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ABSTRACT 1 

Background  Leukocyte telomere length (TL) is associated with age-related diseases and early 2 

mortality, but there is a lack of data on determinants of TL in early life. Evidence suggests 3 

that dietary intake of marine n-3 polyunsaturated fatty acids (PUFA) is protective of telomere 4 

attrition. Yet the effect of methylmercury (MeHg) exposure, also found in fish, on TL is 5 

unknown.  6 

Objective The aim of this study was to investigate associations between prenatal PUFA status, 7 

MeHg exposure and TL in mothers and children in the Seychelles, where fish consumption is 8 

high.  9 

Methods Blood samples collected from 229 mothers (at 28wk gestation and delivery) and 10 

children (at 5y of age) in the Seychelles Child Development Study Nutrition Cohort 1 were 11 

analyzed for PUFA concentrations. Prenatal Hg was measured in maternal hair collected at 12 

delivery. Postnatal Hg was also measured in children’s hair samples, using a cumulative 13 

metric derived from values obtained at 3-5y of age. Relative TL was measured in blood 14 

obtained from mothers at delivery, in cord blood, and in children at 5y of age by quantitative 15 

PCR. Linear regression models were used to investigate associations between PUFA status, 16 

MeHg exposure and TL. 17 

Results Neither prenatal PUFA status or MeHg exposure were associated with TL of the 18 

mother or child, nor with TL attrition rate. However a higher prenatal n-6/n-3 PUFA ratio was 19 

significantly associated with longer TL in the mothers (β= 0.001, P= 0.048). Child PUFA 20 

status and MeHg exposure were not associated with child TL. However greater values of 21 

family Hollingshead socioeconomic status (SES) at 9mo of age were significantly associated 22 

with longer TL in cord blood (β=0.005, P= 0.03).  23 
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Conclusions We found no evidence that PUFA status or MeHg exposure are determinants of 24 

TL, in either the mother or child. However, our results support the hypothesis that family SES 25 

may be associated with child TL.  26 

KEYWORDS: Polyunsaturated fatty acid status, methylmercury exposure, telomere length, 27 

pregnancy, maternal infant nutrition, fish consumption, Seychelles Child Development Study 28 

29 
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INTRODUCTION 30 

Telomeres, composed of TTAGGG repeats of DNA, act as a protective cap at the end of 31 

chromosomes and are essential for chromosome stability and replication [1]. Telomeres 32 

shorten with each cell division cycle [2] and as such, shortened telomere length (TL) has been 33 

used as an indicator of cell senescence and biological aging [3].  Damage to, or excessive 34 

shortening of telomeres in peripheral blood has been associated with accelerated aging and 35 

diseases featuring inflammation and oxidative stress, such as cardiovascular disease [4, 5] and 36 

cancer [6, 7]. Although TL is largely genetically determined, several environmental 37 

influences, such as physical and psychological stress, smoking, body composition and 38 

socioeconomic status (SES), are reported to influence TL [8-10]. Furthermore, several recent 39 

studies have reported associations between various dietary components and TL, suggesting 40 

that modifying the diet may promote longevity [11-13]. There are consistent reports that a 41 

Mediterranean dietary pattern, characterized by high fruit and vegetable intake, is associated 42 

with greater TL in various populations [14, 15]. Specific nutrients have also been studied in 43 

relation to TL. Higher dietary intakes of long chain n-3 PUFA, which have anti-inflammatory 44 

properties, have been associated with longer TL in adults [16-18]. The balance between the n-45 

3 PUFA and n-6 PUFA families may also be important in relation to effects on inflammation 46 

and TL. A randomized controlled trial with n-3 PUFA supplementation reported that TL 47 

increased with decreasing n-6/n-3 PUFA ratios and concluded that further study of this 48 

relationship was important in order to better understand disease prevention through dietary 49 

modification [18].  50 

Childhood is the time period of greatest telomere loss in leucocytes, with studies of humans 51 

from birth to 90 years of age indicating the greatest attrition in the first years of life [19-21]. 52 

Little information exists regarding the natural history of telomere processes in children and it 53 
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remains relatively unknown at what lifestage dietary or environmental exposures may affect 54 

TL [22]. However, given the wide interindividual variation in TL at birth and the fact that 55 

attrition of TL begins with the first cycle of cell division, it is likely that early life exposures 56 

may have an important effect on TL and susceptibility to age-related diseases throughout life; 57 

similar to the concept of epigenetics [23, 24].  58 

To our knowledge, no study has yet investigated the effects of exposure to methylmercury 59 

(MeHg) from fish consumption on TL. It is understood that MeHg is a toxin which can induce 60 

systemic oxidative stress and inflammation, both of which are associated with an accelerated 61 

rate of TL shortening.  However fish is also a rich source of n-3 PUFA which may counteract 62 

MeHg-induced inflammation and oxidative stress [25, 26]. We have previously reported on 63 

the importance of considering the prenatal PUFA status when examining associations 64 

between MeHg exposure and neurodevelopment [27, 28].  In order to clarify the effects of 65 

prenatal PUFA status and MeHg exposure, through fish consumption, on TL and to increase 66 

understanding on determinants of TL at birth and attrition during early life, we set out to 67 

investigate associations between PUFA status, MeHg exposure and TL in mothers and their 68 

children in the Seychelles Child Development Study (SCDS) first Nutrition Cohort (NC1). 69 

Our primary aim was to investigate the effect of prenatal PUFA status and MeHg exposure on 70 

TL of the mother and child, with our secondary aim to examine postnatal PUFA and MeHg as 71 

potential determinants of child TL at birth and early life.  72 

  73 
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METHODS 74 

Study population 75 

The SCDS is an observational study conducted in the Republic of Seychelles. It was 76 

established to investigate the effects of prenatal exposure to MeHg, through maternal fish 77 

consumption during pregnancy, on child neurodevelopment. The NC1 cohort recruited a total 78 

of 300 mothers at their first antenatal appointment on the island of Mahé during 2001, with 79 

full details of recruitment and the study setting described previously [27]. Maternal height and 80 

weight were measured when mothers were enrolled to the study, and in children at 5y of age, 81 

from which BMI was calculated as weight (kg)/ height (m)2.  Smoking and alcohol use during 82 

pregnancy were each measured as a dichotomous variable (some/none).   Birth weight (g) and 83 

gestational age (weeks) were determined at the child’s birth.  Family SES was estimated using 84 

the Hollingshead Four-Factor Social Status Index, measured when the child was 9mo of age 85 

and again when the child was 5y of age. The Hollingshead Index was modified to assess data 86 

on the primary caregiver’s education and occupation (mother, father, both, or other) [29], 87 

where higher codes indicated higher educational attainment or occupational status [30]. We 88 

combined occupational and educational codes through a weighted formula into a continuous 89 

score [30].  Home environment was assessed using the Pediatric Review of Children’s 90 

Environmental Support and Stimulation (PROCESS). The study was reviewed and approved 91 

by the Seychelles Ethics Board and by the Research Subjects’ Review Boards at the 92 

University of Rochester. 93 

Blood collection 94 

Blood samples were collected from mothers at 28 weeks gestation and at delivery. Children’s 95 

cord blood samples were collected at birth. Blood samples were also collected from the 96 
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children from the forearm when they were aged approximately 5y. All blood samples were 97 

venous, non-fasting and collected in EDTA-containing tubes. Whole blood, serum and plasma 98 

aliquots were obtained and stored at -80oC until analysis.  99 

 100 

PUFA measurement 101 

Maternal and child blood samples were maintained and shipped at -80oC to Ulster University, 102 

Coleraine for analysis of PUFA status. The description of this protocol has been described in 103 

full elsewhere [31]. In brief, total lipids were extracted from maternal serum samples using a 104 

modified method of Folch et al. [32]. Fatty acid methyl esters were prepared by addition of 105 

boron trifluoride in methanol (Sigma-Aldrich Co, Ltd) and analyzed using a Thermo-106 

Finnegan TRACE MS with Xcaliber software (ThermoFinnegan, UK). Precision was ensured 107 

by running a reference sample in each batch analysis for which the coefficient of variance 108 

(CV) was <10%. The limit of detection was 0.01mg/ml. Fatty acids were detected and 109 

quantified with reference to an external linear calibration curve which included two standards, 110 

C17:0 and C21:0, which were also added to unknown samples as internal standards prior to 111 

extraction as recommended by Schreiner (2005) [33]. The correlation coefficient of the 112 

calibration curve was r2 =0.99. Total serum fatty acids were analyzed in maternal blood to 113 

account for the majority of fatty acids being transported to the fetus as triglycerides during 114 

pregnancy. The geometric mean of the maternal PUFA values measured at 28 weeks and 115 

delivery was used in these analyzes [27]. As previously described, serum concentrations of 116 

long chain n-3 PUFA measured in NC1 mothers were low, which may be the result of 117 

potential oxidation of samples during blood processing [34]. 118 

Similarly, blood samples collected from the children at 5y of age were subject to PUFA 119 

analysis by the same method, but we characterized plasma phospholipid PUFA status in this 120 
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age group and quantified concentrations with an Agilent GC-MS with Chemstation software 121 

(Agilent, UK). In both methods, heptadecaenoic acid (C17:0) and heneicosaenoic acid 122 

(C21:0) were used as internal standards, added prior to lipid extraction. We quantified in 123 

absolute amounts (mg/mL) concentrations of alpha-linolenic acid (ALA, C18:3 n-3), 124 

eicosapentaenoic acid (EPA, C20:5 n-3), docosahexaenoic acid (DHA, C22:6 n-3), linoleic 125 

acid (LA, C18:2 n-6) and arachidonic acid (AA, C20:4 n-6). For models using prenatal PUFA 126 

status we summed total n-3 PUFA (ALA+EPA+DHA) and total n-6 PUFA (LA + AA). 127 

However, for models using postnatal PUFA status, owing to low levels of ALA being 128 

detected in children’s 5y blood samples, we replaced the sums of n-3 PUFA and n-6 PUFA 129 

with EPA+DHA and AA respectively and used the AA/DHA ratio in place of the n-6/n-3 130 

PUFA ratios. 131 

MeHg measurement 132 

Prenatal MeHg exposure was estimated by measuring total mercury (Hg) in maternal hair 133 

samples collected at delivery using atomic absorption spectroscopy at the University of 134 

Rochester, as previously described [28].  The limit of detection was 0.5ng Hg per sample 135 

aliquot and CV was 2.1%.  Method accuracy was assessed throughout the analyses by 136 

inclusion of standard reference material for hair (IAEA-085 and IAEA-086, International 137 

Atomic Energy Agency).  The University of Rochester Mercury Analytical Laboratory 138 

participated in the recent quality assessment of mercury laboratories with the 139 

COPHES/DEMOCOPHES project and served as a reference laboratory for analysis of hair 140 

mercury[35].  Hair was not cleaned prior to analysis, as our previous studies have not shown 141 

external contamination to be prevalent and cleaning hair has been associated inimitable 142 

results[36].  Because Hg was measured in the longest hair segment available from maternal 143 

hair grown during pregnancy (assuming growth of 1.1 cm/month), this measure represents 144 
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exposure during the entire pregnancy.  Children’s hair samples were obtained at evaluations 145 

before age 3 and at approximately 5y of age. Postnatal Hg exposure was estimated by 146 

measuring total Hg in the one cm closest to the scalp. For this analysis we estimated the 147 

cumulative (area under the curve) postnatal Hg exposure between the 3 and 5y time points, 148 

which is reported as ppm-years. 149 

TL measurement 150 

Whole blood samples were shipped at -80oC from Ulster University, Coleraine to Lund 151 

University, Sweden for leukocyte TL measurement. We measured TL in blood samples from 152 

the mothers at delivery, and from their children in cord blood and at 5y of age. TL was 153 

measured in the 229 mothers (and their children) who had both measures of maternal hair Hg 154 

and maternal PUFA.  DNA was extracted with Qiagen mini kit (Qiagen, Hilden, Germany) at 155 

the DNA/RNA genotyping Lab, SWEGEN Resource Center for Profiling Polygenic Disease, 156 

Lund University, Malmö, Sweden. TL quantification was determined by quantitative 157 

polymerase chain reaction (qPCR) as described in detail [37]. In short, an aliquot of 5μl 158 

sample DNA (3ng/μl) was added to each reaction (end volume 20μl). A standard curve, a 159 

reference DNA and a negative control were included in each run. For each standard curve, 160 

one calibrator DNA sample was diluted serially by 2-fold per dilution to produce 7 161 

concentrations of 0.25-16 ng/μl. Each sample, standard curve, reference and negative control 162 

were run in duplicates. Master mixes were prepared, containing 0.5U Taq Platina (Invitrogen, 163 

Carlsbad, CA), 1×PCR Buffer, 0.8mM dNTPs, 1.75mM MgCl2, 0.3mM SybrGreen I 164 

(Invitrogen), 1×Rox (Invitrogen), and either telomere primers (0.45 μM of each primer), or 165 

hemoglobin beta chain (HBB) primers (0.45 μM for each primer). The PCR was performed on 166 

a real-time PCR machine (7900HT, Applied Biosystems, Foster City, CA, USA). R2 for each 167 

standard curve was >0.99. Standard deviations (for Ct values) were accepted at <0.2. 168 
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The TL is an arbitrary value that was obtained through calculating the ratio of telomere repeat 169 

copy number to single-copy gene numbers (T/S) for each individual using the formula T/S = 170 

2-ΔCt, where ΔCt = Cttelomere - CtHBB. This ratio was then divided by the ratio of the reference 171 

DNA. Reference samples were included in each run and demonstrated a CV of 8.0%, based 172 

on 11 runs. The TL attrition rate was calculated as the ratio of the scaled 5y child TL to the 173 

scaled cord blood TL, where scaling divided the TL at that age by the maximum TL at the 174 

same age.  Since TL shortens with age, this ratio estimates the relative attrition rate, but only 175 

when cord TL and child 5y TL are measured on the same scale.  Scaling each measure was 176 

necessary to preserve this interpretation. 177 

Statistical analysis 178 

Complete data were available for a total of 229 mothers and their children for which at least 179 

one TL was measured. Linear regression models were fit to investigate pre-specified 180 

associations between TL and covariates as shown in Table 1.  Three models investigated 181 

prenatal PUFA and Hg as potential determinants of TL in both the mother and child, whilst 182 

two models considered the child’s postnatal PUFA and Hg exposure. We adjusted for PUFA 183 

status in two ways: in primary models as prenatal n-3 PUFA and n-6 PUFA, or postnatal 184 

(DHA+EPA) and AA, and in secondary models, as ratios of prenatal n-6/n-3 PUFA or 185 

postnatal AA/DHA. 186 

 All models adjusted for possible confounders chosen a priori based on the literature. As 187 

shown in Table 1, models that used prenatal PUFA status adjusted for maternal age, maternal 188 

BMI, smoking during pregnancy (yes/no) and alcohol during pregnancy (yes/no), while 189 

models that used postnatal PUFA status adjusted for child 5y BMI and home environment.  190 

Models investigating child TL, cord TL or their ratio adjusted for child’s sex, and the model 191 

for cord TL also adjusted for birth weight and gestational age.  Finally, all models adjusted for 192 
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SES either as measured at 9 months (maternal TL or cord TL) or at 5y (models that use 5y 193 

child TL).  194 

Model assumptions were checked using standard methods, and included checking whether the 195 

residuals had constant variance, were normally distributed, and had an approximate linear 196 

relationship with each continuous covariate.  We also checked for outliers, and for influential 197 

observations as defined by Cook’s distance.  If model assumptions were violated we refit the 198 

model using a transformation of the outcome that better satisfied assumptions.  All tests were 199 

two-sided and a P value <0.05 considered as significant.  200 

TL in cord blood and the TL attrition rate required a logarithmic transformation to better meet 201 

model assumptions.  There were no unduly influential or unduly outlying observations in any 202 

models.  Due primarily to missing data on one or more TL measure and missing data on child 203 

PUFA status, models for maternal TL, cord TL, child TL at 5y, and TL attrition rate were fit 204 

on data from n=216, n=183, n=202 (adjusted for maternal markers; n=178 when adjusted for 205 

child markers) and n=141 respectively. 206 

 207 

Results 208 

Maternal and child characteristics are presented in Table 2. The average TL decreased from 209 

1.18 ± 0.5 in cord blood to 0.71 ± 0.1 at 5y of age and was lowest in mothers at an average of 210 

0.64 ± 0.11. The mean TL attrition rate was 0.47 (SD= 0.14), with a range of -0.16 to 0.73.  211 

TL across the three time-points were only weakly correlated (r= -0.02 for maternal and cord 212 

TL, r= 0.06 for maternal and child’s TL at 5y, and r= 0.14 for cord and child’s 5y TL, P>0.05 213 

for all correlations).  214 
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No significant associations were found between prenatal and postnatal PUFA status, hair Hg 215 

and any of the TL measures with the exception of the n-6/n-3 PUFA ratio in the mothers, 216 

where greater n-6/n-3 PUFA status was significantly associated with longer TL (β= 0.001, 217 

P=0.048, Table 3).  218 

Family SES at 9 months was significantly positively associated with TL in cord blood 219 

(β=0.005, P=0.03, Figure 1). A positive trend was noted between family SES at 5y and TL at 220 

5y of age, however this relationship was non-significant (β=0.001, P=0.08). At age 5y, TL 221 

was almost significantly longer among girls than boys (β=0.026, P=0.08), and in models 222 

adjusting for maternal factors, a positive trend was noted between maternal age and TL of the 223 

children at 5y of age (β=0.002, P=0.07); however both associations were found to be non-224 

significant. These associations are from models that adjusted for maternal n-3 and n-6 PUFA, 225 

but similar associations were also found when adjusting for the n-6/n-3 PUFA ratio.  No other 226 

covariates significantly predicted TL 227 

 228 

Discussion 229 

This study focused on TL in early life which, as an indicator of cellular ageing, may be related 230 

to a range of health outcomes including risk of developmental disorder in adolescence [38] 231 

and age-associated diseases, such as cardiovascular disease, in later life [2, 39]. Many 232 

populations depend on fish as their primary source of nutrition, and are therefore exposed to 233 

MeHg whilst also consuming n-3 PUFA. To our knowledge there are no longitudinal studies 234 

confirming a beneficial effect of fish consumption to TL, either in adults or children. 235 

However several studies of dietary data have indicated a protective effect of a Mediterranean 236 

diet, which is expected to feature high fish intakes, on TL in adults [14, 15]. We hypothesized 237 



12 
 
 

that prenatal PUFA status and MeHg exposure would have conflicting associations with TL, 238 

both of the mother and child, through their opposing roles in inflammation and oxidative 239 

stress. We found no clear evidence for associations between either prenatal or postnatal PUFA 240 

status, MeHg exposure and TL in Seychellois mothers and their children, despite a uniquely 241 

high fish intake in this cohort.  242 

However we did observe that a higher prenatal n-6/n-3 PUFA ratio was associated with longer 243 

TL in mothers.  This finding was unexpected given that a higher n-6/n-3 PUFA ratio is 244 

generally, but not always, indicative of greater inflammatory insult in the body. Previous 245 

studies have reported a protective effect of supplementation with long chain n-3 PUFA on 246 

telomere shortening in adults [16]. However the relationships between PUFA and TL remain 247 

controversial and not fully understood, particularly in pregnancy [12, 40]. One intervention 248 

study with long chain n-3 PUFA supplementation found that every one unit decrease of n-6/n-249 

3 PUFA ratio was associated with a 20 base pair increase of TL [18]. Yet, there was no 250 

significant difference in the change in TL between placebo and treatment groups in their 251 

study. A further intervention study for 6 months with a relatively small sample size found a 252 

positive trend for longer TL with greater n-3 PUFA status, but no significant differences in 253 

TL between groups of elderly adults taking either EPA+DHA, DHA or LA supplements [17].  254 

The mechanism for a relationship between PUFA and TL is proposed to be via action of the 255 

lipid metabolites derived from PUFA (e.g. eicosanoids, resolvins and protectins) which differ 256 

in inflammatory properties according to whether their precursor is of the n-3 or n-6 PUFA 257 

family. It is possible that our finding of a longer TL with greater maternal n-6/n-3 PUFA is 258 

population-specific, given that the Seychelles cohort may have a unique genetic background 259 

for PUFA metabolism (FADS genotype) as we have previously reported[41]. It is evident that 260 

the relationship between PUFA and TL is more complex than previously understood and this 261 
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relationship may be further complicated by altered lipid metabolism during pregnancy. 262 

Therefore it would be of interest for future studies to consider the influence of various 263 

genotypes regulating PUFA metabolism when investigating associations between PUFA and 264 

TL.  265 

This is the first time to our knowledge that the relationship between MeHg exposure and TL 266 

has been investigated. A major mechanism of MeHg toxicity in the body is exerted through 267 

promotion of inflammation and oxidative stress [42]. Therefore our finding of a lack of 268 

association with TL in either mothers or children is encouraging in that it suggests MeHg 269 

exposure from fish consumption in the Seychelles is not having a detrimental effect on cell 270 

aging.  271 

We observed that a higher family SES, as measured at 9mo of age, was associated with longer 272 

TL of infants at birth.  The association between child TL and SES at 5y of age was somewhat 273 

less strong and was not statistically significant. Other studies have shown that lower SES and 274 

social disadvantage during childhood are associated with shorter TL, both in childhood and in 275 

adulthood [43-45]. Our results confirm the importance of the early home environment for TL 276 

in children; a relationship that may have lifelong health effects for children in the Seychelles. 277 

It is possible that a higher family SES score is an indicator of other environmental factors 278 

which could influence the TL, such as a higher quality diet. A focused examination of the 279 

postnatal diet of children may eludicate dietary determinants of TL, and potentially explain 280 

why we did not find an association between SES at 5y with TL at the same age. Therefore the 281 

clinical implications of a longer TL in early life may relate to lower risk of developmental 282 

disorder in adolescence [38, 46] and a variety of conditions in later life [2]. To date, the 283 

majority of research conducted in this area ascribe these relationships to the balance between 284 
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oxidative stress and antioxidant defenses known to regulate DNA replication and senescence 285 

[47, 48]. 286 

In all samples TL was measured and calculated based on the same reference DNA, therefore 287 

the values were comparable between different groups. We observed that TL in cord blood was 288 

the longest, and in mothers the shortest. This pattern supports the general idea that TL could 289 

be a biomarker for biological age [39]. However, in mothers, there was no evidence of an 290 

association between TL and maternal age. The telomere attrition rate between newborn and 5 291 

year-old children was surprisingly large, most likely reflecting the rapid growth, which 292 

requires prolific cell division. Robertson et al found the largest telomere attrition in the first 293 

year of life with a more constant rate of loss thereafter[21]. This high attrition rate could also 294 

explain the surprisingly low correlations between TL among mothers and children. We found 295 

one child with TL lengthening between birth and 5y, a phenomenon which has been observed 296 

by others [49, 50]. It is therefore possible that telomere lengthening processes may be part of 297 

overall oscillations in TL and we speculate that this phenomenon may represent fluctuations 298 

in cell types, which it was not possible to account for in our analysis. This represents one of 299 

few studies reporting TL in children and as such further investigation is warranted to 300 

determine the effect of early life exposures including diet to TL and telomere attrition.  301 

This study has several strengths. The mother-child cohort allows investigation of various 302 

influential factors on TL, both in the mothers and the offspring up to 5y of age. The study 303 

population had high fish consumption [51], resulting in a concurrent high intake of n-3 PUFA 304 

and high exposure to MeHg. Therefore, any possible effects of these factors should have been 305 

detected in this study. This study also has limitations. Despite best efforts to prevent, it is 306 

possible that delayed blood processing of maternal samples in this cohort may have resulted 307 

in selective oxidation of the more susceptible long chain PUFA among a random subset of 308 
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serum samples. This may account for the relatively low n-3 PUFA concentrations and the 309 

higher n-6/n-3 PUFA ratio observed in mothers. As we have previously commented, this may 310 

induce non-differential measurement error with the result that observed associations in models 311 

examining prenatal PUFA status within the current study are likely to be closer to the null 312 

hypothesis than the true associations [34].  313 

In conclusion, we found no clear evidence that prenatal or postnatal PUFA status or MeHg 314 

exposure are determinants of TL in our high fish-eating mother-child cohort. However, our 315 

results support the hypothesis that early life family SES may influence TL in the child.  316 

 317 
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Table 1. Description of linear regression models, their outcomes and covariates  

Outcome Exposure Covariates 

TL in mothers 

Prenatal n-3 PUFA 

Maternal age; Maternal BMI; Smoking; Alcohol; 9mo family SES Prenatal  n-6 PUFA 
Prenatal  n-6/n-3 PUFA1 

Prenatal  Hg    

Log(TL in cord blood) 

Prenatal  n-3 PUFA 
Maternal age; Maternal BMI; Smoking; Alcohol; 9mo family SES; Child sex; 

Birth weight; Gestational age 
Prenatal  n-6 PUFA 

Prenatal  n-6/n-3 PUFA1 
Prenatal  Hg    

TL at 5y of age 

Prenatal  n-3 PUFA 

Maternal age; Maternal BMI; Smoking; Alcohol; 5y family SES Prenatal  n-6 PUFA 
Prenatal  n-6/n-3 PUFA1 

Prenatal  Hg    

TL at 5y of age 

Postnatal  EPA+DHA 

Child sex; child BMI; Home environment; 5y family SES Postnatal  AA 
Postnatal  AA/DHA2 

Postnatal  Hg    

Log(TL attrition rate) 

Postnatal  EPA+DHA 

Child sex; child BMI; Home environment; 5y family SES 
Postnatal  AA 

Postnatal  AA/DHA2 
Postnatal  Hg 

1 Ratio replaced n-3 PUFA and n-6 PUFA in secondary prenatal model; 2 Ratio replaced EPA+DHA and AA in secondary postnatal model 
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Table 2. Characteristics of 229 mother-child pairs with at least one TL measurement. 
 N Mean SD Range 

Mothers      

Age (years) 229 27.2 5.93 15.0 – 42.0 

BMI (kg/m2) at enrollment 228 25.77 6.38 15.52 – 50.03 

Gestational age (weeks) 229 38.75 1.34 34.0 – 41.0 

Family SES at 9mo 229 33.93 11.01 13.0 – 63.0 

Family SES at 5y 225 31.48 11.06 8.0 – 63.0 

Hair Hg (ppm) 229 5.70 3.69 0.19 – 18.49 

Serum n-3 PUFA (mg/mL) 229 0.03 0.01 0.01 – 0.06 

Serum n-6 PUFA (mg/mL) 229 1.22 0.20 0.66 – 1.72 

Serum n-6/n-3 PUFA ratio 229 40.2 11.7 13.2 – 90.4 

TL (T/S)1 218 0.64 0.11 0.39 – 0.98 

Children      

Sex (male/female) 229 113/116   

Birth weight (kg) 229 3.24 0.47 1.87 – 4.45 
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BMI (kg/m2) at 5y 220 14.96 1.98 11.61 – 27.16 

Home environment (PROCESS score) 229 152.14 14.63 113.0 – 190.0 

Postnatal Hg (ppm-years)  220 12.83 7.32 2.52 – 68.58 

Cord TL (T/S)1 184 1.18 0.5 0.47 – 4.66 

Plasma AA (mg/mL) at 5y 201 0.05 0.01 0.02 – 0.07 

Plasma EPA + DHA (mg/mL) at 5y 201 0.04 0.01 0.01 – 0.07 

Plasma AA/DHA ratio at 5y 201 1.51 0.34 0.82 – 2.8 

TL at 5y (T/S)1 209 0.71 0.1 0.45 – 0.99 

Telomere attrition rate (T/S)1 141 0.47 0.14 -0.16 – 0.73 

Data presented are mean, SD and range. SES: socioeconomic status; PROCESS: Pediatric Review of Children’s Environmental Support and Stimulation.  
1 Ratio of telomere repeat copy number to single-copy gene numbers (T/S)  
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Table 3. Associations between TL in different life stages, PUFA status and Hg exposure from 
covariate-adjusted linear regression models. 
Outcome  Exposure covariate Beta SE P-value1 

TL in mothers 
(n=216) 

 
Prenatal  n-3 PUFA -1.70 0.93 0.07 
Prenatal  n-6 PUFA -0.011 0.039 0.78 
Prenatal  Hg 0.001 0.002 0.58 

 
Prenatal  n-6/n-3 PUFA 0.001 0.001 0.048 
Prenatal  Hg 0.001 0.002 0.71 

Log(TL in cord blood) 
(n=183) 

 
Prenatal  n-3 PUFA 4.38 3.20 0.17 
Prenatal  n-6 PUFA -0.031 0.14 0.82 
Prenatal  Hg -0.001 0.007 0.88 

 
Prenatal  n-6/n-3 PUFA -0.002 0.002 0.39 
Prenatal  Hg 0.001 0.007 0.93 

TL at 5y 
(n=202) 

 
Prenatal  n-3 PUFA 0.081 0.92 0.93 
Prenatal  n-6 PUFA -0.020 0.040 0.62 
Prenatal  Hg -0.002 0.002 0.23 

 
Prenatal  n-6/n-3 PUFA 0.000 0.001 0.69 
Prenatal  Hg -0.003 0.002 0.17 

TL at 5y 
(n=178) 

 
Postnatal  EPA+DHA -1.19 1.06 0.26 
Postnatal  AA 0.82 0.87 0.35 
Postnatal  Hg 0.001 0.001 0.26 

 
Postnatal  AA/DHA 0.026 0.022 0.25 
Postnatal  Hg 0.001 0.001 0.27 

Log(TL attrition rate) 
(n=141) 

 
Postnatal  EPA+DHA -2.49 4.11 0.55 
Postnatal  AA -1.33 3.63 0.72 
Postnatal  Hg 0.006 0.004 0.16 

 
Postnatal  AA/DHA -0.002 0.088 0.98 
Postnatal  Hg 0.005 0.004 0.20 

1Significant P values are bolded 
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Figure legends: 

Figure 1: Association between the logarithm of the cord telomere length and family 

Hollingshead SES index measured when the child was 9mo of age.  The superimposed lines 

show the slopes and 95% confidence intervals from the covariate-adjusted regression. 
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