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9th September 2019 

The Editor 
Journal of Drug Delivery Science & Technology
 
Subject: Regarding submission of an original research article for publication in Journal of Drug delivery 
Science and Technology entitled: Preparation, characterization and in-vitro efficacy of quercetin loaded 
liquid crystalline nanoparticles for the treatment of asthma.

Dear Editor, 

Please find attached our original manuscript entitled “Preparation, characterization and in-vitro efficacy of 
quercetin loaded liquid crystalline nanoparticles for the treatment of asthma” for your kind consideration for 
publication in the Journal of Drug Delivery Science and Technology. The present research work is original 
and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.
 
The manuscript discusses about bronchial asthma, being a chronic inflammatory disease of airways, has 
numerous treatment options, none of which has disease-modifying properties. Quercetin, a dietary flavonoid 
commonly found in fruits and vegetables exhibits a wide spectrum of pharmacological activities; prominent 
among which is its anti-inflammatory activity, which has been proved, as a potential therapeutic intervention 
in the treatment of bronchial asthma, by various in vitro and in vivo animal studies.  

Targeted and controlled delivery of quercetin directly to the lungs is extremely difficult. The use of liquid 
crystalline nanoparticle as an intervention in asthma is still not fully explored and only minimal attempts 
have been made. This directs an utmost need and attention, to identify a potential drug delivery platform that 
have minimum side effects and maximum patient compliance. Keeping all these facts, we have designed and 
conducted our present unique and a significant study, where, we have developed quercetin-loaded liquid 
crystalline nanoparticles as a means of delivery. In addition, quercetin is well known for its poor 
bioavailability and warrants the use of nanoparticles to overcome those limitations along with providing a 
prolonged release of quercetin. 

The prepared liquid crystalline nanoparticles were characterized for their physicochemical properties, in-
vitro release study and in-vitro anti-inflammatory studies focussed on various pro-inflammatory markers 
using immortalized human airway basal cell line (BCi-NS1.1). The prepared liquid crystalline nanoparticles 
were found to be stable and exhibited a controlled release pattern along with the suppression of various anti-
inflammatory genes clearly demonstrating the potential of quercetin nano-formulations in asthma. Moreover, 
we have also studied the molecular mechanisms showing the molecular encapsulation pattern of quercetin in 
liquid crystalline nanoparticles.  

Our study, emphasizing the application of nano-quercetin in the intervention of asthma as a promising drug 
delivery system, would be of great interest to the formulation, biological and respiratory scientists and 
clinicians. Our study can form the basis for further detailed research in this field, which can help in targeting 
a better treatment option for asthma. We hope that you find our manuscript acceptable for publication in the 
Journal of Drug Delivery Science and Technology. 

Kind regards, 
Dr Kamal Dua



24th September 2019

The Editor 
Journal of Drug Delivery Science & Technology

Dear Editor,

Please find enclosed our revised manuscript “Preparation, Characterization and In-vitro Efficacy of 
Quercetin Loaded Liquid Crystalline Nanoparticles for the Treatment of Asthma” which we would like to 
re-submit for consideration for publication. We are grateful to you, and that to your reviewers for 
providing us valuable feedback/suggestions, which we have addressed that has helped improve our 
manuscript. We am submitting herewith the revised manuscript which incorporates all the suggestions of 
the reviewers. Changes made in the revised manuscript are done using the red color mode in MS Word 
file along with below listed point to point clarifications to the reviewer’s comments.

Best Regards

Kamal Dua/ Dinesh Kumar Chellappan 

Point wise changes have been made in the revised manuscript.

We thank the Editor, Editorial team and the Reviewers for their consideration of our manuscript, and for 
providing valuable suggestions. We have now addressed all the comments and incorporated changes into 
a revised version as described in the point-by-point response below.

Reviewer 1
The manuscript entitled by Yong et al. showed the anti-inflammatory potential of the quercetin loaded 
liquid crystalline nanoparticles (LCN) and surface-modified liquid crystalline nanoparticles (sm-LCN) in 
asthma where the authors have carried out a blend of physicochemical, molecular modeling 
characterization and biological studies. The concept of liquid crystalline nanoparticles (LCN) and surface-
modified liquid crystalline nanoparticles is novel and emerging in the area of translational research in 
respiratory diseases. I recommend the manuscript to be considered for publication considering the authors 
can incorporate and answer the below suggestions.

1. Comment 1 (C1): There are no recent statistics provided for asthma as a disease burden. Please 
include in the introduction section.
Response (R1): We appreciate the reviewer comment. The statistics for disease burden for 
Asthma has been included in the introduction. (Page:3; line 4 to 7).

2. C2: Is there any particular pathway authors envisages in relation to their biological activity 
results, if so, please include in the discussion.
R2: We appreciate reviewer’s comment. The NFκB pathway has been discussed specifically in 
context to our biological activity. (Page:10; line 16). 

3. C3: Why the authors have selected IL-6, IL-8 and IL-1β as the potential inflammatory markers to 
examine in the study. Please justify.
R3: We appreciate the comment made by the reviewer. IL-6, IL-8 and IL-1β has been extensively 
involved in pathogenesis of Asthma. The authors emphasized these inflammatory markers based 
on previous studies as follows: https://www.ncbi.nlm.nih.gov/pubmed/20816188, 
https://www.ncbi.nlm.nih.gov/pubmed/29781141

Sub: Revision of manuscript for publication in Journal of Drug Delivery Science & Technology

https://www.ncbi.nlm.nih.gov/pubmed/20816188
https://www.ncbi.nlm.nih.gov/pubmed/29781141


4. C4: The authors need to check the manuscript for language consistency and grammatical errors.
R4: We appreciate reviewer’s concern. The authors have checked the manuscript for grammatical 
errors and language consistency.

5. C5: Please ensure that all the references are correctly cited and are in accordance with the journal 
guidelines.
R5: The manuscript has been referenced by Endnote software as per the journal guidelines and 
specifications. 

Reviewer 2
The manuscript entitled “Preparation, Characterization and Comparative In-vitro Efficacy of Quercetin 
Loaded Liquid Crystalline for the Treatment of Asthma” demonstrates the development of quercetin loaded 
liquid crystalline nanoparticles and surface modified liquid crystalline nanoparticles as formulations having 
anti-inflammatory activity in human primary bronchial epithelial cell line induced with lipopolysaccharide. 
The authors have covered all the important components needed for the formulation preparation and testing. 
However, I have a few below mentioned suggestions which authors can attend and include necessary details 
in the current version of their research manuscript.

1. C1: Is there any particular phenotype of asthma being targeted in the study? If so, mention the 
details.
R1: The study was considered to target overall population with asthma pathophysiological features 
but did not take into account the specific consideration for the phenotype which forms the part of 
our future studies.

2. C2: Introduction lacks a description of the inflammatory markers involved in the pathophysiology 
of asthma. The authors must include a description with the figure if possible, to provide an overview 
to the readers considering the authors have done the inflammatory markers assessment in their 
study.
R2: We appreciate reviewer’s suggestion. We have included the role of inflammatory markers in 
the introduction section. (Page: 3; Line 7 to 11)

3. C3: How CHI solution has been prepared, which solvent has been used please mention?
R3: The authors thank the reviewers for the feedback. The preparation of CHI solution has been 
included. (Page: 5; line: 9 & 10)

4. C4: Please change morphology to surface morphology.
R4: The authors have rectified the sub-heading.

5. C5: Why authors have selected 0.5, 1, 2, 3, 6, 9, 12& 24 hrs as the time point for in vitro release 
study? Please justify. 
R5: The following time-points (0.5, 1, 2, 3, 6, 9,12 & 24 h) has been selected considering the intent 
to look for the prolonged/controlled release of Quercetin in the biological fluids which is the main 
rationale behind designing the liquid crystalline nanoparticles.

6. C6: Please be consistent with using short forms such as “h” for hours and ml or mL etc throughout 
the manuscript.
R6: The authors have made the abbreviations consistent in the manuscript.

7. C7: Fig 4C, please change IL-b which should be represented as IL-1β.
R7: Fig 4C: IL-b has been replaced with IL-1β.

8.  C8: Authors need to do a careful reading in order to fix typographical and grammatical errors.
R8: The authors thank the review for the suggestion. Authors have read and corrected the 
manuscript.
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1 Abstract

2 The present study aims to formulate quercetin loaded liquid crystalline nanoparticles (LCN) and 

3 surface modified liquid crystalline nanoparticles (sm-LCN) as well as investigate their anti-

4 inflammatory activity in human primary bronchial epithelial cell line (BCi-NS1.1) induced with 

5 lipopolysaccharide (LPS). Quercetin LCN were prepared using ultrasonication method. The 

6 formulated LCNs and sm-LCNs were characterised in terms of particle size, zeta potential as well 

7 as the drug encapsulation efficiency. Furthermore, their morphology and in vitro release profile 

8 were also studied. In addition, the anti-inflammatory activity of quercetin LCN and sm-LCNs were 

9 evaluated by measuring the concentration of pro-inflammatory markers namely interleukin (IL)-

10 1β, IL-6 and IL-8 in BCI-NS1.1 cell lines via cytometric bead array. The molecular mechanism 

11 inherent to the inclusion of quercetin into monoolein nanosystem and surface modification of the 

12 nanosystem with chitosan was elucidated via molecular mechanics simulations. Quercetin LCN 

13 and sm-LCN significantly (p < 0.05) decreased the production of IL-1β, IL-6 and IL-8 compared 

14 to LPS only group. Encapsulation of quercetin into LCN and sm-LCN further enhanced its anti-

15 inflammatory activity compared to quercetin in dimethyl sulfoxide (DMSO). In addition to that, 

16 quercetin LCN and sm-LCN also exhibited comparable activity to fluticasone in terms of 

17 significantly (p < 0.05) reducing the production of IL-1β and IL-6. Quercetin loaded LCN and sm-

18 LCN could be a potential therapeutic intervention for asthma as they are efficacious in suppressing 

19 the production of key pro-inflammatory cytokines associated with the development of asthma.

20

21 Keywords: Quercetin; Liquid crystalline nanoparticles; Asthma; Inflammation; BCi-NS1.1

22

23
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1 1. Introduction

2 Asthma is a chronic inflammatory disease involving the airways, which is often associated with 

3 narrowing of the airway structure and eventually leading to airway tissue remodeling [1]. Clinical 

4 symptoms of asthma include wheezing, coughing as well as shortness of breath. Based on the 

5 current estimates provided by the World Health Organization (WHO), around 235 million 

6 individuals suffer from asthma, thus, emerging to be a public health concern globally [2]. More 

7 than 80% of asthma deaths occur in low and lower middle-income countries. Innate immune cells, 

8 dendritic cells and epithelial cells produce various cytokines including interleukin-4 (IL-4), IL-8, 

9 IL-1β, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) resulting in Th2 differentiation, 

10 recruitment and activation, thus promote IgE production, eosinophil and mast cell recruitment 

11 (Figure 1). These are the important factors contributing to the pathology of asthma [3, 4]. Common 

12 treatment modalities available to relieve asthmatic symptoms and manage its exacerbations include 

13 beta-adrenergic agonist, inhaled and systemic corticosteroids. Despite corticosteroids remarkably 

14 inhibiting the cascade of inflammatory reactions pertinent in asthma, the serious long-term side 

15 effects [5] associated with its use warrant the need for a potent and safer anti-inflammatory 

16 compound [6, 7].

17 Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one) (Figure 2) is a 

18 dietary flavonoid commonly found in vegetable and fruits, including onions, apples, grapes and 

19 nuts [8]. The growing interest of researchers towards this particular flavonoid could be attributed 

20 to its various  pharmacological properties such as anti-oxidant, anti-inflammatory, anti-bacterial, 

21 anti-diabetic and anti-cancer [9]. Numerous studies have also elucidated on the potential 

22 therapeutic use of quercetin in the treatment of asthma owing to its potent anti-inflammatory 

23 property. Quercetin was found to ameliorate allergic airway inflammation and hyper-

24 responsiveness mediated via attenuation of the NF-κB signalling pathway [10, 11]. Moreover, it 

25 also inhibits degranulation of mast cells [10], reduced the recruitment of eosinophils [12] and the 

26 levels of pro-inflammatory markers evident in allergic inflammatory diseases [13]. 

27 Although quercetin exhibits diverse pharmacological actions, its application in clinical 

28 practice is still limited. The main factor could be the poor bioavailability of this compound 

29 primarily due to low solubility in aqueous medium as well as poor intestinal absorption [14]. In 

30 order to overcome these drawbacks, quercetin can be encapsulated into a novel nanocarrier system 
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1 such as liquid crystalline nanoparticles (LCNs). Monoolein (MO), a non-toxic amphiphilic lipid is 

2 normally used to construct these systems [15]. LCNs are formed by the dispersion of monoolein 

3 in water which self-assembles into a well-ordered bicontinuous cubic structure [16].  Surfactants 

4 such as poloxamer 407 (P 407) need to be added into the LCN system so that it ensures the 

5 formation of a kinetically stable dispersion [17]. 

6 LCNs shows a great promise as an emerging drug delivery system due to their unique 

7 properties such as bioadhesive nature, higher hydrophobic drug loading capacity, sustained-release 

8 behaviour as well as their ability to improve physicochemical stability of encapsulated drugs [18, 

9 19]. Studies have also proven that the surface modification of LCN with hydrophilic polymers 

10 such as chitosan may allow longer residence time, increased mucoadhesiveness and enhanced 

11 cellular uptake therefore, improving drug bioavailability. The rationale behind this approach is that 

12 the outer shell layer was claimed to be more important than those of the core because the surface 

13 is directly contact with body cells and fluids [3, 20-24].

14 Therefore, we believed that quercetin loaded LCNs and sm-LCNs were effective in treating 

15 inflammatory respiratory ailments such as asthma as well as to further enhance the anti-

16 inflammatory activity of quercetin. The main aim of this research was to formulate quercetin 

17 loaded LCNs and sm-LCNs followed by characterising them and evaluating their in vitro release 

18 profile. Finally, the effects of quercetin loaded LCNs and sm-LCNs on the secretion of pro-

19 inflammatory cytokines were evaluated in immortalised human bronchial epithelial cell line (BCi-

20 NS1.1) induced with lipopolysaccharide (LPS). 

21 2. Materials

22 Quercetin was purchased from Sisco Drug Laboratories, India; whereas, monoolein was obtained 

23 from PI Chemicals, China. Poloxamer 407, Spectra Por® dialysis membrane and fluticasone 

24 propionate were purchased from Sigma-Aldrich, USA. Immortalized human bronchial epithelial 

25 cell line, BCi-NS1.1 was acquired from R. G. Crystal (Weill Cornell Medical College, New York, 

26 USA). Bronchial Epithelial Growth Media (BEGM) and Bronchial Epithelial Basal Media 

27 (BEBM) were purchased from Lonza, USA. All other solvents and chemicals used were of 

28 analytical grade.

29 2.1. Preparation of quercetin loaded LCN
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1 Ultrasonication method was used to prepare quercetin loaded LCNs as described previously [15]. 

2 The composition of quercetin loaded LCN formulation is shown in Table 1. Briefly, appropriate 

3 amounts of monoolein and quercetin were melted together in a glass vial at 45°C. Distilled water 

4 heated to the same temperature was added into another glass vial containing P 407 and 

5 subsequently vortexed for one minute. Then, P 407 solution was transferred to the melted MO and 

6 quercetin mixture followed by vortexing for another minute. The liquid crystalline cubic phase 

7 formed in the mixture was then subjected to ultrasonication for 10 min using probe type sonicator 

8 (Sartorius Labsonic P) at 60 amplitudes and 0.5 cycle). Blank LCN without quercetin was also 

9 prepared using the same method mentioned above for comparison. 

10 2.2. Preparation of quercetin loaded sm-LCN

11 0.1% Q sm-LCN was prepared by mixing 5mL 0.1% CHI solution and 5mL Q LCN. CHI solution 

12 was prepared in 50mM acetate buffer having 0.02% sodium azide. After that, it was subjected to 

13 magnetic stirring for 30 min. The same process was repeated for 0.2% Q sm-LCN except that it 

14 was mixed with 0.2% CHI solution [15]. 

15 2.3. Characterization of LCN & sm-LCN

16 2.3.1. Particle Size and Zeta Potential

17 The particle size and zeta potential of the nanoparticles was evaluated using Zetasizer Nano ZS 

18 (Malvern, UK) at 25°C. 0.1mL from blank LCN, Q LCN, 0.1% Q sm-LCN and 0.2% Q sm-LCN 

19 were diluted and equilibrated for 120 seconds before analysis [25-31]. 

20 2.3.2. Surface Morphology

21 The morphology of nanoparticles was studied using transmission electron microscopy (TEM). 

22 Nanoparticles was diluted suitably to 50-fold and allowed to drop on a carbon-coated copper grid 

23 and fixed by vacuum drying. The anchored droplets were then exposed to TEM observation at an 

24 acceleration voltage of 100kV [15, 28, 32].

25 2.3.3. Entrapment Efficiency

26 The EE of the nanoformulation was evaluated by separating free drug from the nanoparticles 

27 system via centrifugation method. 1.9mL of distilled water was added to dilute the 0.1mL of Q 

28 LCN and Q sm-LCN. UV-vis was then performed to analyze their concentration via Shimadzu 
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1 spectrophotometer at 369nm. 2mL of Q LCN and Q sm-LCN were centrifuged using a benchtop 

2 centrifuge (Eppendorf, Germany) at 2.5 Rcf for 15 min. The supernatants were withdrawn 

3 cautiously to remove the free quercetin and diluted with distilled water to 2mL. Their absorbance 

4 was detected 369nm using UV-Vis spectrophotometer, and the percentage of entrapment 

5 efficiency was calculated according to the following equation:

6 % EE=(Dtotal-Dfree)/Dtotal *100

7 Where Dfree and Dtotal are the amounts of free and total quercetin in the nanoparticles.

8

9 2.4. In vitro release study

10 In vitro drug release from the nanoformulation was carried out by using Spectra/Por dialysis 

11 membrane bag. 2mL of Q LCN, 0.1% Q sm-LCN and 0.2% Q sm-LCN was placed into separate 

12 dialysis bags (MWCO: 3500 g/mole) and immersed into 25mL of release medium (0.01-M 

13 phosphate buffer, pH 7.4) in falcon tube. The falcon tube was shaken at 39 rpm at 37oC temperature 

14 using water bath. At 0.5, 1, 2, 3, 6, 9, 12 and 24 hrs of the time points, 2mL from the falcon tube 

15 was removed for analysis and same amount of fresh dialysis medium was added to maintain the 

16 conditions. The amount of quercetin released was measured using UV–vis spectrophotometer at 

17 369nm [27, 33].

18 2.5. In vitro cell culture study

19 Human minimally immortalized bronchial epithelial cell line BCi-NS1.1 was obtained from R. G. 

20 Crystal (Weill Cornell Medical College, New York, USA), and was cultured in BEGM growth 

21 media supplemented with (Lonza). Cells were then treated with Q LCN, 0.2% Q sm-LCN, blank 

22 LCN, blank sm-LCN at 25uM for 24hrs, and were then stimulated with LPS (100ng/mL) for 24hrs. 

23 10nM Fluticasone was used as a standard treatment. The supernatants and RNAs were then 

24 harvested for further studies [25].

25 2.6. Cytometric bead array
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1 The concentration of IL-1β , IL-6 and IL-8 in the supernatants collected from the treated BCi-

2 NS1.1 cells was measured using cytometric bead array (BD Biosciences) and flow cytometry 

3 (FACSCANTO II, BD Biosciences) as documented in the manufacturer’s instructions [34, 35].

4 2.7. Mechanistic profiling via molecular mechanics simulations

5 Molecular mechanics simulations were carried out employing using HyperChem™ 8.0.8 

6 Molecular Modelling Software (Hypercube Inc., Gainesville, FL, USA). The molecular structures 

7 of chitosan (Cht; 4 glucosamine units) and quercetin (Quer) were generated employing saccharide 

8 building tool and natural bond angles, respectively. For monoolein (MO), the molecular segment 

9 with functional groups was generated using natural bond angles. The bimolecular structures – MO-

10 Quer and MO-Cht – were developed by parallel disposition of constituent molecules and then 

11 AMBER 3 (Assisted Model Building and Energy Refinements) Force Field was applied for energy 

12 minimization. Full geometrical optimization was conducted in vacuum employing the Polak–

13 Ribiere Conjugate Gradient method until an RMS gradient of 0.001 kcal/mol was reached [36].

14 2.8. Statistical analysis

15 All the values obtained were studied and performed using Graphpad Prisms 8.0. Data shown as 

16 mean ± standard deviation. One-way ANOVA tool was used to analyze the significant difference 

17 between groups and a value of p<0.05 was considered statistically significant. 

18 3. Results

19 The mean particle size, polydispersity index (PDI) and zeta potential of the quercetin formulation 

20 were measured and summarized in table 1. The mean particle size of the LCN formulations ranged 

21 from 210.0 to 268.7 nm with PDI less than 0.4 for all preparations. The zeta potentials for LCN 

22 formulations ranged from -14.6 to -15.6 mV whereas the sm-LCN ranged from 15.8 to 22.3 mV. 

23 The encapsulation efficiency of quercetin loaded LCN was 99.4% which was slightly higher 

24 compared to the surface modified LCNs.

25 The TEM images (Figure 3) show that both LCN and sm-LCN were spherical in shape. The 

26 particle size of LCNs ranged from 100nm to 300nm which was consistent with the dynamic light 

27 scattering. 
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1 The release profile of quercetin LCN over 24 hours. Release profile of quercetin from LCN 

2 exhibits a prolonged manner over the longer duration of time ( Figure 4).

3 The BCi-NS1.1 cells were treated simultaneously with either 100ng/mL of LPS alone or 

4 with quercetin loaded LCNs and free quercetin in DMSO solution to investigate their respective 

5 effects on the production of LPS induced pro-inflammatory markers in these cell lines. Quercetin 

6 loaded LCNs and sm-LCNs with the dose of 25μM showed a consistent trend of significantly (p < 

7 0.05) decreasing the concentration of pro-inflammatory cytokines namely IL-1β, IL-6 and IL-8 

8 compared to the positive control group (Figure 5). It is also worth noting that quercetin LCNs as 

9 well as sm-LCNs remarkably downregulated the production of IL-6, IL-8 and IL-1β compared to 

10 free quercetin dissolved in DMSO, therefore, exhibiting superior anti-inflammatory activity.

11 4. Discussion

12 4.1. Characterization of LCN and sm-LCN

13 The significant increase in particle size indicates the encapsulation of quercetin into the blank 

14 LCN. Drug encapsulation into the nanoparticles may be a result of chemical conjugation or 

15 physical entrapment [37]. Polydispersity index (PDI) represents the size distribution and 

16 uniformity of the nanoparticles formed [38]. PDI values greater than 0.3 indicates a broad size 

17 distribution. Ideally, a narrow size distribution identified with PDI values lesser than 0.3 is 

18 preferred [38]. The slightly higher polydispersity index of quercetin loaded LCNs may be 

19 attributed to the coexistence of cubic liquid crystalline nanoparticles with other types of vesicles 

20 in the dispersion as previously reported [39, 40]. It was observed that the mean particle size for 

21 sm-LCN was significantly larger than LCN with regards to the amount of CHI used to modify the 

22 surface. When 0.1% CHI was used, the particle size observed was 236.1 nm whereas 0.2% CHI 

23 used has shown to increase the particle size to 268.7nm. The size increased in proportion to the 

24 quantity of CHI used proves that the increment was attributed to the surface coating of CHI on 

25 LCN [15].

26 The positive reading in zeta potential further indicates that the surface of LCN (negatively 

27 charged) have been successfully coated by the protonated amino group from CHI (13). Generally, 

28 zeta potential values above ±25 mV are required to form a stable dispersion between particles and 

29 reduce their aggregation [41]. P 407 aided in stabilising the LCN dispersion as demonstrated 
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1 previously [42]. It is presumed that the hydrophobic part of the polypropylene oxide chain adheres 

2 to the surface of the cubic nanoparticles whereas the hydrophilic portion of the chain extends out 

3 to the surrounding environment to provide steric shielding, therefore, avoiding agglomeration [43]. 

4 The negatively charged zeta potential could be ascribed to the subtle amount of oleic acid released 

5 by monoolein resulting in anionic behavior of the dispersion caused by adsorption of hydroxyl 

6 ions on the surface of the LCNs [41, 43]. 

7 TEM images further confirmed the results from the Zetasizer, showing that the particles 

8 were spherical in shape and size less than 300nm, which is quite similar to other reported studies 

9 [15, 18, 42, 44]. The dense black core surrounding the particle was due to the existence of CHI 

10 coating indicating that the surface of LCN has been modified.  

11 Both LCN and sm-LCN have exhibited a high entrapment efficiency whereby >97% of 

12 drug was successfully entrapped. This indicates that most of the drug has been encapsulated 

13 regardless the surface modification of the nanoparticle. However other studies have successfully 

14 encapsulated their drug as high as 99% in LCN [15, 18, 41]. Nevertheless, the entrapment 

15 efficiency is still considered high when compared to other nanocarriers such as poly lactide-co-

16 glycolic acid (PLGA) polymer-based nanoparticles where Anwar et al reported that only 86% of 

17 quercetin was encapsulated [45].

18 4.2. In vitro release study

19 The result has shown that quercetin drug was able to release in a sustained release manner when 

20 incorporated into the LCN and by modifying the surface with CHI further prolonged the drug 

21 release. This sustained release of quercetin could be attributed to the structure of the LCN. The 

22 higher proportion of lipids in the LCN not only allows hydrophobic drug to bind strongly to its 

23 inner structure, but also provides a larger surface area for the drugs to be incorporated. As a result, 

24 high entrapment efficiency of the drug can be achieved. Yoo et al., also showed that the release of 

25 the drug from LCN has sustained as long as 15 days [18].  

26 4.3. In vitro evaluation anti-inflammatory activity of quercetin loaded LCN and 

27 sm-LCN on immortalised human bronchial epithelial cell line (BCi-NS1.1)
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1 Evaluation of in vitro anti-inflammatory activity of quercetin loaded LCN and sm-LCN in 

2 comparison to free quercetin in DMSO solution

3 In the present study, quercetin loaded LCNs effectively decreased the concentration of pro-

4 inflammatory cytokines namely IL-1β, IL-6 and IL-8. These effects exhibited by quercetin LCN 

5 was in consistent with previous studies evaluating the anti-inflammatory activity of quercetin on 

6 different cell lines [11, 13, 46-48]. Zhang et al., proved that quercetin remarkably suppressed the 

7 secretion of IL-6 and IL-1β in LPS-stimulated human peripheral blood mononuclear cells 

8 (PBMCs) [47]. Another research demonstrated that the treatment of quercetin notably reduced the 

9 gene expression and release of IL-8, IL-6 as well as IL-1β in human mast cells (HMC-1) induced 

10 by phorbol 12-myristate 13-acetate and calcium ionophore A23187 [11]. Although the underlying 

11 mechanism was not investigated in this present study, it is well-established from previous studies 

12 that quercetin attenuates the activation of NF-κB hence, downregulating  the production of pro-

13 inflammatory cytokines [11, 46, 47]. NF-κB signaling pathway plays a crucial role in the 

14 pathogenesis of asthma as it modulates the gene expression of pro-inflammatory mediators 

15 including chemokines, cytokines and cell adhesion molecules that lead to the infiltration of 

16 immune cells such as neutrophils and eosinophils in the airway [49, 50]. 

17 Encapsulation of quercetin into liquid crystalline nanoparticles was successful in further 

18 improving its anti-inflammatory activity. The enhanced anti-inflammatory effects of quercetin 

19 LCNs could be primarily attributed to the characteristics of the LCN itself, whereby it is 

20 bioadhesive in nature and improves membrane permeation leading to an increased interaction with 

21 the bronchial epithelial cells [41, 51]. The lipid bilayer of LCNs is akin to the  epithelial cell 

22 membrane hence could be transported easily across the membrane resulting in greater drug 

23 absorption [51, 52]. Furthermore, findings from numerous studies also elucidated that LCNs 

24 promote greater cellular uptake and internalisation into cells via endocytosis enabling them to be 

25 diffused throughout the cytoplasm [18, 41, 52, 53]. On the other hand, quercetin itself could have 

26 only remained in the cell membrane due to its high lipophilicity allowing it to be easily 

27 incorporated into the cell membrane.

28 The findings observed in our study has demonstrated that quercetin loaded sm-LCN with 

29 the dose of 25μM significantly (p<0.05) decreased the pro-inflammatory markers when compared 
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1 to the free quercetin drug in DMSO. This indicates that sm-LCN is able to enhance the anti-

2 inflammatory effect of quercetin when entrapped in the nanocarrier. 

3 There is also a noticeable reduction in the expression of all the pro-inflammatory cytokines 

4 which was observed on the blank LCN & sm-LCN. This suggests that the empty vehicle itself can 

5 slightly reduce the inflammation. We suspect that one of the components in the LCN formulation 

6 might contributed and it was monoolein. However, only one study has confirmed this and Ali et al 

7 reported that monoolein possess anti-inflammatory property that inhibits the production of pro-

8 inflammatory markers in LPS stimulated bone marrow-derived dendritic cell (BMDC) via NF-κB 

9 and MAPK pathways [54].

10 Evaluation of in vitro anti-inflammatory activity of quercetin loaded LCN and sm-LCN in 

11 comparison to fluticasone

12 Fluticasone, an FDA approved drug to treat asthma was used as a standard to further establish the 

13 anti-inflammatory activity of quercetin LCNs. Quercetin LCNs were comparable to fluticasone in 

14 terms of reducing the levels of IL-1β and IL-6 however, fluticasone was much more effective in 

15 decreasing the production of IL-8. In this existing study, the BCi-NS1.1 cell lines were only treated 

16 with quercetin LCNs at the dose of 25µM. Quercetin was able to reduce the levels of pro-

17 inflammatory cytokines in a dose-dependent manner up to a 100µM as described in the literature 

18 [47]. Therefore, the finding suggests the potential of quercetin LCNs to decrease the levels pro-

19 inflammatory cytokines to a greater extent comparable to fluticasone at a higher dose. 

20 4.4. Molecular mechanics simulations

21 The molecular simulations performed in this research focused on two aspects: a) encapsulation or 

22 incorporation of quercetin within a monoolein matrix, and b) surface modification of the 

23 monoolein matrix with chitosan. The geometrical iterations representing the above bimolecular 

24 complexes are shown in Figure 5 while the related energetic molecular attributes are depicted in 

25 Tables 2 and 3, respectively. In case of MO-Quer; the formation of molecular complex was 

26 accompanied by a total energy stabilization of 15.894kcal/mol. Interestingly, the total energy of 

27 the MO-Quer complex was less than the individual constituent molecules. The incorporation of 

28 Quer in MO was evident from the fact that all bonding (bond, angle, and dihedral) and non-bonding 

29 (van der waals forces and H-bonding) energy terms contributed to the geometrical stabilization of 
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1 the complex. The major stabilization was provided by the van der Waals function which brought 

2 the molecules in close vicinity and hence led to the formation of –OH…HO– bonds between the 

3 molecules (Table 2, Figure 5). For the MO-Cht molecular complex; an energy stabilization of 

4 10.336kcal/mol was observed. In line with MO-Quer, the total energy of the MO-Cht complex was 

5 less than the individual molecular components. The energy stabilization in this case was mainly 

6 due to non-bonding interactions (van der Waals forces and electrostatic interactions) while the 

7 bonding interactions (bond and dihedral energies) destabilized the complex. Such destabilization 

8 is due to torsional strain experienced by the molecules while interacting within the van der Waals 

9 space. Additionally, both inter- and intra-molecular H-bonding was observed in the MO-Cht 

10 complex further confirming its favourable formation and conformation. The above discussion 

11 justifies the selection and successful incorporation of quercetin in and chitosan surface 

12 modification of the monoolein nanosystem.

13 5. Conclusions

14 Quercetin was successfully encapsulated into liquid crystalline nanoparticles revealing their 

15 sustained release behaviour. Moreover, quercetin LCN and sm-LCN were effective in reducing 

16 the levels of pro-inflammatory mediators such as IL-1β, IL-6 and IL-8 whereby encapsulating 

17 quercetin into LCN further enhanced its anti-inflammatory activity.  This demonstrates that the 

18 quercetin LCN could be employed as a potential novel drug delivery for the treatment of asthma. 

19 This mode will overcome the issues associated with quercetin such as the low solubility, poor 

20 bioavailability and short half-life. The findings of this present study advocate the translation into 

21 other associated pulmonary inflammatory diseases such as chronic obstructive pulmonary disorder 

22 (COPD) as well as lung cancer which will help in providing a new direction to the pulmonary 

23 clinics.
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Abstract

The present study aims to formulate quercetin loaded liquid crystalline nanoparticles (LCN) and 

surface modified liquid crystalline nanoparticles (sm-LCN) as well as investigate their anti-

inflammatory activity in human primary bronchial epithelial cell line (BCi-NS1.1) induced with 

lipopolysaccharide (LPS). Quercetin LCN were prepared using ultrasonication method. The 

formulated LCNs and sm-LCNs were characterised in terms of particle size, zeta potential as 

well as the drug encapsulation efficiency. Furthermore, their morphology and in vitro release 

profile were also studied. In addition, the anti-inflammatory activity of quercetin LCN and sm-

LCNs were evaluated by measuring the concentration of pro-inflammatory markers namely 

interleukin (IL)-1β, IL-6 and IL-8 in BCI-NS1.1 cell lines via cytometric bead array. The 

molecular mechanism inherent to the inclusion of quercetin into monoolein nanosystem and 

surface modification of the nanosystem with chitosan was elucidated via molecular mechanics 

simulations. Quercetin LCN and sm-LCN significantly (p < 0.05) decreased the production of 

IL-1β, IL-6 and IL-8 compared to LPS only group. Encapsulation of quercetin into LCN and sm-

LCN further enhanced its anti-inflammatory activity compared to quercetin in dimethyl sulfoxide 

(DMSO). In addition to that, quercetin LCN and sm-LCN also exhibited comparable activity to 

fluticasone in terms of significantly (p < 0.05) reducing the production of IL-1β and IL-6. 

Quercetin loaded LCN and sm-LCN could be a potential therapeutic intervention for asthma as 

they are efficacious in suppressing the production of key pro-inflammatory cytokines associated 

with the development of asthma.

Keywords: Quercetin; Liquid crystalline nanoparticles; Asthma; Inflammation; BCi-NS1.1



1. Introduction

Asthma is a chronic inflammatory disease involving the airways, which is often associated with 

narrowing of the airway structure and eventually leading to airway tissue remodelling [1]. 

Clinical symptoms of asthma include wheezing, coughing as well as shortness of breath. Based 

on the current estimates provided by the World Health Organization (WHO), around 235 million 

individuals suffer from asthma, thus, emerging to be a public health concern globally [2]. 

Common treatment modalities available to relieve asthmatic symptoms and manage its 

exacerbations include beta-adrenergic agonist, inhaled and systemic corticosteroids. Despite 

corticosteroids remarkably inhibiting the cascade of inflammatory reactions pertinent in asthma, 

the serious long-term side effects [3] associated with its use warrant the need for a potent and 

safer anti-inflammatory compound [4, 5].

Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one) (Figure 1) is a 

dietary flavonoid commonly found in vegetable and fruits, including onions, apples, grapes and 

nuts [6]. The growing interest of researchers towards this particular flavonoid could be attributed 

to its various  pharmacological properties such as anti-oxidant, anti-inflammatory, anti-bacterial, 

anti-diabetic and anti-cancer [7]. Numerous studies have also elucidated on the potential 

therapeutic use of quercetin in the treatment of asthma owing to its potent anti-inflammatory 

property. Quercetin was found to ameliorate allergic airway inflammation and hyper-

responsiveness mediated via attenuation of the NF-κB signalling pathway [8, 9]. Moreover, it 

also inhibits degranulation of mast cells [8], reduced the recruitment of eosinophils [10] and the 

levels of pro-inflammatory markers evident in allergic inflammatory diseases [11]. 

Although quercetin exhibits diverse pharmacological actions, its application in clinical 

practice is still limited. The main factor could be the poor bioavailability of this compound 

primarily due to low solubility in aqueous medium as well as poor intestinal absorption [12]. In 

order to overcome these drawbacks, quercetin can be encapsulated into a novel nanocarrier 

system such as liquid crystalline nanoparticles (LCNs). Monoolein (MO), a non-toxic 

amphiphilic lipid is normally used to construct these systems [13]. LCNs are formed by the 

dispersion of monoolein in water which self-assembles into a well-ordered bicontinuous cubic 

structure [14].  Surfactants such as poloxamer 407 (P 407) need to be added into the LCN system 

so that it ensures the formation of a kinetically stable dispersion [15]. 



LCNs shows a great promise as an emerging drug delivery system due to their unique 

properties such as bioadhesive nature, higher hydrophobic drug loading capacity, sustained-

release behaviour as well as their ability to improve physicochemical stability of encapsulated 

drugs [16, 17]. Studies have also proven that the surface modification of LCN with hydrophilic 

polymers such as chitosan may allow longer residence time, increased mucoadhesiveness and 

enhanced cellular uptake therefore, improving drug bioavailability. The rationale behind this 

approach is that the outer shell layer was claimed to be more important than those of the core 

because the surface is directly contact with body cells and fluids [18-23].

Therefore, we believed that quercetin loaded LCNs and sm-LCNs were effective in 

treating inflammatory respiratory ailments such as asthma as well as to further enhance the anti-

inflammatory activity of quercetin. The main aim of this research was to formulate quercetin 

loaded LCNs and sm-LCNs followed by characterising them and evaluating their in vitro release 

profile. Finally, the effects of quercetin loaded LCNs and sm-LCNs on the secretion of pro-

inflammatory cytokines were evaluated in immortalised human bronchial epithelial cell line 

(BCi-NS1.1) induced with lipopolysaccharide (LPS). 

2. Materials

Quercetin was purchased from Sisco Drug Laboratories, India; whereas, monoolein was obtained 

from PI Chemicals, China. Poloxamer 407, Spectra Por® dialysis membrane and fluticasone 

propionate were purchased from Sigma-Aldrich, USA. Immortalized human bronchial epithelial 

cell line, BCi-NS1.1 was acquired from R. G. Crystal (Weill Cornell Medical College, New 

York, USA). Bronchial Epithelial Growth Media (BEGM) and Bronchial Epithelial Basal Media 

(BEBM) were purchased from Lonza, USA. All other solvents and chemicals used were of 

analytical grade.

2.1. Preparation of quercetin loaded LCN

Ultrasonication method was used to prepare quercetin loaded LCNs as described previously [13]. 

The composition of quercetin loaded LCN formulation is shown in Table 1. Briefly, appropriate 

amounts of monoolein and quercetin were melted together in a glass vial at 45°C. Distilled water 

heated to the same temperature was added into another glass vial containing P 407 and 

subsequently vortexed for one minute. Then, P 407 solution was transferred to the melted MO 



and quercetin mixture followed by vortexing for another minute. The liquid crystalline cubic 

phase formed in the mixture was then subjected to ultrasonication for 10 minutes using probe 

type sonicator (Sartorius Labsonic P) at 60 amplitudes and 0.5 cycle. Blank LCN without 

quercetin was also prepared using the same method mentioned above for comparison. 

2.2. Preparation of quercetin loaded sm-LCN

0.1% Q sm-LCN was prepared by mixing 5ml 0.1% CHI solution and 5ml Q LCN. After that, it 

was subjected to magnetic stirring for 30 min. The same process was repeated for 0.2% Q sm-

LCN except that it was mixed with 0.2% CHI solution [13]. 

2.3. Characterization of LCN & sm-LCN

2.3.1. Particle Size and Zeta Potential

The particle size and zeta potential of the nanoparticles was evaluated using Zetasizer Nano ZS 

(Malvern, UK) at 25°C. 0.1mL from blank LCN, Q LCN, 0.1% Q sm-LCN and 0.2% Q sm-LCN 

were diluted and equilibrated for 120 seconds before analysis [24-30]. 

2.3.2. Morphology

The morphology of nanoparticles was studied using transmission electron microscopy (TEM). 

Nanoparticles was diluted suitably to 50-fold and allowed to drop on a carbon-coated copper grid 

and fixed by vacuum drying. The anchored droplets were then exposed to TEM observation at an 

acceleration voltage of 100kV [13, 27, 31].

2.3.3. Entrapment Efficiency

The EE of the nanoformulation was evaluated by separating free drug from the nanoparticles 

system via centrifugation method. 1.9mL of distilled water was added to dilute the 0.1mL of Q 

LCN and Q sm-LCN. UV-vis was then performed to analyze their concentration via Shimadzu 

spectrophotometer at 369nm. 2mL of Q LCN and Q sm-LCN were centrifuged using a benchtop 

centrifuge (Eppendorf, Germany) at 2.5 Rcf for 15 minutes. The supernatants were withdrawn 

cautiously to remove the free quercetin and diluted with distilled water to 2mL. Their absorbance 

was detected 369nm using UV-Vis spectrophotometer, and the percentage of entrapment 

efficiency was calculated according to the following equation:



% EE=(D_total-D_free)/D_total *100

Where Dfree and Dtotal are the amounts of free and total quercetin in the nanoparticles.

2.4. In vitro release study

In vitro drug release from the nanoformulation was carried out by using Spectra/Por dialysis 

membrane bag. 2ml of Q LCN, 0.1% Q sm-LCN and 0.2% Q sm-LCN was placed into separate 

dialysis bags (MWCO: 3500 g/mole) and immersed into 25ml of release medium (0.01-M 

phosphate buffer, pH 7.4) in falcon tube. The falcon tube was shaken at 39 rpm at 37oC 

temperature using water bath. At 0.5, 1, 2, 3, 6, 9, 12 and 24 hours of the time points, 2ml from 

the falcon tube was removed for analysis and same amount of fresh dialysis medium was added 

to maintain the conditions. The amount of quercetin released was measured using UV–vis 

spectrophotometer at 369nm [26, 32].

2.5. In vitro cell culture study

Human minimally immortalized bronchial epithelial cell line BCi-NS1.1 was obtained from R. 

G. Crystal (Weill Cornell Medical College, New York, USA), and was cultured in BEGM 

growth media supplemented with (Lonza). Cells were then treated with Q LCN, 0.2% Q sm-

LCN, blank LCN, blank sm-LCN at 25uM for 24hrs, and were then stimulated with LPS 

(100ng/mL) for 24hr. 10nM Fluticasone was used as a standard treatment. The supernatants and 

RNAs were then harvested for further studies [24].

2.6. Cytometric bead array

The concentration of IL-1β , IL-6 and IL-8 in the supernatants collected from the treated BCi-

NS1.1 cells was measured using cytometric bead array (BD Biosciences) and flow cytometry 

(FACSCANTO II, BD Biosciences) as documented in the manufacturer’s instructions [33, 34].

2.7. Mechanistic profiling via molecular mechanics simulations

Molecular mechanics simulations were carried out employing using HyperChem™ 8.0.8 

Molecular Modelling Software (Hypercube Inc., Gainesville, FL, USA). The molecular 

structures of chitosan (Cht; 4 glucosamine units) and quercetin (Quer) were generated employing 



saccharide building tool and natural bond angles, respectively. For monoolein (MO), the 

molecular segment with functional groups was generated using natural bond angles. The 

bimolecular structures – MO-Quer and MO-Cht – were developed by parallel disposition of 

constituent molecules and then AMBER 3 (Assisted Model Building and Energy Refinements) 

Force Field was applied for energy minimization. Full geometrical optimization was conducted 

in vacuum employing the Polak–Ribiere Conjugate Gradient method until an RMS gradient of 

0.001 kcal/mol was reached [35].

2.8. Statistical analysis

All the values obtained were studied and performed using Graphpad Prisms 8.0. Data shown as 

mean ± standard deviation. One-way ANOVA tool was used to analyze the significant difference 

between groups and a value of p<0.05 was considered statistically significant. 

3. Results

The mean particle size, polydispersity index (PDI) and zeta potential of the quercetin formulation 

were measured and summarized in table 1. The mean particle size of the LCN formulations 

ranged from 210.0 to 268.7 nm with PDI less than 0.4 for all preparations. The zeta potentials for 

LCN formulations ranged from -14.6 to -15.6 mV whereas the sm-LCN ranged from 15.8 to 22.3 

mV. The encapsulation efficiency of quercetin loaded LCN was 99.4% which was slightly higher 

compared to the surface modified LCNs.

The TEM images (Figure 2) show that both LCN and sm-LCN were spherical in shape. The 

particle size of LCNs ranged from 100nm to 300nm which was consistent with the dynamic light 

scattering. 



Media only condition represented as negative control while LPS only condition represented as 

positive control. The significant difference at p<0.05 of pro-inflammatory cytokines were 

indicated with the ‘*’ sign above the bar when compared to negative control whereas the “#” 

sign for positive control.

The BCi-NS1.1 cells were treated simultaneously with either 100ng/mL of LPS alone or 

with quercetin loaded LCNs and free quercetin in DMSO solution to investigate their respective 

effects on the production of LPS induced pro-inflammatory markers in these cell lines. Quercetin 

loaded LCNs and sm-LCNs with the dose of 25μM showed a consistent trend of significantly (p 

< 0.05) decreasing the concentration of pro-inflammatory cytokines namely IL-1β, IL-6 and IL-8 

compared to the positive control group (Figure 4). It is also worth noting that quercetin LCNs as 

well as sm-LCNs remarkably downregulated the production of IL-6, IL-8 and IL-1β compared to 

free quercetin dissolved in DMSO, therefore, exhibiting superior anti-inflammatory activity.

4. Discussion

4.1. Characterization of LCN and sm-LCN

The significant increase in particle size indicates the encapsulation of quercetin into the blank 

LCN. Drug encapsulation into the nanoparticles may be a result of chemical conjugation or 

physical entrapment [36]. Polydispersity index (PDI) represents the size distribution and 

uniformity of the nanoparticles formed [37]. PDI values greater than 0.3 indicates a broad size 

distribution. Ideally, a narrow size distribution identified with PDI values lesser than 0.3 is 

preferred [37]. The slightly higher polydispersity index of quercetin loaded LCNs may be 

attributed to the coexistence of cubic liquid crystalline nanoparticles with other types of vesicles 

in the dispersion as previously reported [38, 39]. It was observed that the mean particle size for 

sm-LCN was significantly larger than LCN with regards to the amount of CHI used to modify 

the surface. When 0.1% CHI was used, the particle size observed was 236.1 nm whereas 0.2% 

CHI used has shown to increase the particle size to 268.7nm. The size increased in proportion to 

the quantity of CHI used proves that the increment was attributed to the surface coating of CHI 

on LCN [13].



The positive reading in zeta potential further indicates that the surface of LCN 

(negatively charged) have been successfully coated by the protonated amino group from CHI 

(13). Generally, zeta potential values above ±25 mV are required to form a stable dispersion 

between particles and reduce their aggregation [40]. P 407 aided in stabilising the LCN 

dispersion as demonstrated previously [41]. It is presumed that the hydrophobic part of the 

polypropylene oxide chain adheres to the surface of the cubic nanoparticles whereas the 

hydrophilic portion of the chain extends out to the surrounding environment to provide steric 

shielding, therefore, avoiding agglomeration [42]. The negatively charged zeta potential could be 

ascribed to the subtle amount of oleic acid released by monoolein resulting in anionic behavior 

of the dispersion caused by adsorption of hydroxyl ions on the surface of the LCNs [40, 42]. 

TEM images further confirmed the results from the Zetasizer, showing that the particles 

were spherical in shape and size less than 300nm, which is quite similar to other reported studies 

[13, 16, 41, 43]. The dense black core surrounding the particle was due to the existence of CHI 

coating indicating that the surface of LCN has been modified.  

Both LCN and sm-LCN have exhibited a high entrapment efficiency whereby >97% of 

drug was successfully entrapped. This indicates that most of the drug has been encapsulated 

regardless the surface modification of the nanoparticle. However other studies have successfully 

encapsulated their drug as high as 99% in LCN [13, 16, 40]. Nevertheless, the entrapment 

efficiency is still considered high when compared to other nanocarriers such as poly lactide-co-

glycolic acid (PLGA) polymer-based nanoparticles where Anwar et al reported that only 86% of 

quercetin was encapsulated [44].

4.2. In vitro release study

The result has shown that quercetin drug was able to release in a sustained release manner when 

incorporated into the LCN and by modifying the surface with CHI further prolonged the drug 

release. This sustained release of quercetin could be attributed to the structure of the LCN. The 

higher proportion of lipids in the LCN not only allows hydrophobic drug to bind strongly to its 

inner structure, but also provides a larger surface area for the drugs to be incorporated. As a 

result, high entrapment efficiency of the drug can be achieved. Yoo et al., also showed that the 

release of the drug from LCN has sustained as long as 15 days [16].  



4.3. In vitro evaluation anti-inflammatory activity of quercetin loaded LCN and 

sm-LCN on immortalised human bronchial epithelial cell line (BCi-NS1.1)

Evaluation of in vitro anti-inflammatory activity of quercetin loaded LCN and sm-LCN in 

comparison to free quercetin in DMSO solution

In the present study, quercetin loaded LCNs effectively decreased the concentration of pro-

inflammatory cytokines namely IL-1β, IL-6 and IL-8. These effects exhibited by quercetin LCN 

was in consistent with previous studies evaluating the anti-inflammatory activity of quercetin on 

different cell lines [9, 11, 45-47]. Zhang et al., proved that quercetin remarkably suppressed the 

secretion of IL-6 and IL-1β in LPS-stimulated human peripheral blood mononuclear cells 

(PBMCs) [46]. Another research demonstrated that the treatment of quercetin notably reduced 

the gene expression and release of IL-8, IL-6 as well as IL-1β in human mast cells (HMC-1) 

induced by phorbol 12-myristate 13-acetate and calcium ionophore A23187 [9]. Although the 

underlying mechanism was not investigated in this present study, it is well-established from 

previous studies that quercetin attenuates the activation of NF-κB hence, downregulating  the 

production of pro-inflammatory cytokines [9, 45, 46]. NF-κB signaling pathway plays a crucial 

role in the pathogenesis of asthma as it modulates the gene expression of pro-inflammatory 

mediators including chemokines, cytokines and cell adhesion molecules that lead to the 

infiltration of immune cells such as neutrophils and eosinophils in the airway [48, 49]. 

Encapsulation of quercetin into liquid crystalline nanoparticles was successful in further 

improving its anti-inflammatory activity. The enhanced anti-inflammatory effects of quercetin 

LCNs could be primarily attributed to the characteristics of the LCN itself, whereby it is 

bioadhesive in nature and improves membrane permeation leading to an increased interaction 

with the bronchial epithelial cells [40, 50]. The lipid bilayer of LCNs is akin to the  epithelial cell 

membrane hence could be transported easily across the membrane resulting in greater drug 

absorption [50, 51]. Furthermore, findings from numerous studies also elucidated that LCNs 

promote greater cellular uptake and internalisation into cells via endocytosis enabling them to be 

diffused throughout the cytoplasm [16, 40, 51, 52]. On the other hand, quercetin itself could have 

only remained in the cell membrane due to its high lipophilicity allowing it to be easily 

incorporated into the cell membrane.



The findings observed in our study has demonstrated that quercetin loaded sm-LCN with 

the dose of 25μM significantly (p<0.05) decreased the pro-inflammatory markers when 

compared to the free quercetin drug in DMSO. This indicates that sm-LCN is able to enhance the 

anti-inflammatory effect of quercetin when entrapped in the nanocarrier. 

There is also a noticeable reduction in the expression of all the pro-inflammatory 

cytokines which was observed on the blank LCN & sm-LCN. This suggests that the empty 

vehicle itself can slightly reduce the inflammation. We suspect that one of the components in the 

LCN formulation might contributed and it was monoolein. However, only one study has 

confirmed this and Ali et al reported that monoolein possess anti-inflammatory property that 

inhibits the production of pro-inflammatory markers in LPS stimulated bone marrow-derived 

dendritic cell (BMDC) via NF-κB and MAPK pathways [53].

Evaluation of in vitro anti-inflammatory activity of quercetin loaded LCN and sm-LCN in 

comparison to fluticasone

Fluticasone, an FDA approved drug to treat asthma was used as a standard to further establish 

the anti-inflammatory activity of quercetin LCNs. Quercetin LCNs were comparable to 

fluticasone in terms of reducing the levels of IL-1β and IL-6 however, fluticasone was much 

more effective in decreasing the production of IL-8. In this existing study, the BCi-NS1.1 cell 

lines were only treated with quercetin LCNs at the dose of 25µM. Quercetin was able to reduce 

the levels of pro-inflammatory cytokines in a dose-dependent manner up to a 100µM as 

described in the literature [46]. Therefore, the finding suggests the potential of quercetin LCNs to 

decrease the levels pro-inflammatory cytokines to a greater extent comparable to fluticasone at a 

higher dose. 

4.4. Molecular mechanics simulations

The molecular simulations performed in this research focused on two aspects: a) encapsulation 

or incorporation of quercetin within a monoolein matrix, and b) surface modification of the 

monoolein matrix with chitosan. The geometrical iterations representing the above bimolecular 

complexes are shown in Figure 5 while the related energetic molecular attributes are depicted in 

Tables 2 and 3, respectively. In case of MO-Quer; the formation of molecular complex was 

accompanied by a total energy stabilization of 15.894kcal/mol. Interestingly, the total energy of 



the MO-Quer complex was less than the individual constituent molecules. The incorporation of 

Quer in MO was evident from the fact that all bonding (bond, angle, and dihedral) and non-

bonding (van der waals forces and H-bonding) energy terms contributed to the geometrical 

stabilization of the complex. The major stabilization was provided by the van der Waals function 

which brought the molecules in close vicinity and hence led to the formation of –OH…HO– 

bonds between the molecules (Table 2, Figure 5). For the MO-Cht molecular complex; an energy 

stabilization of 10.336kcal/mol was observed. In line with MO-Quer, the total energy of the MO-

Cht complex was less than the individual molecular components. The energy stabilization in this 

case was mainly due to non-bonding interactions (van der Waals forces and electrostatic 

interactions) while the bonding interactions (bond and dihedral energies) destabilized the 

complex. Such destabilization is due to torsional strain experienced by the molecules while 

interacting within the van der Waals space. Additionally, both inter- and intra-molecular H-

bonding was observed in the MO-Cht complex further confirming its favourable formation and 

conformation. The above discussion justifies the selection and successful incorporation of 

quercetin in and chitosan surface modification of the monoolein nanosystem.

5. Conclusions

Quercetin was successfully encapsulated into liquid crystalline nanoparticles revealing their 

sustained release behaviour. Moreover, quercetin LCN and sm-LCN were effective in reducing 

the levels of pro-inflammatory mediators such as IL-1β, IL-6 and IL-8 whereby encapsulating 

quercetin into LCN further enhanced its anti-inflammatory activity.  This demonstrates that the 

quercetin LCN could be employed as a potential novel drug delivery for the treatment of asthma. 

This mode will overcome the issues associated with quercetin such as the low solubility, poor 

bioavailability and short half-life. The findings of this present study advocate the translation into 

other associated pulmonary inflammatory diseases such as chronic obstructive pulmonary 

disorder (COPD) as well as lung cancer which will help in providing a new direction to the 

pulmonary clinics.
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Figure 1: Pathology of Asthma

Figure. 2. Chemical structure of Quercetin



Figure 3. TEM images of LCN and sm-LCN (bar 500 nm).  (A) LCN liquid crystalline 
nanoparticle and (B) sm-LCN Surface-modified liquid crystalline nanoparticle.
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Figure 4. Cumulative Percentage release of Quercetin Vs. Time. The release profile of quercetin 
LCN over 24 hours. Release profile of quercetin from LCN exhibits a prolonged manner over the 

longer duration of time.
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Figure 5A, 5B and 5C. Effects of quercetin LCN treatment on BCi-NS1.1 cell line. Cells were 
treated with Q LCN, Q 0.2% sm-LCN at 25nM, fluticasone in DMSO at 10nM, Free Q in 

DMSO, Blank LCN and sm-LCN for 24h (n=3)
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Figure 6: Representation of the geometrical preferences of the two monoolein functional 
moieties (stick rendering) in complexation with a) quercetin molecule (ball-and-tube rendering); 
and b) chitosan chain (tube rendering) after molecular mechanics simulations [Colour code for 

elements: C = cyan; H = white; O = red]. Hydrogen atoms not shown for clarity.
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Figure. 1. Chemical structure of Quercetin 

Figure 2. TEM images of LCN and sm-LCN (bar 500 nm).  (A) LCN liquid crystalline 
nanoparticle and (B) sm-LCN Surface-modified liquid crystalline nanoparticle.
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Figure 3 The release profile of quercetin LCN over 24 hours. Release profile of quercetin from 
LCN exhibits a prolonged manner over the longer duration of time. 
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Figure 4A, 4B and 4C. Effects of quercetin LCN treatment on BCi-NS1.1 cell line. Cells were 
treated with Q LCN, Q 0.2% sm-LCN at 25nM, fluticasone in DMSO at 10nM, Free Q in 
DMSO, Blank LCN and sm-LCN for 24h (n=3)
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Figure 5: Representation of the geometrical preferences of the two monoolein functional 
moieties (stick rendering) in complexation with a) quercetin molecule (ball-and-tube rendering); 
and b) chitosan chain (tube rendering) after molecular mechanics simulations [Colour code for 
elements: C = cyan; H = white; O = red]. Hydrogen atoms not shown for clarity.
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Table 1. Characterization parameter of the nanoformulations.

Formulations Mean particle 
size (nm)

Polydispersity 
index (PDI)

Zeta 
potential 
(mV)

Encapsulation 
efficiency (EE) 
(%)

Blank LCN 210.0 ± 2.77 0.162 ± 0.02 -14.6 ± 0.25 -

Q LCN 223.9 ± 1.83 0.339 ± 0.008 -15.6 ± 0.17 99.4 ± 0.37

0.1% Q sm-LCN 236.1 ± 2.12 0.384 ± 0.03 15.8 ± 0.29 97.6 ± 0.30

0.2% Q sm-LCN 268.7 ± 0.55 0.419 ± 0.03 22.3 ± 0.96 98.5 ± 0.46

Each value is presented as mean ± standard deviation (SD), N=3

Table 2. Inherent energy attributes of monoolein-quercetin complex calculated using static 
lattice atomistic simulations in vacuum.

Energy 
component

(MO)2-Quer (MO)2 Quer ΔE a

Total b 3.761 6.580 13.075 -15.894

Bond c 1.038 0.428 0.792 -0.182

Angle d 3.669 3.592 1.369 -1.292

Dihed e 4.590 3.002 3.458 -1.87

vdW f -4.792 -0.442 8.183 -12.533

H-bond g -0.743 0.00 -0.728 -0.015

aΔE(A/B) = E(A/B) – [E(A) + E(B)]; btotal steric energy for an optimized structure; cbond stretching 
contributions; dbond angle contributions; etorsional contribution arising from deviations from 
optimum dihedral angles; fvan der Waals interactions; ghydrogen-bond energy function; values in 
green represent the structure stabilizing contribution; and values in red represent the structure 
destabilizing contribution. All values in kcal/mol.

Table 3. Inherent energy attributes of monoolein-chitosan complex calculated using static lattice 
atomistic simulations in vacuum.

Energy 
component

(MO)2-Cht (MO)2 Cht ΔE a

Total b 2.701 6.58 6.457 -10.336

Bond c 1.517 0.428 1.064 0.025



Angle d 9.028 3.592 5.782 -0.346

Dihed e 15.563 3.002 8.567 3.994

vdW f -4.388 -0.442 6.189 -10.135

Elec g -19.021 0.00 -15.145 -3.876

aΔE(A/B) = E(A/B) – [E(A)+ E(B)]; btotal steric energy for an optimized structure; cbond stretching 
contributions; dbond angle contributions; etorsional contribution arising from deviations from 
optimum dihedral angles; fvan der Waals interactions; gelectrostatic interactions; values in green 
represent the structure stabilizing contribution; and values in red represent the structure 
destabilizing contribution. All values in kcal/mol.
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