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Abstract

Because of their apparent simplicity, Braitenberg vehicles have been exten-
sively used in robotics on an empirical basis. However, the lack of a backing
up formal theory turns their application into an educated guess of parameter
tunning. This paper provides a mathematical model of Braitenberg vehicles
2 and 3 as non-linear dynamical systems, which serves as a theoretical ground
to fully exploit them for robotic applications and to create animated agents
in artificial life or computer games. The behaviour of the vehicles is analysed
using theory of dynamical systems under general conditions, and hints on
how to generate desired behaviours are given. Results show that vehicles 2
and 3 can be used to implement bio-inspired navigation like; target reach-
ing and stimulus avoidance, which constitute a set of navigation primitives
or basis for navigation behaviour. Through a new theoretical approach, his
work paves the way to a proper understanding of Braitenberg vehicles and
to an extension of their applicability.

Keywords: Bio-inspired robotics;Local navigation;Dynamical systems
modelling and analysis;Braitenberg vehicles

1. Introduction

Braitenberg vehicles [1] qualitatively model sensor based animal steering,
and have long been used used on an empirical basis in robotics. The sim-
plest Braitenberg vehicles model the motion of animals towards, or escaping
from, a stimulus, known in biology as (positive or negative) taxis behaviour
[2]. Animals are very good at moving in the real world and, therefore, they
can represent a good model to follow when implementing robotic motion as
reflected by the multiple successful empirical applications of Braitenberg ve-
hicles to robotics. While positive taxis is a goal seeking technique, negative
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taxis implements avoidance behaviours, both form a basis, or primitives, of
navigation behaviour in mobile robots. Because of their simplicity, they are
easily understood at an intuitive level without the need of a strong math-
ematical background, but this is not enough to exploit their full potential.
In fact, as a control mechanism for wheeled robots, they are easier to un-
derstand by the newcomer to robotics that potential field approach based
techniques, and that is why they are sometimes used for teaching [3] [4].

By building up vehicles with sensors wired to their wheels, Braitenberg
models complex biological behaviours with great simplicity. Wheels abstract
locomotion to focus on steering or guidance level [5], therefore, they can
model locomotive configurations like walking, swimming or crawling under
standard forward motion conditions. This simplifies the control and anal-
ysis of motion, and is a good approximation as forward moving animals,
like wheeled vehicles, suffer from non-holonomic restrictions to motion [6].
Braitenberg vehicles can, therefore, be used to design robotic controllers at
the steering level. The sensors used by Braitenberg vehicles perceive an ab-
stract stimulus at some point, though the stimulus could also be an artificial
potential function. To simulate the omni-directionality of the sensors many
empirical applications of Braitenberg vehicles include rings of sensors around
the robot.

As shown in figure 1, vehicles 2 and 3 simply consist on direct or crossed
connections between the sensors and the motors. Some vehicles have in-
creasing connections such that a stronger stimulus in the sensor generates a
faster turn of the associated wheel, while others have a decreasing connection.
These vehicles are immersed in environments with a unique kind of stimulus
they can perceive. This simplifies the analysis and design of their behaviour
while serves as building blocks for more complex vehicles. The combination
of direct, crossed, increasing and decreasing connections between the sensors
and the wheels of the vehicles generates four different vehicles as presented
in figure 1. When sensors on one side are connected to the motors on the
same side (ipsilateral) we will talk about a-type or parallel vehicles, while
b-type vehicles display a crossed (contralateral) connection as depicted in
figures 1(b) and 1(d). Vehicles 2 have an increasing or excitatory connection
linking perception to action, represented by the ‘+’ sign on figures 1(a) and
1(b), while for vehicles 3 the connection is decreasing or inhibitory [7].

The behaviour of each vehicle can be qualitatively analysed assuming that
a stimulus source in the environment generates a distance decreasing scalar
field. Basically, intuition dictates that vehicles 2b and 3a will move towards
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high values of the stimulus, and vehicles 2a and 3b will head towards lower
values, but sometimes intuition fails in explaining their behaviour [8]. While
vehicles 2 might move faster next to the stimulus source, vehicles 3 will slow
down as they get close to high stimulus intensity because of the decreasing
connection. All these vehicles intuitively generate gradient descent or hill
climbing trajectories, while accounting for the non-holonomic constrains to
their motion. The simplicity of the control mechanism makes it biologically
plausible, while at the same time it is argued [1] that they can produce quite
complex behaviours depending on the specific stimulus and internal wiring
between sensors and motors.
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Figure 1: Schematics of Braitenberg Vehicles 2 and 3

As we will see, multiple empirical applications of Braitenberg vehicles
can be found in the literature; target seeking, wandering, sound, light or
gas source localisation and obstacle avoidance. This paper contributes to
the general knowledge of Braitenberg vehicles by delivering a join mathe-
matical model of the control mechanisms of vehicles 2 and 3, and therefore
providing theoretical support for these empirical works. Although some be-
haviour analysis of vehicles 2b and 3a has been presented elsewhere, this
paper provides a more exhaustive analysis of all the possible stability con-
ditions, while it also includes vehicles 2a and 3b, not considered in previous
works. Moreover, based on this model, new applications can be found [9] [10]
for sensor driven robot steering. We use dynamical systems theory to anal-
yse their behaviour, show new theoretical results of their motion and derive
design principles to obtain a desired behaviour. Simulations are presented to
illustrate the theoretical results.
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The paper is organised as follows. The rest of this section presents some
robotics applications of Braitenberg vehicles that can be found in the litera-
ture. Section 2 states the working assumptions, presents the corresponding
mathematical models of the controllers and proposes an analysis that justi-
fies our empirical understanding of Braitenberg vehicles. Section 3 derives
general properties of the behaviour of the vehicles, and states additional as-
sumptions that help designing effective controllers for Braitenberg vehicles.
The simulations to illustrate the properties of the vehicle trajectories are
presented in Section 4. To conclude the paper, a summary of the results,
their implications and further working lines are presented in Section 5.

1.1. Related works

Different Braitenberg vehicles have been successfully used on an exper-
imental basis to provide mobile robots with several abilities. However, the
lack of a theoretical understanding of this bio-inspired controllers limited
their potential applications. Vehicles 3a and 3b for odour source localisation
are analysed from an experimental point of view in [11], where the connection
between sensors and motors is linear but sensor readings are normalised and
averaged. Due to the nature of the stimulus and sensing hardware, a neces-
sary sensor preprocessing introduces a dynamic component in the connection.
This is the first application of Braitenberg vehicles to chemical source local-
isation, a highly complex problem since the stimulus changes with the robot
motion. Phonotaxis in a robotic rat is presented in [12] through a model
of the peripheral auditory system in mammals. The main contributions of
this work are the simplification of sound source localisation through the pin-
nae and the cochlea model, and a successfully implementation of a model
of the central auditive system, with a Braitenberg vehicle 3a to control the
robot motion. Another example of phonotaxis behaviour is presented in [13],
where the auditory system of a lizard is implemented. In fact, their model
of the lizard ear is good enough to work with a high success rate over a wide
range of frequencies using a Braitenberg vehicle 2b and a bang-bang con-
troller. Interestingly, the performance of both controllers was similar even
though they did not have a model of the vehicle to tune the behaviour of the
robot. In a series of works [14] [15] [16] a female cricket phonotaxis model is
implemented using spiking neural networks connected according to the exci-
tatory and inhibitory principles of Braitenberg vehicles. This neural model
of motion control is comparable to a combination of vehicles 2a and 3b, since
excitatory units display a parallel connection between sensors and motors,
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while inhibitory ones are crossed. The authors prove their robots perform
very well even under quite adverse outdoor conditions. The first robotic im-
plementation of rheotaxis is presented in [10], where a fish robot provided
with pressure sensors can keep its orientation relative to a laminar flow. Even
though the forward speed is kept fixed, the turning rate of the fish is com-
puted following the principles of Braitenberg vehicles. This is not the only
application of these vehicles to underwater robotics, since a robotic electric
fish using a similar approach is presented in [17]. In this case the steer-
ing control is performed using the difference between the currents, perceived
through electrodes, on the sides of the robot. The resulting trajectories ap-
proach conductive objects in a pond while avoiding isolating ones. As we can
see, Braitenberg vehicles are widely used to implement bio-inspired robotics
behaviours, specially when the motion relies on unconventional sensors in the
sense that they do not directly provide distance related readings. However,
Braitenberg vehicles are also used with proximity sensors in robotics, like
sonar, laser and infrared sensors.

The work in [18] implements target acquisition using vehicle 3a, to per-
form phototaxis, in a combination with vehicle 2b to avoid obstacles using
a ring of infrared sensors to simulate omni-directionality. Inspired by this
work, [19] presents a wandering mechanism based on a combination of ve-
hicle 2b with stimuli built up from laser and sonar proximity sensors. The
stimulus to implement vehicle 2b is a weighted integration of the free area
in front of the robot, and, the resulting trajectory is very smooth (at least
C1, since it relies on the integral of a piece-wise continuous function, the
distance to the obstacles). Through infra-red based fuzzy controllers that
generate offset velocities on each wheel, Braitenberg vehicles 3a and 2b are
used for local navigation in [20]. Goal seeking is implemented by vehicle 2b
while vehicles 3b and 2a are used to avoid obstacles in the front and back of
the robot respectively. A Lego vehicle with a hardware implementation of the
vehicle 3b for obstacle avoidance and a wall following behaviour is presented
in [21]. The power supply of the wheels is connected in a decreasing way to
infrared sensors placed in the front of the robot, which makes the vehicle to
slow down when objects are detected.

2. Assumptions and Models of Vehicles 2 and 3.

Like in the original work of Braitenberg we will assume the environment
consists on a single stimulus the vehicle can measure through its sensors.
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This stimulus can be modelled as a non-negative two dimensional smooth
function of the position, S(x) ∈ C2 for x ∈ D ⊂ ℜ2, where the workspace
D is a simply connected subset of ℜ2. These stimuli can be a light source
(following the inverse-square law S(x) ∝ 1/r2), a sound source (S(x) ∝
1/r), the free area around a robot or any artificial potential, as we saw in
the previous section. The relation between the perceived stimulus and the
velocity of the wheels can be modelled as a C2 function F (s) taking non
negative values. This function is increasing for vehicles 2 and decreasing
for vehicles 3, which actually implies it has, respectively, positive or negative
derivative on its domain, i.e. F ′(s) > 0 for vehicle 2 and F ′(s) < 0 for vehicle
3. Therefore, we can write vr/l = F (s) where ‘s’ is the stimulus value on the
sensor and ‘vr/l’ is the speed of the wheel. The restriction on the image of
F (s) being ℜ+ ∪ {0} forbids the vehicle to move backward but allows it to
stop completely, generally, a biologically plausible assumption.

2.1. The Controller of Braitenberg Vehicles

Given the above assumptions we can now derive a mathematical expres-
sion for the controller. Figure 2 shows the configuration of the sensors in
the front of the vehicle. We will denote x the midpoint and δ the distance
between the sensors. Since the vehicle has a heading direction θ, we can
define a unit vector linked to the front of the vehicle êT = [cos θ, sin θ] point-
ing in the direction of the vehicles’ motion and êTp = [− sin θ, cos θ], a vector
orthogonal to ê, pointing to the left side of the vehicle. Approximating the
function composition F (S(x)) as a Taylor series around the mid point be-
tween the sensors and transforming wheel velocities into global velocities (see
appendix A), we obtain:

v ≈ F (S(x)) +
δ2

4
êTpD

2F (S(x))êp (1)

ω ≈ ∓
δ

d
∇F (S(x))êp (2)

where d is the wheelbase, ∇F (S(x)) = dF
dS
∇S(x) is the gradient of the

composite function, D2F (S(x)) = d2F
dS2∇S(x)∇TS(x)+ dF

dS
D2S(x) is the Hes-

sian matrix, and the different signs on equation (2) correspond to a-type or
parallel (minus) and b-type or crossed (plus) vehicles. These equations are
the result of truncating the Taylor series of the wheel velocities on the second
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Figure 2: Coordinate system at the Front of the vehicle

order terms, and provide a way of analytically deal with Braitenberg vehicles
or to run accurate simulations of their behaviour.

2.2. Intuitive analysis of the controller

Equation (1) shows that the first order approximation of the linear ve-
locity of the vehicle depends on the stimulus at the midpoint between the
sensors, specifically, the forward velocity is just F (s). Therefore, to control
the linear velocity, the two sensors can be substituted by one at the centre of
the vehicle. This matches our intuition on how the vehicles behave, as high
values of the stimulus S(x) generate high speeds for vehicles 2 and low ones
for vehicles 3. It is worth noting that the velocity equation is independent
on the type of vehicle, but the properties of F (s) are very different for each
vehicle (‘2’ and ‘3’). The error on the approximation, the difference between
the real and modelled speeds, depends on second order terms, i.e. on the
Hessian of F (S(x)) and the distance between the sensors.

The approximation for the angular velocity ω shows that the turning rate
depends on the directional derivative of the stimulus along the direction of
the sensors, orthogonal to the vehicle heading. Equation (2) can be written
as ω = ∓ δ

d
∂êpF (S(x)), where ∂êp represents the directional derivative of

F (S(x)) along êp. The angular velocity is multiplied by the morphological
scaling factor δ

d
. This is the result of sampling the stimulus at two different

points, and, similarly to the linear speed, the turning rate can be understood
as a gradient measuring sensor, located at the midpoint between the vehicle’s
sensors.

Assuming the vehicle cannot move forward, the gradient at one point x0

will be a constant vector we can write as F ′(S(x0))||∇S(x0)||êθ0 , where the
sign of F ′(S(x0)) is different for vehicles ‘2’ and ‘3’, ||∇S(x0)|| is the module
of the gradient at x0 and êθ0 = [cos θ0, sin θ0]

T is a unit vector along the
direction of the gradient. Since ω = θ̇, we can rewrite the angular velocity
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equation for the static vehicle as:

θ̇ = ∓
δ

d
F ′(S(x0))||∇S(x0)|| sin(θ0 − θ) (3)

Equation (3) represents an autonomous dynamical system in the heading
direction with two equilibrium points, θ = θ0 and θ = θ0 + π, which corre-
spond to the vehicle heading the gradient and its opposite direction. One
equilibrium point will be stable and one unstable, though to identify the sta-
ble one we need to consider the sign of F ′(s). It can be seen that the vehicle
2a, with F ′(s) > 0, and the vehicle 3b, with F ′(s) < 0 on equation (2) align
their heading with the gradient, i.e. the stable equilibrium point is θ0. The
other two vehicles perform a gradient descent on the stimulus such that the
stable equilibrium point is θ = θ0 + π. It is worth noting that the slope
of F (s) has a direct impact on the reaction time of the angular controller,
and therefore to make the vehicle turn faster for a given stimulus we need
a steeper F (s) function. This provides a design criterion for Braitenberg
vehicles, that is, the slope of F (s) controls the reaction or relaxation time
of the heading of the vehicle when converging to the gradient direction. On
the other hand, the turning rate is also controlled by the projection of the
gradient of S(x) along the direction of the vehicle, such that the turning rate
is maximal when the vehicle direction is orthogonal to the gradient.

The performed analysis is also valid for any general C1 stimulus and F (s)
function, and clearly, the smaller the distance between the sensors the more
accurate the approach will be. Even though this analysis formally explains
our intuition on how Braitenberg vehicles work, a deeper analysis is needed
to understand their real behaviour.

3. General Analysis of the vehicles’ behaviour

To analyse the trajectories of the vehicles we will substitute the approxi-
mated controller, equations (1) and (2), in the unicycle model – a kinematic,
under-actuated non-linear motion model – to obtain:

ẋ = F (S(x)) cos θ (4)

ẏ = F (S(x)) sin θ (5)

θ̇ = ∓
δ

d
∇F (S(x)) · êp (6)
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where x = [x, y]T and the state space of the dynamical system describing
the behaviour is D×S1. Even though these equations model simultaneously
vehicles 2 and 3, each case has to be analysed separately since the shape of
F (S(x)) depends on the vehicle.

Before performing the analysis, we will assume the value of the stimulus
falls in the range [s0, s1], i.e. s0 ≤ S(x) ≤ s1 for all x ∈ D, such that S(x) =
s0 ⇐⇒ x ∈ ∂D, the lowest value appears at the workspace boundary.
This provides a design criterion for the stimulus function if it has to be
built, for instance, as an artificial potential. So far we assumed F (s) is
non-negative but we will impose the additional constraint F (s0) = 0 for
vehicles 2, and F (s1) = 0 for vehicles 3, while the function value at the
other end is bounded. These conditions allow having equilibrium points in
the corresponding dynamical system, otherwise equations (4) and (5) would
never become zero simultaneously. In fact, these should be design conditions
for applications of Braitenberg vehicles in robotics.

A common technique to analyse the stability of an equilibrium point of
a dynamical system is the linear stability test, i.e. analysing the eigenvalues
of the Jacobian matrix. In our case the Jacobian matrix can be stated as:

J =

[

ê∇F (S(x))T F (S(x))êp
∓ δ

d
∇Fx|y(S(x))

T êp ± δ
d
∂êF (S(x))

]

(7)

where ∇Fx|y(S(x))
T êp is a row sub-matrix containing the partial deriva-

tives of the gradient w.r.t. x and y, and ∂êF (S(x)) is the directional deriva-
tive of F (S(x)) along ê = [cos θ, sin θ]T . The equilibrium points of the system
will be stable if all the eigenvalues of the Jacobian are negative or have nega-
tive real parts, and unstable otherwise. Another way of using the Jacobian to
assess stability, is to evaluate it along a known solution trajectory of the sys-
tem to test whether neighbouring trajectories get closer to, or diverge from,
it. This is the generalisation of the linear stability test for non equilibrium
trajectories of the dynamical system, and is represented in figure 3, where
the trajectory x(t) + ∆x(t), close to x(t), diverges from it. In this case, the
evaluation of the Jacobian should be performed along the points x(t), θ(t).

3.1. Vehicles 2

Under the assumption that the stimulus takes its minimum value at the
boundary ∂D, it can be proved that the trajectories of the vehicles 2 are
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Figure 3: Evolution of two close trajectories

actually restricted to D. This is the consequence of the flow defined by the
dynamical system (4), (5) and (6), having no component pointing out the
surface ∂D×S1. Since F (S(x)) = 0 for x ∈ ∂D, the first two components of
the vector field vanish at the boundary. The third component will only vanish
for angles θ orthogonal to the gradient. However, the normal vectors to the
surface ∂D×S1 have no angular component, and therefore, the dot product
of the surface normal and the flow defining the vehicle motion is zero, either
because they are orthogonal to each other or because the flow completely
vanishes. This means no flow comes out of the state space and, therefore,
vehicle 2 motion will be bounded in the workspace by the contour ∂D. From
a design viewpoint, we can restrict the motion of a Braitenberg vehicle on a
stimulus field S(x) by selecting a level curve with a value s0 and a controller
function F (s) such that F (s0) = 0, which justifies our previous assumptions.
On the other hand, if the motion of the vehicle has to be restricted by a
closed curve Γ, we need to design S(x) such that Γ is a level-set of S(x).
These design criteria have not been explicitly identify before, are derived
from our theoretical model, and have been exploited in [9] to implement a
bounded wandering behaviour in a real robot which densely covers the free
space without colliding with obstacles.

Since F (S(x)) 6= 0∀x ∈ D, the only equilibrium points of vehicles 2a and
2b lay in the workspace boundary ∂D. If the gradient of S(x) vanishes at
some points of ∂D, these points will belong to the set of equilibrium points.
If the gradient does not vanish at ∂S, the equilibrium points can be obtained
by solving ∇S(x)T êp = 0 for any x ∈ ∂D, which gives at least two solutions
for θ, since for each point x ∈ ∂D we can find two complementary angular
values which make θ̇ = 0. These points are such that the vehicle heads
in the direction of the gradient ∇S(x) or in the opposite direction. Now
we will analyse separately, using the linear stability test, the behaviour of
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Braitenberg vehicles 2 in the boundary ∂D and inside the workspace.

3.1.1. Behaviour at the Boundary points

Equilibrium points exist at the boundary and the linear stability test can
be used to test their stability. In the case of the gradient vanishing in ∂D, if
we substitute F (S(x)) = 0 and ∇S(x) = 0 in (7) we obtain only zero eigen-
values and, therefore, the linear test gives no information about the stability
of the equilibria at ∂D × S1. More sophisticated methods, as presented for
the two dimensional case in [22], need to be applied. However, if the gradient
of the stimulus is not zero at the boundary, the eigenvalues of the Jacobian
matrix can be computed to evaluate the stability of the equilibrium points.
Disregarding the effect of the zero eigenvalue, which corresponds to the di-
rection of motion restricted by the non-holonomic condition, for the vehicle
2a the other two eigenvalues are λ2a =

{

±||∇F (S(x0))||,±
δ
d
||∇F (S(x0))||

}

and for vehicle 2b λ2b =
{

±||∇F (S(x0))||,∓
δ
d
||∇F (S(x0))||

}

. The sign of
the eigenvalues depends on the heading of the vehicle relative to the gradient.

On the one hand, for vehicle 2a, the sign of the two eigenvalues is the
same for a given heading solution of ∇S(x)T êp = 0. This means that one of
the solutions will be stable and the other unstable. Specifically, the stable
equilibrium point corresponds to the vehicle heading the opposite direction
of the gradient, and the unstable equilibrium to the vehicle heading the
gradient. Therefore, the dimension of the, respectively, stable and unstable
manifolds for these points is two, while the third dimension corresponds to
a central manifold (the zero eigenvalue). Since for each point in ∂D there is
a stable equilibrium point, with a two dimensional basins of attraction, this
effectively covers the whole state space. This means vehicle 2a will approach
the boundary ∂D if it points towards it, and will escape for headings pointing
in the opposite direction. However, as the stable manifolds of the equilibrium
points cover the whole workspace, the vehicle will always approach one of
these stable equilibrium points on the boundary. Eventually, vehicle 2a will
always reach the boundary of the stimulus and will stay there as stable
equilibria exist. This result matches our intuitive understanding of how the
vehicle works, and makes Braitenberg vehicle 2a suitable to avoid high values
of a stimulus or potential function.

On the other hand, for vehicle 2b, the equilibrium points always have
eigenvalues with opposite signs and therefore all existing equilibria on the
state space corresponding to x ∈ ∂D are unstable. Contrary to the 2a case,
all the equilibrium points have a 1D stable manifold. This means that a
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direction exists such that the equilibrium point can be reached, when the
vehicle heads exactly the opposite direction of the gradient. However, they
form a zero measurement set of the state space and any small perturbation
will drive the vehicle away from this point. In the case of a stimulus source
this situation corresponds to the vehicle having the source exactly on its back.
There is no way (but from the stable manifold) the vehicle 2b will reach the
boundary ∂D and it will wander around D as there is no other equilibrium
point. As we saw in the related works, Braitenberg vehicle 2b can therefore
be used to implement wandering behaviour in a bounded workspace [9].

3.1.2. Behaviour in the open set

To apply the linear stability test in the interior points we need to ob-
tain a solution trajectory and compute the Jacobian matrix along it. The
eigenvalues along time will determine how nearby trajectories behave.

If we assume the gradient of S(x) has locally a constant direction and
the vehicle’s orientation coincides with the direction of the gradient of S(x),
the directional derivative along ê appearing in the expression (7) corresponds
to the signed length of the gradient. Under these conditions the vehicle will
locally follow a straight line trajectory as the directional derivative along êp
will be zero. The Jacobian can be simplified and its eigenvalues that can be
computed as:

λ1 = ∂êF (x) (8)

λ2 = ±
δ

2d
∂êF (x)

[

1 +

√

1∓ 4
d

δ

κF (x)

|∂êF (x)|

]

(9)

λ3 = ±
δ

2d
∂êF (x)

[

1−

√

1∓ 4
d

δ

κF (x)

|∂êF (x)|

]

(10)

where F (x) = F (S(x)), the directional derivative ∂êF (x) is the signed

norm of the gradient and κ =
êTp HF (x)êp

|∂êF (x)|
, is the curvature of the contour line

of S(x) at the position of the vehicle, with HF (x) being the Hessian matrix
of F (x). The positive sign of λ2 and λ3 corresponds to a-type or parallel
vehicle and the negative to crossed or b-type. Since the local behaviour of
the vehicle relative to a straight line trajectory depends on the curvature of
the contour lines, we need to analyse the eigenvalues for possible values of κ.
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Figure 4: Possible configurations of the vehicle aligned with a stimulus gradient

We can use the linear stability test evaluating the above eigenvalues along
the linear trajectory and check whether close trajectories converge or diverge
locally. First, the eigenvalue λ1 is the directional derivative of F (S(x)) along
the heading direction, which, since F ′(s) > 0 for vehicles 2, is positive if the
vehicle heads the gradient and negative if it heads the opposite direction.
Therefore, there will always be a unstable one dimensional manifold if the
vehicle heads in the direction of the gradient and a stable one for the opposite
direction.

The other two eigenvalues (λ2 and λ3) depend on the type of vehicle (a or
b), on the curvature κ, on the linear velocity of the vehicle and the length of
the gradient. The possible configurations of the vehicle and κ are presented in
figure 4. On the one hand, for a-type vehicles and κ = 0, the set up presented
in figure 4(b), λ2 has the same sign as λ1, while the third eigenvalue becomes
zero. Therefore, for a planar stimulus all the eigenvalues will have the same
sign and vehicle 2a will always head in the opposite direction of the gradient,
i.e. it will move towards decreasing stimulus values. This is the expected
outcome of Braitenberg vehicle 2a, since it intuitively moves towards low
values of the stimulus. On the other hand, since the two eigenvalues (at least
one of them) for vehicle 2b have opposite sign to λ1 there will always exist an
unstable manifold for both directions in the case of κ = 0. This is consistent
with the resulting behaviour at the boundary for vehicles 2b.

As the curvature of the contour lines increases in absolute value, the
eigenvalues can change to generate different behaviour. The trajectories of
vehicle 2a, for instance, can display oscillatory behaviour for κ > 0 since λ2

and λ3 can become complex numbers. When the vehicle heads the gradient
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κ < 0 κ = 0 κ > 0
∂êS > 0 ∂êS < 0 ∂êS > 0 ∂êS < 0 ∂êS > 0 ∂êS < 0

a UUS SSU UUZ SSZ UUU SSS
b USS SSU UZS SZU UUS SSU

Table 1: List of the local stability results of the eigenvalue analysis for vehicles 2a and 2b

direction, the oscillation will not be noticeable because all the eigenvalues
have positive real part. If the vehicle is moving towards low stimulus values
when all the eigenvalues have negative real part, oscillatory trajectories could
be observed locally. As the linear velocity of the vehicle (F (S(x))) decreases
the imaginary part of the eigenvalues λ2 and λ3 will eventually become zero
and oscillations will stop as Braitenberg vehicle 2a approaches the boundary
of the workspace. Vehicle 2b, on the other hand, will always show trajectories
diverging from the gradient direction for positive κ with no oscillation, since
the term inside the square root will always be positive.

When the curvature of the contour line of S(x) is negative the oscillatory
behaviour appears for vehicle 2b. However, since linearised equations of vehi-
cle 2b always have at least one unstable manifold, the effect of the oscillations
will not be noticeable. In exchange, what can occur is that the vehicle 2a
diverges from the gradient descent trajectory if the product of the curvature
and the linear velocity is too high. Table 1 summarises the analysis of all the
possible situations where ‘S’ denotes stable trajectories close to the gradient
direction, ‘U’ denotes unstable and ‘Z’ denotes a zero eigenvalue. It is worth
reminding that the stability conditions of the table represent whether the
trajectories converge with respect to a vehicle following locally the gradient,
or the opposite, direction. The conditions ∂êS > 0 and ∂êS < 0 represent
the configurations of the vehicle heading the gradient and opposite direc-
tions respectively. The table is therefore useful for designing Braitenberg
vehicle controllers as it can be, for instance, read as when care must be taken
at choosing the linear velocity (F (s)) such that the oscillatory behaviour is
avoided. It also signals that vehicle 2a has most of the times stable behaviour
when heading the gradient descent direction and unstable otherwise, so it is
suitable to implement stimulus avoidance behaviours. The opposite occurs
for vehicle 2b, since there is always a unstable manifold for any configuration
close to the straight line trajectory, which means the trajectory of the vehicle
is sensitive to initial conditions, a feature of chaos [23].
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3.2. Vehicles 3

According to our assumptions, vehicles 3 will have a non zero forward
velocity in D but also in its contour ∂D, therefore they can move outside
their workspaces. This occurs, for instance, when the position of the vehicle is
close to ∂D and its heading direction ê is close to the direction of the gradient
of F (S(x)). On the other hand, the minimum of the velocities occurs at the
interior of the set, since F (s1) = 0, therefore, the only equilibrium points for
these vehicles are at the maximum of S(x), and they will stay within D if the
equilibrium points are stable and their poses belong to the basin of attraction
of such equilibria. If we want the vehicle to reach a specific stimulus value,
we ought to select F (s) to vanish at that value, but this is only a necessary
condition. On the other hand, if we are free to choose S(x), we would do it
such that the potential function will present a maximum at the target point
where F (s) vanishes. We will consider only the configuration of vehicles
3 close to the equilibrium points as it provides information of whether the
trajectories might be stable or not, i.e. whether a basin of attraction might
exist at all.

3.2.1. Behaviour at the maximum

The analysis of vehicles 3 shows that equilibrium points can only appear
at the maximum of the stimulus since F (s1) = 0. If the gradient also vanishes,
for any heading (any êp) the equation (6) will be θ̇ = 0. This means that
there will be an equilibrium set in the state space, the points where F (s) = 0
for any heading of the vehicle. Unless F (s) is designed to vanish for some
stimulus value (s1 in our case) the behaviour of Braitenberg vehicles 3 will
have no equilibrium point and it will move around without stopping, which
is not a desirable behaviour for target reaching. The linear analysis of the
equilibrium point brings no information about the stability if the points where
S(x) = s1 are also maxima of S(x), since the eigenvalues vanish. However,
intuitively it should be stable for vehicle 3a and unstable for vehicle 3b.
Formal stability tests require more sophisticated techniques in this case [22].

If, instead of an isolated point, the set of x such that S(x) = s1 is a
level curve but not a maximum of S(x), preferred equilibrium directions will
appear as for vehicles 2 in the previous section. These directions correspond
to the solutions of ∂êpF (x) = 0 and, therefore, two equilibrium points appear.
The linear stability test can be used again in this case for trajectories close
to the gradient direction at the equilibrium points or, in general, like in the
previous section, trajectories close to a straight line trajectory. The analysis
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κ < 0 κ = 0 κ > 0
∂êS > 0 ∂êS < 0 ∂êS > 0 ∂êS < 0 ∂êS > 0 ∂êS < 0

a SSU UUS SSZ UUZ SSS UUU
b SUU USS SZU UZS SSU UUS

Table 2: List of the local stability results of the eigenvalue analysis for vehicles 3a and 3b

can be performed using the eigenvalues (8), (9) and (10), but in this case
F ′(s) < 0 and, therefore, the eigenvalue λ1 will be positive for vehicles 3
heading the opposite direction of the gradient of S(x).

Considering the case κ = 0, the sign of λ2 and λ1 are the same for vehicle
3a and, therefore, the gradient ascent direction is stable. The opposite occurs
for vehicle 3b, as the eigenvalue λ2 is positive if λ1 is negative. The whole
analysis of the stability of local trajectories as a function of the curvature of
the stimulus isolines and vehicle heading can be performed for vehicles 3, and
the resulting stability conditions are presented in table 2. While vehicle 3a
shows stable trajectories in the gradient ascent direction, if the vehicle heads
the opposite direction of the gradient the trajectories will diverge locally. On
the other hand, vehicle 3b has for all cases a unstable manifold, therefore it
will display a locally divergent behaviour. Consequently, Braitenberg vehicle
3a can be used for target reaching, while vehicle 3b seems appropriate for
avoidance tasks. It is worth noting that vehicle 3a does not always have a
stable equilibrium point, and therefore, the sufficient condition for the trajec-
tories to converge to the gradient direction is κ > 0. If the stimulus around
the maximum can be approximated by a parabolic function several straight
line trajectories exist for these vehicles that correspond to the principal axes
of the parabola. Table 2 also captures the behaviours of trajectories close to
the main axis of the stimulus.

4. Simulations

In order to illustrate the behaviour of the Braitenberg vehicles we per-
formed different simulations integrating equations (4), (5) and (6) for dif-
ferent stimuli S(x) and F (s) functions. This section also illustrates how
to define stimulus functions of the position, for instance, that can be used
to implement controllers for different types of behaviour using Braitenberg
vehicles. The amount of possible configurations relative to the gradient di-
rection is high, and therefore, we will illustrate only the general behaviour
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i gi αi Σi x0
i

1 10 −0.1

[

1 0.2
0.7 3

]

[0, 0]

2 −1 0.8

[

1 0
0 1

]

[5,−2]

3 −1 0.6

[

0.7 0.3
0.2 1

]

[−6, 1]

Table 3: Parameters for the stimulus function S(x) on the simulation of vehicle 2a

of the vehicles, which can be used to implement navigation primitives like
target seeking or avoidance behaviour. On the other hand, since these sim-
ulations are based on our analytic expressions for Braitenberg vehicles, they
outperform in terms of accuracy previous simulations found in the literature
[7] [24]. Indeed, precision can be controlled in any integration method used
when a functional description of the model is available instead of using the
standard Braitenberg vehicle formulation.

Figure 5 presents the results of simulations performed for vehicle 2a under
the stimulus function plotted on figure 5(a). The stimulus is the non-negative
part of the product of three parabolic functions with positive and negative

definite Hessian matrices, specifically S(x) =
3
∏

i=1

Si(x), where Si(x) = gi +

αi(x − x0
i )

TΣi(x − x0
i ) and the parameters for the functions are presented

in table 3. The first function S1(x) implicitly defines the workspace as the
region where S1(x) > 0 while the other two encode areas the vehicle should
not traverse, where the functions take negative values. The product of the
three functions will generate a positive stimulus inside the workspace, and the
level set S(x) = 0 is formed by the three ellipses with different orientations
and sizes drawn in figures 5(b) and 5(c). The function F (s) was chosen to be
a linear function with positive slope going through the origin (F (s) = 0.1s).
Figure 5(b) presents the trajectories obtained from simulating vehicle 2a with
60 different headings starting at position xT = [0, 1]. As expected, all the
trajectories end at some point of the boundary ∂D where the stimulus takes
a zero value, and the tangent to the trajectories at these points corresponds
to the opposite direction of the gradient. The simulations for a starting point
at xT = [2, 5] for several heading directions are shown in figure 5(c) with a
similar resulting behaviour. This kind of behaviour is useful, for instance,
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i gi αi Σi x0
i

1 10 −0.1

[

1 0.2
0.7 3

]

[0, 0]

2 −1 0.8

[

1.2 0
0 1

]

[−4,−3]

3 −1 0.6

[

0.7 0.3
0.2 1

]

[−5, 0]

4 −1 0.4

[

1 0.4
-0.2 1.3

]

[−0.5, 3]

Table 4: Parameters for the stimulus function S(x) on the simulation of vehicle 2b

if we want a robot to leave a specific area or region of its environment. We
therefore need to design a potential function that vanishes at the boundary
of the area the robot has to abandon.

Figure 6(b) shows the simulated trajectory for Braitenberg vehicle 2b with

a similar stimulus S(x) =
4
∏

i=1

Si(x), with the corresponding parameters shown

in table 4. In this case there are three obstacle-like or forbidden areas inside
the outer boundary of the workspace and the function F (s) = m tanh(βs)
withm = 1 and β = 5·10−4. The hyperbolic tangent introduces saturation in
the perceived stimulus and the maximum linear velocity is controlled through
the parameter m. The resulting function composition F (S(x)) is shown in
figure 6(a), which can be seen as a linear velocity profile on the workspace.
The level set where the stimulus takes zero value is also shown in figure 6(b)
and it is the same set where the velocity of the vehicle vanishes since F (0) =
0. All the equilibria of the vehicle lay on ∂D and are unstable, but the velocity
of the vehicle is not zero anywhere else. The resulting trajectory is presented
in figure 6(b) and the simulation was stopped after 1000 simulated seconds.
The instability of the boundary points can be observed in the trajectory,
since when the vehicle approaches the boundary of positive stimulus it turns
to come back to points of high stimulus value. Through simulations it can be
seen that the trajectories of this vehicle display features of chaos, specifically,
it displays sensitivity to initial conditions. This is just the consequence of the
dynamical system having a unstable manifold everywhere in the state-space.
Because of the transitivity property of chaotic systems, their trajectories are
dense in the state space. This makes Braitenberg vehicle 2b suitable for
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(a) Stimulus function S(x) defined in a non-simply connected
set.

(b) Simulated trajectories starting at (0, 1) with different heading
directions.

(c) Simulated trajectories starting at (2, 5) with different heading
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solving coverage problems in robotics.
Figure 7(b) shows 20 simulated trajectories of Braitenberg vehicle 3a with

random initial conditions within the 2 × 2 square around the maximum of
the stimulus function shown in figure 7(a). The initial heading of the vehicle
was also chosen at random, and the selected functions for these trials are:
S(x) = g0

1+αxtΣx
and F (s) = ms + b, with g0 = 1, α = 0.05, Σ = diag(1, 4),

m = −1 and b = 1. In this case the workspace is ℜ2. Even though the
motion of the vehicles continues, only the parts of the trajectories inside the
8 × 8 square around the stimulus are plotted. As it can be seen, all the
trajectories move away from the stimulus maximum and there are preferred
escaping direction almost all the simulated vehicles follow. This is a result
of the stimulus not being circularly symmetric.

Figure 8 shows ten simulated trajectories starting from random poses of
Braitenberg vehicle 3b using the same stimulus S(x) (shown in figure 7(a))
and the same F (s) as for vehicle 3a. The function F (S(x)) vanishes at
the maximum of the stimulus, which is the only equilibrium point in the
workspace. Since the stimulus has no circular symmetry a preferred direction
to reach the maximum and oscillatory behaviour appear in the trajectories.
The simulations confirm that Braitenberg vehicle 3b can be used for target
reaching.

5. Discussion and Further Work

This paper presents the first formal joint analysis of Braitenberg vehicles
2 and 3 modelled as systems of non linear differential equations. Even though
their behaviour can be easily understood in an intuitive basis, applications
for robotics require a formal methodology to select the stimulus or potential
function and the internal wiring of the vehicle. In this paper we show that
the expected behaviour of these vehicles, as intuitively understood, can be
explained using the theoretical model and dynamical systems analysis. This
model provides an easy and accurate way of simulating and understanding
Braitenberg vehicles as a dynamical system, while previous works could not
analyse the resulting trajectories from a theoretical standpoint [24] [7]. Fur-
thermore, the model also helps identifying theoretically the conditions to
properly design and implement Braitenberg vehicles, and provides theoreti-
cal support for the existing empirical works. Specifically, it can be found in
the literature that Braitenberg vehicle 2b has been used to implement wan-
dering mechanisms that incorporate obstacle avoidance, and vehicles 3a and
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(a) Function composition F (S(x)), defined in a non-simply con-
nected set.

(b) One simulated trajectory that stays in D

Figure 6: Simulation of vehicle 2b
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(a) Function composition F (S(x))

(b) Simulated trajectories

Figure 7: Simulations of vehicle 3a
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Figure 8: Ten simulated trajectories for the vehicle 3b starting with random poses

2a to implement goal seeking and avoidance behaviours respectively, when
the appropriate stimuli are used. The present work backs up theoretically
all these applications and paves the way for further robotic applications of
Braitenberg vehicles in mobile robotics. To ensure the presented results ap-
ply, the right stimuli must be selected, and their mathematical properties
have to be tested beforehand. An alternative would be to define an artificial
potential function with the desired features such that the robot displays the
expected behaviour. Examples of possible stimuli in mobile robotics include:
the distance to some target or to the closest obstacle, light or sound inten-
sity, the concentration of some gas in air, etcetera. Therefore, as we can also
deduce from the literature review Braitenberg vehicles are widely applicable.

Real world applications of Braitenberg vehicles are mainly related to nav-
igations tasks in robotics, since they implement what could be called naviga-
tion primitives. This paper deals with the simplest theoretical configuration,
a single stimulus which generates different primitives depending on the vehi-
cle used. On the other hand, normal environments have stimuli of different
kinds, or multiple potential functions can be constructed, and therefore these
primitives can be combined to implement more complex tasks. This will pro-
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duce a richer behaviour and very complex equations that, probably, cannot
be understood or analysed analytically. However, to deal with the more com-
plex situations using the model presented on this paper, numerical methods
can be used to accurately simulate the behaviour of the vehicle for specific
stimulus settings. This is part of the evolution of Braitenberg vehicles, specif-
ically vehicle 3c, although no specification is given [1] on how to solve the
motor fusion problem, the combination of the primitives. Tasks like obstacle
avoidance can be implemented using a combination of vehicles 2a (fear to
obstacles, for instance) and 3a (taxis towards a target). The present paper
develops on the grounds of the seminal work of Braitenberg, where noise is
not accounted for. This might be a relevant issue if unstable manifolds exist
in the state space, as the divergence will be likely increased by a stochastic
component. For the stable case, however, intuition indicates that the effects
of the noise will be kept within some bounds. Therefore, an important exten-
sion to this work is generating a model that will include the effect of noisy
sensors, but this requires a different modelling approach, although the re-
sults presented here would correspond to average trajectories of a stochastic
model.

A. Velocity equations of Braitenberg vehicles

Let us denote xr and xl the position of the right and left sensors of the
vehicle, and x the midpoint between them. For any stimulus function S(x)
and function connecting the sensors to the motor wheels F (s), we can write
the velocities of the right and left wheels as:

vr = F (S(xr)) (11)

vl = F (S(xl)) (12)

for a-type or parallel vehicles, and

vr = F (S(xl)) (13)

vl = F (S(xr)) (14)

for b-type or crossed vehicles. Given the distance δ between the two
sensors, and the coordinate frame linked to the front of the vehicle {ê, êp},
we can write the position of the left and right sensors as:
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xr = x−
δ

2
êp (15)

xl = x+
δ

2
êp (16)

If we further assume both functions S(x) and F (s) are smooth (C∞), we
can approximate the velocities as Taylor series around the point x as:

F (S(xr)) = F (S(x))−
δ

2
∇F (S(x))T êp

+
δ2

8
êTpD

2F (S(x))êp +O(δ3) (17)

F (S(xl)) = F (S(x)) +
δ

2
∇F (S(x))T êp

+
δ2

8
êTpD

2F (S(x))êp +O(δ3) (18)

where ∇F (S(x)) is the gradient of F (S(x)), D2F (S(x)) is the Hessian
matrix and O(δ3) are terms of at least order 3 on δ.

Given the wheelbase of the vehicle d, we can convert the wheel speeds,
eqs. (11), (12), (13) and (14), to linear velocity (v = vr+vl

2
) and turning rate

(ω = vr−vl
d

) of the vehicles to get:

v = F (S(x)) +
δ2

2
êtpD

2F (S(x))êp +O(δ4) (19)

ω = ∓
δ

d
∇F (S(x))têp +O(δ3) (20)

where the negative sign on equation (20) correspond to the a-type vehi-
cles, and the positive to b-type.
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