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Highlights 

• Rate constants of reactions with •OH, H• and eaq
− were determined 

• Formation of hydroxylated fluorescent products requires •OH 

• Reaction with H• and eaq
− does not results in fluorescent products 

• Hydroxylated products are more sensitive to •OH in bulk than coumarin 

• Adsorption on TiO2 has to be considered when evaluating •OH scavenging effect 
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Abstract 

 

Transformation of coumarin (COU) and coumarin-3-carboxylic acid (3-CCA), the 

formation of their fluorescent hydroxylated products, (7-hydroxy-coumarin (7-HO-COU) and 

7-hydroxy-3-carboxycoumarinic acid (7-HO-3-CCA)) were investigated and compared using 

three different advanced oxidation processes: gamma radiolysis, VUV (172 nm) photolysis 

and heterogeneous photocatalysis (TiO2/UV (300-400 nm)). Beside •OH (hydroxyl radical), 

other reactive species: H• (H-atom, in VUV irradiated aqueous solution and in gamma 

radiolysis with low yield) and eaq
− (hydrated electron, in gamma radiolysis) also contributed 

to the degradation. 

The reaction rate constants of COU and 3-CCA with each reactive species were 

determined via pulse radiolysis. The values obtained were: 6.88 × 109 and 4.9 × 109 with •OH; 

2.5 × 109 and 1.3 × 109 with H•; 11.4 × 109 and 14.3 × 1010 mol−1 dm3 s−1 with eaq
−, in the case 

of COU and 3-CCA, respectively. Based on the results of radiolysis it was suggested, that the 

formation of fluorescent products are initiated only by •OH. 

The effects of dissolved O2 and •OH scavengers (MeOH and t-BuOH) were also 

investigated. In radiolysis dissolved O2 increased the formation rate of fluorescent products. 

In VUV photolysis of COU and 3-CCA solutions the inhibition effect of alcohols was more 

pronounced in the presence of O2 than in its absence. In heterogeneous photocatalysis both 

MeOH and t-BuOH decreased the transformation rate of COU, while they had no observable 

effect on that of 3-CCA, which is well adsorbed on TiO2 surface.  
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1. Introduction 

In Advanced Oxidation Processes (AOPs) generally hydroxyl radical (•OH) reactive 

intermediate plays the main role in the degradation of harmful organic pollutants. Several 

fluorescent probes e.g., coumarines, phenoxazine or 9-phenylxanthene (Shen et al., 1995; 

Villegas et al., 2005; Newton et al., 2006) have been proposed for use with scavenger 

methods to quantify the •OH yields. 

Both coumarin (COU) and coumarin-3-carboxylic acid (3-CCA) (Fig. 1) have been used 

for the detection of •OH in the case of γ-radiolysis and heterogeneous photocatalysis. 

Reaction of COU and 3-CCA with •OH produces fluorescent products (7-hydroxy-coumarin 

(7-HO-COU) and 7-hydroxy-3-carboxycoumarinic acid (7-HO-3-CCA), respectively) (Fig. 1) 

with excitation bands at ∼320-370 nm and ∼380-400 nm, respectively, and emission 

maximum at ∼450 nm (Manevich et al., 1997; Louit et al., 2005; Maeyama et al., 2011a, 

2011b). Due to the carboxyl group in its structure 3-CCA undergoes a 

protonation/deprotonation equilibrium with pKa 3.3-3.7 (Collins et al., 1994; Manevich et al., 

1997). 

 

 

 

 

 

 

 

 

Figure 1. Structures of the investigated substances and their fluorescent hydroxylated 

products. 

a: Coumarin (COU); b: Coumarin-3-carboxylic acid (3-CCA); c: 7-Hydroxycoumarin (7-HO-

COU); d: 7-Hydroxycoumarin-3-carboxylic acid (7-HO-3-CCA) 

 

Using radiolysis, the yield of 7-HO-COU was determined, the formation of different 

hydroxycoumarins and the dissolved O2 dependency of 7-HO-COU formation were 

investigated by Louit et al., 2005. The applicability and •OH scavenging properties of 3-CCA 

during γ-radiolysis were also investigated (Manevich et al., 1997), and the reaction rate 
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constants and 7-HO-3-CCA yields were determined using competitive technics (Newton et 

al., 2006). The hydroxylation process and the O2 dependency of 3-CCA was found to be 

similar to that of COU (Yamashita et al., 2012). 

By detecting •OH COU was also used to study the mechanism of photocatalysis (Czili 

et al., 2008; Cernigoj et al., 2009; Nosaka et al., 2014; Kakuma et al., 2015; Zhang et al., 

2015; Nagarajan et al., 2017).  

In the case of radiolysis, TiO2 photocatalysis and VUV photolysis reactive 

intermediates other than •OH also form, e.g., hydrated electron (eaq
−), superoxide radical 

anion/perhydroxyl radical pair (O2
•−/HO2

•) or hydrogen atom (•H). The aim of this work was 

to determine their reactions with COU and 3-CCA and to check whether these intermediates 

also give some fluorescing product. Besides, our purpose was to compare both the reactions 

and the •OH detection ability of 3-CCA and COU. To better understand and evaluate the 

results, pulse radiolysis coupled with time resolved spectroscopy was applied to determine the 

rate constants and mechanisms of the reactions of COU and 3-CCA with various reactive 

species (•OH, H• and eaq
−). Both compounds were used to evaluate the •OH production during 

heterogeneous photocatalysis, where the different adsorption properties of COU (non-

adsorbed) and 3-CCA (well adsorbed) may play important roles. COU and 3-CCA were used 

to investigate the •OH formation rate during vacuum-ultraviolet (VUV172 nm) photolysis, too. 

Effect of dissolved O2, MeOH and t-BuOH as HO• scavengers were also investigated and 

compared in the case of each method, such as radiolysis, VUV photolysis and heterogeneous 

photocatalysis. 

 

2. Experimental 

Pulse radiolysis was conducted to observe the transient intermediates using 800 ns 

pulses of 4 MeV electrons, with optical detection in 1.0 cm cell, dose/pulse 20 Gy 

(determined using standard KSCN dosimetry) (Földiák et al., 1988). 

In γ radiolysis experiments 10 mL ampoules with COU or 3-CCA solution (1.0 × 10–4 

mol dm-3) were placed at equal distance from the 60Co γ-source of a panoramic type irradiator, 

to have a dose rate of 0.7 kGy h–1 (700 J kg–1 h–1). The solutions were irradiated in sealed 

ampoules, with doses 0.05, 0.1, 0.2, 0.4, 0.6 and 1.0 kGy. The samples were saturated with 

O2, N2O or with N2. In O2 and N2O containing solutions the pH was set to 7.0 with phosphate 

buffer. When the samples were bubbled with N2 to eliminate dissolved O2, pH 2.1 was set 

with HClO4 solution and 5 v/v% t-BuOH was added as radical scavenger. 
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The Xe2* excimer lamp (Radium XeradexTM, 130 mm long, 46 mm diameter, 20 W) 

was centred in a high purity silica quartz envelope (53 mm diameter), which transmits the 172 

nm light. The volume between the wall of the excimer lamp and the inert wall of envelope 

was rinsed with N2 for cooling the lamp and avoid the decrease of VUV light intensity via 

absorption by O2. The inert diameter of reactor was 68 mm, thus the thickness of irradiated 

water layer was 5 mm. The aqueous solution was circulated continuously (375 mL min−1) 

between the reactor and the liquid containing reservoir. Double walled, water cooled reactor 

was used and the temperature was set to 25 ± 0.5 °C. Samples were taken from the reservoir. 

The total volume of the circulated solution was 500 mL. The photon flux emitted by the 

excimer lamp (20 W) at 172 ± 14 nm determined by methanol actinometry was found to be 

3.0 × 10−6 molphoton s
−1 (Arany et al., 2013). The solution in the reservoir was bubbled with O2 

or N2. 

In heterogeneous photocatalytic experiments the TiO2 concentration was 1.0 g dm−3. 

Irradiation was performed with a fluorescent UV lamp (GCL303T5/UVA, LighTech, 

Hungary, dimensions: 307 mm × 20.5 mm, 15 W electric input) emitting in the 300–400 nm 

range with λmax = 365 nm. The photon flux of the light source was 7.23 × 10−6 molphoton s
−1, 

determined by ferrioxalate actinometry (Hatchard and Parker, 1956). The volume of the 

irradiated suspension was 250 mL. Since 3-CCA adsorbed well on the surface of TiO2, before 

filtration 0.5 mL 0.5 mol dm–3 NaF solution was added to 1.0 mL suspension for desorption 

of both 3-CCA and 7-HO-3-CCA. By this way, both compounds were desorbed completely. 

To remove the photocatalyst particles, samples were centrifuged and filtered with a syringe 

filter (FilterBiO PVDF-L, 0.20 µm). 

The transformation of COU and 3-CCA were followed using spectrophotometry 

(Agilent 8453). Absorbance was determined at the maximum of the spectra, 277 nm and 291 

nm in the case of COU and 3-CCA, respectively. The molar absorbance of COU and 3-CCA 

at these wavelengths were 10300 and 12100 mol–1 dm3 cm–1, respectively. 

Fluorescence spectroscopy (Hitachi F4500) was applied to determine the concentration 

of formed hydroxylated products, 7-HO-COU and 7-HO-3-CCA. Excitation wavelength for 

7-HO-COU was 345 nm and pH 5.5 was set for each measurement. The determination of 7-

HO-COU concentration was based on the intensity of the emitted fluorescence light at 455 

nm. The 7-HO-3-CCA concentration was measured based on the intensity of the emitted 

fluorescence light at 447 nm. The wavelength of excitation was 387 nm. pH 9.5 was set to 

avoid the emission of fluorescent light from 3-CCA. 
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Sigma-Aldrich® and VWR® provided analytical standard for COU, 3-CCA, 7-HO-COU 

and 7-HO-3-CCA (> 98%). Methanol (MeOH) and t-buthanol (t-BuOH) were purchased from 

VWR® (HiPerSolv CHROMANORM®, super gradient grade for HPLC). NaF, HCl, NaOH, 

HOCl4, Na2HPO4 and NaH2PO4 were obtained from Sigma-Aldrich. High purity water was 

prepared through Milli-Q® Integral Water Purification System (MerckMillipore®). The O2 

(99.5 %), N2 (99.995 %) and air were provided by Messer Hungarogáz Kft. The TiO2 

photocatalyst (Aeroxide P25®) was purchased from Acros Organics. 

Experiments were made in 1.0 × 10−4 mol dm−3 aqueous COU and 3-CCA solutions. 

The transformations of COU and 3-CCA were characterized by the initial rate of 

transformation, obtained from linear regression fits to the actual concentration versus the 

duration of irradiation, up to 20 % of the concentration of the transformed target compound. 

The formation rates of 7-HO-COU and 7-HO-3-CCA were obtained from linear regression 

fits to the actual concentration versus the duration of irradiation. 

 

3. Results and Discussion 

3.1. Pulse radiolysis 

Using high-energy ionizing radiation (accelerated electron irradiation or γ-rays), in 

dilute aqueous solution the degradation of water molecules supplies the reactive intermediates 

that react with the solute(s) (Buxton et al., 1988; Spinks and Woods, 1990; Buxton, 2004). 

These intermediates and their yields are •OH 0.28 µmol J–1, eaq
– 0.28 µmol J–1 and with low 

yield H• 0.062 µmol J–1. The reactions of •OH were investigated in N2O saturated solutions in 

order to eliminate the dissolved O2 and to transform eaq
– to •OH in the reaction:  

N2O + eaq
− → N2 + •O− k = 9.1 × 109 mol−1 dm3 s−1  (Pimblott et al., 1992) (1) 

•O− + H2O → OH− + •OH k = 7.9 × 107 mol−1 dm3 s−1 (Pimblott et al., 1992) (2) 

Since both COU and 3-CCA have strong light absorption below c.a. 340 nm, the spectra were 

investigated above this limit. In the COU transient spectrum there are two peaks with maxima 

at 350 and 423 nm (pH 7.0) (Fig. 2a). The decay of the two peaks showed similarities, 

although, the decay of the 350 nm band looked to be somewhat faster. However, at shorter 

wavelengths the building-up of the final products also gave some contribution to the 

absorbance. Assuming that the two peaks belong to the same intermediate(s) and •OH reacts 

solely to give these intermediates the values of molar absorbance are estimated to be 3400 and 

2000 mol−1 dm3 cm−1, respectively. The time dependences of the absorbance build-ups obeyed 
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the (pseudo-)first-order kinetics and pseudo-first-order rate constants linearly depended on the 

COU concentration. The slope yielded a second-order rate constant of 6.88 × 109 mol−1 dm3 

s−1. Our value is in agreement with the k•OH determined by Singh et al. (2002) also in pulse 

radiolysis (6.4 × 109 mol−1 dm3 s−1). The value of Gopakumar et al. (1977) obtained in 

competitive experiment is much lower (2 × 109 mol−1 dm3 s−1). 

 

Table 1. Rate constants of COU and 3-CCA reactions with •OH, eaq
–, H• and O2

•−. 

Abbreviations: Pr. pulse radiolysis, Comp. competitive technique. 

 kCOU 

(× 109 mol−−−−1 dm3 s−−−−1) 

k3-CCA 

(× 109 mol−−−−1 dm3 s−−−−1) 
••••OH 6.88, this work, Pr. 4.9, this work, Pr. 

 6.4, Singh et al., 2002, Pr. 5.0±1.0, Manevich et al., 1997, Pr. 

 2.0, Gopakumar et al., 1977, Comp. 5.5, Newton et al., 2006, Comp. 

  6.0, Yamashita et al., 2012, Pr. 

  6.8±0.2, Yamashita et al., 2012, Comp. 

eaq
– 11.4, this work, Pr. 14.3, this work, Pr. 

 17.0, Singh et al., 2002, Pr. 20.6±0.2, Yamashita et al., 2012, Pr. 

 16.0, Land and Truscott, 1979, Pr.  

H•••• 2.5, this work, Pr. 1.3, this work, Pr. 

O2
••••−−−− No reaction, Pr. No reaction, Yamashita et al., 2012, Pr. 

 

The transient absorption spectrum that forms in •OH reaction with 3-CCA (pH 7.0, Fig. 2b) 

is similar to that of the COU spectrum. The maxima of the two peaks are at ∼360 and 430 nm. 

The intensity of the transient peak at the lower wavelength is strongly influenced by the 

absorbance of 3-CCA in this wavelength region (Yamashita et al., 2012). The longer 

wavelength band here is much stronger (ε430 nm ≈ 3000 mol−1 dm3 cm−1) than in the case COU. 

Our measured rate constant of the •OH reaction is 4.9 × 109 mol−1 dm3 s−1. This k•OH is close 

to the values measured in other works, as an average of 5 determinations in Table 1 we obtain 

5.64±0.78 × 109 mol−1 dm3 s−1. 
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Figure 2. Transient absorption spectra observed in 2.0 × 10-4 mol dm-3 N2O saturated COU 

(a) and 3-CCA (b) solutions, 1.0 × 10-2 mol dm-3 phosphate buffer (pH ~7), 20 Gy. 

 
•OH is suggested to react with both molecules by addition to the electron rich aromatic ring 

(Singh et al., 2002; Yamashita et al., 2012). The reaction with the electron deficient pyranone 

ring is probably less important. The addition may take place at any carbon atoms of the 

aromatic ring, the wide absorption bands suggest the coexistence of several adduct isomers. 

The decay of the different adducts is expected to take place in radical-radical self-termination 

reactions. The absorption spectra just slightly change during the decay. 

The reactions of the eaq
– were investigated at pH 8 in solutions saturated with N2 for 

deoxygenation. The solutions contained t-BuOH in order to remove •OH in the reaction:  

 
•OH + (CH3)3COH → H2O + •CH2(CH3)2COH 

       k = 6.0 × 108 mol−1 dm3 s−1 (Buxton et al., 1988)  (3) 

 

The absorption spectra for both molecules exhibit wide and weak bands between 500 and 

700 nm, there are shoulders around 425 nm and strong bands at 360-370 nm (Fig. 3). The 
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latter bands reflects eaq
– addition to the >C=O group forming radical anion in the first step. 

This anion undergoes fast protonation giving a neutral radical >C•-OH (Singh et al., 2002). 

The rate constants were determined by following the decay of the eaq
– around the absorbance 

maximum at 720 nm. The timescale of the decay was 1 - 3 µs. 
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Figure 3. Transient absorption spectra observed in t-BuOH containing, N2 saturated, 2.0 × 10-

4 mol dm-3 COU (a) and 3-CCA (b) solutions at pH 8.0, 20 Gy. 

 

In the acidic pH range eaq
– transforms to H•: 

 

eaq
− + H3O

+ → H• +H2O k = 2.3 ×1010 mol−1 dm3 s−1 (Buxton, 2004) (4) 

 

H• reactions were investigated at pH 2.4. At this pH 3-CCA is mainly in the protonated 

form. COU and 3-CCA react with H• with rate constants of 2.5 × 109 and 1.3 × 109 mol−1 dm3 

s−1. The absorption spectra detected in H• reaction to large extent are similar to the spectra 

measured in •OH reaction: the maxima of the two peaks in H• reaction are at 385 and 465 nm 

for COU and 360 and 430 nm for 3-CCA (Fig. 4). The similarity is not surprising, since the 

reductive H• also adds to the double bonds similarly to the oxidative •OH, the distribution of 

the radical adducts also may show similarities. 
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Figure 4. Transient absorption spectra observed in t-BuOH containing, N2 saturated, 2.0 × 

10–5 mol dm–3 COU (a) and 3-CCA (b) solutions at pH 2.4, 20 Gy. 

 

3.2. Gamma-radiolysis 

Using gamma-radiolysis the aim was to investigate the possible role of eaq
–, H• and 

dissolved O2 in fluorescent hydroxylated products formation. The radiolysis measurements 

were performed in O2 saturated, N2O saturated, and in O2-free and t-BuOH containing 

solutions. Both O2 and N2O react with eaq
− (3 and 5) and H• (6 and 7):  

 

eaq
− + O2 → O2

•− k = 1.9 × 1010 mol–1 dm3 s–1 (Buxton et al, 1988) (5) 

H• + O2 → HO2
• k = 1.2 × 1010 mol–1 dm3 s–1 (Buxton et al., 1988) (6) 

H•  + N2O → N2 + •OH k = 2.1×106 mol−1 dm3 s−1 (Czapski and Pelet, 1968) (7) 

 

In N2O and O2 saturated solutions the transformation of both COU and 3-CCA is initiated 

by the reaction with •OH. N2O transforms eaq
− to •OH, therefore, the •OH formation rate is 

two times higher in N2O saturated solution than in O2 saturated one. Another significant 

difference between the N2O and O2 saturated solution is the possibility for the formation of 
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peroxyl type radicals, which generally has an important role in the transformation of parent 

compound and formation of hydroxylated intermediates. Louit et al., (2005) proposed two 

different ways for the formation of hydroxylated products from COU. The carbon centered 

radical formed by the addition of •OH to aromatic ring may evolve by dismutation reaction 

toward hydroxycoumarins and COU. In the presence of O2 via formation of peroxyl radical 

and HO2
• elimination, hydroxycoumarins form in a unimolecular reaction and the backward 

reaction (COU formation) is inhibited. Similar ways can be proposed for •OH initiated 

transformation of 3-CCA and formation of its hydroxylated products. 

 

  
 
 
 
 
 
 
 
 

Although, the formation rate of •OH is two times higher in the presence of N2O, there is no 

significant difference between the transformation rates of COU and formation rates of 7-HO-

COU in solution saturated with O2 or N2O. Similar observations were made in the case of 3-

CCA (Fig. 5). In N2 saturated, t-BuOH containing solution at pH 2.1 the transformation of 

COU is slightly slower, while that of 3-CCA is slightly faster than in O2 saturated solutions 

(Fig. 5a and c). At this pH, eaq
− is transformed to H• via protonation. Thus, the transformation 

of both COU and 3-CCA is initiated by H•. Under these conditions, formation of 7-HO-COU 

and 7-HO-3-CCA was not detected (Fig. 5b and d). The radiolysis results obtained under 

various experimental conditions show that, the formation of both 7-HO-COU and 7-HO-3-

CCA requires •OH-initiated transformation of COU and 3-CCA and the yield of the 

hydroxylated products is highly enhanced by the presence of dissolved O2, which opens up a 

new way of the formation via peroxyl type radicals. 

 

 

COU + •OH → •COUOH   →   HCOUOH + COUOH  (or COU + COUOH + H2O) 

           + O2  
            
  •OOCOUOH 
    
 
 
  COUOH + HO2

•
 

+•COU-OH 
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Figure 5. The concentration of COU (a), 7-HO-COU (b), 3-CCA (c) and 7-HO-3-CCA (d) 

versus absorbed dose at pH 2.1 

�: O2 saturated solution; �: N2O saturated solution; �: O2- free, t-BuOH (5 v/v%) 

containing solution 

 

The O2
•−/HO2

• pair (pKa 4.8) is rather inactive in reaction with most of aromatic 

molecules (Yamashita et al., 2012; Kozmér et al., 2014). In this work the reaction with O2
•− 

were investigated in 1.0 × 10−4 mol dm−3 NaCOOH containing COU solution (pH 8). Under 

these circumstances •OH was converted into O2
•−: 

HCOO− + •OH → CO2
•− + H2O       k = 3.2 × 109 mol−1 dm3 s−1 (Buxton et al., 1988) (8) 

CO2
•− + O2 → O2

•− + CO2                 k = 4.2 × 109 mol−1 dm3 s−1 (Ilan and Rabani, 1976) (9) 

 

Transformation of COU was not observed in this case, showing that O2
•− (and most likely its 

protonated form HO2
• also) has no role in the transformation of COU and formation of 

fluorescent hydroxylated product. 
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The formation rates of •OH were calculated from the dose rate (in these experiments 

1.48 Gy min−1) and radiation chemical yields (G value) of the •OH formation (0.28 µmol J−1 

in O2 saturated and O2-free and 0.54 µmol J−1 in N2O saturated solutions). The •OH formation 

values calculated by this way were 6.9 × 10−9 mol dm−3 s−1 and 1.33 × 10−8 mol dm−3 s−1. 

Radiation chemical yields of the formation of 7-HO-COU and 7-HO-3-CCA were determined 

from the slope of the plots of concentration versus dose in N2O saturated (O2-free without t-

BuOH), and O2 saturated solutions (pH = 6.5). As the curves with maxima on Fig. 5b and 5d 

show the formed fluorescing products undergo secondary decomposition even at low doses. 

This secondary decomposition affects also the determination of the initial formation rate. A 

correction was applied using the method of Albarran and Schuler (2003). In Fig. 5b and 5d 

the solid curves show the calculated correction curves. It should be mentioned that the value 

obtained for 7-HO-COU formation in O2 saturated solution (9.4 × 10−9 mol J−1) is lower than 

this value determined by Ashawa et al. (1979) (1.05 × 10−8 mol J−1 at 1 Gy min−1dose rate) or 

Louit et al. (2005) (1.4 × 10−8 mol J−1 at 1.9 Gy min−1) in aerated solution. Similarly, the value 

determined by Collins et al. (1994) for 7-HO-3-CCA (1.27 × 10−8 mol J−1 at 4 Gy min−1) is 

also higher than that was determined in this work (8.0 × 10−9 mol J−1). 

The relative production yields of the hydroxylated products (formation rate of 7-HO-

COU or 7-HO-3-CCA divided by the formation rate of •OH) were found to be significantly 

higher in the presence of dissolved O2 confirming the important role of peroxyl radical in their 

formation. This is in agreement with observations reported previously (Louit et al (2005). 

However, our value determined in O2 saturated solution (0.034) is lower than that reported 

previously in aerated solutions 0.044 (Manevich et al, 1997) and 0.047 (Yamashita el al. 

2012) for 7-HO-3-CCA). The efficiency of fluorescing product formation depends on several 

factors, e.g., dose rate, oxygen concentration, CUO and 3-CCA concentration. To find the 

reason of the differences in the efficiency values determined by us and published in the 

literature needs further investigations.  
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Table 2. Transformation rates (r0), radiation chemical yields (G) and relative production yield 
of the hydroxylated products (r0 

7-HO-COU / r0
•OH × 100 or r0 

7-HO-3-CCA / r0
•OH × 100) 

 7-HO-COU 7-HO-3-CCA 

 
r 0 

7-HO-COU 
(×10−−−−10 mol 
dm−−−−3 s−−−−1) 

G7-HO-COU 
(×10−−−−9  

mol J−−−−1) 

r 0
7-HO-

COU/ro•OH 

r 0
7-HO-3-CCA 

(×10−−−−10 mol 
dm−−−−3 s−−−−1) 

G7-HO-3-CCA 

(×10−−−−9 mol 
J−−−−1) 

r 0
7-HO-3-

CCA/ro•OH 

N2 0.65 2.6 0.009 0.93 3.8 0.014 

N2O 1.9 7.6 0.014 2.7 11.0 0.02 

O2 2.3 9.4 0.034 2.0 8.4 0.03 

 

 

3.3. VUV photolysis 

In 172 nm VUV photolysis, homolytic dissociation of water molecules produces •OH 

and H• reactive intermediates with a quantum yield of 0.42 (Heit et al., 1998). Although 

ionization of water also takes place, the role of eaq
– initiated reactions is generally neglected 

because of the low quantum yield (0.045) of eaq
− formation. 

 

H2O + 172 nm photon → •OH + H• Φ172 nm (
•OH, H•) = 0.42 (10) 

H2O + 172 nm photon → H+ + eaq
– + •OH Φ172 nm (eaq

–) = 0.045 (11) 

 

Due to the high molar absorbance of water at 172 nm (550 cm–1, Weeks et al., 1963), these 

VUV photons are absorbed in a very thin, 0.035 mm (Al-Gharabli et al., 2016) water layer, 

called ‘photoreaction zone’. Within this zone, the primarily formed radicals (•OH and H•) 

may react with organic substances. Since the concentration of these radicals is very high in 

the photoreaction zone, their recombination with each other (H• + H•, H• + •OH and •OH + 
•OH) can occur with high probability. These radical-radical reactions have rate constants in 

the 5 × 109 - 8 × 109 mol−1 dm3 s−1 range (Buxton et al., 1988). 
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Figure 6. Concentration of COU (a), 7-HO-COU (b), 3-CCA(c) and 7-HO-3-CCA (d) versus 

time of VUV radiation 

 �: O2 saturated solution; �: air saturated solution; �: O2- free solution 

 

Table 3. Effect of dissolved O2 on the initial transformation rate of COU, 3-CCA and the 

formation rate of 7-HO-COU and 7-HO-3-CCA in the case of VUV photolysis 

 Transformation and formation rates 

 COU 
(×10−−−−7 mol dm−−−−3 s−−−−1) 

7-HO-COU 
(×10−−−−9 mol dm−−−−3 s−−−−1) 

3-CCA 
(×10−−−−7 mol dm−−−−3 s−−−−1) 

7-HO-3-CCA 
(×10−−−−9 mol dm−−−−3 s−−−−1) 

N2 1.23 1.33 1.03 1.95 

Air 0.87 1.43 1.21 3.78 

O2 1.01 2.68 0.97 4.67 

 

The effects of dissolved O2 and the effective •OH radical scavengers, MeOH and t-

BuOH were investigated. Although O2 opens up new pathways for transformation of carbon 

centred radicals and generally enhances the transformation rate of organic substances, its 

effect on the initial transformation rates was not observable in the VUV photolysis of COU 

and 3-CCA (Fig. 6 and Table 3). The reason can be that, O2 reacts with H• (6), thus eliminates 
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one of the reactive species from the radical set, compensating the positive effect of peroxyl 

radicals by this way. 

Although the dissolved O2 has not significant effect on the transformation rates of COU 

and 3-CCA, the formation rate of both 7-HO-COU and 7-HO-3-CCA was more than two 

times higher in O2 saturated solution (c(O2) = 1.25 × 10−5 mol dm−3) than in O2-free one (Fig. 

6 and Table 3). The radiolysis results proved, that the formation of hydroxylated products 

requires •OH, while dissolved O2 enhances that via formation of peroxyl radical. In the case 

of VUV photolysis of COU, in air (c(O2) = 2.5 × 10−4 mol dm−3) saturated solution the 

formation rate of 7-HO-COU is slightly, while in the case of 3-CCA significantly higher than 

under O2-free conditions, but lower than in O2 saturated solutions. The high radical 

concentration in the VUV light irradiated very thin photoreaction zone causes O2 depletion 

(Heit et al., 1998). Thus, using air, the positive effect of dissolved O2 is probably strongly 

limited by its lower concentration. Moreover, degree of O2 deficiency depends on the reaction 

rates and on the way of the further transformation of carbon centred and peroxyl radicals. 

MeOH or t-BuOH, were added to the VUV irradiated solutions for further investigation 

of •OH based reactions. The ratios of COU/3-CCA:MeOH/t-BuOH were 1:1; 1:10; 1:50 and 

1:100. Fig. 7 shows the rate of COU/3-CCA degradation and that of 7-OH-COU/7-OH-3-

CCA formation as a function of relative •OH scavenging capacity (RSC•OH): 

RSC•OH = 1 – c COU/3-CCA × k COU/3-CCA. / (c COU/3-CCA × k COU/3-CCA + c cav.× k scav.) 

where cCOU and c3-CCA are the COU and 3-CCA initial concentrations, and kCOU and k3-CCA are 

the rate constants of reactions with •OH. The rate constant of •OH reactions with COU and 3-

CCA were taken as 6.9 × 109 and 4.9 × 109 mol−1 dm3 s−1, respectively (Table 1). The values 

for the scavengers, MeOH, t-BuOH (k(MeOH + •OH) = 9.7 × 108 mol−1 dm3 s−1 and k(t-

BuOH) + •OH) = 6.0 × 108 mol dm−3 s−1 (Buxton et. al, 1988)) were collected from the 

NDRL/NIST compilation. When the RSC•OH is 0 only COU or 3-CCA is present, and there is 

no scavenger in the system. RSC•OH value shows the ratios of the •OH amounts, which are 

scavenged by MeOH or t-BuOH relative that of COU or 3-CCA, at the given concentrations. 

Addition of •OH scavengers decreases the transformation rates of COU and 3-CCA 

(Fig. 7). At the highest MeOH and t-BuOH concentrations the majority of •OH reacts with 

alcohols but maximum 10% of H• are scavenged (k(MeOH + H•) = 2.6 × 106 mol−1 dm3 s−1 

and k(t-BuOH) + H•) = 2.3 × 105 mol−1 dm3 s−1 (Buxton et al., 1988)) in O2-free solutions. In 

this case, the transformation rate of COU and 3-CCA decreased by 66 - 73% in O2 saturated 
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solutions but only by 35 - 46% in O2-free solutions, respectively. In the latter case the 

scavenging effect is less pronounced, since both COU and 3-CCA are able to react with H• 

(Table 1). 
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Figure 7. Effect of MeOH and t-BuOH on the transformation rate of COU (a) and 3-CCA (c) 

and formation rate of 7-HO-COU (b) and 7-HO-3-CCA (d) in O2-free and O2 saturated VUV 

irradiated solutions 

�: MeOH, O2-free solution; �: t-BuOH; O2-free solution; �: MeOH; O2 saturated solution; 

�: t-BuOH; O2 saturated solution 

 

The yield of hydroxylated product is about two times higher in the presence of O2 in both 

cases. Moreover, the yield of 7-HO-3-CCA formation from 3-CCA is about two times higher 

than that of 7-HO-COU from COU (Fig. 7 and Table 2); the rate constant of COU reaction 

with •OH exceeds that of 3-CCA (Table 1). 

The formation of 7-HO-COU is more sensitive to the decrease of •OH concentration than 

the transformation of COU. When about 10% of •OH reacts with MeOH, the transformation 

rate of COU does not decrease significantly, while formation rate of 7-HO-COU decreases by 
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almost 50% (Fig. 7). Further increase of RSC•OH value causes a less intensive effect. The 

behaviour of 3-CCA is a little bit different from that of COU. Addition of MeOH or t-BuOH 

at 1:1 ratio has no negative effect, but at higher concentration of additives the inhibition is 

well manifested (Fig. 7). 

In the case of VUV photolysis the formation rate of •OH can be calculated from the photon 

flux (3.0 × 10−6 molphoton s
−1) and quantum yield of •OH formation via absorption at 172 nm 

light (0.42) and the volume of radiated solution (0.50 dm−3). The •OH formation rate 

calculated by this way is 2.52 × 10−6 mol•OH dm−3 s−1. Using the relative production yield of 

the hydroxylated products obtained from radiolysis and the formation rate of 7-HO-CUO and 

7-HO-3-CCA determined in O2-free VUV irradiated solutions, the formation rate of •OH is 

1.42 × 10−7 mol dm−3 s−1 for 7-HO-COU and 1.61 × 10−7 mol dm−3 s−1 for 7-HO-3-CCA. 

These values are much lower than those calculated from the photon flux. One possible 

explanation is the extreme inhomogeneity of the VUV irradiated solution, where the 

concentration of •OH and H• in the VUV irradiated 0.035 mm thin photoreaction zone is very 

high, thus •OH decay in radical-radical (•OH + •OH, •OH + H•) reactions is favoured. 

Consequently, a high percentage of •OH disappears from the system without the formation of 

hydroxylated product. The formation rates of •OH calculated by the same way in O2 saturated 

solution are even lower for 7-HO-COU (8.1 × 10−8 mol dm−3 s−1), while a little bit higher in 

the case of 7-HO-3-CCA (1.64 × 10−7 mol dm−3 s−1). The inhomogeneity of VUV irradiated 

systems is manifested not only in the radical concentration, but also in the concentration of 

dissolved O2 versus the distance from the wall of the light source (Al-Gharabi et al., 2016).  

 

3.4. Heterogenous photocatalysis 

In the case of heterogeneous photocatalysis •OH is the main reactive species. The 

photon absorption results in charge separation in the photocatalyst: an electron in the 

conduction band (ecb
−), and a hole (hvb

+) are created. Dissolved O2 generally has a crucial role 

as ecb
− scavenger, which is needed to retard the fast recombination of hvb

+ and ecb
−. On the 

surface of TiO2 ecb
− can transform to O2

•− via reaction with adsorbed O2. Further 

transformation of O2
•− via H2O2 results in •OH (Nosaka et al., 2014). Another possible way of 

•OH formation is the reaction of OH−/H2O with hvb
+. The transformation of organic 

substances can take place via direct charge transfer and/or via reaction with •OH on the 

surface (•OHsurf) or in the bulk phase (•OHbulk). The contribution of these pathways to the 
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transformation of target organic substances depends strongly on the properties of the 

photocatalyst, the model compound and the interaction between them. 

The main difference in the behaviour of COU and 3-CCA in photocatalytic experiments 

is their interaction with TiO2 surface: COU is poorly adsorbed (the adsorbed amount is not 

measurable), while 3-CCA is well adsorbed (30% of 3-CCA adsorbed at 1.0 × 10−4 mol dm−3 

initial concentration in 1.0 g dm−3 TiO2 suspension independently of the presence of O2) 

because of the strong interaction between the carboxyl group and surficial hydroxyl groups of 

TiO2 (≡Ti-OH). 

Table 4. Effect of dissolved O2 on the initial transformation rates of COU, 3-CCA and the 

formation rates of 7-HO-COU and 7-HO-3-CCA in the case of heterogeneous photocatalysis 

 Transformation and formation rates 

 COU 
(×10−−−−7 mol dm-3 s−−−−1) 

7-HO-COU 
(×10−−−−9 mol dm-3 s−−−−1) 

3-CCA 
(×10−−−−7 mol dm−−−−3 s−−−−1) 

7-HO-3-CCA 
(×10−−−−9 mol dm−−−−3 s−−−−1) 

N2 0.06 - 0.81 - 

Air 1.18 3.50 1.38 3.92 

O2 1.19 5.15 1.75 5.21 

 

At first the effect of dissolved O2 was investigated. In O2-free suspension the 

transformation rate of COU was negligible, while the transformation rate of 3-CCA was about 

half of that determined in O2 containing suspensions (Table 3). This suggests that, there is a 

significant contribution of direct charge transfer to the transformation of 3-CCA. Because of 

the strong interaction of 3-CCA with ≡Ti-OH groups and the high rate constants of its 

reaction with eaq
−, 3-CCA can behave as ecb

− scavenger, taking over the role of O2. In N2 

purged suspension there are no possibilities for peroxyl radical or •OH formation via 

O2
•−/H2O2. The formation of •OH can take place exclusively from OH−(H2O) via reaction 

with hvb
+. The formation of 7-HO-3-CCA was not observed, which indicates that, the role 

(and most probably the formation) of •OH is negligible in this case. The transformation of 3-

CCA happens via direct charge transfer, which does not result in hydroxylated products. 

Although there was no difference between the transformation rates of COU in O2 

saturated and aerated suspensions (r0
COU(O2)/r0

COU(air) = 1.01), the formation rate of 7-HO-

COU was 50% higher in the O2 saturated one (r0
7-HO-COU(O2)/r0

7-HO-COU(air) = 1.47). The ratio 

of 3-CCA transformation rates (r0
3-CCA(O2)/r0

3-CCA(air) = 1.27) agreed with the ratio of 

formation rates of the hydroxylated product (r0
7-HO-3-CCA(O2)/r0

7-HO-3-CCA(air) = 1.33). Probably 
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the COU transformation happens mainly via reaction with •OHbulk, because COU cannot 

successfully compete for adsorption sites with O2 or H2O2. At the same time, in the 

transformation of well adsorbed 3-CCA the •OHsurf can also have important role. Moreover, 

the recombination of •OH, formed on the surface of TiO2, is better inhibited by 3-CCA than 

by COU. This may be the reason why the transformation rate of 3-CCA is higher, while its 

rate constant of reaction with •OH is lower than that of COU (Table 1). 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

4.0x10-8

8.0x10-8

1.2x10-7

1.6x10-7

r 0
 7

-O
H

-C
O

U
/7

-O
H

-3
-C

C
A

, m
ol

 d
m-3

 s
-1

 3-CCA, methanol
 3-CCA, t-BuOH
 COU, methanol
 COU, t-BuOH

r 0
 C

O
U

/3
-C

C
A

, m
ol

 d
m-3

 s
-1

Relative •OH scavenging capacity

a

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0x10-9

2.0x10-9

3.0x10-9

4.0x10-9

5.0x10-9 b

 7-OH-CCA, methanol
 7-OH-CCA, t-BuOH
 7-OH-COU, methanol
 7-OH-COU, t-BuOH

Relative •OH scavenging capacity

Figure 8. Rate of COU and 3-CCA (a) degradation and hydroxylated product formation (b) as 

a function of the relative scavenging capacity of MeOH and t-BuOH in heterogeneous 

photocatalysis 

 

Figure 8. shows the effect of MeOH and t-BuOH on the transformation rate of COU and 

3-CCA and on the formation rate of hydroxylated products in aerated suspensions. Both 

radical scavengers adsorbed poorly on the TiO2 surface. When the degradation of both COU 

and the scavenger occurs independently and no preferred adsorption on the surface takes place 

a linear decrease of degradation rate with the RSC is expected. Although, the transformation 

rate of COU decreases linearly, there is a breakpoint at 0.6 scavenging capacity. Above this 

RSC•OH value, the inhibition gets higher. Most probably, at relatively high concentration of 
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radical scavengers they can react not only with •OHbulk but also with •OHsurf, thus their 

scavenging effect is increased. 

The same •OH scavengers have no observable effect on the transformation rate of 3-

CCA (Fig. 8a). This also proves the crucial role of adsorption. Poorly adsorbed radical 

scavengers are not able to compete successfully with the well-adsorbed 3-CCA for •OHsurf. At 

the same time the formation of hydroxylated product is inhibited. The breaking point is at 

0.80 RSC value: at lower MeOH/t-BuOH concentrations the formation rate of 7-HO-3-CCA 

is only slightly inhibited, probably because both MeOH and t-BuOH react mainly with 
•OHbulk. Further increase of the scavenger concentrations cause a more advanced inhibition. 

The explanation can be the same as in the case COU: the increase of the poorly absorbed 

radical scavenger’s concentration makes their reaction with •OHsurf possible. 

Using the production yield of the hydroxylated products obtained from radiolysis and 

the formation rate of 7-HO-CUO and 7-HO-3-CCA determined in O2-saturated TiO2 

suspensions, the formation rate of •OH was determined. The obtained values are in good 

agreement with each other: 1.56 × 10−7 mol dm−3 s−1 for 7-HO-COU and 1.80 × 10−7 mol 

dm−3 s−1 for 7-HO-3-CCA. Assuming that, TiO2 suspension completely absorbs the emitted 

photons, the calculated quantum yield for the •OH formation is about 0.006 (0.0054 for 7-HO-

COU and 0.0062 for 7-HO-3-CCA). Therefore, on average the 0.6% of the absorbed photons 

are converted to •OH. The quantum yield of •OH production during TiO2 photocatalysis was 

estimated to be lower (∼10−4) by a method based on the terephthalic acid (Ishibashi et al., 

2000), while using methanol higher value (0.02 – 0.08) was reported (Wang et al., 2001). 

 

Summary 

The transformation of COU, 3-CCA and formation of their fluorescent hydroxylated 

products (7-HO-COU and 7-HO-3-CCA) were investigated. Reaction rate constants of both 

compounds with •HO, H• and eaq
− were determined. The results of gamma-radiolysis proved 

that the formation of fluorescent products takes place only via reaction with •OH and the rate 

is enhanced by the presence of O2. The ratio of the •OH formation rate and the formation rate 

of fluorescent products were determined in O2-free, O2 and N2O saturated solutions. 

In the case of VUV photolysis, the presence of O2 has no significant effect on the 

transformation rate of parent compounds, while formation rates of both 7-HO-COU and 7-

HO-3-CCA were more than two times higher in O2 saturated than in O2-free solution. The 

effect of MeOH and t-BuOH as •OH scavengers showed, that formation rate of hydroxylated 
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products is more sensitive to the decrease of •OH concentration than the transformation rate of 

parent compounds, mainly in the presence of O2. The formation rate of •OH was calculated 

from the photon flux and quantum yield of •OH formation via absorption at 172 nm light. It 

was compared to that determined by the relative production yield of the hydroxylated 

products obtained from radiolysis and the formation rate of 7-HO-CUO and 7-HO-3-CCA 

determined in O2-free VUV irradiated solutions. The latest values were much lower, which 

can be explained partly by the extreme inhomogeneity of VUV irradiated solution. 

Using heterogeneous photocatalysis, the quantum yield of the •OH formation (0.006) 

was determined using the data obtained from radiolysis and formation rate of 7-HO-3-CCA 

and 7-HO-COU. There was no difference between the yield of the 7-HO-3-CCA formed from 

the well adsorbed 3-CCA and 7-HO-COU, formed from the poorly adsorbed COU. However, 

the dominant role of •OH is evident, the preferred adsorption of 3-CCA did not let the 

manifestation of the inhibition effect of MeOH and t-BuOH on its transformation rate. At the 

same time, the formation rate of 7-HO-3-CCA linearly decreased with the •OH scavenging 

capacity of both MeOH and t-BuOH. Our results suggested, that the transformation of the 

COU is controlled by its reaction with •OHbulk while in the case of 3-CCA, the reaction with 
•OHsurf is the dominant. Adsorption has to be taken into consideration when the effect of •OH 

scavengers is evaluated. 
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