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ABSTRACT Video desnowing has become a challenging research topic in computer vision in recent years.
Existing methods cannot remove most of the snow in heavy snow scenes and will cause the deformation
of moving objects when used for snowy videos that include moving objects. These methods have poor
generalizability, exhibiting poor performance when removing snow from videos with different resolutions.
In this paper, we propose a new video snow removal method based on self-adaptation snow detection and
a patch-based Gaussian mixture model (VSRSG). First, an optical flow estimation method and a support
vector machine (SVM) are used to detect snowflakes, and a self-adaptation threshold process is used to
remove dense snowflakes in the snowflake detection map to obtain a sparse snowflake detection map.
Then, a patch-based Gaussian mixture model (PBGMM), which can remove moving objects and both
sparse and dense snowflakes from videos and restore a clear video background, is applied for background
modeling. AMarkov random field (MRF) and self-adaptation threshold processing are used to extract sparse
snowflakes and moving objects and combine themwith the background to form an input video without dense
snowflakes. Finally, a similar block matching method is employed to fill in the detected snowflake pixels
with the information from adjacent frames to remove the sparse snowflakes in the near range. This method
can also remove snowflakes in front of moving objects. Experiments show that the proposed method can
simultaneously remove sparse snowflakes, dense snowflakes and snowflakes in front of moving objects and
outperforms other state-of-the-art methods.

INDEX TERMS Video desnowing, self-adaptation snowflake detection, patch-based Gaussian mixture
model, low-rank background modeling, moving foreground detection.

I. INTRODUCTION
With the development of computer vision technology, out-
door vision systems have been increasingly and widely used
in military, traffic and safety applications. Video-based com-
puter vision technology applications, such as target track-
ing, target recognition, and behavior analysis, often require
moving target detection as a first step, so research on mov-
ing target detection in videos has become very important.
However, the development of moving object detection also
faces main challenges, such as adverse weather conditions.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiangqiang Yuan.

Adverse weather will seriously reduce the accuracy of mov-
ing object detection [43], [44]. For example, gale weather will
lead to camera shaking and dynamic backgrounds (such as
shaking leaves and waving water surfaces), fog and dust will
reduce the overall visibility of the video, and snowflakes and
raindrops will be misjudged by the moving object detection
algorithm as moving objects. Therefore, it is necessary to
build an outdoor vision system that eliminates the impact of
various adverse weather conditions on video moving object
detection.

In research on eliminating the influence of adverse weather
on video, most attention has been focused on rain removal
from videos [45]–[49], and few papers have discussed snow
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removal. As a common product of adverse weather, snow
and rain have certain similarities in that they both have high
intensity and fall at a rapid rate. Many researchers have used
video rain removal algorithms for video desnowing [9], [11].
However, video rain removal methods are not directly suit-
able for video desnowing. For example, raindrops have the
same size, and the falling direction and speed of all raindrops
are generally the same [1]. Compared with rain, snow falls
in different directions and the shapes are not uniform; these
characteristics make snow removal more challenging than
rain removal. Therefore, removing snowflakes from video
images is also of great research significance.

In previous research, some methods have relied on the size
and intensity characteristics of snow for snow detection via
the frame difference method [6], [8], [10]. The snow pixels
detected in the current frame are replaced with the median
or mean of the pixels in the adjacent frame to achieve snow
removal. These methods can be suitable for videos with light
snow but often fail on videos with heavy snow. In videos with
heavy snow, the same pixel in several adjacent frames might
be covered by snow at all times, which can lead to erroneous
detection. Because this method considers only the character-
istics of snow and does not consider the characteristics of
moving objects, it does not work on snow video that includes
moving objects because the positional changes of the moving
objects in the adjacent frames can be mistaken for snow.
To remove snow from videos that contain moving objects,
some researchers applied prior knowledge of the video back-
ground and the moving objects [11], [12]. These methods
modeled the free-snow background using a low-rank matrix
and detected the moving objects by applying the continuity
of the moving object in the spatiotemporal domain. These
methods consider the characteristics of moving objects but
not those of the snow, which may explain why these methods
do not perform well for heavy snow. When working with
a heavy snow scene, these methods caused deformations in
moving objects and the misjudgment of sparse snowflakes in
the near range as a moving object, resulting in incomplete
snow removal. At the same time, the above methods do
not consider videos with different resolutions, as it is often
difficult to obtain a better snow removal effect for these
videos.

In general, the above methods have a limited scope of
application. As existing methods set only uniform pixel sizes
or weights for snowflake detection and removal, the above
algorithms are not effective for snow removal when dealing
with videos with heavy snow. When the existing algorithms
remove snow from videos containing moving objects, some
snowflakes may be misjudged as moving objects, which will
result in their incomplete removal and the deformation of
moving objects. Moreover, the generalizability of the algo-
rithm worsens, and it is difficult to achieve a good snow
removal effect when removing snow from videos with high
or low resolution. Therefore, it is necessary to find snowflake
removal methods suitable for videos with heavy snow scenes,
moving objects and different resolutions.

To address the above problems, this paper proposes a
new video snow removal method based on self-adaptation
snow detection and a patch-based Gaussian mixture model,
called VSRSG. In this paper, snowflakes are divided into
sparse snowflakes with large sizes in the near range and
dense snowflakes with small sizes in the far range [11].
The input video is decomposed into a low-rank background,
dense snowflakes in the far range and a moving foreground,
which includes moving objects and sparse snowflakes in
the near range. First, an optical flow estimation method
and a support vector machine (SVM) are employed for pre-
liminary snowflake detection to obtain a snowflake detec-
tion map. To enable our method to deal with different
resolution videos, we conduct dilation operations on the
snowflake detection map and then use a self-adaptation
threshold to remove dense snowflakes with smaller sizes
from the snowflake detection map and keep only sparse
snowflakes. This detection process can also detect snowflakes
in front of moving objects. Then, a patch-based Gaussian
mixture model (PBGMM) is applied for background model-
ing. This model will restore a clear video background without
dense snowflakes, sparse snowflakes and moving objects.
AMarkov randomfield (MRF) is used formoving foreground
detection. To eliminate the influence of dense snowflakes on
detection, self-adaptation threshold processing is added to
remove the detected dense snowflakes. We paste the detected
moving objects and sparse snowflakes back into the clear
background. At this time, the new video includes only a
low-rank background, moving objects and sparse snowflakes.
Finally, the target frame in the new input video is decomposed
into disjointed blocks. A similar block matching algorithm is
used to find similar blocks in adjacent frames, and then the
snowflake pixels in the sparse snowflake detection map of
the target frame are filled with the information of these blocks
to remove sparse snowflakes. Experimental results show that
our method can reconstruct clear snow-free backgrounds and
effectively remove snowflakes from videos. The method pro-
posed in this paper is different from previous methods in the
following aspects.

1) In this paper, snowy videos with different resolutions
are considered. Setting a uniform size for snowflake detec-
tion and removal will lead to poor performance. To achieve
excellent performance on snow videos with different resolu-
tions, we use self-adaptation threshold processing in both the
snowflake and foreground detection processes to eliminate
the influence of dense snowflakes and dynamic backgrounds
(such as leaf shaking) for sparse snowflake detection and
moving foreground detection.

2) Moving objects and sparse snowflakes are both defined
as moving foregrounds. The existing algorithms separate
snowflakes from the moving foreground after moving fore-
ground detection, but misjudgment always occurs when the
snowflakes are separated from the moving objects in the
moving foreground, resulting in the incomplete removal of
snowflakes. Therefore, the proposed method does not sep-
arate snowflakes from the moving foreground, so we paste
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them back onto the generated low-rank background. At this
point, the new video contains only the clear background and
the moving foreground. Then, the sparse snowflakes in the
moving foreground are removed according to the detected
sparse snowflake map and the new video. At the same time,
the snowflakes in front of the moving object are removed.

The paper is organized as follows. Section II introduces
related work. Section III describes the proposed method.
Section IV discusses the experimental results, and Section V
concludes the paper.

II. RELATED WORK
Some researchers have conducted single-image snow
removal research based on the shape and brightness character-
istics of snowflakes. Sun et al. [13] proposed a snow removal
method based on fuzzy connectivity that solves the fuzzy
problem of various shapes and rapidly falling snowflakes
by selecting multiple seed points for fuzzy growth and uses
the H component of the hue-saturation-intensity (HIS) color
space to remove snow. Pei et al. [16] proposed a single-image
snow removal method that removes snowflakes based on
the characteristics of snow saturation and visibility. Some
researchers employed guided filters to remove snowflakes
from images. Xu et al. [14] proposed the use of a guide
filter to remove snowflakes in an image. This algorithm uses
an original image as both the input image and the guide
map of the guide filter so that the guide filter can retain the
edge structure of the object and remove snowflakes in the
image. Rajderkar andMohod [15] decomposed an image into
a low-frequency component and high-frequency component
using a bilateral filter. Using dictionary learning and sparse
coding, the high-frequency component is decomposed into
a snow component and a non-snow component, and the
geometric component of the high-frequency component is
fused with the low-frequency component of the image to
obtain an image without snow. Ding et al. [17] designed a
guided smoothing filter to remove snow. Wang et al. [18]
proposed a single-image snow removal method based on
guided filter and dictionary learning and divided the image
into a high-frequency component and low-frequency com-
ponent using a guide filter. These researchers designed a
three-layer decomposition algorithm to extract the details in
the high-frequency component and finally added the details
with the low-frequency component to obtain the image with-
out snow. Some researchers have also used sparse expressions
to remove snowflakes in images. The algorithm developed
by Huang et al. [21] is divided into two modules. The first
module uses the sparse regularization method to reconstruct
potential snow-free images. The second module proposes a
self-correcting mechanism to seek better reconstruction of
snow-free images by means of time-varying inertial weight
particle swarm optimization. Accordingly, with the devel-
opment of deep learning algorithms, some researchers have
also used deep learning network structures to remove snow
from a single image. Liu et al. [19] proposed a learning-
based multistage snow removal network for the removal

of snow from a single image. They designed a semitrans-
parent recovery (TR) module to restore the pixels blocked
by snowflakes and then used a residual generation model
to generate a complete snow-free image recovery diagram
based on the area not covered by snowflakes and the area
recovered by the TR module. Li et al. [20] proposed a
deep learning snow removal algorithm based on a generative
adversarial network. Li et al. [39] proposed a new snow
removal method based on a physical model and a superim-
posed dense network. A physics-based snowflake model was
derived from a snowflake imaging process. Based on this
model, a snow dataset was synthesized, and an end-to-end
stacked deep learning network was designed to detect and
remove snowflakes.

In video image desnowing algorithms, some researchers
used the frame difference method to detect and remove
snowflakes. Zhou et al. [6] proposed a method for the
detection and removal of snow using an improved sym-
metrical frame difference method. Huiying and Xuejing [8]
proposed a video desnowing method based on the frame
difference method and added region and direction angle
constraints to further distinguish the snow region. Finally,
snow was removed using the five-frame difference method.
Yang et al. [10] proposed a method based on the five-frame
differencemethod that detects snow particles via an improved
continuous five frame difference and removes snow using
gradient minimization. Some researchers have detected and
removed snowflakes according to their direction and bright-
ness characteristics. Shen et al. [4] proposed a new snow
detection method in which several filters are used to detect
snowflakes in a video, and a matting algorithm is used to
obtain the α value of the snowflakes. Bossu et al. [5] pro-
posed a method that selects potential snowflakes in a video
based on the selection rules derived from their photometry
and size. Tian et al. [12] proposed a stereoscopic video
desnowing method. These researchers synthesized a given
left-view frame by warping the right-view frame, the pre-
vious frame, and the next frame. This method also elimi-
nated outliers by investigating the geometrical distribution
of snow pixels and removed snow by applying a selective
nonlocal means filter. Some researchers used prior knowl-
edge of the background to remove snowflakes. Kim et al. [9]
proposed a video desnowing method based on temporal cor-
relation and low-rank matrix completion. This method can
handle videos captured by a moving camera. Ren et al. [11]
divided snow into sparse and dense categories and modeled
them separately in a matrix decomposition framework. Mov-
ing objects were detected with MRFs, and a group spar-
sity term was designed to filter snow pixels within them.
Tian et al. [12] proposed a method for video desnowing based
on low-rank decomposition, snow-free background recon-
struction by global low-rank decomposition and removal
of snow in front of moving objects by local low-rank
decomposition.

The method proposed in this paper differs from previous
algorithms in the following aspects:
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1) Snow videos with different resolutions are consid-
ered. To remove snow from videos with different resolu-
tions, we add self-adaptation threshold processing in sparse
snowflake detection and moving foreground detection to help
remove the detected dense snowflakes and the dynamic back-
ground while ensuring the integrity of the sparse snowflakes
and moving foreground.

2) Sparse snowflakes are not separated from moving
objects during moving foreground detection. We paste the
detected moving foreground into a clear background image,
use the block matching algorithm to find similar blocks
between the current frame image and the adjacent frames,
and then use the information of adjacent frames to fill the
snowflake pixels in the current frame and simultaneously
remove the snowflakes in front of the moving object.

III. PROPOSED METHOD
In this section, we propose a novel video desnowing method.
Fig. 1 shows the snow removal process of our method.
First, an optical flow estimation method, an SVM and self-
adaptation processing are applied to detect sparse snowflakes
in the video. A PBGMM is employed for background model-
ing to remove dense snowflakes. Then, the sparse snowflakes
and moving objects in the video are extracted by using an
MRF and adaptive threshold processing, which are combined
with the background to form the new input video without
dense snowflakes. Finally, the sparse snowflakes and the
snowflakes in front of the moving objects are removed by
using a similar block matching method based on the sparse
snowflake detection map and the information from the adja-
cent frames.

FIGURE 1. Overview of the proposed method.

A. PROBLEM MODEL
Videos are generally a 3-level multidimensional array. If the
multidimensional data are reshaped into a one-dimensional
vector or a two-dimensional matrix, the inherent depen-
dence structure between multiple factors will inevitably be
destroyed, which may cause information loss. Therefore,
we use a tensor to decompose videos. The tensor-based prin-
cipal component analysis (RPCA) method has been success-
fully used in the field of moving object detection in recent
years, and its performance is better than that of the previous

latest moving object detection technology [50]–[55]. The
existing tensor-based RPCAmoving object detection method
decomposes a video into a low-rank component which con-
sists of true data and a sparse component which consists
of moving sparse outliers, or decomposes the video into
low-rank components, sparse components and noise com-
ponents. However, none of the above methods consider the
presence of snowflakes in the video. Snowflakes are differ-
ent from general video noise (such as Gaussian noise) and
dynamic background disturbances. They have the charac-
teristics of moving objects, which will seriously reduce the
accuracy of moving object detection algorithms. In addition,
due to the excellent performance of the tensor-based RPCA
method, this method has also been successfully applied to
the field of image and video denoising [56], [57]. Therefore,
we use the tensor-based RPCAmodel to decompose the video
and further restrict the snowflakes to achieve snow removal.

An input video can be represented as a three-dimensional
tensor L ∈ Nh×w×n, where h, w and n represent the height,
width and number of frames of the video, respectively. The
input video L can be divided into three layers:

L = B+M + S (1)

where B,M , S∈Nh×w×n, B is the background,M is the mov-
ing object, and S is the sparse snowflake. In this paper, dense
snowflakes are not considered in the modeling process; those
snowflakes will be removed in the background modeling
process.

B. SPARSE SNOWFLAKE DETECTION
Snowflakes in a video can be divided into dense snowflakes
and sparse snowflakes [11]. In this paper, the snowflake
detection process includes only the detection of sparse
snowflakes and not dense snowflakes. The detection of
dense snowflakes is not helpful for the following desnow-
ing process because it increases the runtime of the whole
method. Therefore, we remove the dense snowflakes from
the final snowflake detection map and retain only the sparse
snowflakes. First, the optical flow estimation method is
applied to detect the motion field of the snow removal target
frame. Then, an SVM is employed to classify the detected
motion and achieve preliminary snowflake detection. Finally,
self-adaptation thresholding is added to remove the influence
of dense snowflakes, background noise and moving object on
sparse snowflake detection.

The optical flow field estimation algorithm can be applied
to motion detection between video frames [9], [29], [38].
Sparse snowflakes move quickly and generally appear in at
most three consecutive video images. Therefore, we use the
previous frame and next frame of the target frame to help
complete snowflake detection. The optical flow motion field
of the target frame can be estimated by contorting the adjacent
frame as the target frame image, which can be completed
by the algorithm given in [38]. We contort the previous
frame Jz−1 and the image of the next frame Jz+1 into the
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current frame:

J
pre
z = Jz−1(x + δprez (x)) (2)

J
next
z = Jz+1(x + δnextz (x)) (3)

where J̄prez is the target frame contorted by the previous
frame Jz−1; J̄nextz is the target frame contorted by the next
frame Jz+1; δ

pre
z (x) represents the optical flow vector of

pixel x from Jz to Jz−1; δnextz (x) represents the optical flow
vector of pixel x from J z+1 to Jz. To select the pixels that
are more similar to the pixel for Jz (x), the binary tag t (x)
is exploited to label each pixel and can be represented as
follows:

J z =

{
J
pre
z (x), t(x) = 0

J
next
z (x), t (x) = 1

(4)

Let T represent the tag map, which is composed of the
labels of all the pixels in the current frame. A pixel in the
target frame is more similar to a pixel of the contorted target
frame of the previous frame than that of the next frame
when t (x)= 0. A pixel of the target frame is more similar
to the pixel of the contorted target frame of the next frame
than that of the previous frame when t (x) = 1. Through
the value of the binary label t (x) of each pixel, we select
the pixels in the corresponding previous and next contorted
frames and combine them into a contorted frame with the
highest similarity to the target frame. We determine T by
minimizing the tag cost as follows:

C(T ) = Cd(T )+ τCs(T ) (5)

where τ = 50 is a regularization parameter. Cd (T ) is a
measure of the data cost of the contorted frame with the
current frame:

Cd (T ) =
∑
x

(Jz(x)− Jk (x))2 (6)

Cs (T ) is the smoothness cost to constrain the tags of neigh-
boring pixels to be the same, which is defined as follows:

Cs(T ) =
∑
x

∑
y∈Nx

(t(x)⊕ t(y)) (7)

where Nx is the set of the 4-connected neighbors to x, and
‘‘⊕’’ is the exclusive-or operator. The initial snowflake detec-
tion map obtained by the optical flow estimation algorithm
can be expressed as follows:

S0 (x) = max
{
Jz(x)− J z (x) , 0

}
(8)

where the brightness of a snowflake pixel is always higher
than that of a background pixel, and the pixel with a difference
less than 0 will be judged as 0.

There is still considerable background noise information
and information of other moving objects in the snowflake
detection map obtained by the optical flow estimation
method. To separate snowflakes from the rest of the infor-
mation, we use the sparse representation technique [31]
to represent snowflake map. First, suppose that there are

h × w pixels in snowflake detection map S, and a block of
size r is selected around each pixel to construct a two-
dimensional matrix 9 of size r × (h× w). Each column of
the matrix 9 represents each selected block. Then, we con-
struct an overcomplete dictionary Q ∈ Nr×e composed of
e R-dimension basis vectors with by algorithm given in [32].
Through the linear combination of the base vector of the over-
complete dictionaryQ to represent every block to reconstruct
the matrix 9:

‖9 − QA‖ (9)

where A is the coefficient matrix of size e× (h× w). Assum-
ing that A should be a sparse matrix, we can find the optimal
coefficient matrix A∗ [33] by solving the optimization prob-
lem as follows:

A∗ = argmin
A∈Ne×(h×w)

{
1
2
‖9 − QA‖22 + ρ ‖A‖1

}
(10)

where ρ is set to 0.15.
After using the sparse representation to represent the

detected snowflake map, the basis vectors in the overcom-
plete dictionary Q are classified into snowflake components
and the other components. To more accurately separate the
snowflake vector from all the vectors, first, we use the ker-
nel regression method [24] to analyze the block structure,
which is based on singular value decomposition to find the
kernel that best matches the intensity distribution in each
block. We can analyze the structural shape and orientation
of the kernel for each block by applying singular value
decomposition.

From the rotational angle of the obtained kernel, we used
an SVM classifier to separate the snowflake vector [35]. The
angular component eigenvectors of falling snowflakes are
used to help the SVM separate snowflake vectors from noise
vectors. To improve SVM classification, we use 3072 effec-
tive basis vectors extracted from the synthetic snow image
as positive samples and 3072 noise vectors without snow
as negative samples to train the SVM. This training process
needs to be trained offline only once and can be directly
invoked each time it is needed. After the classification, most
of the noise vector in Q is substituted for the zero vector.
We use Q̂ to represent the newly classified dictionary. Using
the new dictionary Q̂ and coefficient matrix A∗, we can obtain
a new matrix 9̂:

9̂ = Q̂A∗ (11)

We restore the column vectors in matrix 9̂ to the form
of blocks. Then each block is arranged in an overlapping
manner according to the arrangement of its central pixels in
the snowflake detection map, and the value of each pixel in
the snowflake detection map is set to the average value of
the overlapping pixels to obtain a new snowflake detection
map Ŝ. Then, we transform the new snowflake detection
map Ŝ into a binary sparse snowflake detection map U by
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setting the threshold value φ = 3:

U (x) =

{
1, if Ŝ (x) > φ

0, others
(12)

Fig. 2(a) shows the input frame of the video, and Fig. 2(b)
shows the snowflake detection map generated by the above
process. As shown in Fig.2(b), there are dense snowflakes,
background noise information and moving object informa-
tion in the snowflake map. To remove other noise informa-
tion, we dilate the snowflake detection map Ŝ. As shown
in Fig.2 (c), sparse snowflakes, dense snowflakes and back-
ground noise are clearly shown in the dilated snowflake
map. We set the area threshold of the connected domain
to remove the unnecessary information in the detection
map. However, different videos always have different res-
olutions. If we set a uniform threshold to remove dense
snowflakes, background noise information, and somemoving
object information, when performing snowflake detection
on a high-resolution video, during the process of removing
moving object information, the sparse snowflake information
may be removed if the threshold is too small. Similarly, when
performing snowflake detection on low-resolution video,
the dense snowflake and background noise information may
not be removed if the threshold is too large. To address
the above problem, we set a self-adaptation threshold for
sparse snowflake detection for both high-resolution and low-
resolution videos. We set a maximum threshold to remove the
moving object information as follows:

Cϕ =

{
1, if Cα < vmax

0, others
(13)

FIGURE 2. Sparse snowflake detection on a frame in the ‘‘car’’ video:
(a) input frame; (b) snowflake detection by optical flow and an SVM;
(c) dilation operation; (d) final sparse snowflake map.

where Cα takes each connection domain in the snowflake
detection map; Cϕ represents each pixel in the connected
domain Cα in the snowflake detection map Ŝ; vmax repre-
sents the threshold for determining the maximum area of of
snowflake pixels; and the value of vmax is 0.25% of the total
number of pixels of the image. Similarly, to detect only sparse

snowflakes, we also set a minimum threshold to filter out the
detected dense snowflakes:

Cϕ =

{
1, if Cα > vmin

0, others
(14)

where vmin represents the threshold for determining the mini-
mum area of snowflake pixels, and the value of vmin is 0.004%
of the total number of pixels of the image. This process
is used to eliminate the influence of dense snowflakes and
background noise (such as shaking leaf) on the detection of
sparse snowflakes. It is worth mentioning that the snowflake
detection process can also detect snowflakes in front of mov-
ing objects. As shown in Fig. 2 (d), we can obtain the final
sparse snowflake detection map, and the formula is expressed
as follows:

S = U (Cϕ) =

{
1, if vmin <Cα < vmax

0, others
(15)

C. BACKGROUND MODEL
The purpose of the background modeling process is to estab-
lish a clear background without snowflakes and moving
objects. This paper assumes that all the videos to be pro-
cessed were shot by static cameras and that the brightness
of video background B does not change suddenly in a short
period of time. Each frame in the video is linearly related
to the remaining frames, which can form a low-rank matrix.
This process can be represented by the decomposition of the
low-rank matrix:

B = UV⊥ (16)

where U ∈ Nm×r and V ∈ Nm×r ; ‘‘⊥’’ represents the
transpose of the matrix. We impose the following constraint
on B:

rank(B) ≤ q (17)

where q is a constant that constrains the complexity of the
background model.

To address the above background modeling problem,
we use the PBGMM to model the background layer [3].
Background modeling based on a PBGMM is a background
representation method based on the statistical information of
pixel samples. The background is represented by statistical
information such as the probability density of a large number
of sample pixel values over a long period of time, and then
the target pixel is judged by the statistical difference, so the
complex background can be modeled. The background of
the video is a three-dimensional tensor, and we define the
matrix f to represent the whole video:

f : Nh×w×n
→ Np2×mp (18)

where p represents the size of the patch andmp represents the
total number of patches in the entire video. A patch of a size
p × p and a moving step of 1 is used to slide on the video
to obtain pixel information, and each time the information
of p2 pixels in the continuous n-frame image of the video is
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obtained. The video information obtained each time by the
patch is represented as a single column of matrix f . In this
way, matrix f represents a matrix composed of p2×mp pixels
that constitute the entire video. After decomposing the video
into a matrix, the PBGMM can be defined as:

K∑
k=1

πkG(f (B)m|µ, εk ) (19)

where K represents the number of Gaussian models; πk> 0
represents the mixing coefficient of the Gaussian models and∑K

k=1 πk = 1; G(·|, µ, εk) represents the Gaussian distribu-
tion with mean µ = 0 and covariance matrix ε ∈ Np2×p2 .
f (·)m is the m-th column of matrix f . Finally, the problem
of background modeling can be defined as a PBGMM with a
parameter 2 = {U ,V , π, ε}:

min
2
−

∑mp

m=1
log

∑K

k=1
πkG(f (B )m|µ, εk ) (20)

The expectation maximization (EM) algorithm can be
exploited to solve the above model problems. The step of
steady rise in the EM algorithm can reliably find the optimal
convergence value [25]. The EM algorithm estimates the val-
ues of model parameters according to the observed data. Then
it estimates the value of a missing data point according to
the parameter value estimated in the previous step, estimates
the parameter value again according to the estimated missing
data value plus the previously observed data, and then iterates
repeatedly until convergence.

In the E step of the EM algorithm, we introduce a latent
variable hmk , where hmk ∈ {0, 1} and

∑K
k=1 hmk = 1 that

represents the assignment f (B)m as a specific component of
the mixture model. The posterior probability of component k
given f (B)m can be represented by the following:

λmk = E (hmk) =
πkG(f (B)m|µ, εk )∑
k πkG(f (B)m|µ, εk )

(21)

TheM step of the EM algorithm, minimizes the parameters
in 2:

min
2

mp∑
m=1

K∑
k=1

λmk

(
1
2
f (B)⊥mε

−1
k f (B)m+

1
2
log |εk |−logπk

)
(22)

The algorithm is repeated iteratively for the above E and
M steps until it finally converges. The problem of updating π
and ε can be completed by the following equations:

6k =
∑mp

m=1
λmk (23)

πk =
6k

6
(24)

εk =
1
6k

∑mp

m=1
λmk f (B)⊥m f (B)m (25)

To achieve the optimal effect of the low rankmatrix decom-
position problem, the alternating direction method of multi-
pliers (ADMM) [27] is used to update U and V . Fig. 3 shows
the clear background obtained by the PBGMM.

FIGURE 3. Background modeled by the PBGMM of the ‘‘car’’ video:
(a) input frames; (b) clear background.

D. MOVING FOREGROUND DETECTION
The algorithms proposed by previous researchers all sought
to separate snowflakes from moving objects [11], [12]
when detecting moving objects to reduce the number of
instances where snowflakes are misjudged as moving objects.
However, these algorithms have difficulty obtaining appro-
priate separation conditions between moving objects and
snowflakes to distinguish them. The research concept of this
paper is different from that of these previous studies. In this
paper, the moving objects and the sparse snowflakes in the
video are both regarded as moving foreground; we detect
both moving objects and sparse snowflakes simultaneously.
We use a binary three-dimensional tensor DεNh×w×n to rep-
resent the detection of the moving foreground:

Di,j,z =

{
0, others
1, motion foreground

(26)

where Di,j,z represents the pixel value of pixel (i, j) in
frame z.

The MRF exhibits good performance in detecting mov-
ing foreground [11]. Therefore, this paper uses the MRF to
detect the foreground motion. The binary graph D obtained
for moving foreground detection can be understood as an
MRF energy minimization problem, which can be solved by
the graph cut optimization algorithm [22].

The moving foreground detected by an MRF is shown
in Fig.4(b). The binary map includes moving objects,
sparse snowflakes and dense snowflakes. To remove dense
snowflakes in binary map, we use equation (14) to
add self-adaptation threshold processing to remove dense
snowflakes with smaller areas, where the value of the self-
adaptation threshold vmin is set to 0.0013%. A binary map
of moving foreground without dense snowflakes is shown
in Fig.4(c).

After moving foreground detection, the new input video
can be expressed as follows:

L1 = D ◦ L + D̃ ◦ B (27)

where D̃ satisfies D̃+ D = 1;the operator ‘‘◦’’ indicates that
the corresponding pixel is multiplied. The new video can be
represented as a combination of a snow-free background and
a moving foreground (including moving objects and sparse
snowflakes) detected by the MRF. The dense snowflakes are
removed by self-adaptation thresholding. Fig.4 shows the
moving foreground detection procedure and the results of
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FIGURE 4. The moving foreground detection process of the ‘‘car’’ video:
(a) the input frame; (b) moving foreground detection binary mask from
the MRF; (c) self-adaptation threshold processing of the binary mask;
(d) multiplication of the binary mask by the input frame;
(e) multiplication of the background image by the inverse of the binary
mask; (f) the new frame without dense snow.

pasting the detected moving objects and sparse snowflakes
into the background to generate a video without dense
snowflakes.

E. SPARSE SNOWFLAKE REMOVAL
In Section III B, the sparse snowflake detection diagram is
obtained. In Section III C, the dense snowflakes are removed
to restore a clear static background. In Section III D, we detect
both moving objects and sparse snowflakes and paste them to
a static background. Now, we have a new video that includes
a static background, moving objects, and sparse snowflakes.

In this section, our task is to remove the sparse snowflakes
in the video based on the sparse snowflake detection map
to obtain the final video without snow. First, we divide the
snowflake target frame into disjointed blocks. Then, we use
the information of adjacent frames to fill in the pixels in the
target frame. Different from the method from [9], to achieve
excellent snow removal performance for snow videos with
different resolutions, we set the block area to 2% of the single
frame pixel of the video. During the process of filling infor-
mation, considering the impact of heavy snow on the video,
we decided to use the information of six adjacent frames to
fill the information in the target frame. For each block γ in
the target frame, we search for the most similar block in each
of the six frames Jz−3, Jz−2, Jz−1, Jz+1, Jz+2 and Jz+3 before
and after target frame Jz. The similarity between blocks is
determined by the squared differences in the snow-free pixels
between blocks. Then the 6l blocks that are similar to block
γ in six frames are stored as columns of matrix 0:

0 = [γ, γ1, γ2, · · · , γ6l] (28)

we also define the binary snowflake mask matrix 2 corre-
sponding to 0:

2 = [o, o1, o2, · · · , o6l] (29)

where each column of the matrix is composed of binary
snowflake detection blocks corresponding to the block in 0.

VSRSG Algorithm

Input: video L ∈ Nh×w×n; subspace rank q; the parameters
of the PBGMM; the threshold of snow detection: vmin and
vmax
Initialization: Initialize U ,V

1 Obtain sparse Snow Map S by equation (2)-(15)
2 while not converge do
3 Evaluate λmk by equation (21)
4 Minimization parameter 2 by equation(22)
5 Update U ,V by ADMM
6 end while
7 Motion foreground detection by MRF and

self-adaptation threshold processing
8 Obtain the new input video L1 without dense snow by

equation (27)
9 Remove the sparse snow and snow in front of moving

object by equation (28)-(31)
Output: The final desnowed video

We can use the low-rank compensation technique to find
a filled matrix X from matrix 0 and determine that matrix X
is the minimized kernel norm ‖X‖∗ problem, which has the
following constraints:

2̃ ◦ X = 2̃ ◦ 0 (30)

2 ◦ X ≤ 2 ◦ 0 (31)

where 2̃ satisfies 2̃ + 2 = 1, which means that matrix 2̃
and matrix 2 are added to obtain a matrix of 1; the operator
‘‘◦’’ indicates that the corresponding pixel is multiplied.
Equation (30) indicates that the matrix X should retain the
snow-free pixels in matrix 0. Equation (31) indicates that the
brightness of the snow-free pixels will be lower than that of
snow pixels. We use the EM algorithm in [23], [36] to solve
the optimization problem with the above constraints to obtain
the filled matrix X. Then we replace the snowflake element of
each block in each frame with the element at the correspond-
ing position in matrix Ẍ to obtain the final video without
snow. Fig. 5 shows how to remove sparse snowflakes by using
the sparse snowflake detection map and the new video frames

FIGURE 5. Snowflake removal for the new frame without dense
snowflake: (a) the new input frame; (b) sparse snow detection map;
(c) the final desnowed frame.
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FIGURE 6. Comparison of the snow removal effects for the synthetic video called ‘‘parking’’: (a) the ground truth; (b) input; (c) Yang’s method [37];
(d) Kim’s method [9]; (e) Wei’s method [3]; (f) Li’s method [2]; (g) the VSRSG algorithm.

FIGURE 7. Comparison of the snow removal effects for the synthetic video called ‘‘pedestrians’’: (a) the ground truth; (b) input; (c) Yang’s method [37];
(d) Kim’s method [9]; (e) Wei’s method [3]; (f) Li’s method [2]; (g) the VSRSG algorithm.

without dense snowflakes. The VSRSG algorithm shows the
whole process of our snow removal algorithm in this paper.

IV. EXPERIMENTS
To evaluate the performance of our proposed model, we show
the results of our VSRSG algorithm and comparison meth-
ods on various real and synthetic snowy videos, including
synthetic videos and real snow videos. All the videos shown
in this work were captured by static cameras. The selected
contrast areas are marked with yellow or red rectangles
to facilitate observation. The comparison methods include
those of Yang et al. [37], Kim et al. [9], Wei et al. [3] and
Li et al. [2]. The algorithm of Yang et al. [37] was pub-
lished in Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) in 2019. This algorithm uses a mul-
titask deep network to perform single image rain removal.
To make the algorithm suitable for image snow removal, we
use the Snow100K 2 [19] dataset to train the network and
then use it for experimental comparison. The algorithm of
Kim et al. [9] was published in Transactions on Image
Processing (TIP) in 2015 and exhibits good performance
in addressing light snow scenes and moving camera snow
removal. The paper by Wei et al. [3] was presented at
the International Conference on Computer Vision (ICCV)
in 2017, and the paper by Li et al. [2] was presented at
the Conference on Computer Vision and Pattern Recognition
(CVPR) in 2018. Both of these methods achieve a notably
good video rain removal effect.

A. SNOW REMOVAL FOR SYNTHETIC VIDEOS
In this section, we discuss the effect of our method and
the comparison methods on synthetic video desnowing. The
two selected original snow-free videos were taken from the

changedetection.net (CDnet) dataset [28],1 and the resolu-
tion of both video datasets is 360 × 240 pixels. We add
different degrees of snow scenes to the two videos, and
use our method and the comparison methods to remove
snow. The synthetic video has the original input video as
the real background. We can evaluate the performance of
all the methods based on three evaluation criteria: the peak
signal-to-noise ratio (PSNR) [40], the feature similarity index
measure (FSIM) [41] and the structural similarity index
measure (SSIM) [42].

Fig. 6 shows the comparisons of the desnowing effects for
the synthetic video called ‘‘parking’’. It can be seen from
Fig. 6(b) that the synthetic snowflakes we added to the scene
of ‘‘parking’’ include both sparse and dense snowflakes.
It can be seen from the marked part in the picture that
Yang’s method [37] can remove most of the snowflakes in
the image but blurs the image. Kim’s method [14] can remove
sparse snowflakes, but dense snowflakes in the far range are
not removed. Wei’s method [3] removes dense snowflakes
but does not remove sparse snowflakes and produces color
changes in sparse snowflakes. Li’s method [2] removes dense
snowflakes, but some sparse snowflakes remain. Our method
achieves a better snow removal effect than the other meth-
ods, and our method can remove both dense and sparse
snowflakes.

Fig. 7 shows the snow removal effect for the synthetic snow
video called ‘‘pedestrians’’. As shown in the figure, Yang’s
method [37] can remove a portion of the snowflakes, but it
causes image blur and reduces the brightness of the image.
Kim’s method [9] does not cause moving object deforma-
tions, but snowflakes in very bright areas are not removed.
Wei’s method [3] does not causemoving object deformations.
However, as shown in the marked part of the image, some

1http://www.changedetection.net
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FIGURE 8. Comparison of the snow removal effects for the real video called ‘‘house’’: (a) input; (b) Yang’s method [37]; (c) Kim’s method [9]; (d) Wei’s
method [3]; (e) Li’s method [2]; (f) the VSRSG algorithm.

FIGURE 9. Comparison of the snow removal effects for the real video called ‘‘wuxi’’: (a) input; (b) Yang’s method [37]; (c) Kim’s method [9]; (d) Wei’s
method [3]; (e) Li’s method [2]; (f) the VSRSG algorithm.

snowflakes have not been removed. Li’s method [2] removes
most of the snowflakes in the image, but it causes serious
moving object deformations. The performance of ourmethod,
VSRSG, is better than those of other methods. Our method
effectively removes the snowflakes in the image without
causing moving object deformations.

Table 1 shows the PSNR, FSIM and SSIM, which are used
to evaluate the snow removal effects of different methods on
the synthetic videos ‘‘parking’’ and ‘‘pedestrians’’. In Table 1,
we can see that although the differences between the evalu-
ation results of our method and the comparison methods are
not large, and, in general, the snow removal results of our
method are higher than those of other comparative methods
in terms of the three evaluation indexes. This section shows
the snow removal effect of the proposed method in this paper
and the comparison methods on synthetic snow videos. The
proposed algorithm is slightly better than other comparison
algorithms in terms of both the visual effect and evaluation
indexes. To further confirm the snow removal effect of the
proposed method, we remove snow from a real snow scene
in Section IV B.

TABLE 1. Comparison of the PSNR, FSIM and SSIM for two synthetic
snow videos.

B. SNOW REMOVAL ON REAL SNOW VIDEO
In this section, we use our method and the comparison meth-
ods to remove snow from real snow scenes. All the videos

were taken by static cameras. The videos in Fig. 8 and
Fig. 10 were obtained from the video website New Horizon2

and the video in Fig. 9 was obtained from YouTube.3 The
videos in Fig. 11 and Fig. 12 were captured by the authors.
The videos in Fig. 13 and Fig. 14 were obtained from the
common snow video called ‘‘traffic’’.4

Figs. 8-10 show real snow videos without moving objects.
The resolution of the video called ‘‘house’’ shown in Fig.8 is
608 × 342 pixels, the resolution of the video called ‘‘wuxi’’
shown in Fig.9 is 1080 × 606 pixels, and the resolution
of the video ‘‘forest’’ shown in Fig.10 is 608× 342 pix-
els. As seen from the marked parts in the three images,
the snow removal effect of Yang’s method [37] is poor, which
causes the image to be blurred and creates artifacts in the
image. Kim’s method [9] can remove sparse snowflakes from
the video, but it cannot remove dense snowflakes. Wei’s
method [3] can effectively remove dense snowflakes, but
it cannot cleanly remove sparse snowflakes. Moreover, this
method will cause image color changes. Li’s method [2] can
remove dense snowflakes in the video, but it is not as good as
the previous three algorithms in removing sparse snowflakes.
The VSRSG method proposed in this paper achieve a bet-
ter snow removal effect than the other four methods and
can remove sparse snowflakes and dense snowflakes without
causing color changes.

Fig. 11 and Fig. 12 show the snow removal results of the
16th and 43rd frames, respectively, of the video called ‘‘car’’.
The resolution of the video ‘‘car’’ is 1080×606 pixels. It can
be seen from the figure that Yang’s method [37] removes only
a portion of the snowflakes and misinterprets the words on
the wall as snowflakes. Kim’s method [9] removes sparse

2http://xsj.699pic.com/
3https://www.youtube.com/watch?v=d5ifLTweKA8
4http://www.cs.columbia.edu/CAVE/projects/camera_rain/
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FIGURE 10. Comparison of the snow removal effects for the real video called ‘‘forest’’: (a) input; (b) Yang’s method [37]; (c) Kim’s method [9]; (d) Wei’s
method [3]; (e) Li’s method [2]; (f) the VSRSG algorithm.

FIGURE 11. Comparison of the snow removal effects for frame 16 of the real video called ‘‘car’’: (a) input; (b) Yang’s method [37]; (c) Kim’s method [9];
(d) Wei’s method [3]; (e) Li’s method [2]; (f) the VSRSG algorithm.

FIGURE 12. Comparison of the snow removal effects for frame 43 of the real video called ‘‘car’’: (a) input; (b) Yang’s method [37]; (c) Kim’s method [9];
(d) Wei’s method [3]; (e) Li’s method [2]; (f) the VSRSG algorithm.

FIGURE 13. Comparison of the snow removal effects for frame 70 of the real video called ‘‘traffic’’: (a) input; (b) Yang’s method [37]; (c) Kim’s method [9];
(d) Wei’s method [3]; (e) Li’s method [2]; (f) the VSRSG algorithm.

snowflakes and snowflakes in front of moving objects, but
this method still cannot remove dense snowflakes. Wei’s
method [3] removes dense snowflakes, but some sparse
snowflakes remain in the image, and the algorithm does
not remove snowflakes in front of moving objects. Li’s
method [2] also removes dense snowflakes, but large sparse
snowflakes remain in the figure. This method not only fails
to remove snowflakes in front of moving objects but also
deforms the moving objects. The snow removal effect of our
method is better than that of the other methods. Our method
can remove sparse and dense snowflakes, and can remove

snowflakes in front of moving objects without causing mov-
ing objects deformation.

Fig. 13 and Fig. 14 show the snow removal results of
the 70th and 98th frames, respectively, of the video called
‘‘traffic’’. The resolution of the ‘‘traffic’’ video is 360× 240
pixels. Yang’s method [37] can remove most snowflakes, but
it mistakes the utility pole with traffic lights as snowflakes,
resulting in the removal of the pixel information of the utility
pole. Kim’s method [9] shows a better snow removal effect
than Yang’s method, but it deforms the moving objects. Wei’s
method [3] can remove most of the snowflakes, but it can
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FIGURE 14. Comparison of the snow removal effects for frame 98 of the real video called ‘‘traffic’’: (a) input; (b) Yang’s method [37]; (c) Kim’s method [9];
(d) Wei’s method [3]; (e) Li’s method [2]; (f) the VSRSG algorithm.

be seen from the area marked in the image that this method
causes a color change in the area around the moving objects.
Li’s method [2] does not deform the moving objects, but a
few snowflakes are not removed. The snow removal results
of our method are better than those of the other methods.
The proposed method does not cause deformations or color
changes in the moving objects while removing snowflakes.

C. COMPUTATION COMPLEXITY ANALYSIS
In this part, we will talk about the computation complexity
of the proposed method. It can be seen from Section III that
the proposed method includes sparse snowflake detection,
background model, moving foreground detection and sparse
snowflake removal. Therefore, the computation complexity
of the proposedmethod is the sum of computation complexity
of these different processes. Let h represents the high of the
video, w represents the width of the video, n represents the
number of frames of the video, db represents the number of
iterations of the background model process, dm represents
the number of iterations of the moving foreground detection
process. The computation complexity of the entire proposed
method and each process is shown in Table 2. It can be seen
from Table 2 that the computation complexity of our method
is mainly affected by the background model and moving
foreground detection process.

TABLE 2. Computation complexity of each process.

We also discuss the runtime of the proposed method.
Table 3 shows the comparison of the runtimes of our method
and the three traditional methods. The resolutions of the test
videos are different. The experimental environment was a PC
with an i7-7700CPU and 32GBRAM. It can be seen from the
table that our method has the shortest runtime when removing
snow from videos that do not contain moving objects. The
proposed method has a higher runtime than Kim’s method [9]
but is still lower than those of Wei et al. [3] and Li et al. [2]

TABLE 3. Comparison of the runtimes of the four competing methods on
three 100-frame videos. The unit is seconds.

methods when removing snow from a video that contains
moving objects. The proposed method and Wei et al. [3]
and Li et al. [2] methods both perform low-rank background
reconstruction on all the frames of the video. Low-rank back-
ground modeling can restore a clear background image, but it
will dramatically increase the runtime of the algorithm when
processing a high-resolution video. The runtime of Kim’s
method [9] on the frame from Fig. 11 is the shortest, mainly
because the method does not use low-rank background recon-
struction for all the frames of the video. Regardless of the
synthetic video snow removal effect, real video snow removal
effect, the effect of our method is better than that of the other
comparison algorithms.

V. CONCLUSION
In this paper, we propose a new video snow removal method
called VSRSG. This method considers videos with heavy
snow, moving objects and different resolutions. We use
self-adaptation sparse snowflake detection based on an
optical flow estimation method and an SVM, and use a
PBGMM for background modeling. Then, an MRF and
self-adaptation threshold are used to extract moving objects
and sparse snowflakes in a video, which are combined
with the background to form a new input video without
dense snowflakes. Finally, sparse snowflakes and snowflakes
in front of moving objects are removed by using a simi-
lar block matching method based on the sparse snowflake
detection map and the information of adjacent frames. The
experiments show that our method can achieve good per-
formance in most snow videos. In future research, we will
consider removing snow from videos captured by moving
cameras.
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