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Abstract

For a graph G, a hypergraph H is a Berge copy of G (or a Berge-G in short), if
there is a bijection f : E(G) → E(H) such that for each e ∈ E(G) we have e ⊆ f(e).
We denote the family of r-uniform hypergraphs that are Berge copies of G by BrG.

For families of r-uniform hypergraphs H and H
′, we denote by R(H,H′) the small-

est number n such that in any red-blue coloring of the (hyper)edges of Kr
n (the complete

r-uniform hypergraph on n vertices) there is a monochromatic blue copy of a hyper-
graph in H or a monochromatic red copy of a hypergraph in H

′. Rc(H) denotes the
smallest number n such that in any coloring of the hyperedges of Kr

n with c colors,
there is a monochromatic copy of a hypergraph in H.

In this paper we initiate the general study of the Ramsey problem for Berge hyper-
graphs, and show that if r > 2c, then Rc(BrKn) = n. In the case r = 2c, we show that
Rc(BrKn) = n+1, and if G is a non-complete graph on n vertices, then Rc(BrG) = n,
assuming n is large enough. In the case r < 2c we also obtain bounds on Rc(BrKn).
Moreover, we also determine the exact value of R(B3T1, B

3T2) for every pair of trees
T1 and T2.

1 Introduction

Ramsey’s theorem states that for any graph G (or any r-uniform hypergraph H) and integer
c, there exists N such that if we color each edge of the complete graph (or each hyperedge
of the complete r-uniform hypergraph) on N vertices with one of c colors, then there is a
monochromatic copy of G (resp. H). This is the starting point of a huge area of research,
see [3] for a recent survey. Determining Ramsey numbers (the smallest integer N with such
a property) is a major open problem in combinatorics even for small particular graphs.
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Let us introduce some basic definitions and notation. For graphs we denote by Kn the
complete graph on n vertices, by Pn the path on n vertices and by Sn the star with n vertices.
A double star is a tree which has exactly two non-leaf vertices. We will often talk about
graphs and hypergraphs as well. To make it easier to distinguish them, we use the word
edge only in case of graphs, while we use the word hyperedge in case of larger uniformity.

We are going to deal with colorings of the hyperedges of r-uniform hypergraphs, r-graphs
in short. A c-coloring of a hypergraph is a coloring of its hyperedges with colors 1, 2, . . . , c.
Each hyperedge gets exactly one color, but it is allowed that a color is not used at all. More
precisely the coloring is a function f from the set of hyperedges to the set {1, . . . , c}. We call
a hypergraph H with such a function f a c-colored H and denote it by (H, f). In the case
of two colors sometimes we will call the colors blue and red to make it easier to follow the
arguments, and call the 2-colored H simply blue-red H. We will be interested in hypergraphs
such that all their hyperedges are of the same color; we call them monochromatic. In case we
also know the color, say blue, we simply call a hypergraph which only has blue hyperedges
monoblue. We will denote the complete r-uniform hypergraph on n vertices by Kr

n.
For families of r-uniform hypergraphs H1,H2, . . . ,Hc, we denote by R(H1,H2, . . . ,Hc)

the smallest number n such that in any c-coloring of Kr
n, there is an i ≤ c such that there is

a monochromatic copy of a hypergraph in Hi of color i. If H1 = H2 = · · · = Hc = H, then
R(H1,H2, . . . ,Hc) is denoted by Rc(H).

The classical definition of a hypergraph cycle is due to Berge. Extending this definition,
Gerbner and Palmer [9] defined the following. For a graph G, a hypergraph H is a Berge
copy of G (a Berge-G, in short), if there is a bijection g : E(G) → E(H) such that for
e ∈ E(G) we have e ⊂ g(e). In other words, H is a Berge-G if we can embed a distinct graph
edge into each hyperedge of H to create a copy of the graph G on the vertex set of H. We
denote the family of r-uniform hypergraphs that are Berge copies of F by BrF . Extremal
problems for Berge hypergraphs have attracted the attention of many researchers, see e.g.
[6, 7, 9, 10, 19, 20, 21, 24].

In this paper, we initiate the general study of Ramsey problems for Berge hypergraphs.
We note that similar investigations have been started very recently and independently by
Axenovich and Gyárfás [1] and by Salia, Tompkins, Wang and Zamora [25]. In [1] the authors
focus on small fixed graphs where the number of colors may go to infinity. They also consider
the non-uniform version. In [25] the authors focus mainly on the case of two colors.

Ramsey problems for Berge cycles have been well-studied. This line of research was
initiated by Gyárfás, Lehel, Sárközy and Schelp [14]. They conjectured that Rr−1(BrCn) = n
for n large enough, and proved it for r = 3. Gyárfás and Sárközy [15] proved R3(B3Cn) =
(1 + o(1))5n/4. Gyárfás, Sárközy and Szemerédi [17] proved that R3(B4Cn) ≤ n + 10 for
n large enough, and they proved Rr−1(BrCn) = (1 + o(1))n in [18]. Maherani and Omidi
[22] proved R3(B4Cn) = n for n large enough, and finally Omidi [23] proved the conjecture
of Gyárfás, Lehel, Sárközy and Schelp [14] by showing Rr−1(BrCn) = n for n large enough.
In this paper we are also mainly interested in R(BrF,BrG) in the case when the number of
vertices in both F and G are large enough.

A related problem is covering the vertices of a hypergraph by some monochromatic struc-
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tures. This has also been considered in the Berge sense [8, 16, 2].
Note that Rc(BrF ) is monotone decreasing in r, thus the known upper bounds for the

graph case imply the same bounds for larger r. However, those bounds can be exponential in
the cardinality of the vertex set of F . We believe that for r ≥ 3 the situation is completely
different and that the Ramsey number is always polynomial in |V (F )|.

New results

Our results are divided into three main types: r > 2c, r = 2c and r < 2c, as stated below.
In the first two cases we almost completely resolve the problem.

Proposition 1. Suppose r > 2c, and n > c + c
(

r
2

)

. Then Rc(BrKn) = n.

To state our result in case r = 2c, we need a definition. We say that a graph G on at
most n vertices is good if its vertex set can be partitioned into two parts V1 and V2 with
the following properties: |V1|= r − 2 and for any set U ⊂ V2, the sum of the degrees of the
vertices in U is at most |U |(n− r + 2)−

(

|U |
2

)

.

Theorem 2. Let r = 2c ≥ 4 and n ≥ 12c(t−1). Let n = |V (G1)|≥ |V (G2)|≥ . . . ≥ |V (Gc)|.
Then

R(BrG1, . . . , B
rGc) =







n+ 1 if one of the Gis is not good and the remaining Gi are Kn.

n otherwise.

Note that in the special case c = 2, Proposition 1 and Theorem 2 imply some of the
results of Salia, Tompkins, Wang and Zamora [25].

Theorem 3. Suppose r < 2c. Then we have

(i) If 2 < r, then 1 + c⌊n−2
c−1

⌋ ≤ Rc(BrKn).

(ii) If c < r, then R(BrKn1
, . . . , BrKnc) ≤

∑c
i=1 ni.

(iii) If c+ 1 < r and n > r−c−1
c

(
(

r
2

)

+ r − 1), then Rc(BrKn) ≤
c

r−c−1
n.

(iv) If r = 2c− 1 and n > 2c−3
2c−1

(
(

r
2

)

+ r − 1), then Rc(BrKn) ≤ (2c− 1) n
c−3

.

So far all our upper bounds are linear in n. In [25] the authors showed R3(B3Kn) =
Ω(n2/logn) (note that the statement in [25] is actually weaker, but this is what follows from
their proof). It is still possible that Rc(BrKn) is polynomial in n if r ≥ 3. Here we show
that even if it holds, the degree and coefficients of such a polynomial must depend on c.

Proposition 4. Rc(B3Kn) = Ω
(

n⌈ c
2
⌉

(log n)⌈c/2⌉−1

)

.

In case we have only two colors, the above theorems settle almost everything if the
uniformity is at least 4. For 3-uniform hypergraphs, we prove the following.
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Proposition 5. If n ≥ m > 1 and n+m ≥ 7, then n+m−3 ≤ R(B3Kn, B
3Km) ≤ n+m−2.

Let us note that we use induction to prove the upper bound. The difference of one between
the lower and upper bounds comes from the fact that the induction starts at small values n
and m where R(B3Kn, B

3Km) = n + m − 2 holds. One could easily eliminate this gap by
dealing with additional small cases, potentially using a computer program. We have recently
learned that the authors in [25] did exactly this, showing R(B3Kn, B

3Km) = n +m − 3 if
n ≥ 5 and m ≥ 4.

We also determine the exact value of the Ramsey number for every pair of Berge trees.

Theorem 6. Let T1 and T2 be trees with n = |V (T1)|≥ |V (T2)|.

R(B3T1, B
3T2) =







n+ 1 if |V (T1)|= |V (T2)|≤ 4 or T1 = T2 = S5

n otherwise.

In case of c = 2 and r = 3 from Proposition 5 we know that the Berge Ramsey number
is between roughly n and 2n for a graph G on n vertices. A parameter that might play an
important role is the vertex cover number of G, which is the smallest number of vertices
such that every edge of G is incident to at least one of them. Here we show that the Berge
Ramsey number is close to n for graphs with very small vertex cover number, but close to
2n for graphs with very large vertex cover number.

Proposition 7. If G is a graph on n vertices with vertex cover number k ≥ 3, then

2k − 1 ≤ R(B3G,B3G) ≤ n− k + 2R(Kk, Kk).

The structure of the paper is as follows. In Section 2 we collect several lemmas that we
will use later. In Section 3 we prove results in case r ≥ 2c (i.e., Proposition 1, Theorem 2).
In Section 4 we prove results in the case r < 2c (Theorem 3, Proposition 4, Proposition 5,
Theorem 6 and Proposition 7).

2 Preliminaries

The shadow graph of a hypergraph H is the graph consisting of all the 2-edges that are
subedges of a hyperedge of H. We will often use the following auxiliary bipartite graph.
Given a set E0 of edges of the shadow graph, let Γ(E0) be the bipartite graph with part A
consisting of the edges in E0, and part B consisting of the hyperedges of H containing the
edges in part A, where an element of B is connected to an element of A if the corresponding
hyperedge contains the edge. Let Γi(E0) denote the subgraph of Γ(E0) obtained if we delete
from B the hyperedges of color different from i.

Let G be the shadow graph of a Berge-F -free r-graph H. The graph G might contain
a copy of F . Let E0 be the set of edges in a copy of F and consider Γ(E0). Observe that
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a matching covering A in Γ(E0) would give a Berge copy of F in H by the definition of a
Berge copy; a contradiction, thus there is no such matching.

Hall’s marriage theorem states that a bipartite graphG[A,B] does not contain a matching
covering A if and only if there is a subset A′ ⊂ A with |N(A′)|< |A′|. We will use its following
simple corollary several times, hence we state it as a lemma.

Lemma 8. Let H be an r-graph, and let G be the graph formed by the 2-edges that are
contained in at least

(

r
2

)

hyperedges of H. Then if G contains a copy of F , then H contains
a copy of Berge-F .

Proof. Assume that G contains a copy of F and let E0 be the set of its edges. A matching
covering A in Γ(E0) would give a copy of Berge-F in H, as desired. So let us show that there
is a matching covering A.

Suppose for a contradiction that there is no matching covering A. Then there is a set
A′ ⊂ A with |N(A′)|< |A′| by Hall’s theorem. The number of edges between A′ and N(A′)
is at least

(

r
2

)

|A′| by the construction of G, and at most
(

r
2

)

|N(A′)|, as an r-edge contains at
most

(

r
2

)

2-edges. This contradicts |N(A′)|< |A′|, finishing the proof.

We will also use the following simple generalization.

Lemma 9. Assume that F has the property that any set of r vertices spans at most t edges
of F . Let H be an r-graph, and let G be the graph formed by the 2-edges that are contained
in at least t hyperedges of H. Then if G contains a copy of F , then H contains a copy of
Berge-F .

Proof. The proof goes the same way as the proof of Lemma 8. We obtain A′ similarly.
However, this time the number of edges between A′ and N(A′) is at least t|A′| by the
construction of G, and at most t|N(A′)|, as an r-edge contains at most t 2-edges. This again
contradicts |N(A′)|< |A′|, finishing the proof.

Lemma 10. Let T be a tree on n vertices and v ∈ V (T ). Then there is a bijection f :
V (T ) \ {v} → E(T ) such that f(u) contains u for every u.

Proof. We prove it by induction on n, the base case n = 1 is trivial. We obtain a forest T ′

by deleting v from T , let T1, . . . , Tk be its components, then each Ti contains a neighbor vi of
v. We apply the inductive hypothesis to each Ti to find a bijection fi : V (Ti)\{vi} → E(Ti).
Let f(x) = fi(x) if x ∈ V (Ti) \ {vi}, and f(x) = vx if x = vi for some i. It is easy to see
that f is a bijection because each fi is a bijection which maps to edges of E(Ti), and then
we assigned only edges that do not belong to any Ti.

Definition 1. Given an r-graph H with vertex set V (H) and a vertex u ∈ V (H), the
link hypergraph Lu is the (r − 1)-graph on vertex set V (H) consisting of the hyperedges
{H \ {u} : u ∈ H ∈ H}. In case r = 3, we call Lu link graph. If H has a coloring, then Lu

has an inherited coloring: the hyperedge H \ {u} has the color of H.
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Lemma 11. Let T be a tree on n ≥ 6 vertices. Then at least one of the following statements
hold.

(i) There is a non-leaf vertex v that is adjacent to exactly one non-leaf vertex u such that
deleting v and its leaf neighbors we obtain a tree T ′ that either has at least 6 vertices or is a
non-star on 5 vertices.

(ii) There are two independent edges in T such that any other edge is incident to at least
one of their vertices. Moreover there are two adjacent edges with this property.

(iii) T is a star or P6.

Proof. Let T ′ be the tree we obtain if we remove all the leaves of T , and let v be a leaf of
T ′. If T is not a star, T ′ has at least two vertices, in particular v has a neighbor u in T ′.
This shows v is adjacent to exactly one non-leaf vertex in T .

Observe that if v has less than n − 5 leaf neighbors in T , then deleting v and its leaf
neighbors from T , we obtain a tree T ′′ on at least five vertices. Then T satisfies (i), unless
T ′′ = S5, so T is a double star. It is easy to see that double stars satisfy (ii).

If u is also a leaf in T ′, then T is a double star, so it satisfies (ii) again. Thus u has
another neighbor w in T ′, and T ′ has a leaf v′ different from v (note that v′ might be w). If
v or v′ has less than n− 5 leaf neighbors in T , then we are done by the previous paragraph.

Thus T has at least 2n− 10 leaves and three non-leaves, which implies n ≥ 2n − 7, i.e.
n ≤ 7. Moreover, if n = 7, we know T ′ is a path on three vertices v, u and w, and both v
and w have two leaf neighbors. It is easy to see that this tree satisfies (ii). It is also easy to
see that all trees on 6 vertices but the star and P6 satisfy (ii).

Lemma 12. For every set of positive integers ni (1 ≤ i ≤ c), we have

c
∏

i=1

ni > (

c
∑

i=1

ni)− c.

Proof. We prove the lemma by induction on c. For c = 1 the statement is trivial. Let nc be
the smallest of the integers ni (1 ≤ i ≤ c). If nc = 1, then we have

c
∏

i=1

ni =

c−1
∏

i=1

ni > (

c−1
∑

i=1

ni)− (c− 1) = (

c
∑

i=1

ni)− c.

If nc ≥ 2, then

c
∏

i=1

ni ≥ 2

c−1
∏

i=1

ni > 2(

c−1
∑

i=1

ni)− 2(c− 1) = (

c−1
∑

i=1

ni) + (

c−2
∑

i=1

ni) + nc−1 − 2(c− 1)

≥ (
c

∑

i=1

ni) + (
c−2
∑

i=1

ni)− 2(c− 1) ≥ (
c

∑

i=1

ni) + 2(c− 2)− 2(c− 1) ≥ (
c

∑

i=1

ni)− c.

Note that in the above inequalities we use that nc−1 ≥ nc, ni ≥ 2 (1 ≤ i ≤ c) and induction.
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3 Large uniformity

3.1 The case r > 2c. Proof of Proposition 1

Recall that Proposition 1 states that for r > 2c and n > c + c
(

r
2

)

we have Rc(BrKn) = n.
Let us consider a c-colored Kr

n with vertex set V such that |V |= n > c+ c
(

r
2

)

. Then we color
an edge uv (u, v ∈ V ) with color i if it is contained in at least

(

r
2

)

hyperedges of color i (thus
an edge can get multiple colors). If there is a Kn in the resulting graph G such that all its
edges are of color i, then that gives us a monochromatic Berge-Kn of color i by Lemma 8.

Hence we can assume that for every color i, there is an edge uivi that is not of that color.
Let us consider the set U = {u1, . . . , uc, v1, . . . , vc}. Obviously we have |U |≤ 2c < r, thus
U is contained by at least n − |U |≥ n − 2c > c

(

r
2

)

− c hyperedges. Thus there is a color i
shared by at least

(

r
2

)

of those hyperedges, hence uivi is contained by at least
(

r
2

)

hyperedges
of color i, a contradiction.

3.2 The case r = 2c. Proof of Theorem 2

First we prove a lemma.

Lemma 13. Let r = 2c and n ≥ 12c
(

r
2

)

be given integers and consider a c-colored complete r-
uniform hypergraph on a vertex set V with |V |= n. Let us color an edge uv (where u, v ∈ V )
with color i if u and v are contained together in at least t =

(

r
2

)

+ 1 hyperedges of color i.
Note that this way an edge can get multiple colors. For every i ≤ c, let Ei be the set of edges
that do not have color i. If there are j 6= l ≤ c with |Ej |≥ 2, |El|≥ 2, then we can find a
monochromatic Berge-Kn.

Proof. Let Vi be the set of vertices incident to an edge in Ei. Let us pick an edge from Ei

for every i ≤ c. If these c edges together cover at most 2c − 1 < r vertices, then they are
contained in more than n− r > c(t− 1) hyperedges. Thus more than t of these hyperedges
have the same color i, which leads to a contradiction. Therefore, we can assume that the Vis
are pairwise disjoint and if we pick one edge from each Ei, then these edges span an r-set.
Let H be the hypergraph consisting of all the r-sets that can be obtained this way. (Since H
is a subhypergraph of the complete r-uniform hypergraph, the hyperedges of H are colored
with the c colors as well). Observe that for every i ≤ c, a hyperedge in H contains exactly
two vertices from Vi and exactly one edge from Ei.

Let us assume that for every i ≤ c there is an edge uivi ∈ Ei that is not contained in a
hyperedge in H of color i. Then the hyperedge containing all such edges uivi (with i ≤ c) is
in H and no matter what its color is, we have a contradiction. Hence we can assume that
every edge in, say, E1 is contained in at least one hyperedge of color 1 in H. For uv ∈ E1

let f0(uv) be one of those hyperedges of color 1 in H that contain u and v. Note that f0 is
an injection from E1 to the hyperedges of color 1 (in H).

Let us sketch briefly the next part of the proof. Our goal would be to extend f0 to those
edges that are contained in many hyperedges of color 1. However, even in that case it is
possible that all those hyperedges are already images of f0. Therefore, we also have to change
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what the edges in E1 are mapped into. We will build an injection f from a larger set of the
edges to hyperedges of color 1 (in H) containing them. Note that there is no connection
between f0 and f .

Let V ′ =
⋃c

i=2 Vi. If we pick an edge from every Ei with i > 1 then they span a set of
(r − 2) vertices by above. Let H′ be the (r − 2)-uniform hypergraph consisting of all such
(r − 2)-sets. Note that H′ has at least two hyperedges since at least one of the Ei’s with
i 6= 1 contains at least two edges (this is where we use the assumption that at least two of
the Eis have size at least 2).

We call an edge uv with u ∈ V1, v ∈ V ′ or u, v ∈ V ′ nice if it is contained in at least
p = n/2 hyperedges in H of color 1. Consider Γ1(E1). Obviously every vertex in B has
degree at most t− 1 =

(

r
2

)

.

Claim 14. Let A′ ⊂ E1 be of size x. Then the neighborhood of A′ in Γ1(E1) has size at least
2x− 2t(c− 1).

Proof. Consider two sets H,H ′ from H′. There are 2x hyperedges of H of the form H ∪ e
or H ′ ∪ e for e ∈ A′, but these hyperedges do not necessarily have color 1. For each i > 1,
let us fix an edge of Ei contained in H and similarly an edge of Ei contained in H ′. This
shows that there are at most 2t hyperedges of color i (for each i > 1) containing either H or
H ′ altogether. Thus, out of the 2x hyperedges of H of the form H ∪ e or H ′ ∪ e for e ∈ A′,
at least 2x− 2t(c− 1) have color 1, and these hyperedges are obviously in the neighborhood
of A′ in G.

Claim 15. There is a matching covering A in Γ1(E1).

Proof. Suppose indirectly that there is no such matching, then by Hall’s theorem there is a
set S ⊂ A with |N(S)|< |S|. Let S1 = S ∩E1 and S2 = S \ S1, x = |S1| and y = |S2|. Then
the function f0 shows |N(S1)|≥ |S1|, thus S2 is non-empty. Let e ∈ S2. By the definition of
nice edges e has at least p neighbors. This implies x+ y = |S|> |N(S)|≥ |N(S2)|≥ p.

By Claim 14 we have |N(S)|≥ |N(S1)|≥ 2x− 2t(c− 1), which implies y ≥ x− 2t(c− 1)
since x + y = |S|> |N(S)|. Now the number of edges between S and N(S) is at least
|S1|+p|S2|= x+ py, while on the other hand it is at most t|N(S)|< t(x+ y) (as every vertex
in N(S) has degree at most t). Rearranging x + py < t(x + y), and using t =

(

r
2

)

+ 1 and
p = n/2, we obtain that

y <
x
(

r
2

)

n
2
−

(

r
2

)

− 1
<

x

2
.

Thus we have
x− 2t(c− 1) ≤ y < x/2,

i.e. x < 4t(c−1), which also implies y < 2t(c−1). Hence we have 6t(c−1) > x+y > p = n/2,
a contradiction with our assumption on n.

Let e be an element of A, i.e., a nice edge or an edge in E1. Then we denote by f(e) the
hyperedge that is matched to e in Γ1(E1). Let us delete the set of hyperedges {f(e) : e ∈ A}
from the c-colored Kr

n. Let F denote the remaining (colored) hypergraph.
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Claim 16. Every edge not in A is contained in at least t hyperedges of color 1 in F .

Proof. Let us consider an edge uv 6∈ A. Then it is originally contained in at least t hyperedges
of color 1 (in the c-colored Kr

n before the set of hyperedges {f(e) : e ∈ A} were deleted). If
u is not in any Vi, or if u, v ∈ Vi but uv 6∈ Ei, then no hyperedge of H contains uv, thus
F contains the same t hyperedges of color 1. Otherwise we can pick an edge from every Ei

(i > 1) such that the set S of vertices spanned by these edges contains at least one of the
vertices u, v. Then the set S ∪ {u, v} has size at most 2c− 1, thus it is contained in at least
n− 2c+ 1 hyperedges. At most (c− 1)(t− 1) of these hyperedges have color different from
1, thus at least n−2c+1− (c−1)(t−1) ≥ p+ t of them have color 1. As uv is not nice, less
than p hyperedges containing uv appear as f(e) for some e ∈ A. Thus at least t hyperedges
of color 1 containing uv are in F , proving the claim.

Now we can find a Berge copy of the graph consisting of all the edges not in A in color
1, applying Lemma 8. Then we represent each edge e ∈ A with f(e) to obtain a Berge-Kn

in color 1, finishing the proof.

Using Lemma 13, we will now prove Theorem 2. We restate Theorem 2 below for conve-
nience.

Recall that a graph G on at most n vertices is good if its vertex set can be partitioned
into two parts V1 and V2 with |V1|= r−2 such that for any set U ⊂ V2 the sum of the degrees
of the vertices in U is at most g(|U |) := |U |(n− r + 1)−

(

|U |
2

)

. Otherwise G is not good.

Theorem. Let r = 2c ≥ 4 and n be large enough. Let n = |V (G1)|≥ |V (G2)|≥ . . . ≥
|V (Gc)|. Then

R(BrG1, . . . , B
rGc) =







n + 1 if one of the Gis is not good and the remaining Gis are Kn,

n otherwise.

Proof. The lower bound n is trivial. For the lower bound n+ 1 in the appropriate cases, let
us consider the complete r-graph on n vertices and let u1, v1, . . . ,uc−1, vc−1 be 2c− 2 distinct
vertices. Let us color the hyperedges containing all of these vertices with color c. For every
other hyperedge H there is an i ≤ c − 1 such that H contains at most one of the vertices
ui, vi. Then let the color of H be the smallest such i. This way we colored all the hyperedges
of the complete r-graph on n vertices. For any i < c, the edge uivi is not contained in any
hyperedge of color i, thus there is no monochromatic Berge-Kn of color i.

Let V1 = {u1, v1, . . . ,uc−1, vc−1} and V2 be the set of the remaining vertices. Consider an
arbitrary U ⊂ V2. Every vertex of U is incident to n−r+1 hyperedges of color c. The number
of hyperedges of color c incident to vertices in U is at most |U |(n− r+1)−

(

|U |
2

)

=: g(U), as
for every pair of vertices u, v ∈ U , we counted the hyperedge consisting of u, v and V1 twice.
This shows that the hypergraph consisting of the hyperedges of color c can only be a Berge
copy of good graph, finishing the proof of the lower bound.
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Below we prove the corresponding upper bounds.
First let us consider the case when one of the Gis is not good and the remaining Gis are

equal to Kn. Our goal is to show the upper bound n + 1 in this case. Let us consider a
c-colored complete r-uniform hypergraph on a vertex set of size n + 1. We define Ei as in
Lemma 13. If there are two Eis of size more than one, we find a monochromatic Berge-Kn+1

by Lemma 13. If there is an i such that |Ei|= 1, then by the definition of Ei, we know that
all but one edge of Kn+1 are contained in at least

(

r
2

)

+ 1 hyperedges of color i. In other
words, if K−

n+1 denotes the graph obtained by removing exactly one edge from Kn+1, then
Lemma 8 implies that we can find a copy of Berge-K−

n+1 in color i, which of course, contains
a copy of Berge-Kn. This proves the upper bound n + 1 (in all the cases of the theorem).

We will now show that a (better) upper bound n holds in the remaining cases of the
theorem. Let us consider a c-colored complete r-uniform hypergraph on a vertex set V of
size n. We define Ei as in Lemma 13. If there are two Eis of size more than one, then we
find a monochromatic Berge-Kn by Lemma 13. Hence at least c−1 of the Eis have size one.
If |Ei|= 1 for some i, then by the definition of Ei, all but one edge of Kn are contained in at
least

(

r
2

)

+1 hyperedges of color i. So Lemma 8 implies that we can find a copy of Berge-K−
n

in color i (where K−
n denotes the graph obtained by removing one edge from Kn). Thus we

are done unless there is at most one non-complete graph among the Gis, say Gc, without
loss of generality. Then Gc must be a good graph, otherwise we are in the case that was
already handled by the previous paragraph.

Let uivi be the only element of Ei for each i < c. Assume first that there is a hyperedge
H of color i containing uivi. Then we find a Berge-Kn of color i as follows. First we map
uivi to H . Then every other edge of Kn is contained in at least t − 1 =

(

r
2

)

hyperedges of
color i different from H , thus by Lemma 8 we can map those edges to hyperedges of color i
different from H . Therefore, we can assume that uivi is not contained in any hyperedges of
color i.

Let U1 = {u1, v1, . . . ,uc−1, vc−1}. Let U2 be the set of the remaining vertices and let H
be the hypergraph consisting of the hyperedges containing U1. Then the hyperedges of H
are all of color c. We will show that H contains a Berge copy of every good graph.

Let G be a good graph. We will embed its edges into distinct hyperedges of H. By
definition, the vertices of G are partitioned into V1 and V2; we consider an arbitrary bijection
α that maps V1 into U1 and V2 into U2. We will build an embedding of G in three steps. In
the first step we embed the edges uv of G inside V2, and we let f(uv) = {α(u), α(v)} ∪ U1.
Let H′ be the subhypergraph of H consisting of the hyperedges not of this form.

Then in the second step we embed the crossing edges – i.e., edges uv such that u ∈ V1,
v ∈ V2. Let E

′ denote the set of edges in the shadow graph ofH′ that have the form α(u)α(v),
where uv is a crossing edge. We consider Γ(E ′). A matching covering A here would mean we
can extend the injection f to the crossing edges. If there is no such matching, then by Hall’s
theorem there is a set S of crossing edges uv such that their images α(u)α(v) are contained
in less than |S| hyperedges of H′ altogether. Let V0 be the set of vertices in V2 incident to
at least one edge in S, and let U0 = α(V0) (i.e., the image of V0 under the map α). Let E0

be the set of the edges in G incident to V0, then S ⊆ E0 and |E0|≤ g(|U0|). Let H0 consist
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of hyperedges in H incident to U0, then |H0|= g(|U0|). In the first step we mapped at most
g(|U0|)− |S| edges of E0 into hyperedges of H. Observe that no other edge is mapped into
a hyperedge in H0, thus there are at least |S| hyperedges of H0 in H′. We claim that each
of these hyperedges contain an edge from S. Indeed, they each contain a vertex in U0, thus
an endpoint of an edge in S, and they each contain the other endpoint of that edge, since
that is in U1, which is contained in every hyperedge of H. This contradicts our assumption
that the edges of S are contained in less than |S| hyperedges of H′ altogether.

Thus we have an injection f ′ from the edges of G inside V2 and the crossing edges to
distinct hyperedges in H containing them. In the third step we are going to embed the
remaining edges of G (those inside V1). Observe that each of them is contained in every
hyperedge of H. As the number of edges in G is at most the number of hyperedges in H, we
can choose a distinct remaining hyperedge of H for every remaining edge of G and we are
done.

4 Small uniformity

4.1 The case r < 2c. Proof of Theorem 3

We restate Theorem 3 below for convenience.

Theorem. Suppose r < 2c. Then we have

(i) If 2 < r, then 1 + c⌊n−2
c−1

⌋ ≤ Rc(BrKn).

(ii) If c < r, then R(BrKn1
, . . . , BrKnc) ≤

∑c
i=1 ni.

(iii) If c+ 1 < r and n > r−c−1
c

(
(

r
2

)

+ r − 1), then Rc(BrKn) ≤
c

r−c−1
n.

(iv) If r = 2c− 1 and n > 2c−3
2c−1

(
(

r
2

)

+ r − 1), then Rc(BrKn) ≤ (2c− 1) n
2c−3

.

To prove (i) we take a complete r-graph on c⌊n−2
c−1

⌋ vertices. We partition its vertex set

into c parts V1, . . . , Vc, each of size ⌊n−2
c−1

⌋. For every hyperedge H , there is (at least) one
part Vi that H intersects in at most one vertex since r < 2c. Then let the smallest such
i be the color of H . A Berge-Kn of color i has to contain at least two vertices u, v from
Vi, as the union of the other parts has size at most n − 2. But there is no hyperedge of
color i containing u, v (so the pair u, v cannot be represented by a hyperedge of color i), a
contradiction to our assumption that the Berge-Kn of color i contains the vertices u, v.

Now we prove (ii). We use induction on
∑c

i=1 ni, the cases when every ni is at most 2
are trivial as r ≤ 2c. Let us consider a c-colored complete r-graph on

∑c
i=1 ni vertices. We

set aside a vertex u, then by induction there is a BrKni−1 of color i on a subset Ai of the
remaining vertices, for every i ≤ c. If we can extend the BrKni−1 of color i, by adding the
vertex u and distinct hyperedges of color i containing uv, for every v ∈ Ai, then we found
the desired monochromatic BrKni

of color i. So we can assume for every i ≤ c, we cannot
extend the BrKni−1 of color i by u. Then by Hall’s theorem, for every i ≤ c, there is a subset
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Bi of vertices in Ai, such that the number of hyperedges of color i containing u and a vertex
from Bi is less than |Bi|.

Consider the ((r− 1)-uniform) link hypergraph Lu with the inherited coloring. Let H be
the subfamily of Lu consisting of the hyperedges of Lu that intersect every Bi.

Claim 17.

|H|≥ 1 +

c
∑

i=1

|Bi|−c.

Proof. If there is no vertex belonging to two different Bis, then H contains at least
∏c

i=1|Bi|
hyperedges. Indeed, if we pick a vertex from every Bi, there is a hyperedge in H containing
them, as r−1 ≥ c. Moreover, there is such a hyperedge that contains no other vertices from
⋃c

i=1Bi, as |
⋃c

i=1Bi|≤
∑c

i=1(ni−1), thus there are at least c other vertices and 2c > r. Such
hyperedges of H are counted only once when we pick one vertex from every Bi

∏c
i=1|Bi|

ways, thus H contains at least
∏c

i=1|Bi| hyperedges. In this case Lemma 12 finishes the
proof of this claim.

If there is a vertex v ∈ B1 ∩ B2, let us pick a vertex vi ∈ Bi for 3 ≤ i ≤ c. There are at
least (

∑c
i=1 ni) − 1 − (c− 1) hyperedges in Lu containing these at most c − 1 vertices, and

they all belong to H. This finishes the proof as |Bi|< ni.

By Claim 17 we have |H|>
∑c

i=1(|Bi|−1), hence there is a color i such that H contains
at least |Bi| hyperedges of color i, a contradiction.

To prove (iii), assume n is large enough and consider a c-colored complete r-graph with
vertex set V , where |V |= N = c

r−c−1
n. For each 1 ≤ i ≤ c let Ei be the set of those edges,

that are contained in less than
(

r
2

)

hyperedges of color i, and let Vi be the set of vertices
incident to at least one edge in Ei. Let p = 2c− r and for v ∈ V let us define

m(v) := |{i : 1 ≤ i ≤ c, v ∈ Vi}|.

Claim 18. For every v ∈ V we have m(v) ≤ p+ 1.

Proof. By contradiction let us suppose that we have m(v) ≥ p+2. Without loss of generality
we can suppose that v ∈

⋂p+2
i=1 Vi. Then for 1 ≤ i ≤ p + 2 pick ei ∈ Ei such that each edge

contains v and for all p + 3 ≤ i ≤ c pick any ei ∈ Ei. Then the cardinality of the vertex set
of the endpoints of {ei : 1 ≤ i ≤ c} is at most 2c− p− 1 = r − 1. Let H be the set of those
hyperedges that contain every ei (1 ≤ i ≤ c). On the one hand the cardinality of H is at
least N − r + 1, on the other hand H contains at most

(

r
2

)

hyperedges of each color, which
contradicts our assumption on n.

By Claim 18 we have
c

∑

i=1

|Vi|≤ (p+ 1)N.
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This means that we have an i with 1 ≤ i ≤ c such that

|Vi|≤
(p+ 1)N

c
.

Which implies |V \ Vi|≥ n. All the edges inside V \ Vi are contained in at least
(

r
2

)

hyperedges of color i, thus Lemma 8 finishes the proof.

To prove (iv) we follow the previous argument with a slight modification. Let N =
⌊ c−1
c−2

n⌋. We will use the notation of the proof of (iii).

Claim 19. There is a class Vi with at most N
c−3/2

vertices.

Proof. Observe first that if two different vertex classes, say V1 and V2 intersect, i.e., there
are edges e1 ∈ E1 and e2 ∈ E2 sharing at least one vertex, then all the other classes are
pairwise disjoint and also disjoint from the set e1 ∪ e2. It is easy to see that otherwise we
could find edges e3, e4, ..., ec such that ei ∈ Ei (1 ≤ i ≤ c) and they are incident to at most
2c − 2 = r − 1 vertices. On the one hand, we have at least N − r + 1 hyperedges that
contain these edges, but on the other hand, among these hyperedges there can be at most
(

r
2

)

hyperedges from each color class, which contradicts our assumption on n.
Let us consider an auxiliary graph G on vertices v1, . . . , vc, where vi is connected to vj

if and only Vi intersects Vj . By the above argument, there are no independent edges in G,
thus G is either a star or a triangle (and potentially some isolated vertices). If G is a star
with center v1, then every vertex of V1 can be contained in at most one other Vi, which easily
implies

∑c
i=1|Vi|≤ |V1|+N . The statement follows for some i ≥ 2.

If G is a triangle with vertices v1, v2, v3, then let V ′ = V1 ∪ V2 ∪ V3. Observe that every
vertex of V ′ is contained in at most two of V1, V2, V3, thus we have 2|V ′|≥ |V1|+|V2|+|V3|.
The other Vis are disjoint from V ′ and from each other. If the statement of the claim does
not hold, we have the following contradiction.

N = |V ′|+|V \ V ′|> |V ′|+(c− 3)
N

c− 3/2
≥

|V1|+|V2|+|V3|

2
+N

c− 3

c− 3/2
> N

c− 3/2

c− 3/2
.

According to the above claim, Vi has at most N
c−3/2

≤ N − n vertices, thus V \ Vi has at
least n vertices.

All the edges inside V \Vi are contained in at least
(

r
2

)

hyperedges of color i, thus Lemma
8 finishes the proof again.

4.2 Proof of Proposition 4

We restate Proposition 4 below for convenience. We will use the well-known result of Erdős
[4] stating that for any n, there is a two-coloring of Kn with no monochromatic clique of size
⌈2 logn⌉.
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Proposition. Rc(B3Kn) = Ω
(

n⌈ c
2
⌉

(logn)⌈c/2⌉−1

)

.

Proof. We prove the statement by induction on c. The cases c = 1 and c = 2 are trivial.
Note that the case c = 3 is the result of [25] mentioned in the introduction, and note that
it is enough to prove the statement for c odd. Indeed, obviously Rc+1(B3Kn) ≥ Rc(B3Kn),
while the stated lower bound is the same for c and c + 1. Still, our proof below works for
every c ≥ 3.

Let us assume we know the statement for c. We are going to prove it for c + 2. More
precisely, by induction we can find a c-coloring of the complete 3-uniform hypergraph on

h(n) = Ω( n⌊ c
2
⌋+1

(logn)⌊c/2⌋
) vertices without a monochromatic copy of B3Kn. We will show a

(c+2)-coloring of the complete 3-uniform hypergraph K3
m onm = h(n)⌊n/(2c log n)⌋ vertices

without a monochromatic copy of B3Kn.
We partition the vertex set of K3

m into ⌊n/2c logn⌋ parts, each of size h(n), and for each
part we color the hyperedges completely contained in that part using the colors 1, 2, . . . , c,
by induction. This way we have colored all the hyperedges completely inside a part without
a monochromatic copy of B3Kn in colors 1, 2, . . . , c (as a B3Kn is connected, it would need
to be contained inside a part).

Additionally, for each part, we color all the pairs contained in the part (i.e., the complete
2-uniform graph on h(n) vertices) with colors c+ 1 and c+ 2 in such a way that the largest
monochromatic complete (2-uniform) graph has order less than 2 log h(n) < 2c logn. (Here
we used a well-known construction of Erdős.)

Each hyperedge is either completely contained in one of the parts (in which case we have
already colored it), or it intersects exactly two of the parts or it intersects three of the parts.
If a hyperedge contains the pair u, v from a part and a third vertex from a different part,
then we color it by the color of the pair uv (thus it either gets the color c + 1 or c + 2). If
a hyperedge intersects three parts, we color it by c + 2. This completes the coloring of all
the hyperedges. Let us assume for a contradiction that there is a monochromatic copy of
B3Kn. As argued before, this copy cannot be in any of the colors 1, 2, . . . , c, so it must be
of the color c+ 1 or c+2. Moreover, by the pigeon-hole principle, this monochromatic copy
contains a set S of at least 2c logn vertices from one of the parts (as the number of parts
is ⌊n/2c logn⌋). Then, by construction, all of the pairs in S must have been colored by the
same color (either c+1 or c+2). This contradicts the discussion in the previous paragraph,
finishing the proof.

4.3 Proof of Proposition 5

We restate Proposition 5 below for convenience.

Proposition. If n ≥ m > 1 and n+m ≥ 7, then n+m−3 ≤ R(B3Kn, B
3Km) ≤ n+m−2.

For the upper bound in we use induction on n +m. The statement is trivial for m = 2.
The other base case n = 4, m = 3 can be proved by a simple case analysis. Consider a
2-colored complete 3-graph on n + m − 3 vertices, and set aside a vertex u. By induction

14



there are both a blue B3Kn−1 with vertex set A and a red B3Km−1 with vertex set B on
the remaining vertices. We will show that there is either a blue B3Kn on A ∪ {u} or a red
B3Km on B ∪ {u}.

Consider the link graph of u. This is a two-colored complete graph, thus there is a
monochromatic spanning tree in it, say, a blue one. Pick a vertex v 6∈ A and apply Lemma
10. Then every vertex w ∈ A can be connected to u using the blue hyperedge containing
u and f(w). These hyperedges are distinct from each other as f is a bijection, and distinct
from the hyperedges that form the blue Berge-Kn−1 on A, as those do not contain u.

For the lower bound, we take an (m − 2)-set U and an (n − 2)-set U ′. Every 3-edge H
shares at least two vertices with either U , in which case we color H red, or with U ′, in which
case we color H blue. A blue Berge-Kn contains two vertices from U , but those cannot be
connected with an edge contained in a blue hyperedge, a contradiction. A red Berge-Km

leads to contradiction similarly.

4.4 Berge trees. Proof of Theorem 6

The next lemma deals with small trees. It will serve as the base case of induction later in
the proof of Theorem 21. Lemma 20 combined with Theorem 21 gives Theorem 6.

Lemma 20. Suppose Ti, T
′
i are two trees on i vertices. Then we have R(B3T2, B

3T ′
2) = 3,

R(B3T3, B
3T ′

3) = 4 and R(B3T4, B
3T ′

4) = 5. R(B3S5, B
3S5) = 6 and if at least one of

T5 and T ′
5 is not the star, then R(B3T5, B

3T ′
5) = 5. If 1 < j < i ≤ 5, then we have

R(B3Ti, B
3T ′

j) = i.

Proof. It is obvious that if j ≤ i, then to find a monoblue Ti or a monored Tj we need at
least i vertices and at least i+ j−3 hyperedges. These imply all the lower bounds except for
R(B3S5, B

3S5) > 5. To show that, let us take five vertices v1, . . . , v5 and color the hyperedges
of the form vivi+1vi+2 (where the addition is modulo 5) blue, and the remaining hyperedges
red. Then every vertex is incident to exactly three blue and three red hyperedges, thus there
is no monochromatic Berge-S5.

Let us prove now the upper bounds. It is obvious that R(B3T2, B
3T ′

2) ≤ 3 and
R(B3T3, B

3T ′
3) ≤ 4. To show R(B3T4, B

3T ′
4) = 5, observe that an arbitrary vertex v is

contained in three hyperedges of the same color, say blue. It is easy to see that those three
hyperedges form a Berge-S4 and a Berge-P4 as well.

Let us assume now T5 is not a star and consider R(B3T5, B
3T ′

5). Observe that if four
hyperedges contain the same vertex, and we have five vertices altogether, they form not only
S5 but also any of the other 5-vertex trees. Thus the only remaining case is when every
vertex is incident to exactly three blue and three red hyperedges. It is easy to check that we
can find a blue T5 in this case.

If we have six vertices, any vertex is contained in at least four hyperedges in one of the
colors. It is easy to see that those four hyperedges form a Berge-S5, showing R(B3S5, B

3S5) =
6.

It is left to deal with the case R(B3Ti, B
3T ′

j) = i if 1 < j < i ≤ 5. The lower bound
follows by coloring all the hyperedges red on less than i vertices. For the upper bound, in
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case j = 2, there cannot be any red hyperedges, while in case j = 3, there can be at most
one red hyperedges. In both cases one can easily find the blue B3Ti. In case j = 4 we have
i = 5 and if there is no blue B3T5 on five vertices, then we can find a red B3T ′

5 for any
T ′
5 6= S5. At least one of those contains T ′

4, finishing the proof.

Theorem 21. Let T1 and T2 be trees with 6 ≤ n = |V (T1)|≥ |V (T2)|. Then

R(B3T1, B
3T2) = n.

Proof. We apply induction on n and also assume indirectly that we are given a blue-red K3
n

that does not contain a monoblue T1, nor a monored T2. We dealt with the base cases n ≤ 5
in Lemma 20, thus we assume n ≥ 6. We will use multiple times Lemma 9 with r = 3 and
t = 2. Both T1 and T2 are triangle-free, thus it implies that we cannot find a copy of T1 such
that each of its edges are contained in at least two blue hyperedges, and similarly we cannot
find a copy of T2 such that each of its edges are contained in at least two red hyperedges.

Let us introduce some definitions. We call an edge uv deep red if all hyperedges containing
both u and v are red, and deep blue if all hyperedges containing both u and v are blue. Note
that a vertex cannot be incident to both a deep blue and a deep red edge, as there is a
hyperedge containing those two edges.

Case 1. There is a vertex v in the blue-red K3
n that is not incident to a deep blue, nor

to a deep red edge. If T1 = T2 = S6, then n = 6 and then v is contained in at least five
hyperedges of one of the colors, say blue. Every other vertex is contained in at least one
of those blue hyperedges, otherwise v is incident to a deep red edge. Let E0 be the set of
edges incident to v and blue be color 1. Consider Γ1(E0), a matching in it covering A would
finish the proof. Otherwise there is a subset A′ of A with less than |A′| neighbors in Γ1(E0)
by Hall’s theorem. Obviously 5 > |A′|> 1, but than A \ A′ has 1 ≤ i ≤ 3 vertices. This
means v and a set of its i neighbors have at least i+ 1 3-edges that each contain v, which is
impossible.

Let us assume now that T1 and T2 are not both S6. Let T ′
i be a tree that is obtained

from Ti by deleting a leaf such that at least one of T ′
1 and T ′

2 is not S5.
Let us consider a blue-red K3

n and assume it contains neither a blue Berge-T1 nor a red
Berge-T2. Let us delete an arbitrary vertex v. Then by induction we either find a blue
Berge-T ′

1 or a red Berge-T ′
2 in the blue-red K3

n−1 we obtained by deleting v. Let us assume
it is a blue Berge-T ′

1, then there is a vertex u such that the edge uv would extend T ′
1 to

T1. Note that the hyperedges forming that blue Berge-T ′
1 do not contain v. As uv is not

deep red, we can find a blue hyperedge H containing both u and v. Adding that to the blue
Berge-T ′

1 we obtain a blue Berge-T1, as H is distinct from the hyperedges in the the blue
Berge-T ′

1. In case we found a red Berge-T ′
2, we proceed similarly.

Case 2. Every vertex is incident to a deep blue edge, or every vertex is incident to a
deep red edge. We will assume every vertex is incident to a deep blue edge, the other case
follows similarly, as we do not use |V (T1)|≥ |V (T2)|. Consider an arbitrary edge uv. If it is
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deep blue, it is contained in at least n− 2 blue hyperedges. If not, then there are u′, v′ such
that uu′ and vv′ are deep blue by our assumption. Note that if u′ 6= v′, then uv is contained
in at least two blue hyperedges: {u, u′v} and {u, v, v′}.

Case 2.1. Every vertex is incident to exactly one deep blue edge. Then we take a copy
of T1 in the shadow graph. Every edge of that copy of T1 is contained in at least two blue
hyperedges, and then we can find a blue Berge-T1 using Lemma 9, a contradiction.

Case 2.2. There are two adjacent deep blue edges. We take a copy of T1 in the shadow
graph that contains them. Let E0 be the set of edges of that copy of T1. We consider
Γ1(E0), where color 1 is blue. A matching covering A would lead to a contradiction, thus
there is a set A′ ⊂ A with |N(A′)|< |A′| by Hall’s theorem. We pick a minimal A′ with
this property. Then A′ has to contain a vertex a = uv of degree 1 in Γ1(E0), otherwise
the number of edges in Γ1(E0) between A′ and N(A′) is at least 2|A′| and at most 2|N(A′)|
(since vertices of B have degree at most 2), a contradiction. Thus a ∈ A′ is connected to
only one vertex b = uvw ∈ B. If no other element of A′ is connected to b, then A′ \ {a} is a
smaller blocking set, a contradiction. Thus another subedge, say uw of the hyperedge is in
A′. Recall that if uv is contained in only one blue hyperedge uvw, then the deep blue edge
incident to u is uw, and the deep blue edge incident to v is vw. Hence uw is contained in
n− 2 blue hyperedges. This means |N(A′)|≥ n− 2, but as A corresponds to a tree, we have
n − 2 ≤ |N(A′)|< |A′|≤ |A|≤ n − 1. This implies A′ = A. But as the copy of T1 we took
contains two deep blue edges, we have |N(A)|≥ 2n− 5, a contradiction.

Case 3. T1 or T2 is a star.
Let us assume first that T1 is a star and let uv be a deep blue edge. If there is a blue

hyperedge vwz with w 6= u 6= z, then we can find a monoblue Berge-star with center v.
Indeed, for an edge vy with u 6= y 6= w we use the blue hyperedge uvy, for the edge vw we
use the blue hyperedge vwz, while for the edge vu we use the blue hyperedge uvw.

If, on the other hand, every hyperedge containing exactly one of u and v is red, then
every edge other than uv is contained in at least two red hyperedges. We pick a copy of T2

not containing the edge uv, and Lemma 9 finishes the proof. If T2 is a star, the proof follows
similarly, as we did not use |V (T1)|≥ |V (T2)|.

Case 4. There are deep blue and deep red edges, and T1 and T2 are both non-stars.
Case 4.1. T1 or T2 satisfies (ii) of Lemma 11. We assume it is T1, the other case follows

similarly. Note that often there are multiple ways to choose the two edges of T1 specified in
(ii) of Lemma 11. We pick them arbitrarily, except in case T1 is a star with center v and
another edge uw is attached to a leaf u, and we have to pick two adjacent edges. In that
case we pick the edge uv and an edge vz for an arbitrary z.

Case 4.1.1. There is a deep blue edge e1 = uv, and another edge e2 = wz is contained
in at most one red hyperedge wzx. Note that e1 and e2 may share a vertex, or x can be
one of u or v. The edges e1 and e2 will correspond to the two independent or adjacent edges
described in (ii) of Lemma 11, depending on if e1 and e2 are independent. Let e′1 and e′2
be those two edges of T1. As T1 is not a star and has at least six vertices, there is a vertex
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x′ in it that is connected to an endpoint of only one of e′1 and e′2, say e′1. Then we let e1
correspond to e′1 and e2 correspond to e′2. Let x (if exists and is different from u and v)
correspond to x′. For every other vertex of T1, we identify it with an arbitrary other vertex
in K3

n. This way we choose a copy of T1 in the shadow graph.
Now we are going to build a bijection g from the edges of this copy of T1 to the blue

hyperedges containing them. We know that if x exists and is different from u and v, then
either xv or xu is an edge e0 of this copy of T1, and we let g(e0) = uvx. For another edge e
in T1, one of its endpoints y is in ei (i ≤ 2). If the other endpoint y′ is not in e1 ∪ e2, then
let g(e) := ei ∪ {y′}. If y is in both e1 and e2, this does not give a complete definition; in
that case we let g(e) = e1 ∪ {y′}. If y is in e1 and y′ is in e2 (but e1 6= e 6= e2), then let
g(e) := e1 ∪ {y′}.

Observe that we picked distinct hyperedges so far. Indeed, if ei ∪ {y′} is picked twice
for some i, then y′ is connected to both endpoints of ei, thus there is a triangle in T1, a
contradiction. Furthermore, we picked only blue hyperedges so far, as each of them contains
e1 or e2, and wzx = e2 ∪ {x} has not been picked (as x is not connected to an endpoint of
e2).

We still have to pick g(e1) and g(e2). At this point n − 3 blue hyperedges have been
picked as g(e) for some edge e of the copy of T1. The edge e2 is contained in either n − 3
blue hyperedges (and in this case we have picked g(e0) = uvx which does not contain it) or
n− 2 blue hyperedges. In both cases there is a blue hyperedge containing e2 that is not g(e)
for any e ∈ E(T1) so far, let g(e2) be that hyperedge. Finally, e1 is contained in n− 2 blue
hyperedges, thus we are done, unless e1 is contained in g(e) for every edge e of our copy of
T1.

In particular this means that g(e2) contains e1, thus e2 shares a vertex u = w with e1.
Also, every other vertex in the copy of T1 is connected to u or v. If x exists, it cannot be
connected to u by the definition of x′. If there is a vertex y with v 6= y 6= z connected to u,
then we change g. We let g(yu) = uzy instead of uvy, and let g(e1) = uvy. Observe that
uzy is blue, since it contains e2 but not x. Furthermore, uzy was not g(e) for any edge e of
the copy of T1 originally, as y is connected only to u, and g(uy) was e1∪{y}. Thus we found
distinct blue hyperedges containing each edges of a copy of T1, thus a monoblue Berge-T1, a
contradiction.

Finally, if there is no vertex y connected to u (besides v and z), then T1 consists of a
star with center v and one additional edge uw attached to a neighbor u of v. This is the
case we specified at the beginning of Case 4.1, in this case we would not pick uw as e′2, a
contradiction.

Case 4.1.2. There is a deep blue edge, and every other edge is contained in at least two
red hyperedges. Then Lemma 9 applied to the hypergraph consisting of the red hyperedges
finishes the proof.

Case 4.2. T1 = T2 = P6. We follow the argument in Case 4.1. P6 does not satisfy (ii) of
Lemma 11, because although we can find two independent edges in it such that every other
edge shares a vertex with one of them, we cannot find two adjacent ones. Thus we can apply
the proof of Case 4.1.1 in case the edges e1 and e2 are independent, and apply the proof of
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Case 4.1.2 always. It means that if if uv is a deep blue edge, then every edge independent
from it is contained in at least two red hyperedges. Let xz be a deep red edge.

Then we can embed P6 in the order uxzwyv, where w and y are the other two vertices.
The edges of this P6 are contained in at least 1, 4, 2, 2 and 1 red hyperedges in this
order. Now we are going to build a bijection g from the edges of this copy of P6 to the
red hyperedges containing them. First we choose g(ux) and g(yv) arbitrarily from the
red hyperedges containing them. Then we pick g(wy). It is possible that one of the red
hyperedges containing wy is g(yz), but we still have another one that we can pick as g(wy).
Similarly we have an unused red hyperedge to pick as g(zw) and at least two choices for
g(xz).

Case 4.3. T1 and T2 both satisfy (i) of Lemma 11. Thus we can delete vi and the
neighboring leaves from Ti to obtain T ′

i , for i = 1, 2. Let n′ be the number of vertices of the
larger of the trees T ′

1 and T ′
2. Then we delete n− n′ vertices from the blue-red K3

n such that
one of them x is incident to a deep blue edge xx′ and another one y is incident to a deep red
edge yy′, and we do not delete x′ nor y′. Let Q be the set of n′ vertices we do not delete.

Ifn′ ≥ 6, then we can apply induction and find, say, a monoblue Berge-T ′
1 on the remaining

vertices. That means we fins a copy of T ′
1 in the shadow graph of the blue-red K3

n′ with vertex
set Q, such that there are distinct blue hyperedges containing its edges. In case n′ = 5, then
T ′
1 and T2 are not stars, thus we can similarly find a monochromatic Berge-T ′

1 by Lemma
20.

The copy of T ′
1 found this way has a vertex z corresponding to the vertex u in (i) of

Lemma 11, i.e. adding an edge zx and the edges xx1, xx2, . . . , xxk would result in a copy
of T1, where the xi’s are all the vertices of the original blue-red K3

n that are not in Q. For
these edges, we consider the hyperedges zxx′ and xx′xi (if z 6= x′ 6= xi for every i). These
are all blue as xx′ is deep blue, and they are obviously distinct from each other (they are
also obviously distinct from the blue hyperedges used earlier, as they use only vertices from
Q).

In case x′ = z or x′ = xi for some i, the edge xx′ is not matched with a blue hyperedge.
In that case we can choose an arbitrary vertex w of Q and for the edge xx′ we use the
hyperedge xx′w. This new hyperedge is distinct from the others we picked, as the ones we
picked first are inside Q, while the ones we picked later share only x with Q. The hyperedge
xx′w is blue as xx′ is deep blue, giving us a monoblue Berge-T1, a contradiction. In case we
find a monored Berge-T ′

2 by induction, we proceed similarly.
Case 4.4. T1 satisfies (i) but not (ii) of Lemma 11, and T2 = P6. In this case we find

T ′
1 as in the previous case and let T ′

2 = T2. We proceed as in Case 4.3. Note that by the
assumption on T1, we have n > 6, which implies n > n′, thus we can use induction. From
this point the proof is exactly the same as in Case 4.3, except that if the induction finds a
monored T ′

2, we are already done without any further steps.

4.5 Proof of Proposition 7

We restate Proposition 7 below for convenience.
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Proposition. If G is a graph on n vertices with vertex cover number k ≥ 3, then

2k − 1 ≤ R(B3G,B3G) ≤ n− k + 2R(Kk, Kk).

Proof. For the upper bound, we set aside a set A of 2R(Kk, Kk) − 1 vertices, let B be the
set of remaining vertices. Consider all the link graphs of the vertices in A, restricted to B,
with the inherited coloring. These link graphs each have a monochromatic spanning tree,
thus at least R(Kk, Kk) of them have, say, a blue spanning tree. Let A′ ⊂ A be a subset of
size R(Kk, Kk), such that the link graph of each of its elements has a blue spanning tree.
Let us pick v ∈ B and apply Lemma 10 to the blue spanning trees of these link graphs. This
way for every vertex in B′ := B \ {v} we found R(Kk, Kk) blue edges containing them, such
that they, extended with the corresponding vertex of A′ give a blue Berge-KR(Kk,Kk),n−k.

Let us color an edge inside A′ blue if it is contained in at least three blue hyperedges, and
red otherwise. Note that this definition is not symmetric. By the definition of the Ramsey
number we can find a monochromatic clique of size k with this coloring. Assume it is blue.
By Lemma 8 this gives a blue Berge-Kk on those vertices. Deleting the other vertices of A′

we obtain a blue Berge copy of a graph on n vertices with k vertices having degree n − 1.
This obviously contains G. Note that the hyperedges used in the first part of the proof
contained exactly one vertex from A, while the hyperedges used in the second part contain
at least two, thus they are distinct.

Hence we can assume we obtain a red Berge-Kk on the vertex set A′′ = {v1, . . . , vk}. It
means at most 2

(

k
2

)

other vertices can be contained in a red hyperedge together with any of
the edges inside A′′. Let us delete those vertices and consider the set B′′ of the remaining
at least n − k + 1 vertices, let u be one of them. For two vertices vi, vj ∈ A′ we take
the red hyperedge {u, vi, vj}. For vertices vi ∈ A′, w ∈ B′′ \ {u} we take the red hyperedge
{vi, vi+1, w}, where i+1 is taken modulo k. It is easy to see that we took distinct hyperedges,
and they form a red Berge copy of a graph on n vertices with k vertices having degree n−1.

For the lower bound, we consider a complete 3-graph on 2k − 2 vertices and partition
it into two parts A and B of size k − 1. Every hyperedge intersects one of the parts in at
least two vertices. We color it red if it is part A and blue otherwise. Then any red edge is
incident to one of the k − 1 vertices in part A and every blue edge is incident to one of the
k − 1 vertices in part B, thus any monochromatic graph has vertex cover number less than
k.

5 Concluding remarks

Let us note that every Berge copy of a connected graph is a connected hypergraph. Therefore,
an upper bound on the size of the largest monochromatic component of every c-colored Kr

n

can give lower bounds in Berge Ramsey problems. There are some strong results for different
values of c and r, see [5, 12, 13]. For example, there is a 4-colored complete 3-graph such
that the largest monochromatic component has size 3n/4 + o(n) by [12]. This implies that
for any connected graph G on n vertices, we have R4(B3G) ≥ 4n/3 − o(n). However, this
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does not help us obtain a lower bound in case c = r = 3, as in that case there is always a
monochromatic spanning subhypergraph.
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[14] A. Gyárfás, J. Lehel, G. N. Sárközy, R. H. Schelp. Monochromatic Hamiltonian Berge-
cycles in colored complete uniform hypergraphs. Journal of Combinatorial Theory, Se-
ries B, 98(2), 342–358, 2008.
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