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Abstract
Most studies of decomposition in forensic entomology and taphonomy have used non-human cadavers. Following the recom-
mendation of using domestic pig cadavers as analogues for humans in forensic entomology in the 1980s, pigs became the most
frequently used model cadavers in forensic sciences. They have shaped our understanding of how large vertebrate cadavers
decompose in, for example, various environments, seasons and after various ante- or postmortem cadaver modifications. They
have also been used to demonstrate the feasibility of several new or well-established forensic techniques. The advent of outdoor
human taphonomy facilities enabled experimental comparisons of decomposition between pig and human cadavers. Recent
comparisons challenged the pig-as-analogue claim in entomology and taphonomy research. In this review, we discuss in a broad
methodological context the advantages and disadvantages of pig and human cadavers for forensic research and rebut the critique
of pigs as analogues for humans. We conclude that experiments using human cadaver analogues (i.e. pig carcasses) are easier to
replicate and more practical for controlling confounding factors than studies based solely on humans and, therefore, are likely to
remain our primary epistemic source of forensic knowledge for the immediate future. We supplement these considerations with
new guidelines for model cadaver choice in forensic science research.
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“We are unlikely to ever know everything about every
organism. Therefore, we should agree on some conve-
nient organism(s) to study in great depth, so that we can
use the experience of the past (in that organism) to build
on in the future. This will lead to a body of knowledge in
that ‘model system’ that allows us to design appropriate
studies of nonmodel systems to answer important ques-
tions about their biology” [1].
“Model species are usually easy to rear, observe, or oth-
erwise experimentally manipulate. They therefore allow
knowledge to be built up rapidly and efficiently, because
confounding factors are known and thus can be con-
trolled in subsequent experiments” [2].

Introduction

While collaborating with medical examiners in the late 1800s,
French entomologist Pierre Mégnin [3] advanced the first
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formal definition and testable mechanism of ecological suc-
cession and recognized the predictability of carrion-arthropod
succession and resource partitioning in human corpses and
their application in forensic analysis [4, 5]. These investiga-
tions gave birth to the twin disciplines of carrion ecology and
forensic entomology. Subsequently, most studies of vertebrate
decomposition used non-human carcasses ranging in size
from amphibians to elephants (Table 1). Payne innovatively
used pig cadavers in his ground-breaking ecological experi-
ments on decomposition [6–8]. Wider interest in forensic en-
tomology and taphonomy arose in the mid-1980s, and such
studies initially focussed on pigs or rabbits (Table 1). By the
late 1980s, the domestic pig was being recommended as an
analogue for humans in forensic entomology research and
training workshops [9–11]. Starting in the early 1990s, field
studies and statistical models were proposed to test different
aspects of the pig-as-analogue claim in forensic entomology
[12–14].

Examples of taphonomic studies have been cited from as
far back as Leonardo da Vinci in the fifteenth century, but the
field began to achieve formality in the 1940s [15]. In the
1970s, palaeoanthropology used taphonomy to interpret the
deposition of hominid remains in fossil-rich sites, particularly
to provide information about how the hominids lived and died
[16, 17]. Integration of fossil-focused taphonomy with physi-
cal anthropology led to the differentiation of forensic taphon-
omy, which rel ied on extens ive comparisons of
palaeontological, archaeological and modern case studies
[18]. The development of pigs as model organisms in forensic
entomology provided a more experimental approach for fo-
rensic taphonomy and established somemajor patterns regard-
ing vertebrate decomposition (Table 1, Fig. 1).

The advent of outdoor human taphonomy facilities (often
mistermed “body farms” [19]) facilitated experimental studies
using human cadavers. First amongst these was the University
of Tennessee Anthropological Research Facility, while the
first outside the USA was the Australian Facility for
Taphonomic Experimental Research (AFTER) [19, 20]. At
least eight facilities now exist, six in the USA, one in
Australia and one in the Netherlands [20–22]. The facilities
have allowed experimental comparison of decomposition in
human and non-human models under a variety of conditions
[14, 23, 24]. Since then, debate has arisen over the rele-
vance of taphonomic studies for forensics (e.g. [19, 25,
26]), and the proper associated experimental (and ethical)
protocols [27, 28]. There is variation in the source popula-
tions contributing to taphonomy facilities; moreover, their
source cadavers (usually elders dying of natural causes)
systematically differ from cadavers involved in forensic
scenarios (usually adults dying of unnatural causes).
Therefore, for a variety of reasons, the findings from these
facilities may be difficult to extrapolate to other human
populations and to typical forensic cases.

Recent publications have raised the opportunity to consol-
idate what has been learned from animal models in decompo-
sition studies, and to examine the implications of this knowl-
edge for the design of field experiments in forensic entomol-
ogy and taphonomy, specifically, whether animal carcasses
can effectively substitute for human cadavers, which is the
major aim of this review. Our major focus is research on prin-
ciples concerning cadaver decomposition, including the asso-
ciated arthropods and their succession. Therefore this paper
does not extensively address topics related to the accuracy and
precision of PMI estimation techniques developed in forensic
entomology or taphonomy.

Lessons from pig cadavers

The use of animal models to advance knowledge dates back to
the ancient Greek times with dogs and chicks used to study
human anatomy, physiology and ontogeny [29]. Nowadays,
animal models are used to study a large array of human relat-
ed-issues, e.g. diseases [30], mental and neuropsychiatric dis-
orders [31] or orthopaedic and dental implants [32]. In a sim-
ilar way, our current understanding of animal decomposition
is largely derived from experiments with non-human ca-
davers, with pig carcasses contributing overwhelmingly to this
knowledge (Table 1). Payne’s [6] experimental work using
piglets was a watershed event in carrion ecology for its impact
and originality. After trying carrion from different vertebrate
animals (amphibians, mammals, birds), Payne settled on do-
mesticated pigs because he knew the time of their death, he
could acquire them in large numbers of uniform age and mass,
and their relatively hairless skin and lack of feathers made
insect sampling easier than from alternative carcasses. In his
experiments, Payne used cages with different mesh sizes to
provide open and limited access to insects to document daily
changes in carcass decay and dismemberment. He found that
carcasses protected from insects mummified, remaining intact
for months; whereas, carcasses exposed to insects lost 90% of
their startingmass in just 6 days. This result showed that insect
access is a key determinant of cadaver decay.

Inspired by Payne’s experimental protocol, forensic ento-
mologists started using pig cadavers in studies focused on
inventorying carrion-arthropod faunas and successional pat-
terns, which have been described for a long list of countries
and habitats (Table 1). Although the species involved varied
between biogeographical regions, ecological guilds were con-
sistent and functioned in a very consistent way (Table 1). Pigs
have illustrated patterns of decomposition over timescales of
days, seasons and years (Table 1). Seasonal components of
variation in the insect community are relatively well under-
stood and several quantitative models have been proposed to
describe the ecological succession that occurs in the arthropod
community on a cadaver (Table 1). Much of the early work
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Table 1 Selected cadaver studies in carrion ecology, forensic entomology and taphonomy. References to this table are listed in Electronic
Supplementary Material

Author(s) Date of
publication

Locality Animal model Major research focus

Chapman and Sankey [1] 1955 England Rabbits Arthropod inventory; habitats
Bornemissza [2] 1957 Australia Guinea pig Arthropod inventory; succession
Reed [3] 1958 USA Dogs Arthropod inventory; succession
Payne [4] 1965 USA Pigs Surface decomposition; insect access
Payne et al. [5] 1968 USA Pigs Underground decomposition
Payne and King [6] 1972 USA Pigs Water decomposition
Nabagło [7] 1973 Poland Bank voles Surface/underground decomposition; insect

inventory; succession; seasons
Cornaby [8] 1974 Costa Rica Lizards, toads Arthropod inventory; succession; habitats
Johnson [9] 1975 USA Small mammals Arthropod inventory; succession; seasons
Smith [10] 1975 England Fox Arthropod inventory; succession
Coe [11] 1978 Kenya Elephants Surface decomposition; insect inventory
McKinnerney [12] 1978 USA Rabbits Arthropod inventory; succession; scavenging
Jiron and Cartin [13] 1981 Costa Rica Dogs Arthropod inventory; succession
Abell et al. [14] 1982 USA Turtles Arthropod inventory; succession
Rodriguez and Bass [15] 1983 USA Humans Insect inventory; succession
Schoenly and Reid [16] 1983 USA Various

mammals
Cadaver mass; insect inventory

Lord and Burger [17] 1984 USA Gulls Arthropod inventory; succession; seasons;
habitats; scavenging

Rodriguez and Bass [18] 1985 USA Humans Underground decomposition
Early and Goff [19] 1986 Hawaii Cats Surface decomposition; arthropod inventory; succession
Micozzi [20] 1986 USA Rats Freezing; wounds
Braack [21] 1986 South

Africa
Impala Insect inventory

Peschke et al. [22] 1987 Germany Rabbits Insect inventory; succession; habitats; seasons
Tullis and Goff [23] 1987 Hawaii Pig Surface decomposition; arthropod inventory; succession
Blacklith and Blacklith [24] 1990 Ireland Birds, mice Insect inventory; habitats
Kentner and Streit [25] 1990 Germany Rats Insect inventory; succession; habitats
Hewadikaram and Goff [26] 1991 Hawaii Pigs Cadaver mass
Vass et al. [27] 1992 USA Humans Compounds released into soil during decomposition
Shean et al. [28] 1993 USA Pigs Sun exposure
Anderson and VanLaerhoven [29] 1996 Canada Pigs Insect inventory; succession
Tantawi et al. [30] 1996 Egypt Rabbits Insect inventory; succession; seasons
Keiper et al. [31] 1997 USA Rats Water decomposition; habitats; arthropod inventory
Richards and Goff [32] 1997 Hawaii Pigs Arthropod inventory; succession; habitats
Avila and Goff [33] 1998 Hawaii Pigs Burnt cadaver decomposition; habitats; succession
Komar and Beattie [34, 35] 1998 Canada Pigs Cadaver mass; habitats; clothing; post-mortem artefacts
Tomberlin and Adler [36] 1998 USA Rats Water decomposition; insect inventory; seasons; habitats
Bourel et al. [37] 1999 France Rabbits Insect inventory; succession; habitats
DeJong and Chadwick [38] 1999 USA Rabbits Insect inventory; succession; habitats
Turner and Wiltshire [39] 1999 England Pigs Underground decomposition
VanLaerhoven and Anderson [40] 1999 Canada Pigs Underground decomposition; insect inventory;

succession; habitats
Carvalho et al. [41] 2000 Brazil Pigs, humans Insect inventory
Davis and Goff [42] 2000 Hawaii Pigs Intertidal habitats; succession
Shalaby et al. [43] 2000 Hawaii Pigs Hanging cadaver decomposition; succession
Arnaldos et al. [44] 2001 Spain Chickens Insect inventory; succession
Carvalho and Linhares [45] 2001 Brazil Pigs Insect inventory; succession
Marchenko [46] 2001 Russia Dogs, cats,

rabbits, pigs
Decomposition in various scenarios; seasons; habitats;

insect repellents; clothing, plant response to cadavers
Wolff et al. [47] 2001 Colombia Pigs Insect inventory; succession
Yan et al. [48] 2001 USA Pigs Adipocere formation
Centeno et al. [49] 2002 Argentina Pigs Insect inventory; seasons; habitats; succession
Hobischak and Anderson [50] 2002 Canada Pigs Water decomposition; habitat; arthropod inventory; succession
LeBlanc and Strongman [51] 2002 Canada Pigs Insect inventory; habitats
Archer and Elgar [52, 53] 2003 Australia Pigs Insect inventory; seasons; colonisation patterns
Bharti and Singh [54] 2003 India Rabbits Insect inventory; seasons; succession
Kočárek [55] 2003 Czech

Republic
Rats Insect inventory; seasons; habitats; succession

Shahid et al. [56] 2003 USA Pigs Arthropod saturation in human taphonomy facilities
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Table 1 (continued)

Author(s) Date of
publication

Locality Animal model Major research focus

Watson and Carlton [57–59] 2003, 2005 USA Bear, deer,
alligators,
pigs

Insect inventory; seasons; succession;
animal models comparison

Anderson and Hobischak [60] 2004 Canada Pigs Marine decomposition
Archer [61, 62] 2004 Australia Pigs Succession; seasons; annual variation; abiotic

determinants of decomposition rate
Arnaldos et al. [63] 2004 Spain Chickens Insect inventory; seasons; succession
Grassberger and Frank [64] 2004 Austria Pigs Urban decomposition; insect inventory; succession
Tabor et al. [65, 66] 2004, 2005 USA Pigs Insect inventory; succession; seasons
Vass et al. [67] 2004 USA Humans Volatiles of decomposition
Anderson [68] 2005 Canada Pigs Arson and insect evidence
Moura et al. [69] 2005 Brazil Rats Succession mechanisms; seasons; habitats
Perez et al. [70] 2005 Colombia Pigs Urban decomposition; insect inventory; succession
Schoenly et al. [71] 2005 USA Pigs Arthropod saturation in human taphonomy facilities
Weitzel [72] 2005 Canada Pigs Underground decomposition; seasons
DeJong and Hoback [73];

DeJong et al. [74]
2006; 2011 USA Rats Investigator disturbance; insect inventory; succession

Hobischak et al. [75] 2006 Canada Pigs Sun exposure; insect inventory; succession
Joy et al. [76] 2006 USA Pigs Blow fly inventory; habitats; annual variation;

maggot mass
Lang et al. [77] 2006 Australia Possums Insect inventory; colonisation patterns
Adlam and Simmons [78] 2007 UK Rabbits Repeated cadaver disturbance
Gruner et al. [79] 2007 USA Pigs Blow fly inventory; seasons; annual variation
Martinez et al. [80] 2007 Colombia Pigs Insect inventory; succession
O’Brien et al. [81] 2007 Australia Pigs Scavenging
Schoenly et al. [82] 2007 USA Pigs, humans Sampling techniques; human/pig comparison
Benninger et al. [83] 2008 Canada Pigs Compounds released into soil during decomposition
Eberhardt and Elliot [84] 2008 New

Zealand
Pigs Insect inventory; succession; habitats

Fiedler et al. [85] 2008 Germany Pigs Adult fly inventory; succession; habitats
Huntington et al. [86] 2008 USA Pigs Blow fly multigenerational colonisation
Matuszewski et al. [87] 2008 Poland Pigs Insect inventory; succession; habitats
Moretti et al. [88] 2008 Brazil Mice, rats Insect inventory; succession; seasons
Sharanowski et al. [89] 2008 Canada Pigs Insect inventory; succession; seasons; sun exposure
Ururahy-Rodrigues et al. [90] 2008 Brazil Pigs Post-mortem artefacts
Voss et al. [91] 2008 Australia Pigs Inside-car decomposition; colonisation patterns
Wang et al. [92] 2008 China Pigs Insect inventory; succession; seasons
Charabidze et al. [93] 2009 France Rats, Mice Insect repellents; colonisation patterns
Dekeirsschieter et al. [94] 2009 Belgium Pigs Volatiles of decomposition
Kalinová et al. [95] 2009 Czech

Republic
Mice Carrion beetle attractants

Kelly et al. [96, 97] 2009, 2011 South
Africa

Pigs Wounds; wrapping; clothing

Kjorlien et al. [98] 2009 Canada Pigs Scavenging; habitats; clothing
Nelder et al. [99] 2009 USA Alligators Succession
Özdemir and Sert [100] 2009 Turkey Pigs Insect inventory; succession; seasons
Pakosh and Rogers [101] 2009 Canada Pigs (limbs) Water decomposition;
Parmenter and MacMahon [102] 2009 USA Various

mammals
and birds

Seasons; surface/underground decomposition;
scavenging; nutrient cycling

Segura et al. [103] 2009 Colombia Pigs Insect inventory; succession
Van Belle et al. [104] 2009 Canada Pigs Compounds released into soil during decomposition;

surface/underground decomposition
Voss et al. [105] 2009 Australia Pigs Insect inventory; succession; seasons; habitats
Bachmann and Simmons [106] 2010 UK Rabbits Underground decomposition; colonisation patterns
Battán Horenstein et al.

[107–109]
2010, 2011,

2012
Argentina Pigs Insect inventory; succession; seasons; habitats

Bonacci et al. [110] 2010 Italy Pigs Insect inventory; seasons; succession
Carter et al. [111] 2010 Australia Rats Underground decomposition
Chin et al. [112] 2010 Malaysia Pigs Hanging cadaver decomposition
Cross and Simmons [113] 2010 UK Pigs Wounds
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Table 1 (continued)

Author(s) Date of
publication

Locality Animal model Major research focus

Matuszewski
et al. [114–116]

2010, 2011 Poland Pigs Surface decomposition; insect inventory; seasons;
habitats; succession

Michaud et al. [117] 2010 Canada Pigs Insect inventory; seasons; habitats
Reibe and Madea [118] 2010 Germany Pigs Colonisation patterns; habitats
Sabanoglu and Sert [119] 2010 Turkey Pigs Insect inventory; succession; seasons
Simmons et al. [120] 2010 UK Rabbits Insect access; surface/underground decomposition
Simmons et al. [121] 2010 UK Pigs Insect access; cadaver mass
Swann et al. [122, 123] 2010 Canada,

Australia
Pigs Compounds released during decomposition

Szpila et al. [124] 2010 USA,
Poland

Pigs, rats Colonisation of buried cadavers

Valdes-Perezgasga
et al. [125]

2010 Mexico Pigs Insect inventory; succession

Ahmad et al. [126] 2011 Malaysia Macaques Wrapping
Anderson [127] 2011 Canada Pigs Indoor/outdoor decomposition
Anton et al. [128] 2011 Germany Pigs Insect inventory; succession; seasons
Barrios and Wolff [129] 2011 Colombia Pigs Water decomposition; arthropod inventory;

succession; habitats
Bajerlein et al. [130] 2011 Poland Pigs Seasons; habitats; colonisation patterns
Bugajski et al. [131] 2011 USA Pigs Freezing
Cassar et al. [132] 2011 Australia Pigs Adipocere formation
DeVault et al. [133] 2011 USA Mice Scavenging
Dickson et al. [134] 2011 New

Zealand
Pigs (heads) Marine decomposition; bacterial succession

von Hoermann et al. [135] 2011 Germany Pigs Hide beetle attractants
Spicka et al. [136] 2011 USA Pigs Cadaver mass
Statheropoulos et al. [137] 2011 Greece Pigs Volatiles of decomposition
Voss et al. [138] 2011 Australia Pigs Clothing
Al-Mesbah et al. [139] 2012 Kuwait Rabbits Insect inventory; habitats; succession
Brasseur et al. [140] 2012 Belgium Pigs Volatiles of decomposition
Gruenthal et al. [141] 2012 UK Pigs Burnt cadaver decomposition
Martin-Vega and Baz [142, 143] 2012, 2013 Spain Squids Carrion and skin beetle inventory; seasons; habitats
Ortloff et al. [144] 2012 Chile Pigs Insect inventory; succession
Prado e Castro et al. [145, 146] 2012, 2013 Portugal Pigs Insect inventory; succession; seasons
Shelomi et al. [147] 2012 USA Pigs Insect repellents; blow fly colonisation patterns
Stadler et al. [148] 2012 Canada Pigs Volatiles of decomposition
Widya et al. [149] 2012 UK Rabbits Water decomposition; adipocere formation
Azwandi et al. [150] 2013 Malaysia Rats, rabbits,

macaques
Insect inventory; succession; rat/rabbit/monkey comparison

Barton et al. [151] 2013 Australia Kangaroos Carrion and biodiversity
Benbow et al. [152] 2013 USA Pigs Insect inventory; succession; seasons
Bygarski and LeBlanc [153] 2013 Canada Pigs Insect inventory; succession
Dekeirsschieter et al. [154] 2013 Belgium Pigs Rove beetle inventory; seasons
von Hoermann et al. [155] 2013 Germany Pigs Carrion beetle attractants
Hyde et al. [156] 2013 USA Humans Cadaver microbiome
Johansen et al. [157] 2013 Norway Mice Blow fly attractants
Johnson et al. [158] 2013 Australia Pigs Thermogenesis in cadavers
Lowe et al. [159] 2013 Canada Pigs Textiles degradation on buried cadavers
Matuszewski et al. [160];

Mądra et al. [161]
2013, 2014 Poland Pigs Insect inventory; habitats; seasons

Metcalf et al. [162] 2013 USA Mice Cadaver microbiome
Meyer et al. [163] 2013 USA Pigs Surface decomposition; seasons
Sutherland et al. [164] 2013 South

Africa
Pigs Cadaver mass

von der Luhe [165] 2013 Canada Pigs Compounds released into soil during decomposition
Abouzied [166] 2014 Saudi

Arabia
Rabbits Insect inventory; seasons; succession

Anderson and Bell [167] 2014 Canada Pigs Marine decomposition; arthropod inventory
Bhadra et al. [168] 2014 England Pigs (heads) Colonisation patterns
Caballero and León-Cortéz [169] 2014 Mexico Pigs Beetle inventory; succession; habitats
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Table 1 (continued)

Author(s) Date of
publication

Locality Animal model Major research focus

Corrêa et al. [170] 2014 Brazil Rabbits Beetle inventory; seasons
Farwig et al. [171] 2014 Germany Mice Biotic determinants of decomposition rate; seasons
Matuszewski et al. [172, 173];

Mądra et al. [174]
2014, 2016,

2015
Poland Pigs Cadaver mass; clothing; insect inventory;

long-term decomposition
Mohr and Tomberlin

[175, 176]
2014, 2015 USA Pigs Cadaver visitation by adult blow flies

Oliveira-Costa et al. [177] 2014 Brazil Pigs Succession on burnt cadavers
Pechal et al. [178] 2014 USA Pigs Delayed insect access; colonisation patterns; succession
Pechal et al. [179] 2014 USA Pigs Cadaver microbiome
Perrault et al. [180–182] 2014, 2015 Australia Pigs Volatiles of decomposition
Whitaker [183] 2014 USA Pigs, humans Pig/human comparison of blow fly colonisation
Young et al. [184] 2014 England Deer Scavenging
Zurawski et al. [185] 2014 USA Pigs Nocturnal blow fly oviposition
Agapiou et al. [186] 2015 Greece Pigs Volatiles of decomposition
Alexander et al. [187] 2015 USA Humans Residual odour of decomposition in the soil
Aubernon et al. [188] 2015 France Rats Blow fly development on contaminated cadaver
Baz et al. [189] 2015 Spain Squids Insect inventory; habitats
Card et al. [190] 2015 England Pigs Clothing
Farrell et al. [191] 2015 Australia Pigs Insect inventory
Hyde et al. [192] 2015 USA Humans Cadaver microbiome
Iancu et al. [193] 2015 Romania Pigs Insect and microbe inventory; succession
Iancu et al. [194] 2015 Romania Pigs Insect and microbe inventory; succession
Lynch-Aird et al. [195] 2015 England Pigs Hanging cadaver decomposition
Martin-Vega et al. [196] 2015 Spain Squids Clown beetle inventory; habitats
Paczkowski et al. [197] 2015 Germany Pigs Volatiles of decomposition
Roberts and Dabbs [198] 2015 USA Pigs Freezing
Rysavy and Goff [199] 2015 Hawaii Pigs Underground decomposition; insect inventory
Silahuddin et al. [200] 2015 Malaysia Rabbits Insect inventory; succession; habitats
Stadler et al. [201] 2015 Canada Pigs Volatiles of decomposition
Sukchit et al. [202] 2015 Thailand Pigs Insect inventory; habitats; succession;

seasons; hanging; clothing
Szpila et al. [203] 2015 Poland Pigs Insect inventory; succession
Ueland et al. [204] 2015 Australia Pigs Textiles degradation on surface cadavers
Zanetti et al. [205, 206] 2015 Argentina Pigs Underground decomposition; beetle inventory; seasons
Zeariya et al. [207] 2015 Egypt Rabbits, dogs Insect inventory; succession; habitats
Anderson and Bell [208] 2016 Canada Pigs Marine decomposition; seasons
Cammack et al. [209] 2016 USA Pigs Concealment; seasons
Lyu et al. [210] 2016 China Pigs Beetle inventory
Mashaly [211] 2016 Egypt Rabbits Burnt cadaver decomposition; insect inventory;

succession; habitats
Metcalf et al. [212] 2016 USA Mice, Humans Cadaver microbiome
Moffatt et al. [213] 2016 England Pigs Distribution of maggots length on carrion
Parry et al. [214] 2016 South

Africa
Fishes Fly inventory; habitats; seasons

Perez et al. [215] 2016 USA Pigs Distance between cadavers
Weidner et al. [216] 2016 USA Pigs Blow fly colonisation timing
Weiss et al. [217] 2016 USA Pigs Cadaver microbiome
Vasconcelos et al. [218] 2016 Brazil Pigs Fly inventory
Amendt et al. [219] 2017 Germany Pigs Thermal imaging of cadavers
Connor et al. [220] 2017 USA Pigs, humans Human/pig comparison
Fancher et al. [221] 2017 USA Humans Compounds released into soil during decomposition
Marais-Werner et al. [222] 2017 South

Africa
Pigs Underground decomposition

Martin-Vega et al. [223] 2017 Spain Pigs Colonisation patterns; seasons
Mashaly [224] 2017 Saudi

Arabia
Rabbits Beetle inventory; habitats; succession

McIntosh et al. [225] 2017 Australia Pigs Burnt cadaver decomposition; succession
Michaud and Moreau [226] 2017 Canada Pigs Succession mechanisms
Niederegger et al. [227] 2017 Germany Pigs Wounds
Pacheco et al. [228] 2017 Canada Pigs Blow fly colonisation patterns
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followed the stage-based paradigm (e.g. [6]). Decay stages,
named according to physiochemical changes seen in the ca-
daver, accompanied timetables of insect succession. Stage de-
scriptions varied in both number and duration; moreover, the
widely-held view was that the onset of each stage was marked
by an abrupt change in the insect community, similar to
Mégnin’s [3] notion of “squads”. Subsequent ecological and
forensic studies found that succession in carrion largely fol-
lows a continuum of gradual changes [33–35]. Despite these
findings, the use of stages of decomposition is still frequent in
the forensic literature [35].

More recently, pigs became model animals in experimental
research of forensic entomology and taphonomy (Table 1).
Pigs have influenced recent theoretical developments in carri-
on and succession ecology and shaped our understanding of
how vertebrate cadavers decompose in various environments,
including indoor, suspended, buried, epigeic, intertidal, ma-
rine and freshwater settings. A wide spectrum of habitats has
been investigated (Table 1) and found to show some idiosyn-
cratic variations on otherwise very general patterns (Fig. 1).
Results of these studies indicate that temperature and access or
abundance of carrion insects are key environmental

determinants of cadaver decomposition, whereas cadaver
mass is a key cadaver-related determinant (Table 1, Fig. 1).
At least five general decomposition patterns may be currently
discerned: decay driven by either vertebrate scavengers, mi-
crobes, burying beetles, blow flies or blow flies with silphid
beetles, with distinct key determinants of decomposition rate
in each of the patterns (Table 1, Fig. 1).

Human cadavers vary in many characteristics that influ-
ence decomposition, most of which have been investigated
using pigs (Table 1). Pre- or postmortem modifications such
as wounds, burning, wrapping, dismemberment, contamina-
tion, concealment and clothing may affect the colonisation
process and eventually decomposition to varying degrees, de-
pending on their intensity and context of action (Table 1).
Some modifications do not affect the whole cadaver, leaving
parts of it to be colonized by insects in their usual manner,
while other modifications such as clothing have effects on
insect colonisation or succession that are too small or too
variable to have practical consequences for estimates of post-
mortem intervals (PMIs). Other modifications delay colonisa-
tion by insects but have little consequence once colonisation
has occurred. The same modifications may however

Table 1 (continued)

Author(s) Date of
publication

Locality Animal model Major research focus

Roberts et al. [229] 2017 USA Humans Cadaver mass
Scholl and Moffatt [230] 2017 England Pigs Dismemberment; concealment in plastic sacks
Wang et al. [231] 2017 China Pigs, humans,

rabbits
Human/pig/rabbit comparison; surface

decomposition; succession;
Wang et al. [232] 2017 China Pigs Exposure daytime; succession;
Weidner et al. [233] 2017 USA Pigs Comparison of bait traps and cadaver inventories
Cruise et al. [234, 235] 2018 USA Pigs Insect inventory; succession; sampling techniques
Dautartas et al. [236];

Steadman et al. [237]
2018 USA Pigs, humans,

rabbits
Human/pig/rabbit comparison; surface

decomposition; scavenging
Díaz-Aranda et al. [238] 2018 Spain Pigs Insect inventory; succession; seasons
Frątczak-Łagiewska and

Matuszewski [239]
2018 Poland Pigs Silphid beetles; succession; seasons; habitats

von Hoermann et al. [240] 2018 Germany Pigs Carrion beetle inventory; habitats
Knobel et al. [241] 2018 Australia Pigs, humans Decomposition rates; odour profiles;

human/pig comparison
Lee et al. [242] 2018 Australia Pigs Thermal imaging of cadavers
Lutz et al. [243] 2018 Canada Pigs Beetle colonisation and breeding on

concealed carcasses
Mañas-Jordá et al. [244] 2018 Mexico Pigs Fly inventory; succession; habitats
Marais-Werner et al. [245] 2018 South

Africa
Pigs Surface/underground decomposition

Pérez-Marcos [246] 2018 Spain Pigs, chickens Fly inventory; pig/chicken comparison
Salimi et al. [247] 2018 Iran Rabbits Insect inventory; succession; seasons; habitats
Shayya [248] 2018 Lebanon Pigs Clown beetle inventory; succession; seasons; habitats
Singh et al. [249] 2018 USA Humans Arthropod and microbe inventory and succession

in the soil below a cadaver
Spies et al. [250, 251] 2018 South

Africa
Pigs Scavenging

Szelecz et al. [252, 253] 2018 Switzerland Pigs Compounds released into soil during decomposition; clown beetle
colonisation of hanging and surface cadavers
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differently affect non-entomological processes, for example,
clothing influences rate of cadaver cooling and therefore is
considered important for some pathology-based methods for
estimation of PMI, e.g. Henssge’s nomogram method [36].
Regarding insects, the implications of modification appear to
be larger than the effect of the cadaver’s species.

In parallel, pig cadavers were used to test new forensic
techniques or validate well-established ones (Table 2).
They have provided proof-of-concept for techniques as
simple as entomological sampling and as sophisticated
as ground penetrating radar or thermal imaging to locate
cadavers (Table 2). Many of these techniques have gone
on to be applied to forensic investigations involving
humans, demonstrating in this way the practicality of pigs
as model cadavers.

Are pigs an appropriate model for forensic
entomology and taphonomy?

A comparison of the advantages and disadvantages of pig and
human cadavers for experimental forensic entomology and
taphonomy research (Table 3) indicates that pigs are usually
superior to humans in such experiments. Most importantly,
pig cadavers may easily be replicated in large numbers and

at low cost, whereas access to human corpses is restricted to
taphonomic facilities or medical examiner’s offices with all of
their associated inherent difficulties. At taphonomic facilities,
waiting times for receiving replicate bodies on multiple-
donation days are unpredictable and uncontrollable [37], even
if minimum criteria are met for accepting cadavers as “repli-
cates” (i.e. death within 48 h of acquisition, intact,
unautopsied, unembalmed and refrigerated). The difficulty in
amassing replicate human cadavers allows little experimental
control over key decomposition determinants such as cadaver
mass. The unpredictable and uncontrollable variation inherent
in cadaver availability may limit the value of observations in
humans and invalidate the experiment, by producing statisti-
cally underpowered comparisons that are insufficient to detect
significant differences and by enlarging the risk of confound-
ing effects. In addition, the practical realities of working with
human remains can limit the types of information that can be
gleaned from and about them. Moreover, the continual asso-
ciation of the taphonomy facilities with human cadavers can
itself present a challenge. Although a 1998 field study at the
Tennessee facility found little evidence of cadaver enrichment
effects on the surface-active entomofauna or decay rates using
pig carcasses [38, 39], a recent study of soil parameters [40]
demonstrated that the Tennessee site is contaminated with
high levels of decomposition products, which may limit the

Fig. 1 Determinants and general patterns of cadaver decomposition—
synthesis based on findings of cadaver decomposition studies (Table 1).
Numbers I–V denote general patterns of decomposition (differing
according to dominant decomposers, key determinants of
decomposition rate and the effect they have on decomposition).
Numbers “0” and “1” denote absence and presence of scavengers or
insects. Arrows next to rate determinants indicate whether a

determinant, considered in isolation, is positively (↑) or negatively (↓)
related to decomposition rate. Some determinants in this figure should
be considered as sets of simple determinants, e.g. cadaver quality
including body mass index, antemortem cadaver modifications (e.g.
pharmaceuticals use), postmortem modifications (e.g. freezing during
the winter) and others
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interpretation of certain nutrient-based taphonomic results as
no reliable baseline sample can be obtained within the facility.

While, in many cases, researchers may be interested in
how the decomposition process works in humans, the
available human remains are either derived from inappro-
priate populations, cannot be linked to control samples or
are too variable for robust experiments. Due to these prac-
ticalities, pig cadavers are usually the best choice available
for most experimental purposes in forensic sciences.
Moreover, pig cadavers may be used to compare treatments
of relevance with forensic scenarios and to make infer-
ences about human decomposition. If treatment A results

in a slower decomposition than treatment B in pigs, in the
absence of other information, we can reasonably assume a
similar effect in humans, especially if it can be supported
with other knowledge and logic. The possibility that a
model animal and the humans that it models decompose
differently does not make that model useless; it depends on
the specific question being addressed. This conclusion has
much wider applicability. For example, mouse cadavers
were useful in demonstrating forensic applications of mi-
crobiology [41, 42]. Postmortem microbiome comparisons
between different animals revealed the common appear-
ance of some informative bacterial taxa across rodent, pig

Table 2 Forensic methods and techniques developed, refined or tested using pig cadavers. References to this table are listed in Electronic
Supplementary Material

Method/technique References Pig cadaver use

Field protocol for experimental
studies on PMI

Schoenly et al. [1, 2] Tests of the protocol

Model organisms Watson and Carlton [3, 4] Comparisons of different animals
Schoenly et al. [2]; Wang et al. [5];

Connor et al. [6]; Dautartas et al. [7]
Comparisons of pigs and humans

Human-size insect trap for studying
succession

Schoenly et al. [1] Recorded trap microclimate and carrion-arthropod
families caught by trap

Device for sampling cadaver-related
aquatic insects

Vance et al. [8] Tests of trap efficiency in catching aquatic insects

Degree-day index for decomposition
related processes

Michaud and Moreau [9] Development of the index and tests for its reliability

Reconstruction of temperature conditions Hofer et al. [10] Reliability of temperature recordings on a death scene
Temperature methods for insect

pre-appearance interval (PAI)
Matuszewski [11, 12] Development of PAI models; tests of the method
Matuszewski and Szafałowicz [13]; Archer [14];

Matuszewski et al. [15]
Development of PAI models

Matuszewski and Mądra 2015 [16] Tests of the protocols for PAI field studies
Matuszewski and Mądra-Bielewicz [17] Validation of PAI methods

Total body score Myburgh et al. [18] Validation of the method
Lynch-Aird et al. [19] Development of TBS for hanging cadavers
Nawrocka et al. [20] Inter-rater reliability of the TBS
Keough et al. [21] Amendment of TBS for pig cadavers
Ribéreau-Gayon et al. [22] Reliability of TBS based on cadaver pictures

PMI estimation based on insect succession Michaud and Moreau [23] Tests of predictability of insect occurrence based on degree-day
accumulation

Michaud and Moreau [24] Tests of sampling protocols for field studies
Perez et al. [25] Evaluation of utility of insect taxa for derivation of confidence

intervals about PMI estimate
Mohr and Tomberlin [26] Tests of oocyte development of adult blow flies visiting cadaver

as a PMI indicator
Perez et al. [27] Tests of minimum inter-cadaver distances for forensic field

studies
Matuszewski [28] Tests of presence/absence of insect taxa as an approach for PMI

estimation
Mądra-Bielewicz et al. [29] Tests of insect sex and size as PMI indicators
Cruise et al. [30] Tests of the protocols for cadaver field studies

PMI estimation based on insect
development

VanLaerhoven [31] Validation of methods
Reibe-Pal and Madea [32] Comparison of methods
Weatherbee et al. [33] Validation of methods

PMI estimation based on microbes Pechal et al. [34] Tests of usefulness of microbe succession for PMI estimation
Exposed cadavers searching Amendt et al. [35]; Lee et al. [36] Tests of thermal imaging techniques used from the air
Clandestine burial searching Schultz et al. [37]; Schultz [38];

Salsarola et al. [39]
Tests of ground-penetrating radar

Submerged cadavers searching Healy et al. [40] Tests of side-scan sonar
Detection of gasoline in cadaver tissues Pahor et al. [41] Proof-of-concept tests
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and human models [41–43]. Another example is the use of
rabbit cadavers to provide local carrion insect inventories
(Table 1). When early cadaver colonizers (e.g. blow flies)
are the focus, rabbits are as informative as pigs or humans,
but when middle or late colonizers (e.g. beetles of
Silphinae or Cleridae) are studied, rabbit cadavers are in-
appropriate, because such insects rarely colonize carcasses
as small as rabbits [44, 45].

Comparative studies of pig and human cadavers revealed
largely overlapping insect faunas [14, 44], with as much dif-
ference between individual pigs or humans as between pigs
and humans [46]. Similarly, insect faunas compiled from hu-
man case studies (e.g. [47, 48]) largely resembled those from
pig cadaver experiments (Table 1). Although alligator carrion
revealed important faunal differences compared with large
mammals (i.e. pigs, bears and deer), the latter group yielded
highly similar insect community composition [49, 50]. These
results indicate that, when compared across related cadaver
taxa of similar size, carrion insects (i.e. necrophagous insects)
show negligible preference for one cadaver taxon over anoth-
er. Therefore, when pig cadavers are used to inventory local
carrion-arthropod faunas, they appear to be as good as humans
and are more practical (Table 3).

However, we suggest that pig cadavers larger than the rec-
ommended 20–30 kg domestic pigs [9, 10] should be used to
compile full inventories of carrion entomofauna because
smaller pigs yield an incomplete insect inventory (i.e. under-
representation of middle or late colonizers [44, 45]). We there-
fore recommend cadavers a startingmass of at least 40 kg (and
preferably 50–80 kg) as a standard to investigate local carrion-
insect inventories. Smaller cadavers (piglets or rabbits) may
be used in cases when early colonizers (e.g. blow flies) are the
focus.

Most methods developed in forensic entomology or ta-
phonomy are intended to be used with human cadavers.
Therefore, at least their final validation should be per-
formed with humans and preferably in real case scenarios.
We are not aware, however, of any validation experiment
in which performance of the forensic method developed
using non-human cadavers has been evaluated using hu-
man cadavers. This is definitely an area for future experi-
ments. Such research could enable forensic scientists to
evaluate whether techniques based on data from human
analogues (e.g. pig cadavers) are satisfactorily accurate
when used in casework for human cadavers. As a result,
we could distinguish techniques for which reference data
could be amassed using human cadaver analogues and
techniques for which human cadavers are necessary to
get reference data. Nevertheless, analogues for humans,
particularly large-bodied species, serve well in “proof-of-
concept” studies (Table 2). Similarly, initial validation of
forensic methods may be efficiently performed with pig
cadavers (Table 2), particularly when different cadaver

traits (e.g. mass) or environmental conditions (e.g. below/
above ground) are to be compared.

All animals used in forensic entomology or taphonomy
research are highly variable within species. This may lead
to misinterpretation of experimental results, particularly
when the experimental design of a study has weaknesses
(see section 4 of this paper). However, the variation may
also be advantageous, as it enables the researcher to choose
the model best suited to the research. For example, if the
scientific question obliges large replication, the experiment
simply cannot be made with large pigs within standard
research budgets, whereas piglets may be appropriate. If
the researcher is interested in the thermal profile of
decomposing remains, it may be more important to focus
on the sunlight absorbance and mass of the model species
than on its other traits. This argument may be extended to
different animal models: experiments on initial colonisa-
tion patterns of blow flies may be more tractable using
piglets or rabbits rather than adult pig or human cadavers.
On the other hand, validation of the total body score (TBS)
method for PMI estimation [51] needs humans or at least
large pigs. Therefore, there is no universal model cadaver
for research in forensic taphonomy or entomology, and the
one that should be chosen depends on the scientific ques-
tion and its experimental demands. This is an important
point for the forensic science community to consider when
designing experiments, analysing results or extrapolating
conclusions.

Critique of the pig model as an analogue
for human cadavers

Background

Use of domestic pigs in experimental forensic sciences has been
challenged by recent comparisons of pig and human cadaver
decomposition [23, 24]. One study [23] concluded that “pigs
are not an adequate proxy for human decomposition studies”,
and another [24] indicated that neither rabbits nor pigs “cap-
tured the pattern, rate, and variability of human decomposi-
tion”. Pigs may indeed decompose differently to humans, and
therefore their experimental comparison is clearly worthwhile
to forensic sciences. However, the intrinsic logistical difficulties
associated with experiments involving human cadavers may
impair such comparisons (Table 3), and therefore, questions
arise about the validity of recent findings and conclusions. In
the following sections, we discuss these questions and try to
identify their consequences for the findings of the referenced
experiments [23, 24] and the implications they have for the
validity of the conclusion that pigs are inadequate analogues
for humans in forensic research.
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As we have discussed in section 3, all model organisms are
highly variable intra-specifically. Biased sampling of this var-
iationmay lead to the misinterpretation of results of any model
comparison. Both pigs and humans clearly exhibit variable
sizes, pigmentation, hairiness, body mass index and other
characteristics. Such factors may be confounded with treat-
ments, and when they affect decomposition, they may make

it impossible to assign results of a comparison between human
and pig cadavers (or any other model) to a species effect
(Fig. 2). As an example, if a study was conducted with male
piglets and adult female humans only, it would not be possible
to disentangle sex and age (or mass) effects from species ef-
fects. Therefore, sample selection within and between species
is critical for such comparisons.

Table 3 Advantages and
disadvantages of domestic pig
and human cadavers in forensic
entomology and taphonomy
research related to human
decomposition [6, 9–11, 14, 23,
24, 44, 65]

Pig cadavers Human cadavers

Cons 1. Dissimilar to human cadavers in some
important aspects:

a. Body proportions

b. Gastrointestinal anatomy

c. Diet (more uniform, larger proportion of plant
products)

2. More uniform than humans

3. Unacceptable in some cultures

1. Difficult to replicate:

a. Available in low numbers

b. Time and cause of death beyond researcher control
(self-donation, age, disease incidence etc.)

c. Dissimilar to each other in:

• Mass

• Age, sex, ethnicity

• Antemortem pharmaceuticals use

• Body conditions (frozen/fresh,
autopsied/non-autopsied, etc.)

2. Limitations of taphonomy facilities (body farms):

a. Small area, potential for insufficient inter-cadaver
distances

b. Uniform abiotic conditions

c. Frequently non-natural conditions

d. Area saturated with cadavers

3. Limitations of casework (i.e. medical examiner
samples):

a. Restricted to observation

b. Cannot control effects of routine processing of remains

c. Sometimes no information about death circumstances
and the cadaver itself

4. Risk of sensationalized research

a. Complex ethical considerations/generally
unacceptable

b. Potentially negative publicity

c. Potential for findings to be “oversold”
Pros 1. Similar to human cadavers in some important

aspects:

a. Body mass range

b. Anatomy

c. Body composition

d. Skin coverage with hair

e. Gut microbiota

f. Gross processes of decay

2. Easy to replicate:

a. Cheap and available in large numbers

b. Time and cause of death controllable

c. Cadaver traits controllable

d. Possible to work with unfrozen cadavers

3. Less sensationalized research and relatively
straightforward ethical considerations

1. No species-related differences
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Experimental design

Confounded variables

Confounded variables make the outcome of an experiment am-
biguous. Confounding effects arise when differences recorded
in a response (dependent) variable as a putative result of exper-
imental manipulation of explanatory (independent) variable(s)
cannot be separated from other variables that may affect the
response [52]. To confidently show that differences resulted
from experimental manipulations, the groups under comparison
should differ only in the manipulated variable(s), or more real-
istically, the groups should not differ systematically in any

important variable other than the one under manipulation.
Confounding variables should be controlled in the experimental
design (and thus eliminated) or in its statistical analysis (and
thus quantified). An important confounding variable likely to
arise in pig and human comparisons is body mass.

Identifying differences in decomposition between species
needs an experiment in which cadaver samples differ system-
atically only in the cadavers’ species. In the experiments of
Dautartas et al. [24] and Connor et al. [23], samples of pig and
human cadavers differed systematically in cadaver mass: the
humans were systematically much larger than the pigs
(Table 4). Although there are anecdotal observations suggest-
ing low importance of adult human cadaver mass [53] and

Fig. 2 Schematic representation of dangers for human/pig comparisons,
resulting from intraspecific variation of pigs and humans. Large circles
are phenotype spaces (for a species), small circles inside are experimental
samples of pigs or humans. The samples can come from anywhere within
the phenotype space for the species, but if comparisons are to be made
between species, it is desirable that the samples come from the phenotype

space shared by both species. Thus, it is possible to design an experiment
comparing the same two species and either properly (bottom circles, e.g.
large humans versus large pigs) or improperly (upper circles, e.g. large
humans versus small pigs) compare the species, depending on the choice
or availability of sampled individuals

Table 4 Cadaver mass of pigs and humans used by Dautartas et al. [24] and Connor et al. [23]

Cadaver mass (kg)

Pigs Difference between humans
and pigs in mean cadaver mass

Humans

Mean Range V Mean Range V Dissimilarity score
(h−p)/(h+p)

Dautartas et al. [24] Trial 1 64.6 60–68 4.8 13.2 77.8 72–84 6.1 0.093

Trial 2 49 40–59 14.1 25 74 53–107 30.8 0.203

Trial 3 50.6 47–57 8.5 24.8 75.4 57–85 15.1 0.197

Connor et al. [23] 35 (median) 25–64 n/a ≥ 45* (median) n/a (≥ 80)* n/a n/a 0.391*

n/a not available

*Authors did not report mass of their human cadavers. They used adult humans and mention that “...over half the human sample was overweight or
obese.”. According to “Anthropometric Reference Data for Children and Adults: United States, 2011-2014” [Fryar et al., 2016, Vital Health Stat 3]
average body weight of adult females in USAwas 76.4 kg and adult males 88.8 kg. Based on these data, we assume that the median mass of the human
sample from Connor et al. [23] was no less than 80 kg, so the difference in median between pig and human sample was no less than 45 kg
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experimental findings supporting the claim that in a mass
range of 73–159 kg (N = 12, nine cadavers over 100 kg, i.e.
obese, adipose bodies) decomposition rate is not significantly
related to human body mass [54], all rigorous studies revealed
that in a forensically relevant mass range (10–90 kg) small pig
cadavers decompose significantly faster than large ones
[55–59]. This difference appeared only in the case of
insect-colonized carcasses [56] and has been suggested to
result from less efficient active decay in larger cadavers, as
a consequence of competition over carrion between differ-
ent insect taxa [45, 59]. It is also related to surface-to-
volume ratios, which reflect the surface area of the tissue
where insects can feed, and to the size of the individual
insect relative to that of the resource. Based on these pat-
terns, it may be assumed that, when insects are present,

smaller pig cadavers’ progress through the TBS scale at a
faster rate than larger human cadavers. This seems to be the
case (Figs. 3 and 4) with the studies of Dautartas et al. [24]
and Connor et al. [23], making some of their results am-
biguous and uninterpretable with respect to human–pig
differences.

Independence of replicates. Distance between cadavers

When cadavers are close to one other, they may cross-
contaminate one another or “compete” for insect colonizers,
or both, making them statistically non-independent [60, 61].
The cadaver that is more attractive to insects may mask the
other, resulting in underrepresentation of insects and slower
decomposition of the less attractive cadaver. In addition,

Fig. 3 Changes in total body score (TBS) during decomposition of pig
and human cadavers. Upper panel shows Fig. 2A and 2B from Dautartas
et al. [24] displaying results of their trial 1 (Fig. 2A, spring, insects
present) and trial 2 (figure 2B, summer, insects present). Lower figure
is a modification of Fig. 13 from Matuszewski et al. [59], displaying
results of their experiment with pig cadavers of different mass. Red
lines in Dautartas et al. [24] are for human cadavers, green lines for pig
cadavers. Comparison of the trials 1 and 2 (upper panel) indicates that an

increase of difference in cadaver mass between pigs and humans in the
trial 2 was followed by larger difference between TBS curves. Moreover,
differences between TBS curves in the trial 2 are similar to differences
between medium/large and large pig cadavers in the experiment of
Matuszewski et al. [59]. Therefore, the differences between pigs and
humans in Fig. 2B of Dautartas et al. [24] may be interpreted as the
result of differences in mass between the cadavers and not differences
in the species of cadaver
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dispersal of larvae becomes a potential mechanism to affect
larval competition if the carcasses are located close to one an-
other. If such effects are not taken into account (i.e., watching
for larval dispersal, deploying drift fencing), small inter-cadaver
distances are likely to alter species composition or decomposi-
tion rate, and lead to a lack of independence of experimental
units, a basic assumption or requirement of most statistical tests.

In forensic entomology experiments, cadavers have usually
been placed at least 50 m apart (Table 1) because there is
empirical support that such a distance is sufficient to minimize
cross-contamination by dispersing fly larvae [62, 63] and to
ensure independence of cadavers [60]. In forensic taphonomy
experiments, particularly with human cadavers, the distance
has usually been much smaller, probably as a result of the
smaller areas of human taphonomy research facilities where
such experiments are located. Dautartas et al. [24] report that
their cadavers were placed at least 3 m apart, and although
Connor et al. [23] provide no information on the distance
between their cadavers, the outdoor facility where the study
was located has an area of about one acre [22], so we can
assume their between-cadaver distances were less than 50 m.
Such distances indicate that the cadavers used in both studies
were not demonstrably independent in terms of the insect
communities attending them. Little is known about the effect
of small distance between cadavers on the pattern and rate of
insect-mediated decomposition [60, 61]; therefore, relevant
consequences of small between-cadaver distance on the re-
sults of the above studies are currently difficult to identify.

Inter-annual effects

Different years generally have different weather profiles lead-
ing to different insect richness and abundances and/or

different insect pre-appearance intervals (PAI) (Table 1).
These may result in substantial annual differences in decom-
position rate.

In the experiments of Connor et al. [23], pig cadavers were
exposed in September 2012 through August 2013 (12 pigs, one
eachmonth), while an extra five pigs were exposed on the same
day as their 2nd through 6th human cadaver. The authors gave
no specific dates of the human cadaver exposure (between
September 2012 and December 2015). However, according to
Wikipedia [22], they started to use human cadavers at their
outdoor facility in November 2013. Therefore, most pigs were
exposed in 2012 and 2013 and most humans probably in 2014
and 2015. If that was the case, there was a high level of treat-
ment segregation and the species effect was confounded with
an inter-annual effect. Consequently, the findings reported by
Connor et al. [23] may be the result, at least in part, of differ-
ences in the biotic and abiotic determinants of decomposition in
the different years of exposure rather than differences between
cadaver species.

Subject variables

Subject variables are characteristics of individuals that are
idiosyncratic and may affect the research variables, primarily
by increasing their measured variances, sometimes referred to
as “statistical noise”. Wherever possible, such variables
should be controlled by selecting experimental subjects to
minimize their effects, usually through matching the individ-
uals as closely as possible. This is generally possible with pigs
or rabbits but can be impractical with humans. For instance,
the study of Connor et al. [23] exposed some human cadavers
effectively fresh at the day of death but others after 53 days of
postmortem refrigeration. Refrigeration affects bacterial
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Fig. 4 Total body score (TBS) and accumulated degree-days (ADD) with
95% confidence intervals for ADD added and plotted based on data from
Table 1 of Connor et al., [23], presented by these authors (as Fig. 1)
without confidence intervals. The 95% confidence intervals presented

in this figure used standard deviations calculated from coefficients of
variation reported in Table 1 of Connor et al. [23]. Red lines—pig
cadavers; blue lines—human cadavers
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communities that initiate decomposition, with consequences
for the rate of decomposition and the attraction of insects [64],
which must have resulted in amplifying variation in decom-
position rates of humans in that study. This sort of conse-
quence of working with human cadavers may predispose a
study to generate misleading results.

Quantifying decomposition

The total body score (TBS) was originally developed as a point-
based, semi-quantitative scale for scoring the decomposition of
human cadavers [51]. It represents the total amount of accumu-
lated decomposition identified from three body regions (head
and neck, trunk, and limbs). The scale was modified for rabbit
[25] and pig cadavers [65]. Keough et al. [65] observed signif-
icant differences between pig and human cadavers during early
decomposition and proposed the amendment of the TBS scale
for pig cadavers. The use of the same TBS scale to compare
human and pig decomposition rate (e.g. [23, 24]) is incorrect.
Given the differences observed between human and pig ca-
davers in gross morphological changes during decomposition
[23, 24, 65], cross-species use of the same TBS scale is risky
and should, ideally, be complemented with other measures of
decomposition, such as daily or periodic weight loss (in %).

Statistical analysis and the presentation of results

Criticism is essential to the advancement of science but for a
critique to be acceptable, its analysis must be robust. However,
the analyses presented in Connor et al. [23] and Dautartas et al.
[24] are inadequate to support their conclusions. In Connor et al.
[23], the conclusion of a difference between human and pig
cadavers is derived from a comparison of the slopes developed

using linear mixed modelling. However, a simple look at the
regression lines used to compare decomposition rates (see Fig. 4
in Connor et al. [23]) shows that the selected models are inad-
equate in terms of adjustment, leverage values and residuals.
The figure also demonstrates that a statistical difference is found
by the authors only because pigs were allowed to decompose for
a longer period, as no human cadaver was scored at TBS values
> 31. TBS values > 31 had a powerful leverage effect on the
regression line because these scores were squared in the analy-
sis. The analyses of Dautartas et al. [24] are also problematic
because none of them accounts for repeated measurements on
cadavers, resulting in temporal pseudoreplication, which is
known to artificially decrease P values.

In addition, statistically detectable effects may be too small
or too variable to have practical significance for estimates of
PMIs [66]. Because cadavers are highly variable, not surpris-
ingly, decomposition rates can be highly variable too. For this
reason, when trends are reported, they should be accompanied
by quantitative indications of variation (i.e. uncertainty). For
instance, human and pig cadavers appeared to decompose
differently in the study of Connor et al. [23], but when 95%
confidence intervals are added to the trend lines (Fig. 4), the
apparent differences disappear. The inclusion of those inter-
vals would indicate that pigs of small size are adequatemodels
for human decomposition unless the TBS is greater than 28,
which is a different interpretation from the one originally
drawn from that research.

Alternative model organisms

In some countries, pigs are not a realistic option for reli-
gious reasons, and other animal models are needed.

Table 5 Guidelines for cadaver choice in forensic science research

Research type/subtype Guidelines

Cadaver species Cadaver mass

Experimental studies Domestic pig, rabbit or rodents, depending
on the objective of the study, human for model
comparison experiments

Depending on study objective

Local insect inventory or
succession studies, insect
PAI studies

Early colonizers Domestic pig, rabbit No cadaver mass limitations

Early and middle
colonizers

Domestic pig ≥ 20 kg starting mass, preferably
20–40 kg

All colonizers Domestic pig ≥ 40 kg starting mass, preferably
50–80 kg

Tests of forensic methods Proof-of-concept
studies

Domestic pig, rabbit or rodents,
depending on method tested

Depending on method tested

Initial validation
studies

Domestic pig 10–40 kg as juvenile analogues,
50–80 kg as adult analogues

Final validation
studies

Human Preferably whole mass range
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Rabbits have been frequently used by forensic entomolo-
gists (Table 1), but obviously, they are too small to serve
well for most forensic research. Carrion insect assem-
blages are distinctly less complex and persist for less time
on small-sized cadavers compared with larger cadavers
[44, 45]. Owing to their small size, the decomposition rate
of rabbit cadavers is much faster than that of pig or hu-
man cadavers [24, 44]. Accordingly, the well-established
importance of body size needs to be remembered when
selecting alternatives, like sheep or goats, usually shorn to
make insect sampling feasible and to reduce the potential
impact of the fleece on decomposition, which is different
from pig and human situations.

Recommendations

Previous papers suggested that a universal model cadaver
for experimental field studies and training programs in
forensic entomology would be a domestic pig weighing
20–30 kg of starting mass [9, 10]. No recommendation is
currently available for taphonomy studies. However, a
single and universal “model cadaver” for the forensic sci-
ences is not useful. Different studies have different pur-
poses, conditions and limitations. Therefore, more flexible
guidelines on cadaver species and mass are needed
(Table 5). A review of the guidelines proposed in this
paper (Table 5) indicates that human cadavers appear nec-
essary only in comparative studies involving other cadav-
er taxa and for final validation of forensic methods. In
most cases, pig cadavers are an ideal choice, whereas
other animal cadavers may be useful in supplemental or
unavoidable (substitutional) cases. Moreover, researchers
should usually use cadavers that are larger than the cur-
rently recommended size of 20–30 kg. Depending on the
specific question of interest, other non-mass-related con-
siderations may also be necessary.

Conclusions

Pig cadavers have provided a comprehensive experimen-
tal foundation for empirical studies of decomposition in
forensic entomology, taphonomy and ecology, and are
likely to remain the analogue of choice in most such stud-
ies for the immediate future. A pivotal limitation to the
value of human cadavers is an adequate supply of donated
bodies, especially when a well-replicated experiment is
required. Some of these limitations can be avoided by
conducting observational studies with samples derived
from death investigations (i.e. through collaboration with
medical examiners), which will be limited by the samples
available, and may not be appropriate for all types of

scientific questions. Analogue models such as pigs are
likely to remain logistically more tractable, being more
readily available, more uniform in size and age and less
ethically complex to deploy. Pigs are a sensible compro-
mise between availability, cost, ethics and similarity to
humans, and there is no better candidate at this time. At
present, experiments using analogues are easier to repli-
cate and make control of confounding factors more prac-
ticable than studies based solely on humans, and they can
be validated by including human remains alongside the
analogues (e.g. [14, 44]). Therefore, an adequate query
is not whether we should abandon pig carcasses, but rath-
er how pig carcasses and other animal models differ from
human cadavers in certain aspects of their decomposition,
for example, decomposition rate and patterns of colonisa-
tion by insects. Such research would put into perspective
all the developments made possible over the past four
decades by the use of human analogues (Table 1).
Moreover, human cadavers are definitely limited re-
sources for forensic sciences. Therefore, they should be
invested to test hypotheses which were found to be foren-
sically interesting for analogues, e.g. pig carcasses.

The need for robust replication and control are a direct
consequence of both the inherent complexity of animal
decomposition and the need for reliable forensic evidence
in court. Our recommendations provide a quality assur-
ance baseline for cadaver experiments. Indeed, simulated
and reconstructed casework using pigs is an ideal test and
cross-validation of conditions at a death scene (i.e. litiga-
tion research). Pig carcasses should be placed, if possible
and acceptable, at or near the same site and time of year
as the death scene and should serve as a reference for case
analyses [67, 68].

A certain level of imprecision is inevitable even in superbly
designed decomposition experiments, and court testimony
will always need to draw cross-validation of decomposition-
based estimates from other fields of science. Future decompo-
sition studies will need to underpin their own importance with
rigorous quality control measures [27, 28]. A means to this
end have been outlined here, and many of the recommenda-
tions apply as much to research with human corpses as to any
other animal species.
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