with this genetic risk factor. The potential to prevent or treat 373 

hypertension in sub-populations worldwide could be considerable, given that this genotype 374 

affects 10% of people globally, ranging 4-26% in Europeans (increasing north to south), 20% 375 

in Northern China, to as high as 32% in Mexico [11].  376 

The impact of this polymorphism on BP throughout adulthood and the potential modifying 377 

effect of riboflavin are important findings, given that this polymorphism is linked with an 378 

increased risk of stroke [12–14], and recent evidence shows that living longer in better 379 

cardiovascular health during mid-life is associated with lower risk of disease and mortality later 380 

in life [27]. Control of BP is highly effective in reducing cardiovascular mortality [5, 23, 24], 381 

with each 2 mmHg lower systolic BP associated with a 10% lower risk of stroke [4]. 382 

Furthermore, powerful evidence, from the SPRINT trial testing the effects of intensive versus 383 

standard blood-pressure control [28] and from meta-analyses of large-scale BP lowering trials 384 

[29], highlights significant benefits for cardiovascular risk especially among middle-aged 385 

adults [30] of BP-lowering to values below hypertension cut-points. Because of concerns that 386 

intensive treatment of BP could also pose certain risks [31], however, there have been calls for 387 

newer approaches, including novel combination therapies and non-pharmacological solutions 388 

[32]. Our results indicate that the most effective timeframe to target adults with this genetic 389 

variant will be up to 70 years, via supplementation with riboflavin to potentially offer an 390 

effective low-cost strategy to lower BP. Of note, sub-optimal riboflavin status may be more 391 

widespread than is generally recognised, but is largely undocumented as riboflavin biomarkers 392 

are rarely measured in human studies [25]. The UK is one of the very few countries worldwide 393 

to include a riboflavin biomarker in its population-wide diet and nutrition survey and recent 394 
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data shows that over 50% of healthy British adults have low or deficient riboflavin status [33], 395 

in close agreement with the current results in Irish adults. 396 

The biological mechanism explaining MTHFR-BP relationship shown here is unknown, 397 

but likely involves the potent vasodilator nitric oxide (NO) [34]. Vascular tissue concentrations 398 

of 5-methyltetrahydrofolate (the product of the MTHFR reaction) were associated with NO 399 

bioavailability and improved endothelial function in patients undergoing coronary artery 400 

bypass graft surgery, and were found to be lower in those patients with the TT genotype [35, 401 

36].  The current results, considered with our earlier trials [15–17], indicate that the biologic 402 

perturbation leading to higher BP in the TT genotype is modifiable with riboflavin. Molecular 403 

studies show that the decreased enzyme activity in the TT genotype is owing to loss of the 404 

riboflavin (FAD) cofactor from the active site [37], but riboflavin intervention can restore 405 

MTHFR activity in vivo [38]. Restoring MTHFR in vascular tissue could in turn lower BP 406 

specifically in individuals with the TT genotype. Mechanistic studies are required, but at this 407 

time the evidence does not support a direct role for homocysteine in BP. Although elevated 408 

homocysteine is the characteristic phenotype linked with this polymorphism (and is responsive 409 

to riboflavin in the TT genotype [38]), intervention trials to lower homocysteine have shown 410 

no corresponding BP response [39], indicating that homocysteine is not causatively related to 411 

hypertension.  The current results suggest that this polymorphism is linked with CVD via BP 412 

independently of homocysteine, and given its importance for clinical outcomes, BP may be the 413 

much more relevant target to prevent CVD in those affected by the variant genotype. 414 

A strength of this study is its large sample of adults 18 to 90 years stratified for the relevant 415 

polymorphism using data from two cohorts sampled under a common project initiative, from 416 

participating centres in Northern Ireland (UK) and the Republic of Ireland (representing two 417 

distinct health systems), using standardised methodologies and centralised laboratory analysis 418 

to investigate outcomes that were formulated before data collection. Furthermore, the current 419 
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analysis was based on an a priori hypothesis (linking this polymorphism and riboflavin with 420 

BP) whereas other studies of genetic risk factors in relation to disease risk factors are typically 421 

opportunistic studies using available data. Thus uniquely, our study provides biomarker data 422 

for riboflavin, rarely measured in nutritional studies, and used here to enable the impact of 423 

riboflavin on the MTHFR-BP relationship from young adulthood to be demonstrated. The 424 

major limitation of this study is its cross-sectional (rather than a longitudinal) design, 425 

nonetheless the study findings in relation to the genotype-specific effect of riboflavin are 426 

reinforced by our earlier trials [15–17] showing significant BP-lowering in response to 427 

intervention with riboflavin in CVD patients identified with the relevant genotype.  428 

Conclusion 429 

The variant  MTHFR 677TT genotype is associated with higher BP independently of 430 

homocysteine and predisposes adults to an increased risk of hypertension and poorer BP control 431 

with antihypertensive treatment, whilst better riboflavin status is associated with a reduced 432 

genetic risk. Supplemental riboflavin could therefore offer a stratified approach to delay the 433 

onset of hypertension and/or improve blood-pressure control in adults with the TT genotype, 434 

representing 10% of people globally and higher in some populations. Such an approach aligns 435 

with international strategies of personalising treatments to improve cardiovascular health, but 436 

the findings require confirmation in randomised trials in non-hypertensive adults. 437 
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