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Abstract
Interfacial internal wave excitation in the wake of towed ships is studied experimentally in a quasi-two-layer fluid. At a critical 
‘resonant’ towing velocity, whose value depends on the structure of the vertical density profile, the amplitude of the internal 
wave train following the ship reaches a maximum, in unison with the development of a drag force acting on the vessel, known 
in the maritime literature as ‘dead water’. The amplitudes and wavelengths of the emerging internal waves are evaluated for 
various ship speeds, ship lengths and stratification profiles. The results are compared to linear two- and three-layer theories of 
freely propagating waves and lee waves. We find that despite the fact that the observed internal waves can have considerable 
amplitudes, linear theories can still provide a surprisingly adequate description of subcritical-to-supercritical transition and 
the associated amplification of internal waves. We argue that the latter can be interpreted as a coalescence of frequencies of 
two fundamental stable wave motions, namely lee waves and propagating interfacial wave modes.
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1  Introduction

When a ship is traveling through a strongly stratified water 
body, a certain amount of its kinetic energy is being used up 
for the excitation of internal waves in its wake, hardly notice-
able from the surface, yet perceived as a drag force acting on 
the vessel. For centuries, the phenomenon has been known 
to Norwegian seamen as “dödvand” or dead water. In the 
fjords of the Scandinavian coastline, freshwater from slow 
glacier runoff gently sets on top of the saline seawater with-
out substantial mixing and hence nearly jump-wise verti-
cal density profiles can develop (Parsmar and Stigebrandt 
(1997)). These circumstances facilitate particularly strong 
dead water effect associated with large-amplitude wave 
activity along the internal density interface (pycnocline).

In the logbook of the 1893–1996 Norwegian Polar 
Expedition Arctic explorer, Fridtjöf Nansen reported 
experiencing marked dead water drag on board research 
vessel Fram that reduced the ship’s speed to a fifth part. 
Nansen’s original observations were further analyzed by 
(the then-PhD student) Ekman, who, to understand the 
phenomenon, has conducted laboratory experiments in a 
quasi-two-dimensional wave tank, filled up with a two-
layer working fluid consisting of saline- and freshwater. 
In these measurements, a scale model of Fram was towed 
along the surface subjected to either constant or gradually 
changing force as control parameter, against which the 
model’s velocity U was measured (Ekman 1904). Ekman 
found that for smaller towing forces (and smaller U) dead 
water drag Fdw follows a quadratic scaling Fdw ≈ �U2 up 
to a certain threshold, where coefficient �  is a function 
of the density profile �(z) and the wetted area of the ship.

However, when U  reaches a critical value of 
U ≈ 0.8 ⋅ c

(2)

0
 , where c(2)

0
 denotes the long-wave velocity of 

interfacial waves on the pycnocline (to be discussed later) 
the corresponding Fdw starts to decrease significantly. At 
this domain, where the Froude number Fr ≡ U∕c

(2)

0
 is in 

the range of 0.8 − 1 , the drag acting on the ship reaches a 
maximum, coincidentally with the excitation of interfacial 
waves of the largest amplitude along the pycnocline.

Then in Ekman’s “changing force”-type experiments, a 
hysteresis was encountered, as sketched in Fig. 1. When 
the gradually increasing towing force reached a certain 
tipping point (the right end of the red branch in Fig. 1), 
the speed of the ship suddenly jumped to a higher value. 
An analogous drop of U could be observed when decreas-
ing the towing force in time (blue branch of Fig. 1). The 
unstable branch (dashed line) is inaccessible to the system 
for any prescribed towing force. When initiating experi-
ments with a constant force within this hysteretic regime, 
Ekman found that the ship’s velocity U exhibited large 
fluctuations, comparable to the mean value (Ekman 1904).

If one intends to explore the dynamics in this unstable 
branch it is, therefore, beneficial to conduct experiments 
in which, instead of the applied force, the towing velocity 
U is prescribed. Such settings are common in the labora-
tory modeling of lee-wave dynamics (see, e.g., Eiff and 
Bonneton 2000; Knigge et al. 2010; Gyure et al. 2003; 
Vosper et al. 1999), where obstacles of various shapes are 
being towed at the surface (or at the bottom) in a tank of 
stratified working fluid and the properties of the gener-
ated internal waves, hydraulic jumps and ‘wave rotors’ are 
evaluated (Vosper 2004; Sachsperger et al. 2015, 2017).

In the present experimental work, we follow a similar 
approach to address the dead water phenomenon, by pull-
ing a ship model at a constant speed and—instead of the 
experienced drag—analyzing the properties of the excited 
interfacial waves on the pycnocline. Here the ‘critical 
regime’ is characterized by wave patterns whose vertical 
extent is comparable to the height of the upper layer. The 
fact that wave amplitudes show strong dependence on the 
wave velocity (that is set by ship speed U) implies that the 
waves are of nonlinear nature (Yuan et al. 2007). Even for 
velocities where no wave trains are observed, the local-
ized bump following the ship at the pycnocline resembles 
the solitary wave solutions of the nonlinear Korteweg–de 
Vries equation (Apel 2003; Boschan et al. 2012).

A large pool of theoretical, numerical and experimental 
studies exists discussing the properties of internal waves 
emerging in the dead water problem addressing nonlinear 
wave excitation both in the subcritical (Grue 2015; John-
son and Vilenski 2004; Lacaze et al. 2013) and supercriti-
cal (Grue et al. 2016; Robey 1997) regimes, as well as the 

Fig. 1   Hysteresis of ship speed—as observed and discussed by 
Ekman in his original work—illustrated graphically as a function of 
changing towing force (decreasing branch: blue, increasing branch: 
red). The unstable branch is marked with a dashed line. The green 
curve represents the (inverse of) subcritical relationship F

dw
≈ �U2



Experiments in Fluids (2020) 61:6	

1 3

Page 3 of 12  6

applicability of the theoretical findings to observational 
data, including the historical logs of Fram (Grue 2018).

The aforementioned characteristic feature of dead water 
phenomenon that internal wave drag (and amplitude) exhib-
its a peak at around Fr ≈ 0.8 − 1 can already be explained 
in linearized finite-depth two-layer theories, as shown by, 
e.g., (Miloh et al. 1993; Yeung and Nguyen 1999). Despite 
of the obvious nonlinearity of the problem, as far as the 
large-amplitude interfacial wave forms are concerned when 
this peak is encountered, the effect of nonlinear corrections 
is often found to be surprisingly minor in this respect (see, 
e.g., Fig. 5 of Grue et al. 2016).

In a series of earlier laboratory experiments on topogra-
phy-induced large-amplitude interfacial waves (Vincze and 
Bozoki 2017), we have also demonstrated that linear three-
layer theories, e.g., the one of Fructus and Grue (2004) may 
yield remarkably good fits to experimental data. Therefore, 
in the present work, we focus on the applicability of linear 
theories to the dead water phenomenon in similarly stratified 
settings. Our aim here is to explore the U-dependence of the 
wavelength and amplitude of internal waves in the wake and 
contrast the results with predictions of the linear theory for 
lee waves and for freely propagating three-layer interfacial 
waves. These measurements supplement the ‘constant force’ 
experiments of Mercier et al. (2011) who have conducted 
state-of-the-art measurements with a prescribed towing 
force (utilizing a falling weight) to propel a ship model in a 
rather similar setup. It is to be emphasized that the difference 
between the ‘constant force’ and ‘constant velocity’ settings 
may be a crucial issue from the maritime applicability point 
of view (ships are driven at constant power usually), but is 

not an essential difference in the framework of the present 
study.

The main finding to be reported here is that the largest 
interfacial wave amplitudes emerge when the typical wave-
length of the freely propagating interfacial wake waves 
(whose velocity is set by the speed of the ship model) is 
equal to the wavelength associated with ‘trapped’ lee waves 
(whose frequency is determined by the buoyancy frequency 
of the density profile) and thus a coalescence of frequencies 
and wave numbers develops between these two fundamental 
co-existing wave motions. Similar resonance-like amplifi-
cation involving, e.g., vorticity waves and internal gravity 
waves has already been reported in stratified systems, see, 
e.g., (Carpenter et al. 2011). Yet, to the best of our knowl-
edge, the present work is the first to interpret the problem of 
dead water phenomenon in this framework.

The paper is organized as follows. Section 2 describes the 
experimental setup and the applied data acquisition meth-
ods. Our results are presented in Sect. 3. The paper is then 
concluded with a brief discussion of the findings in Sect. 4.

2 � Experimental setup and measurement 
methods

The experiments reported here have been carried out in a 
rectangular laboratory tank made of transparent plexiglass. 
Its length and width are L = 239 cm and w = 8.8 cm, respec-
tively (see Fig. 2). The tank was filled up to level H = 12 
cm with density-stratified water: the bottom domain con-
tained saline water solution colored by red or blue food dye 

Fig. 2   The schematics of the 
setup. The geometrical param-
eters of the tank are L = 239 cm 
(total length, not fully shown), 
w = 8.8 cm, and H = 12 cm
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for the sake of visualization. Following the preparation of 
this layer, freshwater was poured through a sponge slowly 
onto the water surface to minimize mixing effects and to 
yield quasi-two-layer density profiles, characterized by an 
approximately 2-cm-thick region of steep density increase 
(see Fig. 3) or ‘gradient layer’. The temperature differences 
within the water body were negligible.

The properties of the 11 different stratification profiles are 
summarized in Table 1. h(2)

1
 and h(2)

2
 mark the effective thick-

nesses of the upper and bottom layers, respectively, using the 
two-layer approximation [hence, the upper index ‘(2)’], i.e., 
assigning a jump-wise effective density change to the 

mid-height of the gradient zone. As a characteristic vertical 
scale in the system a ‘reduced thickness’ Hr can be introduced 
as the harmonic mean of h

(2)

1
 and h

(2)

2
 ,  i .e. , 

Hr =
(
h
(2)

1
h
(2)

2
)∕(h

(2)

1
+ h

(2)

2

)
 . Table 1 also lists the values of 

the average density �2 of the bottom layer and the correspond-
ing two-layer linear interfacial wave velocity c(2)

0
 in the long-

wave limit that reads as

(1)c
(2)

0
=

√
g
�2 − �1

�1
Hr,

Fig. 3   Vertical density profiles of the experiments as measured with 
a conductivity probe. Three configurations of two-layer thicknesses 
were prepared with various bottom layer densities, as shown in the 
three panels (the dashed lines mark the theoretical interfaces of the 

two-layer approximation.) a h(2)
1

= 7 cm, h(2)
2

= 5 cm; b h(2)
1

= 3 cm, 
h
(2)

2
= 3 cm; c h(2)

1
= 5 cm, h(2)

2
= 7 cm. The middle layer thicknesses 

h
(3)

2
 of the three-layer approximations for the same profiles are also 

indicated by yellow coloring (cf. Table 1)

Table 1   Geometrical and 
physical parameters of the 
experiments for the two- and 
three-layer approximations 
(above and below the double 
line, respectively)

Experiment series #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

h
(2)

1
 (cm) 7 7 7 7 7 7 3 3 3 5 5

h
(2)

2
 (cm) 5 5 5 5 5 5 9 9 9 7 7

H
r
 (cm) 2.9 2.9 2.9 2.9 2.9 2.9 2.25 2.25 2.25 2.9 2.9

�
2
 (kg/l) 1.019 1.029 1.008 1.003 1.047 1.025 1.004 1.020 1.048 1.004 1.020

c
(2)

0
 (cm/s) 7.30 8.92 4.63 2.71 11.28 8.29 2.92 6.64 10.02 3.35 7.56

h
(3)

1
 (cm) 6 6 6 6 6 6 2 2 2 4 4

h
(3)

2
 (cm) 2 3 3 3 3 2 2 2 2 2 2

h
(3)

3
 (cm) 4 3 3 3 3 4 8 8 8 6 6

N
1
 (rad/s) 0.18 0.32 0 0.03 0.16 0.23 0.10 0.27 0.37 0.24 0.55

N
2
 (rad/s) 2.95 3.04 1.67 1.05 4.58 3.45 1.45 3.14 4.84 1.47 3.13

N
3
 (rad/s) 1.05 0.69 0.15 0.0 1.50 0.73 0.33 0.39 0.36 0.17 0.21

c
(3)

0
 (cm/s) 6.96 8.1 4.4 2.75 12.25 7.95 2.95 6.25 9.55 3.4 7.2
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where g denotes the gravitational acceleration and �1 ≈ 1 
kg/l is the average density in the top (freshwater) layer 
(Sutherland 2010).

For a more precise treatment of the density profiles, a three-
layer approximation can also be applied (Fructus and Grue 
2004), in which the top, gradient and bottom layers (indexed 
with j = 1, 2, 3 , respectively) are characterized by their 
approximate thicknesses h(3)

j
 and density gradients, or equiva-

lently, their buoyancy (or, Brunt–Väisälä) frequencies Nj that 
take the form

The values of h(3)
j

 and Nj are obtained via piecewise linear 
regression to a given profile by determining the intersection 
points and slopes of the fitted lines. In the three-layer theory 
of Fructus and Grue (2004) for ‘piecewise linear’ stratifica-
tion, there is no such an explicit formula for the long-wave 
velocities c(3)

0
 as in the two-layer approximation (1), as will 

be addressed later. Hence, the c(3)
0

-values in Table 1 are 
numerical results.

To capture dead water phenomenon, we investigated the 
interfacial internal wave excitation behind towed LEGOTM 
‘tug boat’ models (series 4005 and 4025) (1982). These toy 
ships have a modular design of a bow and a stern building 
block and four removable identical intermediate segments. 
Thus, five configurations ( S1–S5 ) with different lengths d could 
be investigated, as listed in Table 2 and shown in Fig. 4. The 
width of the models was 5.9 cm, comparable to tank width w. 
The ship model was towed by a (nylon) fishing line spanned 
horizontally above the water surface by ca. 10 cm, as sketched 
in Fig. 2, and driven by a DC motor whose voltage (and hence, 
the towing speed) could be adjusted between the experiment 
runs. The ship models’ draught (i.e., the vertical distance 
between the waterline and the bottom of the hull) was found 
to be approximately 1 cm in all cases. It is to be noted that in 
such a narrow tank, the flow is practically two dimensional; 
therefore, we did not (and could not) investigate the three-
dimensional structure of the wake.

Each experiment was recorded with a HD video camera 
(at frame rate 50 fps and frame size 720 px × 1280 px ) point-
ing perpendicularly to the sidewall close to the middle of the 
tank, yielding a spatial resolution of ca. 0.5 mm. To acquire 
the precise value of ship velocity U and to obtain time series 
of vertical motion of the interface, the video recordings were 

(2)Nj ≡

√

−
g

�0

d�

dz

|||j.

evaluated by Tracker, an open-source correlation-based feature 
tracking software (http://physl​ets.org/track​er/).

3 � Results

3.1 � Qualitative description of the flow

As a ship model moves along the tank in the studied velocity 
range U ∈ (1.3;12.2) cm/s, it generates pronounced waves 
on the internal interface, while the displacement of the free 
water surface remains negligible, as visible in Fig. 4. An 
important property of the observed dynamics is that the 
internal waves are following the ship and propagate at the 
same velocity as the ship itself. This is visualized in the 
space-time plots of Fig. 5 for three different constant towing 
speeds U (see caption). In these diagrams, the shading of a 
point at horizontal position x and time t is given by the sum 
darkness (i.e., number of black pixels in grayscale-converted 
frames) of the pixel column at x as calculated from the video 
frame at time t, e.g., the ones shown in Fig. 4. The interface 
displacement at each time instant is obtained via subtracting 
the aforementioned sum darkness from its initial value at rest 
(obtained before the towing has started) at the given position 
x. As the background of the tank is stationary throughout 
the videos, the spatial and temporal changes in darkness are 
attributed to internal waves. The trajectory of the bow of 
the ship is highlighted with solid black line in each panel.

Table 2   The lengths of the used ship configurations

Configuration S1 S2 S3 S4 S5

d (cm) 9.8 16.2 22.6 29 35.4

Fig. 4   The five different ship configurations of increasing length d, 
marked S1–S5 (downward. cf. Table 2). The bottom layer is visual-
ized using red food dye. The snapshots are organized such that the 
first wave trough locations behind the ship models are underneath 
each other

http://physlets.org/tracker/
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The typical wavelength � and the characteristic ampli-
tude A of the internal waves are set by the towing speed 
U, the density profile �(z) , and the ship’s length d. The 
A(U) dependence is far from monotonous: for each strati-
fication, there exists an intermediate velocity U∗ at which 
internal waves of the largest amplitude develop. This 
‘resonant’ amplification is demonstrated with the video 
frames in Fig. 6 for three values of towing velocity U, 
listed on the panels (stratification #11, ship configura-
tion S2). The snapshots are aligned such that the largest 
displacements of the density interface (marked with black 
vertical lines) are beneath each other for better compara-
bility. The ship model’s direction of motion is leftward 
in all images.

At the smallest U (uppermost panel), a wave crest 
appears at the interface beneath the ship model. For larger 
Us, a train of waves form (cf. Fig. 5) and the first crest 
shifts towards the stern of the ship, while the charac-
teristic horizontal size (peak-to-peak wavelength � ) of 
the interfacial disturbance increases. Coincidentally, its 
vertical size (or, amplitude A) also increases and reaches 
a maximum at U∗ , as captured in the second panel of 
Fig. 6. In the U > U∗ regime, wavelength �(U) continues 
to increase, but amplitude A(U) starts to decrease, as seen 
in the two bottom panels in Fig. 6. In the following sub-
section, we explore the parameter dependence of U∗ and 
the associated internal wave dynamics.

3.2 � Parameter dependence of the critical towing 
speed

The observed maximum vertical interface displace-
ments A (hereafter referred to as amplitudes) against 

Fig. 5   Space-time plots of interfacial wave propagation behind the 
ship model. (Stratification profile #11, ship configuration S2.) The 
towing speeds are U = 4.40 cm/s (a) U = 4.82 cm/s (b) U = 6.31 cm/s 
(c). Horizontal position x and time t are measured from the left edge 
of the image and from the start of the ship motion, respectively. The 

coloring in each panel is normalized to the respective minimum and 
maximum values; thus, amplitudes of the different cases cannot be 
compared to each other. The black lines represent the trajectories of 
the bow of the ship. The dark vertical lines are position markers on 
the tank itself, cf. Fig. 4

Fig. 6   Interfacial wave excitation behind ship model S2 for different 
towing velocities U at stratification profile #11. The snapshots are 
organized such that the first wave trough locations behind the ship 
models, marked by black vertical lines, are underneath each other. 
The wave amplitude is largest at U∗ = 5.3 cm/s



Experiments in Fluids (2020) 61:6	

1 3

Page 7 of 12  6

towing speed U are shown in Fig. 7a for four exemplary 
experiment series. The symbols correspond to different 
stratification profiles (namely #5, #8, #9, and #10, see 
legend and cf. Table 1 and Fig. 3). All four series were 
conducted using ship configuration S2 ( d = 16.2 cm) and 
were selected for demonstrational purposes. The error 
bars represent the spatial resolution of the analyzed video 
records.

Apparently, critical towing speed U∗ markedly depends 
on the properties of density profile �(z) with values rang-
ing between 2.1 and 9.1 cm/s. Based on earlier results 
(Miloh et al. 1993; Motygin and Kuznetsov 1997), the 
relevant nondimensional velocity scale of the dead water 
problem is the internal Froude number Fr, i.e., the ratio 
of the ship speed U and the two-layer long-wave veloc-
ity c(2)

0
.

U∗ indeed scales linearly with c(2)
0

 as confirmed by 
the scatter plot of Fig. 7b. Here each data point repre-
sents the towing velocity maximizing amplitude A in the 
given series of experiments (the different symbols indi-
cate the various ship configurations used, as indicated 
in the legend). The dashed line shows the linear fit of 
U∗ = 0.80 (±0.01) c

(2)

0
 to all data points.

Thus, Froude number Fr ≡ U∕c
(2)

0
 indeed appears to 

be an important parameter of the dynamics. However, as 
will be addressed in what follows, other physical param-
eters of the stratification profiles and even ship length 
d affect the occurrence of maximum interfacial wave 
amplitudes.

3.3 � Comparison with linear two‑ and three‑layer 
theories

Here we compare the observed wave (and ship) speeds U 
and wave numbers k to the available theoretical predictions 
of linear two- and three-layer theories.

Assuming two homogeneous water layers of different 
densities separated by a sharp interface, the phase velocity 
reads as

where the notations are as introduced in Sect. 2 (Pedlosky 
2013). In the long-wave ( k → 0 ) limit, the relationship takes 
the form of equation (1); therefore, c(2)(0) ≡ c

(2)

0
 . Expressing 

the velocities and wave numbers in the problem’s ‘natural’ 
nondimensional units, i.e., U∕c

(2)

0
 and kHr (hereafter referred 

to as k′ ), respectively, maps equation (3) to the same curve 
for all two-layer density profiles. This graph is shown with 
blue solid line in Fig. 8, alongside the measured data points. 
The symbol shapes mark different ship configurations (see 
legend) and the coloring represents nondimensional wave 
amplitude A′ , i.e., the maximum vertical displacement A of 
the interface divided by the parameter a of the fitted reso-
nance curve of the given ship configuration (cf. Fig. 7). k′ 
was calculated via measuring peak-to-peak wavelengths 
� = 2�∕k between the second and third wave troughs. Note, 
that this method yields a considerable smaller value of � 
than the typical length of the first wave trough (cf. Fig. 5). 

(3)c(2)(k) =

√
g

k

�2 − �1

�1 coth(h
(2)

1
k) + �2 coth(h

(2)

2
k)
,

Fig. 7   a Interfacial wave amplitudes A as a function of towing veloc-
ity c(2)

0
 for exemplary stratification profiles #5, #8, #9, and #10 (cf. 

Table 1) obtained with ship configuration S2. b Critical towing speed 
U∗ as a function of two-layer long-wave velocity c(2)

0
 . The differ-

ent symbols denote different ship configurations (see legend). Error 
bars represent the sampling of the towing velocities. The dashed line 
shows the linear fit U∗ = 0.8c

(2)

0
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Runs where no wave train developed were omitted from this 
analysis.

The linear two-layer theory systematically overestimates 
the wave speeds for larger values of k′ ; as the wavelength 
becomes comparable to the thickness of the pycnocline, the 
two-layer approximation—assuming step function-like den-
sity profiles—is not sufficient anymore. Interestingly, how-
ever, the best agreement between the data and the theory 
(in the k� ≈ 0.5 domain) is observed at near-resonant wave 
speeds, i.e., where wave amplitudes A′ are large (see Fig. 8).

For larger towing speeds ( U∕c
(2)

0
≳ 0.8 ), the observed 

wave numbers remain larger than the predictions of the 
two-layer theory and exhibit a roughly inversely propor-
tional scaling U∕c

(2)

0
∝ k�−1 (see the gray hyperbolic guide 

curves in Fig. 8) the implications of which will be dis-
cussed in Sect. 3.4.

The linear three-layer theory described in Fructus and 
Grue (2004) has provided a quite accurate description of 
the observed interfacial velocities and wave numbers in 
flow-topography interaction experiments (Vincze and 
Bozoki 2017). This approximation assumes rigid top sur-
face, small-amplitude waves, and three layers with depths 
h
(3)

j
 ( j = 1, 2, 3 ) and piecewise linear stratification charac-

terized by buoyancy frequencies Nj (see Eq.  2 and 
Table 1). This model was chosen for our analysis as the 
simplest one in the literature that can properly treat the 
aforementioned ‘non-step function-like’ property of the 
density profiles.

The dispersion relation c(3)(k) can be derived numeri-
cally from the implicit equation

where Kj =
√

N2
j
∕(c(3))2 − k2 is the vertical wave number in 

layer j and Tj = Kj cot(Kjh
(3)

j
) . The maximum wave speeds 

c
(3)

0
 listed in Table 1 corresponding to the long-wave ( k → 0 ) 

limit are also derived numerically from the above 
formulae.

To demonstrate the difference between the predictions 
of the two- and three-layer theories, the rescaled c(3)(k) 
curve calculated with the parameters of stratification pro-
file #5 (see Table 1) is added to Fig. 8 in the form of a 
red curve. Note that unlike the aforementioned two-layer 
curve (blue), the three-layer one is not invariant at all in 
the units used here. For instance, in this exemplary case 
c
(3)

0
> c

(2)

0
 holds, but for many other profiles, the sign would 

be reversed (cf. Table 1). Therefore, the red curve in Fig. 8 
should not be compared with all the data points in the plot 
(only to those that are obtained for stratification profile #5, 
not highlighted in the figure).

Instead, for a meaningful presentation of the two mod-
els’ performance, we plot the theoretical phase velocities 
of the two- and three-layer models against the measured 
wave speeds U for each observed wave number k in the 
correlation diagrams of Fig. 9a and b, respectively. In both 
panels, the theoretical long-wave velocity ( c(3)

0
 or c(2)

0
 ) was 

used as the unit for nondimensionalization. Symbol shapes 
denote different ship configurations and the coloring repre-
sents rescaled amplitude A′ as in Fig. 8. It to be remarked 
that with the particular density profiles applied here, where 
N2 ≫ N1,N3 holds, a further simplification of the model 
would be possible by setting N1 = N3 = 0 . We found that 
in this case, the numerical results of c(3)(k) remain the 
same within ±5%.

As noted before, the two-layer theory systematically 
overestimates the speeds in the U∕c

(2)

0
≲ 0.8 range (i.e., 

when U ≲ U∗ ), thus the vast majority of the data points 
scatter above the y = x line (black) in panel a. The three-
layer theory, however, yields a fairly good match with the 
observations in the same subcritical regime. In the super-
critical range, however, both two- and three-layer approxi-
mations break down entirely, as indicated by the deviation 
of the data points from the y = x line, implying that here 
another physical mechanism becomes relevant in the wave 
number selection.

(4)K2
2
− T1T2 − T1T3 − T2T3 = 0,

Fig. 8   Nondimensional towing (wave) speeds U∕c
(2)

0
 as a function 

of nondimensional wave number k� = kHr . The symbol shapes mark 
different ship configurations (see legend), and the color scale marks 
nondimensional amplitude A′ , rescaled by the (polynomial-)fitted 
maximum values of the corresponding resonance curves (cf. Fig. 7). 
The blue curve represents the invariant (with respect to the nondi-
mensional units used here) two-dimensional velocity–wave number 
relation (3), the red curve denotes an exemplary three-layer relation, 
obtained for the parameters of experiment #5, based on the implicit 
formula (4) of Fructus and Grue 2004. The gray curves represent two 
hyperbolae,i.e., ‘iso-frequency curves’ in the corresponding nondi-
mensional time units, y = 0.5∕x and y = 1∕x , respectively.
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3.4 � Lee‑wave dynamics

A hyperbola in a velocity–wave number (c(k)) dispersion 
plot marks a constant frequency � (since c = �∕k ). For the 
nondimensional parameters of Fig. 8 the hyperbolic guide 
curves represent identical frequencies with respect to the 
stratification-dependent time unit 

√
Hr�1∕(g(�2 − �1)) . Thus, 

the fact that the data points appear to follow hyperbolic scal-
ing when U > U∗ implies that a characteristic frequency 
associated with the given density stratification �(z) deter-
mines the observed wave numbers.

Such physically meaningful ‘eigenfrequencies’ are the 
buoyancy frequencies Nj of the layers (see Table 1), among 
which the mid-layer value N2 is the largest in all cases. Fit-
ting the function �∕k to the dimensional U(k) data in the 
U > U∗ (supercritical) range yields the empirical frequency 
parameter � that is plotted against N2 in Fig. 10. The error 
bars represent the regression errors and, as before, the 
different symbols mark various ship configurations. The 
scattering of the data points indicate a linear relationship 
� = 0.48 (± 0.01)N2 . The result of the fit is shown with a 
black solid line.

The simplest (linear) theory that describes fixed fre-
quency wave propagation behind an obstacle in a strati-
fied fluid is that of lee waves emerging at the downstream 

Fig. 9   Two-layer (a) and three-layer (b) theoretical velocities as a 
function of the measured towing (and wave) speed U. The symbol 
shapes mark different ship configurations (see legend), and the color 
scale marks nondimensional amplitude A′ , rescaled by the (polyno-
mial-)fitted maximum values of the corresponding resonance curves 

(cf. Fig. 7). The values on both the horizontal and vertical axes are 
rescaled with respect to the long-wave limit velocities of the respec-
tive approximation (two layers for a, three layers for b). The black 
solid curves represent the y = x line

Fig. 10   Correlation plot between the intermediate layer buoyancy fre-
quency N

2
 and fitting parameter � , obtained by regression to the U(k) 

plots in the U > U∗ velocity range. The different symbols and colors 
represent different ship configurations (see legend). The error bars 
denote the fit errors (standard deviations) of � . The slope of the black 
linear function is 0.48
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sides of mountain (or seamount) ridges (Sachsperger et al. 
2015, 2017). If the system is characterized by a single 
buoyancy frequency N (linear stratification) and the obsta-
cle is moving at velocity U with respect to the medium 
then U = N cos(�)∕klee holds (Pedlosky 2013), where � is 
the tilt of the wave number vector �lee from the horizontal 
( |�lee| = klee ). Thus, the maximum achievable klee becomes 
klee = N∕U , corresponding to fully horizontal wave propaga-
tion. [ (N∕U)2 is referred to as ‘Scorer parameter’ in lee wave 
theory (Sachsperger et al. 2015).]

As mentioned above, buoyancy frequencies N1 and N3 of 
the top and bottom layers are small in the studied density 
profiles, thus any lee wave activity is expected to be confined 
to the roughly 2-cm-thick intermediate layer which would 
then act as a ‘waveguide’ (Vincze and Bozoki 2017) for the 
observed oscillation frequencies (i.e., above N1 and N3 ) at 
the interface. Since the layer thickness is an order of mag-
nitude smaller than the typical wavelengths in the U > U∗ 
regime, �lee is nearly horizontal here ( � ≈ 0).

The linear scaling presented in Fig. 10 appears to be 
consistent with the proposition that it is indeed lee wave-
like dynamics that is observed in the supercritical regime, 
but—due to the peculiarities of the stratification profile—
not in its ‘classical’ form. As an empirical correction we 
may, therefore, introduce an effective buoyancy frequency 
Neff ≈ 0.48N2 to characterize the stratification, whose pos-
sible physical interpretation will be addressed in Sect. 4.

Finally, we investigated the critical wavelength 
�∗(≡ 2�∕k∗) corresponding to the maximum amplitude as 
a function of ship length d. The results are shown in Fig. 11 
for seven different stratification profiles, marked by different 
colors and symbols. The solid black line marks y = x and 
the gray guides are linear functions with a slope of 0.5 and 
a vertical offsets 10 cm and 27 cm. Apparently, the critical 
wavelength tends to increase with ship length that roughly 
follows the empirical formula �∗ ≈ 0.5d + f (�(z)) , imply-
ing that the ship configuration also plays a role in the wave 
number selection.

4 � Discussion and conclusions

Inspired by the historical work of Ekman analyzing the ‘dead 
water’ phenomenon (Ekman 1904), we have conducted labo-
ratory experiments on wave excitation by a ship model towed 
at a fixed speed over a salinity stratified water body. We have 
analyzed the dependence of the interfacial wave number k 
and peak-to-peak amplitude A on the towing speed U, the 
stratification profile �(z) and ship length d.

Due to the fact that in this setting the observed ampli-
tudes are comparable to the characteristic vertical length 
scale Hr of the problem, the excited waveforms can only 
be explained, if at all, by means of nonlinear wave theories 
(see, e.g., Grue 2015; Grue et al. 2016). Yet, we deliberately 
focused our analysis on linear approximations to explore to 
what extent can these account for the basics of the observed 
dynamics, most notably the resonance-like amplitude ampli-
fication around U∕c

(2)

0
= 0.8 and the associated transition in 

terms of the U(k) dependence.
From the findings reported in the previous section it 

appears that the observable characteristic wave number k 
at a given U is set by the larger one of the corresponding 
three-layer wave number k(3)(U) predicted by the linear 
approximation of Fructus and Grue (2004) and the lee wave 
number klee(U) derived using ‘effective buoyancy frequency’ 
Neff ≈ 0.48N2 . In other words, among the two competing 
mechanisms, the one yielding shorter waves generates the 
first trough behind the ship model and, hence, sets the char-
acteristic wavelength in the system. The crossing point of the 
two dispersion relations, where klee = k(3) holds is encoun-
tered around the critical towing speed U∗ , as sketched in 
Fig. 12. At this resonant wave number, the two wave types 
would be superimposed onto each other resulting in an 
amplified interfacial wave excitation, that is confirmed by 
the observations. As a secondary effect, the selection of the 
resonant wavelength �∗ was also found to be influenced by 
the length d of the ship, as shown in Fig. 11.

The reason for the occurrence of the aforementioned 
factor of 0.48 in the effective buoyancy frequency Neff is 
unclear. Comparing this value to the internal wave dispersion 

Fig. 11   Critical wavelength �∗ (corresponding to the maximum 
amplitude) as a function of ship length d. The different symbols mark 
different stratifications. The slopes of the black and gray linear guide-
lines are 1 and 0.5, respectively
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relation � = N2 cos(�) within the intermediate layer we find 
that it would imply a wave propagation whose lines of con-
stant phase lie at an angle � ≈ 61◦ to the vertical. However, 
we were not able to identify any geometrical constraint (e.g., 
one associated with the depression at the interface behind 
the ship) that would necessitate the presence of such a limit-
ing angle.

On the other hand, taking the total bottom-to-surface den-
sity difference Δ� and assuming linear stratification along 
the full depth H gives a certain ‘mean buoyancy frequency’ 
Nm =

√
g∕�1 (Δ�∕H) which is found to follow the aver-

age scaling Nm ≈ 0.46(± 0.04)N2 for the profiles listed in 
Table 1, which is fairly close to Neff . Thus, the explanation 
may be that for long waves whose wavelength � exceeds 
H, the otherwise complex three-layer profile can be simply 
‘averaged over’ in terms of density gradients.

It is to be noted that the co-existence of boundary-trapped 
lee waves and internal waves (behind a step-shaped obstacle) 
has been investigated experimentally in Sutherland (2002); 
there, however, the two wave types were propagating in a 
rather different manner, as the internal wave modes could 
freely enter the top domain of the tank due to the continuous 
linear stratification applied. (In the present case, these wave 
modes are also restricted to the vicinity of the pycnocline.)

Our results clearly demonstrate the somewhat surpris-
ing and unexpected message that linear theories can occa-
sionally be applied to the description of interfacial waves in 
such velocity and amplitude ranges that otherwise belong 
to the domain of nonlinear wave dynamics. Future research 
is in preparation to investigate the transient temporal char-
acteristics of the dead water phenomenon via linear stabil-
ity analyses, similar to the stratified plane-Couette problem, 

where also a prominent peak of wave amplitudes has been 
described in terms of Fr, see (Facchini et al. 2018). It is 
clear, however, that linear models are insufficient to describe 
more complex features of the observed phenomena, e.g., 
waveforms, vorticity, etc. The authors also hope to increase 
awareness in the community about the dead water phenom-
enon, which—despite being discovered over a century ago—
is still an interesting ground for theoretical, numerical, and 
experimental research.
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