
Vol.:(0123456789)1 3

Journal of Molecular Evolution (2020) 88:41–56 
https://doi.org/10.1007/s00239-019-09913-4

REVIEW

Virus–Host Coevolution with a Focus on Animal and Human DNA 
Viruses

Győző L. Kaján1   · Andor Doszpoly1 · Zoltán László Tarján1 · Márton Z. Vidovszky1 · Tibor Papp1

Received: 6 May 2019 / Accepted: 23 September 2019 / Published online: 10 October 2019 
© The Author(s) 2019

Abstract
Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to 
some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the forma-
tion of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The 
continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of 
an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give 
a short insight into some general consequences or traits of virus–host coevolution, and after this we zoom in to the viral 
clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.
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Coevolution in General

Viruses are obligatory cellular parasites, developing with 
their hosts since the dawn of life. Coevolution, when the 
virus and the host reciprocally affect each other’s evolution, 
is often detected. According to the Red Queen Hypothesis, 
both the parasite and the host are perpetually struggling to 
maintain a constant fitness level (McLaughlin and Malik 
2017). This long-term evolutionary pressure gave rise to 
some surprising consequences for the entire tree of life.

The Origin of Viruses—Which Came First: 
The Chicken or the Egg?

What can be the origin of an obligatory cellular parasite? 
Three concurring hypotheses describe the origin of viruses: 
(i) the primordial virus world or the virus first hypothesis 

claims that the ancestors of viruses existed already in the 
pre-cellular world; (ii) the escaped genes theory describes 
viruses as mobile genetic elements, which became independ-
ent of their host cells; (iii) whereas according to the cellular 
regression theory, viruses are regressed intracellular para-
sites (Holmes 2013).

The Primordial Virus World

According to the primordial virus world hypothesis, in the 
primordial soup multiple pre-cellular and pre-viral Ur-
organisms competed with each other. The last universal 
common ancestor—the first cellular life form—emerged 
from these primordial replicators, and at least a fraction of 
current viruses might originate from the remaining ones 
(Moelling and Broecker 2019). Ancient viruses might have 
even contributed to the formation of the last universal com-
mon ancestor of all living organisms.

It is generally accepted that an RNA-based world pre-
ceded today’s DNA- and protein-based one. RNA viruses 
and especially the capsidless viroids might resemble this 
ancient world (Elena et al. 1991). However, the evolu-
tion of viruses—which has been especially rapid for RNA 
viruses—destroyed the possible signal of genetic related-
ness a long time ago, making phylogenetic reconstruction 
already impossible. Luckily, some sort of evidence is still 
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within reach: the existence of viral protein fold superfami-
lies without cellular counterparts. Proteins without any 
primary sequence homology are still grouped based on 
their conserved tertiary structure, their folding: e.g. the 
major capsid proteins of the PRD1 bacteriophage, adeno-
viruses and some archaeal viruses all have a double jelly-
roll fold structure (Benson et al. 1999; Nasir and Caetano-
Anollés 2015, 2017), or there are structural homologies 
in the RNA- and DNA-dependent polymerases too (Gor-
balenya et al. 2002). There are fold superfamilies con-
taining both viral and cellular proteins (we will return to 
this phenomenon by the escaped genes theory), but there 
are also numerous examples without cellular homologues 
found in phylogenetically very diverse viruses: e.g. viral 
RNA-dependent RNA polymerases are not homologous 
to their cellular counterparts (Iyer et al. 2003). According 
to the most parsimonious assumption, these proteins have 
a common origin in the primordial virus world, and phy-
logenetic tree reconstructions of these fold superfamilies 
confirm this as well (Nasir and Caetano-Anollés 2015).

Viruses became obligatory parasites either only after 
the emergence of the last universal common ancestor, or 
it is equally possible that they were already parasitizing 
on other ancient replicators. According to the viral eukar-
yogenesis hypothesis, even the eukaryotic cell nucleus 
originates from an infection by a coated virus: the virus 
became an endosymbiont usurping the role of the original 
archaean nucleus (Bell 2009). The endosymbiont pox-like 
virus had no possibility for a lytic viral cycle, and under 
this evolutionary pressure started to replicate by means of 
cell-to-cell fusion using its fusion proteins. When two such 
cells—infected by related viruses—fused to each other, 
the viral DNA was copied, and homologous viral chro-
mosomes formed tetrads. Cell division resulted in four 
daughter cells with one copy of the endosymbiont virus 
in each. This might be the origin of meiotic cell division 
(Bell 2006). After its development, sexual reproduction 
offered a significant fitness advantage in the fight against 
any parasite (Hamilton et al. 1990), including viruses.

Escaped Genes

This theory states that mobile genetic elements escaped 
the cell, acquired a protein capsid and started to replicate 
autonomously (Moreira and López-García 2005, 2009). 
Numerous homologies can be observed among viral and 
cellular genes. On the other hand, the root position, and 
thus the certain direction of evolution, might be challeng-
ing to determine. For example, cellular and viral DNA 
polymerases are related (Filée et al. 2002), but the exact 
direction of the lateral gene transfer is unknown (Shack-
elton and Holmes 2004).

The Cellular Regression Theory

Perhaps the least favoured theory currently claims that 
viruses are the extremely reduced descendants of obligatory 
intracellular parasites, incapable of autonomous extracel-
lular life (Bândea 1983). According to this theory, the viral 
genome is the remnant of a heavily reduced cellular genome 
and the capsid is that of a cell membrane. The nucleo-cyto-
plasmic large DNA viruses (NCLDVs) are good candidates 
to represent the end result of this mechanism: they prolifer-
ate in the cytoplasm, and have particle and genome sizes 
comparable to those of the smallest prokaryotes (Arslan 
et al. 2011; Colson et al. 2012, 2011). The modern version 
of this theory was mentioned when discussing the primordial 
virus world: viruses might be the reduced descendants of 
pre-cellular Ur-organisms, converting into obligatory cel-
lular parasites (Claverie 2006; Forterre 1991).

Viral Genetic Elements in Host Genomes

Polintons

The theories of viral origin are a topic of heated debate, but 
most possibly none of them is mutually exclusive, and the 
suspected processes of two or more could have occurred 
parallel and/or sequentially as well. A small proportion of 
mobile genetic elements might have its root in the primordial 
virus world, but numerous regression or escape occasions 
must have occurred too. The latter were perhaps facilitated 
by the cellular genomic insertion of viral genetic elements. 
Polintons, also known as Mavericks, are mobile genetic ele-
ments with multiple homologues in both cellular and viral 
genomes. They have escaped several times and gave rise 
to different viruses and mobile genetic elements such as 
adenoviruses or mitochondrial linear plasmids (Krupovic 
and Koonin 2015, 2017). It must be stressed again that these 
genetic elements are homologous and related, but the direc-
tion of the genetic exchange is unknown in most cases. Such 
transfers are common from host to virus and vice versa too.

Endogenous Viral Elements

Endogenous viral elements (EVEs) are viral genes or 
sometimes complete genomes inserted into host genomes. 
As genome integration is a compulsory step in retroviral 
replication, most of these elements are of retroviral origin, 
but further virus families were detected as well: hepadna-
viruses, adeno-associated viruses, herpesviruses and oth-
ers (Aiewsakun and Katzourakis 2015; Bill and Summers 
2004; Broecker and Moelling 2019; Morissette and Flamand 
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2010; Young and Samulski 2001). If the insertion occurs 
in the germ cell line, the inserted sequence stretch might 
get inherited. And if it provides a selective advantage, e.g. 
protection from a viral infection, the genomic change will 
be fixed in the population. In case this advantage disappears, 
the inserted stretch might mutate over time and lose its pro-
tective nature (Broecker et al. 2016).

EVEs are important sources for virus–host coevolution-
ary research, as they provide a map for viral host range. 
The history of coevolution can be traced by the detection of 
homologous endogenous viral sequences in different host 
species. This provides information about the historical host 
range of a virus clade, and even the time frame of coevolu-
tion can be inferred based on the known diversification times 
of the hosts, or on phylogenetic analyses of exo- and endog-
enous viral sequences. E.g. based on endogenous lentiviral 
sequences in lemurs, it was hypothesised that these viruses 
have been coevolving with primates for several millions of 
years (Katzourakis et al. 2007).

Viruses represent a major force in evolutionary pressure 
(Emerman and Malik 2010; Villarreal and Witzany 2010). 
Retroviruses, for example, are so effective in genome inte-
gration and have been coevolving with vertebrates so long, 
that over 50% of the human genome was estimated to consist 
of endogenous retroviral elements (de Koning et al. 2011). 
Some of these regions provide important and fundamental 
attributes to their integrator hosts, like the syncytin genes, 
which have an important role in placental development not 
only in various mammals but in viviparous lizards as well 
(Cornelis et al. 2017; Imakawa and Nakagawa 2017). Other 
transposable elements contribute to embryonic development, 
stem cell pluripotency or cell differentiation in eukaryotes 
(Chuong et al. 2017). In prokaryotes, important functions 
were attributed to the integrated viruses as well. E.g. in E. 
coli, deleting all prophages has resulted in increased sus-
ceptibility to environmental factors and slower cell growth 
(Wang et al. 2010).

Effects of the Bottleneck Phenomenon

Essentially, the viral mutation rate and copy number deter-
mine the variability within the host and in fine the stock of 
viral evolution (Duffy et al. 2008; Peck and Lauring 2018; 
Sanjuán and Domingo-Calap 2016). Generally, viral path-
ogens exist in diverse populations in vivo (McCrone and 
Lauring 2018). As a substantial evolutionary effect on the 
population dynamics of viruses, genetic bottleneck (reduc-
tion of effective population size due to environmental events, 
for instance new habitat colonisation) affects the virus–host 
coevolution: it decreases both the genetic variation and the 
fitness of the virus, and furthermore it is responsible for the 
founder effect (Novella et al. 1995). Changes of genotype 

frequencies by stochastic population size reduction are 
referred to as genetic drift (Bergstrom et al. 1999; Den-
nehy et al. 2006; Elena et al. 2001; McCrone and Lauring 
2018; Zwart and Elena 2015). Furthermore, it is important 
to stress that the phenomenon of genetic bottleneck is inter-
pretable from both virus and host perspective (Voskarides 
et al. 2018).

In the case of the viruses, the newly colonised region 
might be a new host (host switch) or organ (Voskarides et al. 
2018; Zwart and Elena 2015). Bottleneck events occur dur-
ing both intra- and inter-species steps of the viral life cycle 
(Gutiérrez et al. 2012). An interesting aspect of virus evo-
lution and the bottleneck effect is the case of multipartite 
viruses (e.g. plant-infecting nanoviruses or animal-infecting 
bidnaviruses, alphatetraviruses, nodaviruses and picobirna-
viruses). These package their genetic material as indepen-
dently encapsidated separate segments (Lucía-Sanz and 
Manrubia 2017). Self-evidently, bottleneck events have a 
crucial role for these viruses, as all genomic segments are 
needed for a successful infection. Furthermore, the different 
genomic segments drift at different rates (Gallet et al. 2018).

Antiviral Defence Mechanisms

Under the constant threat of an infection, cellular organisms 
have developed multiple layers of different defence mecha-
nisms (not solely) against these genetic parasites to protect 
themselves and their genomic integrity.

Shuttled Weapons

Most strikingly, antiviral defence mechanisms often have 
viral origins too (Broecker and Moelling 2019; tenOever 
2016; Villarreal 2009). The simplest mechanism is the 
superinfection exclusion, where an integrated and expressed 
endogenous viral protein provides protection from exoge-
nous infection. This was first described in the tobacco plant, 
but it is applied by prokaryotes, animals or other plants as 
well (Moelling et al. 2017). The development of such a 
defence mechanism was observed in sheep and koalas for 
example. Retroviral elements were endogenised even as 
recently as 200 and 100 years ago in the genomes of sheep 
and koala, respectively, providing protection against certain 
exogenous retroviral infections (Armezzani et al. 2014; Tar-
linton et al. 2006).

But such basic integrations are not the only examples. 
The recently described bacterial antiphage system, CRISPR-
Cas (Charpentier and Doudna 2013), has its roots in at least 
five different classes of mobile genetic elements (Koonin 
and Makarova 2017). The Argonaute proteins show struc-
tural and functional homologies to the retroviral replication 
machinery and provide protection against invading nucleic 
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acids in prokaryotes (Moelling et al. 2006). The RNA inter-
ference system of eukaryotes shares the same homologies, 
and it is available in each of the five eukaryotic superking-
doms, suggesting a very ancient evolutionary origin (Cerutti 
and Casas-Mollano 2006). Though present, this system does 
not provide antiviral effects in chordates. But also here, 
endogenous retroviruses provide transcription factor bind-
ing sites for interferon-stimulated genes (Chuong et al. 2016; 
Ito et al. 2017), whereas the Rag recombinases—needed for 
the diversification of antibodies—originate from transposons 
found in the genomes of starfish, oysters and sea urchins 
(Kapitonov and Koonin 2015).

Other Mechanisms

The most ancient defence mechanism might be the use of 
antisense RNAs, where the gene translation of the invad-
ing pathogen is interfered by small complementary RNAs 
(Gottesman and Storz 2011). Against DNA phages, bacte-
ria often use restriction endonucleases, cleaving the viral 
genome (Kobayashi 2001). Piwi-interacting RNAs associ-
ate with nucleases and provide defence against transpos-
able elements. The latter are available in all metazoans, 
and they may have a common origin with the prokaryotic 
Argonaute system (Iwasaki et al. 2015). As already men-
tioned, the RNA interference does not provide an antiviral 
effect in chordates; instead, pattern recognition receptors 
were developed. Engagement of these by pathogen-associ-
ated molecular patterns (i) induces antiviral cytokines: the 
tumour necrosis factor, available in most eukaryotic line-
ages, but in chordates rather the interleukins and interferons 
(Levy et al. 2011), and (ii) activates the natural killer cells 
too (Esteso et al. 2017). The APOBEC3 protein is part of 
the innate immune system in humans, it targets specifically 
retroviruses and interferes with their reverse transcription 
(Sheehy et al. 2002). However, HIV counteracts this effect 
by the viral infectivity factor, which triggers the degrada-
tion of APOBEC3 (Donahue et al. 2008). Furthermore, it 
was also observed that human leucocyte antigen I and II 
loci are genetically more diversified in pathogen- (most pre-
dominantly virus-) rich environments (Prugnolle et al. 2005; 
Sanchez-Mazas et al. 2012).

After this short general introduction on the highlights 
of the topic, we focus on the coevolutionary processes of 
selected DNA viruses: adeno-, herpes-, NCLD-, polyoma- 
and circoviruses.

Adenoviruses

Adenoviruses are DNA viruses, the major capsid proteins 
of the non-enveloped, icosahedral capsid are the hexon, the 
penton base and the protruding fibre, responsible for receptor 

binding. Their non-segmented, double-stranded, linear 
genome varies between 26 and 45 kbp in size, and the DNA 
is covalently bound to the terminal protein (Harrach 2014). 
Adenoviruses infect vertebrate hosts, and are clustered into 
five accepted and one proposed genera. Members of the gen-
era Mastadenovirus and Aviadenovirus infect mammals and 
birds, respectively. Atadenoviruses were detected in reptiles, 
birds, ruminants and a marsupial possum; siadenoviruses in 
birds, a frog and a tortoise. The single member of the genus 
Ichtadenovirus is the white sturgeon adenovirus. The sixth 
genus was proposed recently: testadenoviruses were detected 
in testudinoid turtles only until now (Doszpoly et al. 2013).

As these viruses were described from five major classes 
of the vertebrates, the hypothesis was formed that adeno-
viruses had started to coevolve with the vertebrates 450 
million years ago, before the divergence of fish from other 
vertebrates (Kovács et al. 2003). Mast-, avi-, at-, si- and 
ichtadenoviruses had been thought to coevolve with mam-
mals, birds, reptiles, amphibians and fish, respectively 
(Benkő and Harrach 2003). This hypothesis was partially 
questioned later, as the white sturgeon and the frog adeno-
virus—the latter belonging to genus Siadenovirus—are the 
single fish or amphibian adenoviruses, respectively, discov-
ered until now (Davison et al. 2000; Doszpoly et al. 2019). 
Furthermore, several avian adenoviruses clustered into the 
genus Siadenovirus (Ballmann and Harrach 2016; Kovács 
and Benko 2011; Kovács et al. 2010; Lee et al. 2014). Yet, 
it is equally possible that several further amphibian and fish 
adenoviruses are awaiting discovery.

Adenoviruses are generally thought to be host specific 
with usually one or very few host species for a specific viral 
serotype. Still, during the hundreds of millions of years, 
host changes did happen, e.g. there were ten predicted host 
switches in the evolution of human adenoviruses in 4.5 mil-
lion years (Hoppe et al. 2015). The most striking assumed 
host switch happened for some atadenoviruses. These are 
thought to be the lineage coevolving with squamatid reptiles 
originally (Wellehan et al. 2004), but presumably a virus 
strain had jumped to an ancient ruminant during the evolu-
tionary history. Atadenoviruses were isolated from cattle, 
sheep and mule deer, suggesting some level of coevolution 
already. However, the high genomic A + T content—hence 
the name atadenovirus—contradicts long cospeciation of 
these viruses (Benkő and Harrach 1998).

Non-reptile atadenovirus genomes are characterised by 
57.0–66.3% A + T content, whereas reptile atadenoviruses 
are not affected by such bias (Farkas et al. 2002; Harrach 
2008; Papp et al. 2009; Wellehan et al. 2004). Examples 
from other virus families are known: the influenzaviral 
nucleotide composition changes following a host jump from 
bird to mammal (Greenbaum et al. 2008), or similar differ-
ences were observed between flaviviruses or herpesviruses 
of different hosts (Jenkins et al. 2001; McGeoch et al. 2006). 
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Obviously, this composition has an effect on codon usage, 
thus the complete genome sequence might be under evo-
lutionary pressure (Shackelton et al. 2006). Still, the exact 
cause of this bias in atadenoviruses is unknown, but it is 
hypothesised that longer coevolutionary times—adaptation 
of the virus to the host—result in a balanced nucleotide 
composition (Farkas et al. 2002; Papp et al. 2009; Wellehan 
et al. 2004).

Similar observations were made about pathology. Adeno-
viruses generally cause a mild disease, and there are apa-
thogenic strains at least in healthy individuals. E.g. recent 
research shows that only specific and not all serotypes of 
the species Fowl aviadenovirus D and E cause inclusion 
body hepatitis in chicken (Schachner et al. 2018; Zadravec 
et al. 2011). But recent host switches might result in an 
elevated pathogenicity (Benkő and Harrach 2003; Jánoska 
et al. 2011; Kohl et al. 2012; Vidovszky et al. 2015). For 
instance, duck adenovirus 1 is apathogenic in ducks and 
geese, but causes the egg drop syndrome in chickens (Hess 
et al. 1997). Another atadenovirus causes a haemorrhagic 
epizooty among mule deer (Lehmkuhl et al. 2001; Woods 
et al. 1996). Or bovine adenovirus 10—though a mastad-
enovirus—is only distantly related to other bovine mastad-
enoviruses, and it causes a severe acute fibrinous enterocol-
itis (Horner et al. 1989). The A + T content of the known 
genome part is over 59%, and from serologically identical 
strains several fibre size variants were described (Ursu et al. 
2004). These mutations might be the consequences of an 
ongoing evolution, and represent the adaptation to a rela-
tively new host, cattle (Benkő and Harrach 2003).

The most investigated adenoviruses are evidently human 
and other primate adenoviruses. Codivergence is not obvious 
here at the first look as host switches blur the picture (Hoppe 
et al. 2015; Purkayastha et al. 2005; Roy et al. 2009; Wevers 
et al. 2011), but it is still observable. The most ancient line-
ages are the prosimian and New World monkey adenoviruses 
(Podgorski et al. 2018). On the next branches we can find 
the Old World monkey adenoviruses including members of 
Human mastadenovirus (HAdV) A, F and G (Gilson et al. 
2016; Pantó et al. 2015; Podgorski et al. 2016) (Fig. 1). Evo-
lutionarily speaking, strains of HAdV-B and -E are of gorilla 
or chimpanzee origin, respectively; and strains of HAdV-B 
jumped to the common ancestor of humans and chimpan-
zees two times most probably (Hoppe et al. 2015). HAdV-C 
seemingly codiverged with gorillas, chimpanzees, bonobos 
and humans, whereas HAdV-D viruses infect only humans 
(Hoppe et al. 2015). The long-term coevolution of HAdV-D 
and humans is supported by the high variety of types within 
the species (Ismail et al. 2018b; Kaján et al. 2018), and their 
usually facultative pathogen nature.

Exactly in HAdV-D strains it is often observed that 
homologous recombination has a driving force in adenovirus 
evolution (Crawford-Miksza and Schnurr 1996; Gonzalez 

et al. 2015; Ismail et al. 2018a; Kaján et al. 2017; Robinson 
et al. 2013; Walsh et al. 2009). Predominantly, intraspecies 
recombination events are common, but intergenus recom-
binants have also been reported already: the head domain 
of the porcine adenovirus 5 (genus Mastadenovirus) fibre 
seems to be of atadenoviral origin (Nagy et  al. 2002), 
though a porcine atadenovirus has not been discovered yet. 
Recombination enables an accelerated, modular evolution 
of viruses, ‘and has been associated with such features as 
the evasion of host immunity (Malim and Emerman 2001), 
the development of antiviral resistance (Nora et al. 2007), 
the ability to infect new hosts (Hon et al. 2008), increases in 
virulence (Khatchikian et al. 1989) and even the creation of 
new viruses (Weaver 2006)’ (Holmes 2013).

Herpesviruses

Herpesviruses (HVs) are large (150–200 nm) icosahedral, 
enveloped viruses having a so-called tegument layer between 
the capsid and the envelope. HVs possess a linear, non-
segmented, double-stranded DNA genome (135–295 kbp) 
(Pellett et al. 2011). They are known to infect all classes 
of vertebrates, from fish to humans; moreover, HVs were 
discovered in some mollusc species as well (Davison et al. 
2009). Chronologically, HVs of mammals and birds were 
known first causing different diseases in humans, livestock 
and poultry. Later, several decades ago, HVs of reptiles, 
fishes and amphibians were also reported (Fawcett 1956; 
Rebell et al. 1975; Wolf and Darlington 1971). These novel 
viruses were tentatively classified into the family Herpesvir-
idae because of their morphological features. The first non-
vertebrate HV was discovered in a mollusc species in the 
1970s (Farley et al. 1972). As more sequence data became 
available, molecular analysis provided insight into the evolu-
tion of HVs, and these newly discovered viruses were also 
officially classified into the family Herpesviridae (Davison 
1998; Davison et al. 2006, 2005; Davison and Davison 1995; 
McGeoch and Gatherer 2005). In 2009, the taxonomy of 
HVs changed radically, as the family Herpesviridae was split 
into three families. The novel family Herpesviridae contains 
only the HVs of higher vertebrates (Amniotes), while the 
family Alloherpesviridae contains the HVs of amphibians 
and fish (Anamnia), and the family Malacoherpesviridae 
contains the HVs of molluscs. The three families were clus-
tered under the novel order Herpesvirales (Davison et al. 
2009). These three groups of HVs are related only tenu-
ously to each other. There are only a few genes showing 
homology in all known HVs, the most conserved gene is 
the putative ATPase subunit of terminase, its gene product 
being responsible for the packaging of the viral DNA into 
the capsid (Davison et al. 2009). Interestingly, a homologous 
gene was found in T4 bacteriophages (Myoviridae) implying 
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Fig. 1   Phylogeny reconstruction (maximum likelihood analysis) 
based on partial sequences of the IVa2 protein of primate adenovi-
ruses (AdVs). A phylogenetic tree of primates is shown in the bottom 
left corner to demonstrate the parallel evolution of AdVs and hosts. 
SAdV-A, Simian mastadenovirus A; HAdV-B, Human mastadenovi-

rus B, etc. Hosts of AdVs presumably belonging to species HAdV-
C are marked with asterisks due to their separation. [From Podgorski 
et al.: Adenoviruses of the most ancient primate lineages support the 
theory on virus–host coevolution (2018) Acta Vet Hung 66:474, with 
permission from Akadémiai Kiadó.]
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the common origin of HVs and tailed bacteriophages (Baker 
et al. 2005).

The phylogenetic relationship of HVs is well studied and 
their evolution was found to be largely synchronous with 
host lineages (McGeoch et al. 2000, 2006). Exceptions have 
been noted among the mammalian (McGeoch et al. 2006) 
and fish HVs (Kelley et al. 2005). The major sublineages 
within the subfamilies (Alpha-, Beta-, Gammaherpesvirinae) 
of Herpesviridae emerged probably before the mammalian 
radiation, 60 to 80 million years ago, while the diversifica-
tion time point of the three subfamilies had been around 
200 million years ago (McGeoch et al. 1995, 2000). The 
most common ancestor of all known HVs (order Herpesvi-
rales) existed around 400 million years ago based on similar 
phylogenetic branching patterns of HVs and host lineages 
(McGeoch et al. 2006).

As for mammalian HVs, several studies were conducted 
on their evolutionary route spanning shorter time periods. 
For example, Bovine herpesvirus 4 (BoHV-4) has been iso-
lated from cattle worldwide and this species was thought to 
be the original host of the virus. However, BoHV-4 has been 
reported from wild buffalo and other ruminants as well (Ros-
siter et al. 1989; Todd and Storz 1983). Later, serological 
studies implied that the original host of the virus might be 
the African buffalo (Syncerus caffer) (Dewals et al. 2005). 
This hypothesis was confirmed by phylogenetic calculations, 
suggesting that BoHV-4 has been coevolving with the Afri-
can buffalo for the last 1.5 million years, and the virus was 
passed to cattle on at least three independent occasions much 
more recently, sometimes via an intermediate species (Dew-
als et al. 2006). In another study, the phylogenetic trees of 
primate cytomegaloviruses and their hosts’ were compared, 
and primate cytomegalovirus genomes were also analysed. 
The obtained results demonstrated the coevolution of these 
viruses with their hosts (Russell et al. 2016). Furthermore, 
the avian and reptilian HVs were clustered into the subfam-
ily Alphaherpesvirinae, relating to the development of birds 
from reptilian progenitors (McGeoch and Gatherer 2005).

As for the members of the family Alloherpesviridae, phy-
logenetic inferences strongly support the monophyly of fish 
and amphibian HVs within the order Herpesvirales (Waltzek 
et al. 2009). The comparison of the phylogenetic trees of 
viruses and hosts implied that closely related HVs in the 
family may have coevolved with their hosts, whereas codi-
versification was not supported at deeper nodes of the tree 
(Waltzek et al. 2009). In other words, the separation of the 
main alloherpesvirus lineages does not fully resemble that 
of the host taxa. One explanation can be that the ancestors 
of the different viruses diverged before the separation of the 
various fish lineages, and thus the different virus lineages 
evolved independently. The strong similarity among viruses 
of distantly related fish species could be explained by host 
switches (Doszpoly et al. 2011).

Integrated herpesviral genomes in host chromosomes 
were also discovered in the last years, giving insight into the 
virus–host coevolution and providing interesting data about 
the genome organisation and content of ancient virus species 
(Aswad and Katzourakis 2017; Inoue et al. 2017; Savin et al. 
2010). The discovery of a new lineage of alloherpesviruses 
associated with at least fifteen different fish species was 
reported. One of them seems to represent a full-length viral 
genome in salmon (Salmo salar) (Aswad and Katzourakis 
2017). An interesting discovery of a HV genome integrated 
into the genome of an invertebrate chordate provides links 
to the ancient ancestors of mollusc and vertebrate HVs: 
the genome of Branchiostoma floridae (Florida lancelet or 
amphioxus) contains several genes showing homology to 
herpesviral genes, implying the existence of a HV associated 
with this invertebrate chordate. The terminase and polymer-
ase gene sequences from the putative amphioxus HV show 
higher similarity to those of the mollusc HVs than to any 
vertebrate HVs (Savin et al. 2010). The discovery of this 
virus gave data about HVs dating back to the separation of 
vertebrates and invertebrates.

Nucleo‑cytoplasmic Large DNA Viruses

Nucleo-cytoplasmic large DNA viruses (NCLDV) are a 
group of DNA viruses including the families Ascoviridae, 
Asfarviridae, Iridoviridae, Marseilleviridae, Mimiviridae, 
Pithoviridae, Phycodnaviridae and Poxviridae (Koonin and 
Yutin 2010, 2019). A new virus order, the Megavirales was 
proposed [but not yet accepted by the International Commit-
tee on Taxonomy of Viruses (ICTV)] to collect the above-
mentioned virus families (Colson et al. 2013). Their host 
range spans from unicellular eukaryotes via arthropods to 
vertebrates (even mammals). NCLDVs replicate within the 
cytoplasm of the infected cells, yet in some families (e.g. iri-
doviruses) a nuclear stage is also present. Hence, NCLDVs 
encode many genes required for their own successful repli-
cation, but still use the translational apparatus of the host. 
Although the genome size (between 100 and 2500 kb) and 
host range of NCLDVs vary greatly, they appeared to form 
a monophyletic group with a common ancestor, based on a 
subset of about 30 conserved genes (Filée et al. 2008). For 
instance, iridoviral homologues of ATPase, the A1L/VLTF2 
transcription factor, the major capsid protein and the DNA 
polymerase proteins show considerable sequence similarity 
with asfar-, asco-, mimi-, pycodna- and poxvirus counter-
parts (Boyer et al. 2009).

In 2003, the discovery of mimivirus, the first giant 
amoeba virus (La Scola et al. 2003) with its large virion 
(700  nm) in the size range of bacteria and archaea, 
altered a century-long vision about the sizes and genome 
structures in the virosphere. Its genome was also huge 
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(1200 kb) (Raoult et al. 2004), comparable to the smallest 
free-living prokaryote genomes (Koonin 2009), and con-
tained several genes of distant origins (eukaryotic, bacte-
rial or viral) acquired by lateral/horizontal gene transfer 
(Filée 2009). This led to the concept of ‘giant viruses are 
giant chimeras’ (Moreira and Brochier-Armanet 2008). 
The mimivirus was found to contain nearly all NCLDV 
core genes and clustered phylogenetically with phycodna-
viruses based on these (Claverie et al. 2009, 2006). This 
suggested that it was an oversized NCLDV. Nonetheless, 
the translation system component genes seemed to illus-
trate a divergent evolutionary past. On the corresponding 
phylogenetic trees, mimiviruses clustered on a distinct 
branch, separated from the three established domains of 
cellular life (bacteria, archaea and eukaryotes). This strik-
ing novel observation has triggered the ‘fourth domain 
hypothesis’, according to which giant viruses evolved 
from cellular ancestors, most likely of an extinct fourth 
domain, via the reductive evolution route (Colson et al. 
2012, 2011). However, the most recent evolutionary recon-
struction favoured a less peculiar alternative hypothesis, 
the multiple origin of viral gigantism (Koonin and Yutin 
2018). This latter analysis, based on well-conserved genes, 
defined three major branches on the NCLDV tree, suggest-
ing at least three independent emergences from smaller 
viruses. For the translation-related genes, phylogenetic 
analysis showed kinship between viral and different eukar-
yotic lineages, suggesting lateral gene transfers at different 
time points of the virus evolution. Further evolutionary 
reconstructions revealed a connection between NCLDVs 
and smaller eukaryotic viruses, e.g. adenoviruses, and 
ultimately, derived all these viruses from tailless bacte-
riophages (Koonin and Yutin 2019). The reconstructed 
phylogeny was as follows. Branch #1 included most of 
the real giants (>500 kb): the extended family Mimiviri-
dae and pandoraviruses. Branch #2 gathered the families 
Asco-, Irido-, Marseille- and Pithoviridae. This branch 
contained the widest variation of genome sizes (100 kb 
to 1500 kb). Branch #3 included only non-giants in two 
distinct clades: Asfarviridae (African swine fever virus 
and its protist-infecting relatives) and Poxviridae. Accord-
ing to the present knowledge, a major host switch took 
place two times along this branch. Once during the early 
history of poxviruses, which infect both arthropods and 
vertebrates, two animal phyla that radiated from the com-
mon ancestor more than 500 million years ago (Oliveira 
et al. 2017). Thereafter an apparent coevolution with the 
hosts also took place within the two subfamilies resulting 
in what we see today: several genera and poxvirus ‘types’ 
infecting a wide range of arthropod and vertebrate species. 
The second host switch happened at a later evolutionary 
stage in the sensu lato asfarviruses. Within this group a 
few apparently related viruses infect protists and pigs too 

(Alonso et al. 2018; Andreani et al. 2017; Bajrai et al. 
2016).

Shifting the perspective to branch #2 families: we can see 
that using a concatenated set of 9 genes common to these, a 
close relationship has been confirmed, suggesting that asco-
viruses emerged recently and share a common ancestor with 
invertebrate iridoviruses (Piégu et al. 2015). However, the 
replication strategies and morphologies are markedly dif-
ferent in these two virus groups replicating in invertebrate 
hosts (Federici et al. 2009). The evolutionary steps leading 
to these significant alterations still remain obscure.

This phylogenetic reconstruction of the NCLDVs dem-
onstrated a ‘turbulent evolution’, which was dominated by 
gene gain, while on other branches substantial gene loss was 
apparent. The branches that include giant (protist) viruses 
are the most prominent gene gainers, whereas NCLDVs 
infecting animal hosts have undergone considerable gene 
losses, a sort of ‘genome contraction’ during their evolu-
tion from ancestral protist viruses. It was hypothesised that 
in animals, the selective pressure for virus genome size is 
stronger than in protists, yet its mechanism needs to be ana-
lysed (Koonin and Yutin 2018).

Polyomaviruses

Polyomaviruses (PyVs) are non-enveloped icosahedral DNA 
tumour viruses with a double-stranded, cca. 5000-bp-long 
circular DNA genome. Approximately 80 accepted PyV 
species form the family Polyomaviridae; the species are 
clustered into four genera (Alpha-, Beta-, Gamma- and Del-
tapolyomavirus) according to the ICTV. The taxonomical 
classification of PyVs is based on the genetic distance of the 
large tumour antigen. Still, some PyVs cannot be categorised 
into any accepted genus, so these require additional genera 
in the future (Moens et al. 2017a).

The organisation of the circular PyV genome is highly 
conserved: the 5–7 genes are located on both strands, and 
distributed into early and late regions. There is a non-coding 
control region as well. The early coding region contains reg-
ulatory proteins: the small and the large tumour antigen. The 
late coding region contains the genes of the structural pro-
teins, like the major (VP1) and two minor capsid proteins. 
The approximately 500-bp-long non-coding control region 
contains regulatory elements and transcription promoters, 
the origin of DNA replication (Moens et al. 2017b).

PyVs are known to infect mammals and birds, but using 
viral metagenomics, PyVs were identified and characterised 
also in fish and arthropods (Buck et al. 2016; Peretti et al. 
2015). Analysing the available divergent sequence data of 
PyVs, results indicate that PyVs have been progressively 
coevolving with their hosts for about half billion years. Still, 
the current taxonomic classification system does not reflect 
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this coevolution. This might be explained using phyloge-
netic analyses of PyV genes: some modern PyV species 
arose after ancient recombination events involving distantly 
related PyV lineages (Buck et al. 2016). The mammalian 
PyVs are known to be highly host specific and coevolving 
with their hosts. PyVs are generally apathogenic in humans, 
causing symptoms mainly in immunosuppressed individu-
als. However, e.g. Merkel cell polyomavirus (species Human 
polyomavirus 5) is oncogenic like several other mammalian 
PyVs.

Intra-host molecular evolution is also a feature of some 
PyV infections in humans. Mutations in the early region can 
lead to the expression of a truncated form of the large tumour 
antigen protein. Rearrangements in the non-coding control 
region and point mutations in VP1 have been described in 
two important human PyVs: JCPyV and BKPyV (Helle et al. 
2017). In the case of JCPyV, mutations of these loci lead to 
the development of progressive multifocal leukoencephalop-
athy. Non-coding control region rearrangements in BKPyV 
are proposed to play a direct role in the development of PyV-
associated nephropathy. Therefore, intra-host viral evolution 
appears to be an essential component of the disease process 
(McIlroy et al. 2019).

As discussed already, a recent host switch or a broader 
host range is usually associated with elevated pathogenic-
ity. This is true for PyVs too: closely related PyVs can be 
detected in healthy bats of the genus Rhinolophus (Carr 
et al. 2017), whereas the goose haemorrhagic polyomavirus 
infects geese, Muscovy ducks and mulards, and the budg-
erigar fledgling disease virus (species Aves polyomavirus 1) 
infects birds of diverse families (Johne and Müller 2007).

Circoviruses

Circoviruses (family Circoviridae) are vertebrate-infecting, 
single-stranded DNA (ssDNA) viruses with one of the 
smallest (~2 kb) virus genomes (Parrish 2011). The cir-
cular genome contains two genes (rep and cap) encoding 
the replication-associated (Rep) and the capsid (Cap) pro-
teins, respectively (Biagini et al. 2011). The first recognised 
circoviruses, namely porcine circovirus 1 infecting swine 
and wild boar (Tischer et al. 1982, 1974) and the beak and 
feather disease virus of parrot species (Pass and Perry 1984) 
have been known for a long time. Still, the diversity of cir-
coviruses and circular replication-associated protein encod-
ing ssDNA (CRESS DNA) viruses was not revealed until 
recently. The continuous improvement of molecular methods 
has facilitated the discovery of numerous novel circo- and 
CRESS DNA viruses over the past few years (Delwart and 
Li 2012; Rosario et al. 2017; Shulman and Davidson 2017; 
Zhao et al. 2019).

Unfortunately, as most of this knowledge originates from 
metagenomic surveys of environmental samples, the exact 
host–virus linkage is often hard to decipher. In such cases, 
different comparative in silico approaches, like cophylogeny 
analysis of host and virus or a nucleotide composition analy-
sis might help find a solution (Harrach 2000; Kapoor et al. 
2010; Kemenesi et al. 2017; Shackelton et al. 2006). The 
results of some phylogenetic tree reconstructions suggested 
the potential long-term adaptation of some circovirus groups 
to birds, mammals, reptiles and fish (Altan et al. 2019; Del-
wart and Li 2012; Dennis et al. 2018; Fehér et al. 2013).

In relation to circoviruses and their hosts, the research 
of EVEs and their potential role in host cells has deepened 
recently. It was revealed that the complete or partial circo-
virus genome might be integrated into the host genome as 
an EVE. To date, primarily rep- but also cap-homologues 
have been detected in different animal genomes using bio-
informatics approaches (Aiewsakun and Katzourakis 2015; 
Aswad and Katzourakis 2012; Belyi et al. 2010; Dennis 
et al. 2019, 2018; Fehér et al. 2013; Gibbs et al. 2006; Gil-
bert et al. 2014; Holmes 2011; Horie and Tomonaga 2011; 
Katzourakis and Gifford 2010; Krupovic and Forterre 2015; 
Liu et al. 2011). There are various possible functions—e.g. 
antiviral protection—proposed for different circoviral EVEs 
depending on the location and type of integration, but the 
exact impact of these is poorly known (Aswad and Katzou-
rakis 2012; Dennis et al. 2018; Honda and Tomonaga 2016; 
Horie and Tomonaga 2011; Katzourakis and Gifford 2010; 
Liu et al. 2011). In the authors’ opinion, the quick evolution 
of these viruses via recombination (Lefeuvre et al. 2009; 
Martin et al. 2011; Rosario et al. 2012) and the RNA virus-
like high mutation rates (Duffy et al. 2008; Firth et al. 2009; 
Rosario et al. 2012) can facilitate genomic integration, adap-
tation to the host cell or host switches. This hypothesis is 
supported by studies of related viruses (Gibbs and Weiller 
1999).

By comparative analyses of the Rep-encoding gene super-
family, some authors propose the plant-infecting geminivi-
ruses as the ancestors of both nanoviruses and circoviruses 
(Londoño et al. 2010; Mankertz et al. 1997; Meehan et al. 
1997; Rosario et al. 2012). In the opinion of Gibbs and 
Weiller (1999), a plant-infecting nanovirus had switched 
to a herbivorous vertebrate first, and then recombined with 
a picorna-like virus (supposedly a calicivirus) via a retro-
transposable element or a retrovirus. If we dig even deeper, 
the homologues of the ssDNA virus Rep were described in 
plasmids of eubacteria and algae, suggesting an evolution-
ary relationship (Gibbs et al. 2006; Liu et al. 2011; Oshima 
et al. 2001). In some authors’ opinion, the close phylogenetic 
relatedness of several circoviruses replicating in various host 
species may be the sign of cross-species transmissions (Del-
wart and Li 2012; Gibbs et al. 2006; Li et al. 2011; Liu et al. 
2011). The common presence of the highly conserved Rep 
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and the mechanism of the rolling circle replication (Faurez 
et al. 2009) are the most obvious evidences for the common 
ancestry of the ssDNA virus taxa and ssDNA molecules 
(Martin et al. 2011). Members of the family Circoviridae 
and related viruses have been existing for 40 to 50 million 
years. Some authors hypothesise even 100 million years 
of coevolution with the vertebrates based on EVEs (Belyi 
et al. 2010; Delwart and Li 2012; Katzourakis and Gifford 
2010). By that period—from the middle Cretaceous to the 
late Eocene epoch—the main vertebrate groups had evolved 
already (Ravi and Venkatesh 2008). Others estimate the age 
of bird and mammalian circoviruses to be a mere 500 years, 
questioning long-term coevolution with the hosts (Firth et al. 
2009). The evolutionary route of these viruses is not clear 
yet, and further research is needed both for circoviruses and 
their hosts.

Concluding remarks

As seen from the example of this latest mentioned dispute 
concerning the appearance of circoviruses, there are a num-
ber of unsettled questions in connection with the coevolu-
tionary processes observed in DNA viruses and their hosts. 
In the paragraphs above, we have listed these major pro-
cesses. (1) Apparent speciation and coevolution of adenovi-
rus lineages (genera) with the different vertebrate families. 
Here, host switches to new taxa were marked both with 
shift in the genome content (codon usage, A + T content) 
and more severe pathology in the non-coevolved hosts. (2) 
In connection with herpesviruses (HVs) a longer coevolu-
tionary past was supposed, largely synchronous with the 
more divergent (vertebrate and invertebrate) host lineages. 
Integrated HV genomes in host chromosomes were dem-
onstrated to provide new data about the genome content of 
ancient HVs and a new HVs lineage. Moreover, the discov-
ery of a HV core gene homologue in tailed bacteriophages 
established the phylogenetic relatedness between two seem-
ingly unrelated virus orders (Herpesvirales, Caudovirales) 
and broadened the perspective for the coevolutionary stud-
ies. (3) Concerning NCLDVs, we have discussed that many 
earlier unrelated virus families with large/giant capsid and 
genome sizes and even more divergent host range (from 
protists to vertebrates) can be phylogenetically linked based 
on a subset of core genes. This phylogenetic reconstruction 
demonstrated a ‘turbulent evolution’, which was dominated 
by gene gain and gene loss via horizontal gene transfer both 
from other viruses and from host genomes. (4) In connection 
with polyomaviruses (PyV) the recombination among PyV 
lineages generating novel virus species was also mentioned, 
and the importance of the intra-host molecular evolution 
was discussed in more detail. It was demonstrated that point 
mutations and rearrangements in non-coding control regions 

both can critically alter the pathogenic potential, immuno-
genicity and target organs of related PyVs of a single host 
species. (5) In the case of circoviruses (or more broadly 
CRESS DNA viruses), higher mutation rates and rolling cir-
cle type replication of their ssDNA, alongside with recom-
bination events and integration into host genomes as well as 
presumed cross-species transmissions of distant hosts were 
simultaneously forming the coevolutionary processes.

The above list is extensive, yet not exhaustive. The pre-
sented examples cover a large portion of the animal DNA 
viruses, but many known and yet unknown families with 
potentially diverse coevolutionary strategies were not cov-
ered. One of these could be the recently discovered ‘adoma-
viruses’, which are apparently products of rampant gene 
exchange between adeno-, papilloma- and polyomaviruses 
and their ancient and more recent (fish) hosts (Welch et al. 
2018). As mentioned in the introduction, protein struc-
ture based homology searches can reveal such similarities 
between poorly sequence-conserved proteins and unravel the 
otherwise hidden evolutionary connections of viruses and 
their hosts.

Viruses have always been around. Their parasitic lifestyle 
had an enormous driving effect on the evolution of all organ-
isms, and thus life would not be the same without them. 
Future research will hopefully shed light on the exact origin 
and coevolutionary history of all viruses.
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