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Abstract: The paper presents the design of parameter varying input and output transfor-
mations for Linear Parameter Varying systems, which make possible the control of a selected
subsystem. In order to achieve the desired decoupling the inputs and outputs of the plant are
blended together, and so the MIMO control problem is reduced to a SISO one. The new input
of the blended system will only interact with the selected subsystem, while the response of
the undesired dynamical part is suppressed in the single output. Decoupling is achieved over
the whole parameter range, and no further dynamics are introduced. Linear Matrix Inequality
methods form the basis of the proposed approach, where the minimum sensitivity (denoted by
the H_ index) is maximized for the subsystem to be controlled, while the Ho, norm of the
subsystem to be decoupled is minimized. The method is evaluated on a flexible wing aircraft

model.
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1. INTRODUCTION

Since its appearance, Linear Parameter Varying (LPV)
systems theory became a well established field in control
systems design with numerous application possibilities.
Recent trends in systems engineering are pointing in
the direction of reducing the complexity of the control
problem. This can be achieved by reducing the order of
the controller (Nwesaty et al., 2015), by designing fixed
structure controllers (Adegas and Stoustrup, 2012), or by
decoupling. The paper focuses on the latter one, where our
general aim is to control a certain fraction of the system,
without affecting other parts.

Various decoupling approaches can be found in the litera-
ture for LPV systems to achieve input-output decoupling.
Mohammadpour et al. (2011) designs a static input-output
decoupling by pre- and post- compensators based on the
singular value decomposition of the steady state transfer
function matrix. The method has the advantage that it
does not introduce further dynamics to the open loop,
however it does not guarantee decoupling over the whole
frequency range. Lan et al. (2015) applies a dynamic
decoupling for the LPV model for a hypersonic flight
vehicle based on convex optimalization with Linear Matrix
Inequality (LMI) constraints. The Ho, norm of a virtual
system which is composed by the controlled system and
the no coupling reference model is minimized. (van de Wiel
et al., 2018) presents a decoupling approach for quadrotor
systems. The authors design an inverse based decoupling

pre-filter which decouples the system into double integra-
tors.

In the present paper we focus on subsystem decoupling
for LPV systems. In recent years various approaches were
introduced in order to assure decoupled control of selected
dynamical modes of a system. However to the best of the
knowledge of the authors, these methods are not extended
to Linear Parameter Varying (LPV) systems. The common
point for many of these methods is that they introduce

input and output blending vectors to decouple modes
and accordingly reduce the control design into a Single
Input Single Output (SISO) problem. Danowsky et al.
(2013) determines an optimal blend for the measurements
which assures the isolation of the selected mode, and
simultaneously computes an optimal blend for multiple
control inputs to suppress the selected mode via a negative
optimal feedback, while minimizing the control’s effect
on other modes. (Pusch, 2018) introduces a joint Ho
norm based input and output blend calculation method
which assures the controllability, observability and the
independent control of selected modes.

In recent papers (Badr and Luspay, 2019) and (Baar et al.,
2019) the authors presented a novel sensor and actuator
blending approach for LTI systems, in order to assure
decoupled control of individual modes with simple SISO
controllers. The present paper extends these results to
LPV systems. Our approach is based on the 7 _ index
and the H, norm for LPV systems, by seeking parameter-
dependent input and output blend vectors which are max-
imizing the minimum sensitivity for a given mode, while
minimizing the maximal one for the other subsystem. This
way decoupling can be achieved between the dynamical
modes.

The outline of the paper is as follows. Section 2 pro-
vides the necessary mathematical formulations, followed
by Section 3 with the formal problem statement. The mode
decoupling algorithm is presented entirely in Section 4.
Numerical examples are reported in Section 5, followed by
the concluding remarks.

2. MATHEMATICAL BACKGROUND

Basic mathematical notions and the required definitions
are given in the section, which are used throughout the
construction of the decoupling algorithm.


https://core.ac.uk/display/334607843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1 Linear Parameter Varying Systems

Our starting ]E)oint is the state space formulation of con-
tinuous time LPV systems, given as:

G(p(t)) : {gﬁ(t) = A(p(t))z(t) + B(p(t))u(t), )

y(t) = Cp(t))x(t) + D(p(t))u(t),

with the standard notation of z(t) € R"=, u(t) € R"™
and y(t) € R™ being the state, input and output vector,
respectively, depending on the continuous time variable
t. The trajectories of the time-varying scheduling vector
p(t) € R™ are unknown apriori, but measurable on-line,
and they are assumed to be constrained in the parameter
variation set
F¥ ={p(t) € CL(Ry,R™) : p(t) € P, p(t) € V,Vt >0},
)

where C! is the class of piece-wise continuously differen-
tiable functions, P := {p € R™ : p; € [pi,pi]}, and
Vi={veR™ :v; € [y, ]}"

In the mode decoupling problem we assume that the sys-
tem matrix functions are given in the following subsystem

form:

_ A 0 _ | B.(p)

A(p)_[ Op) Ad(p):|7 B(p)_[Bd(g)}7 (3)
C(p) = [Celp) Calp)], D(p)=[D(p)].

For Linear Time Invariant (LTT) systems this form is called
the modal form, which can be achieved by a suitable
state transformation (Kailath, 1980). A similar structure
for LPV systems has been developed, along with the
construction of the corresponding parameter-dependent
state transformation in (Luspay et al., 2018a), resulting
in a block-diagonal and continuous A(p) function, where
each block represents a dynamical mode of the parameter-
varying dynamics.

For the ease of presentation we will assume that the system
consists of only two subsystems, one which we would
like to control (subscript ¢) and the one which should
be decoupled (subscript d), where the latter may contain
multiple modes. In (3) coupling between the subsystems
appears only through the input-output, which we are
intend to resolve in the paper.

2.2 Minimum sensitivity

A key notion in the decoupling approach is the minimum
sensitivity (H_ index) of a system, which is defined for
LTT systems over a finite frequency domain as:

1Ge(s)1) = inf o [Ge(je)], (4)

with ¢ denoting the minimum singular value and w, @
being the minimal and maximal frequency of interest. The
computation of (4) can be done based on the General-
ized Kalman-Yakubovich-Popov (GKYP) lemma by using
convex optimization, involving Linear Matrix Inequality
(LMI) constraints (Wang and Yang, 2008).

The extension of the finite frequency H_ index for LPV
systems is defined as (Sun et al., 2013):

15 = inf o [Ge(o)], Yo € FF. (5)

1 Time dependence is omitted in the rest of the paper to ease the
notation.

which corresponds to the following time-domain definition:

y 2
pGFVE ||u\|27é() Hu||2

over inputs u € £5", such that the following holds:

oo

/(\I’ui'T.%" + \Iflg.i‘T{L‘ + \Ifgle(t + \Ilgng.’L') dt>0 (7)

0

with O state initial conditions. Here the matrix ¥ repre-
sents different frequency ranges as:

Q |UJ| <
g [10 -1 jwm 10
0 wf —jwm —w 0 —w?

where w,, = (w + @)/2. More specifically the following
lemma is proved in (Sun et al., 2013).

Lemma 2.1. Consider the LPV system given by (1). Let

o= _OI 5(2)1— € RMetny)x(natny) - Agsume that (1) is
asymptotically stable, and there exists 8§ > 0 and ¥ € H,.
If there exists P.(p), Q € Hz such that ) > 0 and

[A@) B(m]T [ v11Q
I" 0 Pe(p) +921Q Pep) + ¥22Q

N [c(()m ngrn [cgm ng} <o,

I?c(p)+\1112Q} [A(Ip) B((]p)}
(8)

holds for all p € F, then 1G(P)|¥*! > B to a restricted
class of input signals specified by (7) with z(0) = 0.

In the rest of the paper we will use the middle frequency
formulation, and apply the following notation

_ [ Uy Q P.(p) + ‘1’12Q} 9)
Pc(p) + \I/ZIQ Pc(p) + \Il22Q ’

Although stability of the LPV plant is assumed in the
derivation of Lemma 2.1, it can be extended and used for
unstable systems also. In this case, a stabilizing solution
of the parameter-dependent Riccati Inequality is used for
computing the minimal sensitivity (see Liu et al. (2005)).

(1]

2.8 Maximum sensitivity

The second mathematical tool that we use in the paper
is the maximum sensitivity, the induced £2 norm of LPV
systems. The definition reads as:

oyl
sup sup

peFy Ilull270 |[ull2

which can be efficiently computed using the Bounded Real
Lemma for LPV systems.

Lemma 2.2. Given the LPV system in (1). If there exists

a matrix function P;(p) > 0 and a positive scalar v such

that (11) is satisfied for all p € F)%, then ||G(p)||> < v iff

%, (10)

Pa(p)A(p) + o+ CT(p)C(p) + Palp)

B2 (0)Pa(p) + D7 (0)C(p) <0

(11)

where o = AT(p)Py(p) and % is a placeholder for the
transpose of the symmetric off-diagonal term.

D" (p)D(p) — 721}



Fig. 1. Closed loop control scheme with input and output
blending

The proof can be found in Wu (1995) and is omitted here.

The LMIs (8) and (11) form an infinite number of con-
straints over the admissible set of the scheduling param-
eter. Therefore for numerical reasons they are evaluated
over a finite grid. More precisely, the parameter variation
set is discretized and the corresponding LTT dynamics are
obtained. Then, the LMI constraints are written for the
finite set of systems, taking into account the bounds of
the change in the scheduling parameter. More details can
be found in Wu (1995).

3. PROBLEM FORMULATION

With having defined the minimum and maximum sensitiv-
ities for LPV systems, we are in the position to state the
decoupling problem (see Figure 1). The goal is to create the
environment denoted by the dashed frame, which makes
possible the control of the G.(p) subsystem by a corre-
sponding C.(p) controller, with having the least effect on
the subsystem to be decoupled, G4(p). This is formalized
in the paper as maximizing the minimum sensitivity from
% to y through G.(p) while minimizing the maximum
sensitivity through Gy(p).

For this purpose we introduce ky(p) € R™*! and k,(p) €
R™>1: the normalized (i.e. ||ku(p)| = |ky(p)]l = 1, Vp)
input and output blending vector functions, respectively.
These blending functions transform the » and y signal
vectors onto a single dimension, consequently reducing
the control problem into a SISO one. In Figure 1 the
control input @ € R is distributed between the plant’s
inputs (v = kyu(p)u) in a way that they only excite
the subsystem which one wishes to control. Similarly the
controller’s input § = kyT (p)y € R is calculated such
that the information content from the subsystem which
has to be decoupled, is minimized. Formally the blending
problem is as follows.

Problem 1. Find normalized k,(p) and k,(p) vector func-
tions such that

KL (0)Ge(p)ku ()| > 8
is maximized and

1y (P)Ga(p)ku(p)|loc < v (13)

is minimized over the selected frequency range [w,®]. Here
8 and y are two positive constants referring to the minimal
sensitivity and induced L5 norm, respectively.

(12)

Fig. 2. Problem layout for input blend calculation
4. THE PROPOSED DECOUPLING ALGORITHM

The decoupling approach presented in the paper is carried
out in two consecutive steps. First an optimal parameter-
dependent input blend is found, and applied to the system,
next a corresponding output blend function is calculated.

4.1 Input blend calculation

The aim of the subsection is to find an input blend
vector function k,(p), which maximizes the excitation of
the selected LPV mode, while minimizes the impact on
the one(s) to be decoupled. In this step only the state
dynamics are considered, and the measurement equations
are removed from the model equations. The concept is
shown in Figure 2.

Before going into the details a side note has to be taken.
It follows from the definition of the H_ index and the Lo
gain that:

1G:(p) X! = 11Gz (p)][#, (14)
where * represents the conjugate system. In other words,
the minimum sensitivity and the induced L5 norm of
the system and its conjugate is the same. As it will be
seen next, using the conjugate representation assures the
linearity in the design process.

If one writes the LMI constraints of (8) and (11) for
the dual system then expresses the formulas in terms of
the original representation, one gets (15) and (16), where

— _Ku(p)
= [ 0 B
parameter dependent matrix variable K, (p) = ku(p) -

ku(p)T € R™*"  as the dyadic product of the parameter-
dependent input blend vectors.

]. Here we have introduced the new

It should be clear that the K,(p) terms are appearing
in the matrix inequalities only because of the conjugate
representation, otherwise we would be facing a bilinear
(and quadratic) matrix problem, i.e. the conjugate form
ensures linearity, while preserves the corresponding sensi-
tivity values.

At the same time, the newly introduced variable K, (p)
has rank 1 for all p € .7:7‘; , which has to be taken
into consideration in the solution. Hence, the input blend
calculation is summarized in Proposition 4.1.

Proposition 4.1. The optimal k,(p) input blend for the
system given in the form of (1) can be calculated as the
left parameter dependent singular vector corresponding to
the largest singular value of the K, (p) blend matrix, where
K, (p) satisfies the following optimization problem



minimize — 62 + 72
Pa(p), Ku(p), Pe(p), Q, B2, ¥?
subject to (15), (16), 0 =< K,(p) =1,
(0)) =1, Vp & F

with I being the identity matrix with appropriate dimen-
sions.

(17)

and rank (K,

Proposition 4.1 is a multi-objective optimization problem,
which is frequent in mixed H_/H fault detection ob-
server design (see e.g. Wei and Verhaegen (2008)). Since
K.(p) is a parameter dependent matrix, k,(p) can be cal-
culated through an analytic singular value decomposition
(Mehrmann and Rath, 1993), which takes into account the
parameter dependency and ensures continuity. However,
concerning the rank constraint, some further remarks are
required. The rank(K,) = 1 constraint in an earlier LTI
version of the algorithm has been satisfied by a rank
minimization heuristic. In practice this means the incor-
poration of the trace(K,,) term in the objective function
of (17). For further details see (Badr and Luspay, 2019).
At the same time, this approach doesn’t guarantee the

satisfaction of the rank constraint and was found to be
numerically sensitive.

Therefore, in the present paper we apply a more systematic
approach for the solution of Proposition 4.1 and han-
dling the arising rank constraint. More precisely we use
an alternating projection scheme extended to parameter
dependent matrices.

The main idea was taken and tailored from (Grigoriadis
and Beran, 2000), where the authors used an alternating
projection technique for satisfying a coupling rank con-
straint in a fixed-order H,, control design problem. For
the solution of the present problem, the basic idea is the
following. Let us denote with I'convex the convex set which
is formed by the LMIs (15) and (16) without the rank
constraint on the K,(p) blend matrix. Denote this non-
convex rank constraint on K,(p) by the set T'iank. Sup-
pose that the sets have a nonempty intersection, and one
wishes to solve the problem by finding a matrix function
in the intersection: fulfilling both convex and non-convex
constraints. The classical alternating projection scheme
states that this problem can be solved by a sequence of
orthogonal projections from one set to the other. Each step
assures that the projected matrix in the corresponding
set has the smallest distance from the one which was
projected. The orthogonal projection theorem also assures
that each projection is unique (Luenberger, 1997). How-
ever, even if the intersection exists, global convergence
cannot be guaranteed in our case, due to the non-convex
T'iank set. Nevertheless local convergence of the proposed
algorithm to a matrix which satisfies the above constraints
is guaranteed (Grigoriadis and Beran, 2000).

The approach consists of various sequences of alternating
projections. In each sequence the rank of the solution is
reduced by one (starting from n,,, until rank(K%(p)) = 1
is achieved. The process of a single projection sequence is
illustrated in Figure 3. Next the solution of Proposition 4.1
based on an alternating projection algorithm is presented
in details. For this we borrow the following two lemmas

0

[ 1(p) Al + AaPa(p) +
Cde( )-‘r

[AT; ) CX(p) ]TE {Aﬂp

Ku(p)Bj

dKu( )Bd +P( )

Ku, (p)

Frank(p) I-‘COHV(p)

K7 (p)

Fig. 3. An alternating projection sequence

from (Grigoriadis and Beran, 2000), and extend them to
parameter dependent matrices.

Lemma 4.2. Orthogonal projection to a lower dimensional
set. Let Z(p) € I7X! and let Z(p) = U(p)S(p)VT(p)
be a parameter dependent singular value decomposition
of Z(p), calculated according to (Mehrmann and Rath,

1993). The orthogonal projection, Z*(p) = Projn—rZ(p),
rank
of Z(p) onto the I **"=F dimensional set is given by

rank

Z*(p) = U(p)Sn-i(p)V T (p), (18)
where the S,,_(p) diagonal matrix function is obtained by
replacing the smallest k& singular value functions by zeros.

Note that the analytic SVD ensures the continuity of the
blend vector, in contrast with local solutions. This feature
is important from an implementation perspective.
Lemma 4.3. Projection to a general LMI constraint set I'.
Let I" be a convex set, described by an LMI. Then the
projection X*(p) = Projp(p)X(p) can be computed as
the unique solution Y'(p) to the semidefinite programing
problem
minimize trace(S(p))

: S(p)  Y(p)—X(p)
subject to

! Y(p) - X(p) 1

Y(p) €T, S(p),Y(p), X(p) € R"",
with S(p) = ST (p), Vp € Fp.

=0, (19)

4.2 Input blend calculation algorithm

Now we are in the position to present the numerical
algorithm to Proposition 4.1. We are using a grid based
solution of the problem. LMIs (15), (16) are written as a
group of LMIs, with continuously differentiable functions
P.(p) and P;(p) evaluated over the finite grid, leading
to a finite dimensional convex problem. The following
algorithm summarizes the input blend calculation.

T T T
o } . {Bcow ﬂ 1 [Bc()(p) 9] -0, (15)
P <0 .



Algorithm 1 Input blend calculation with alternating
projection

1: The subsystems G, and G, are given in the form as
shown in Figure 2.

2: A [ iteration is carried out in order to find the
largest value of 8 for which the following optimization
problem can be solved without rank constraint.

minimize — B + 42 + trace(K,(p))

Pa(p), Ku(p), Pc(p), Q, B2, 72
subject to (21), (20), 0= K,(p) =1, Vp € Fp
(22)

Set the counter variable to k =1

3: Alternating projection. Once reached, this point is
iterated till convergence is achieved by a suitable
selected error metric. The previously obtained values
of B and ~ are kept constant during the iteration,
which consists of two steps.
a: Project K, (p) to an n, — k dimensional subset by
Lemma 4.2 to obtain K (p).
b: Project the achieved reduced rank K*(p) to the LMI
constraint set by the following optimization problem

trace (S(p))

min
Pa(p);, Ku(p), Pec(p), Q, S(p)
s.t.:(21), (20), 0 X Kyu(p) 21, Q = 0,

S(p) Ku(p) — Ki(p) v

K. (p) = K;(p) I = Oforvp e Fp.

4: Set k = k + 1 and return to step 3, until rank 1 is
achieved, then go to step 5.

5. Project K,(p) to an n, — k dimensional subset by
Lemma 4.2. The results is K (p).

6: Calculate ky(p) as the singular vector corresponding to
the largest singular value in the parameter dependent
Singular Value Decomposition of K*(p).

Once k,(p) is found, it is applied to the subsystems to give

-'I'f‘{c,d} (t) = A{c,d} (p)x{c,d} (t) + B{c,d} (p)ku(p)ﬂ(t>7 (23)
Yie,dy (1) = Cleay (P)T{e,ay () + D(p)ku(p)u(t).
In the following we use the notation fl{c,d}(p) = A¢ear(p),

B{Cyd}( ) = Bie,ay(p)ku(p), C{c a1 (p) = Cie,ay (p), D(p)
D(p)ky(p) for the input-blended representation and dis-
cuss the corresponding output blend computation.

4.8 Output blend calculation

The output blend will maximize the information of the
mode to be controlled to the single output, while it
suppresses the effects of the undesired dynamics. The
blend calculation process is shown in Figure 4. The direct
feedthrough was not involved in the input blend calcula-
tion and so it is neglected here. Its effect can be corrected

by a ky,(p)TD ) feedforward term from 4 to § once
p)Aa(p) + Ag (p) Palp) + C3 (p
B:{(P)Pd( )
T \Ian Pc( )+\I/12Q

BC(P

OP,
0 )\ U +
P.(p) + U21Q P20 <Uz P

Fig. 4. Problem layout for output blend calculation

the output blend is found, according to the following
proposition.

Proposition 4.4. The optimal k,(p) output blend for the
system given in the form of (23) can be calculated as the
left parameter dependent singular vector corresponding to
the largest singular value of the K, (p) blend matrix, where
K, (p) satisfies the following optimization problem

minimize — /82 + 72
Pa(p), Ky(p), Pe(p); Q, B2, v*
subject to (25), (26), 0= K,(p) =1, (24)

K,(p) =1, Vp € F}
with I being the identity matrix with appropriate dimen-

i _|=Kylp) O
sions, and II = [ 0 /BQI .

and rank (

The solution of Proposition 4.4 leads to a very similar
calculation as Algorithm 1.

5. NUMERICAL RESULTS

The presented algorithm was tested on a flexible winged
aircraft model, which has been developed in the FLEXOP
project (Consortium et al., 2015). The aircraft is equipped
with eight ailerons (four on the left and four on the right
wings) and two ruddervators on each side. Measurements
are given at the 90% spanwise location on the left and right
trailing edge, providing information about the vertical
acceleration (a,) and the angular rates (w;, wy) around the
lateral and longitudinal axis of the aircraft respectively.

The model has 5 standard aircraft rigid body modes, and
two additional flutter modes arising from the coupling
of the aerodynamic and structural forces. These flutter
modes are responsible for the oscillatory motions of the
wing, and they are becoming unstable over a certain air-
speed. Further details of the modeling can be found in
Luspay et al. (2018b). An LPV model was created based
on the nonlinear one by trimming and linearization, and
the indicated airspeed was selected as the scheduling pa-
rameter (p). The modal form given in (3) was achieved by
applying the algorithm of Luspay et al. (2018a), which was
followed by a parameter varying model order reduction.

+Zi(vz ") PutorBato)| _

(20)
_72[
) [Ac(p) Bco(m] +[cc(§p> 9] H{cco(p) 9}40 (21)



The obtained low order LPV model is used for illustrating
the proposed decoupling methodology.

In our example we aim to decouple the rigid body dy-
namics of the aircraft from the asymmetric flutter mode
over the p = [45,56] ™ airspeed range. This would as-
sure that a controller designed for the asymmetric flutter
mode, will not interact with the rigid body modes and
the the corresponding baseline controller. To achieve this
the computation of a continuous k,(p) and ky(p) blend
vector functions is required. For the parameter-dependent
solution a quadratic basis function was selected for the i.e.:
Pieay(p) = Py+ P p+ Pyp?. The parameter dependence of
the K, (p) and Ky(p) blend matrix functions were selected
to be linear. The value of p represents the longitudinal
acceleration of the aircraft, and its maximum value was
selected to be half of the gravitational acceleration. The
LPV theory then assures that the decoupling is achieved
when the airspeed is in the designed range, it is changing

according to the prescribed basis functions, and p < p < p.

Figure 5 shows the maximal singular values for the sub-
systems to be controlled and decoupled at various airspeed
values. After solving the blending problem as described in
Section 4 the k,(p) and ky(p) blending vector functions
were successfully determined and applied to the system. It
is possible to evaluate these blending functions at certain
airspeed values (frozen parameter): this results in a family
of singular value plots corresponding to the subsystems.
This is shown in the lower part in Figure 5. It is obvious
that before blending the two subsystems are coupled, while
by suitable blending functions it was possible to decouple
them.

However time domain simulations are also needed in order
to evaluate the decoupling performance when the system is
in transition between grid points. In the following example
a single step input (@ = 1(¢)) has been applied to the
blended subsystems, while the scheduling parameter has
been varying as p(t) = sin(wt) with w which satisfies
conditions on p used throughout the design. The responses
of the two blended subsystems can be seen in the lower
subfigure of Figure 6. Clearly by the application of the
input and output blends, the asymmetric flutter mode is
excited on a much higher level than the rigid body modes,
and so a suitably designed controller will interact with this
mode only.

Finally, the calculated blending functions are continuous
and smooth functions of the parameter (p) and their
evolution is plotted in the upper subfigure of Figure 6.

6. SUMMARY

A method for individual control of a selected subsystem
was presented for LPV systems. It relies on suitably
designed input and output blend vector functions, which
are transforming the underlying MIMO plant into a SISO
one. If the selected subsystem is controlled through the
transformed input and output, then the corresponding
controller will not interact with the other subsystems in
the plant. The advantage of the presented method is that,
it does not introduce further dynamics into the system.
The blend vector functions are designed based on LMI

%@B#Tgkyﬂﬁﬂ+F#wrﬂpwﬂ<a

[pd@)Ad + Aq Palp) + Ca Ky (p)
BT Py(p) + DTK,(p)

gKy(p) D+
d

T T T TTTTT T T T T T T TTTTT T T T T
—~ 60
as)
&
2 40
I=
g 20| | —— & asym. flutter
& -=-- ¢ rigid body
0 Lol Lol Lol

T T T T TTTTT T T T T T TTTTT T T T T T
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as)
= 0
5}
T ~20psrgrzzszzzzepziiess
% B S
g 40
© 60
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Fig. 5. Frequency domain evaluation of the decoupling
example

Yblended

= g asym. flutter
= 9 rigid body

| | |

0 5 10 15 20

time [s]

Fig. 6. Time domain evaluation of the decoupling example

techniques borrowed from the robust control literature.
The minimum sensitivity (denoted by the H_ index) is
maximized for the subsystem to be controlled, while the
Hoo norm of the remaining dynamics is minimized. In the
LPV framework the problem is solved over a finite grid.
The effectiveness of the method has been validated by a
time domain simulation of a flexible wing aircraft. The
flexible subsystem was successfully decoupled from the
rigid body modes. The authors also have the intention to

I 0 (@)
P(p) Pa(p)Ba+Ca' Ky(p)D ] <0 (26)
D'Ky(p)D —~*1 | =7



incorporate the effects of model uncertainties to the blend
vector calculations in the near future.
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