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Abstract

We introduce and study a variant of Ramsey numbers for edge-ordered graphs,
that is, graphs with linearly ordered sets of edges. The edge-ordered Ramsey number
Re(G) of an edge-ordered graph G is the minimum positive integer N such that there
exists an edge-ordered complete graph KN on N vertices such that every 2-coloring
of the edges of KN contains a monochromatic copy of G as an edge-ordered subgraph
of KN .

We prove that the edge-ordered Ramsey number Re(G) is finite for every edge-
ordered graph G and we obtain better estimates for special classes of edge-ordered
graphs. In particular, we prove Re(G) ≤ 2O(n3 logn) for every bipartite edge-ordered
graph G on n vertices. We also introduce a natural class of edge-orderings, called
lexicographic edge-orderings, for which we can prove much better upper bounds on
the corresponding edge-ordered Ramsey numbers.

1 Introduction
An edge-ordered graph G = (G,≺) consists of a graph G = (V,E) and a linear ordering ≺
of the set of edges E. We sometimes use the term edge-ordering of G for the ordering ≺ and
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also for G. An edge-ordered graph (G,≺1) is an edge-ordered subgraph of an edge-ordered
graph (H,≺2) if G is a subgraph of H and ≺1 is a suborder of ≺2. We say that (G,≺1)
and (H,≺2) are isomorphic if there is a graph isomorphism between G and H that also
preserves the edge-orderings ≺1 and ≺2.

For a positive integer k, a k-coloring of the edges of a graph G is any function that
assigns one of the k colors to each edge of G. The edge-ordered Ramsey number Re(G)
of an edge-ordered graph G is the minimum positive integer N such that there exists an
edge-ordering KN of the complete graph KN on N vertices such that every 2-coloring of
the edges of KN contains a monochromatic copy of G as an edge-ordered subgraph of KN .

More generally, for two edge-ordered graphs G and H, we use Re(G,H) to denote the
minimum positive integer N such that there exists an edge-ordering KN of KN such that
every 2-coloring of the edges of KN with colors red and blue contains a red copy of G or
a blue copy of H as an edge-ordered subgraph of KN . We call the number Re(G,H) the
non-diagonal edge-ordered Ramsey number.

To our knowledge, Ramsey numbers of edge-ordered graphs were not considered in the
literature. On the other hand, Ramsey numbers of graphs with ordered vertex sets have
been quite extensively studied recently; for example, see [1, 3, 10]. For questions concerning
extremal problems about vertex-ordered graphs consult the recent surveys [23, 24]. A
vertex-ordered graph G = (G,≺) (or simply an ordered graph) is a graph G with a fixed
linear ordering ≺ of its vertices. We use the term vertex-ordering of G to denote the ordering
≺ as well as the ordered graph G. An ordered graph (G,≺1) is a vertex-ordered subgraph of
an ordered graph (H,≺2) if G is a subgraph of H and ≺1 is a suborder of ≺2. We say that
(G,≺1) and (H,≺2) are isomorphic if there is a graph isomorphism between G and H that
also preserves the vertex-orderings ≺1 and ≺2. Unlike in the case of edge-ordered graphs,
there is a unique vertex-ordering KN of KN up to isomorphism. The ordered Ramsey
number R(G) of an ordered graph G is the minimum positive integer N such that every
2-coloring of the edges of KN contains a monochromatic copy of G as a vertex-ordered
subgraph of KN .

For an n-vertex graph G, let R(G) be the Ramsey number of G. It is easy to see that
R(G) ≤ R(G) and R(G) ≤ Re(G) for each vertex-ordering G of G and edge-ordering G
of G. We also have R(G) ≤ R(Kn) = R(Kn) and thus ordered Ramsey numbers are always
finite. Proving that Re(G) is always finite seems to be more challenging; see Theorem 1.

The Turán numbers of edge-ordered graphs were recently introduced in [14], motivated
by a lemma in [15, Lemma 23]. The authors of [14] proved, for example, a variant of the
Erdős–Stone–Simonovits Theorem for edge-ordered graphs, and also investigated the Turán
numbers of small edge-ordered paths, star forests, and 4-cycles; see also the last section
of [24].

Another related problem is to determine the maximum length of a monotone increasing
path that must appear in any edge-ordered complete graph on n vertices. The Chvátal–
Komlós conjecture [9] says that this quantity is linear in n and the authors of [5] could
prove an almost linear lower bound.

For n ∈ N, we use [n] to denote the set {1, . . . , n}. We omit floor and ceiling signs
whenever they are not crucial. All logarithms in this paper are base 2.
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2 Our results
We study the growth rate of edge-ordered Ramsey numbers with respect to the number
of vertices for various classes of edge-ordered graphs. As our first result, we show that
edge-ordered Ramsey numbers are always finite and thus well-defined.

Theorem 1. For every edge-ordered graph G, the edge-ordered Ramsey number Re(G) is
finite.

Theorem 1 also follows from a recent deep result of Hubička and Nešetřil [17, Theo-
rem 4.33] about Ramsey numbers of general relational structures. In comparison, our proof
of Theorem 1 is less general, but it is much simpler and produces better and more explicit
bound on Re(G). It is a modification of the proof of Theorem 12.13 [21, Page 138], which
is based on the Graham–Rothschild Theorem [16]. In fact, the proof of Theorem 1 yields a
stronger induced-type statement where additionally the ordering of the vertex set is fixed;
see Theorem 8. Theorem 1 can also be extended to k-colorings with k > 2.

Due to the use of the Graham–Rothschild Theorem, the bound on the edge-ordered
Ramsey numbers obtained in the proof of Theorem 1 is still enormous. It follows from a
result of Shelah [22, Theorem 2.2] that this bound on Re(G) is primitive recursive, but it
grows faster than, for example, a tower function of any fixed height. Thus we aim to prove
more reasonable estimates on edge-ordered Ramsey numbers, at least for some classes of
edge-ordered graphs.

As our second main result, we show that one can obtain a much better upper bound on
non-diagonal edge-ordered Ramsey numbers of two edge-ordered graphs, provided that one
of them is bipartite. For d ∈ N, we say that a graph G is d-degenerate if every subgraph of
G has a vertex of degree at most d.

Theorem 2. Let H be a d-degenerate edge-ordered graph on n′ vertices and let G be a
bipartite edge-ordered graph with m edges and with both parts containing n vertices. If d ≤ n
and n′ ≤ td+1 for t = 3n10m!, then

Re(H,G) ≤ (n′)2td+1.

In particular, ifG is a bipartite edge-ordered graph on n vertices, thenRe(G) ≤ 2O(n3 logn).
We believe that the bound can be improved. In fact, it is possible that Re(G) is at most
exponential in the number of vertices of G for every edge-ordered graph G; see Section 6
for more open problems. We note that, for every graph G and its vertex-ordering G, both
the standard Ramsey number R(G) and the ordered Ramsey number R(G) grow at most
exponentially in the number of vertices of G.

In general, the difference between edge-ordered Ramsey numbers and ordered Ramsey
numbers with the same underlying graph can be very large. Let Mn be a matching on n
vertices, that is, a graph formed by a collection of n/2 disjoint edges. There are ordered
matchings Mn = (Mn, <) with super-polynomial ordered Ramsey numbers R(Mn) in
n [1, 10]. In fact this is true for almost all ordered matchings on n vertices [10]. On
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the other hand, all edge-orderings of Mn are isomorphic as edge-ordered graphs and thus
Re(Mn) = R(Mn) ≤ O(n) for every edge-ordering Mn of Mn.

In Section 5, we consider a special class of edge-orderings, which we call lexicographic
edge-orderings, for which we can prove much better upper bounds on their edge-ordered
Ramsey numbers and which seem to be quite natural.

An ordering ≺ of edges of a graph G = (V,E) is lexicographic if there is a one-to-
one correspondence f : V → {1, . . . , |V |} such that any two edges {u, v} and {w, t} of G
with f(u) < f(v) and f(w) < f(t) satisfy {u, v} ≺ {w, t} if either f(u) < f(w) or if
(f(u) = f(w) & f(v) < f(t)). We say that such mapping f is consistent with ≺. Note that,
for every vertex u, the edges {u, v} with f(u) < f(v) form an interval in ≺. Also observe
that there is a unique (up to isomorphism) lexicographic edge-ordering Klexn of Kn. Setting
{u, v} ≺′ {w, t} if either f(u) < f(w) or if (f(u) = f(w) & f(v) > f(t)) we obtain the
max-lexicographic edge-ordering ≺′ of G. Observe that in the max-lexicographic ordering,
for every vertex u, the edges {u, v} with f(u) < f(v) again form an interval in ≺′. When
compared to the lexicographic edge-ordering, each of these intervals is reversed, but the
ordering of the intervals is kept the same.

For a linear ordering < on some set X, we use <−1 to denote the inverse ordering of <,
that is, for all x, y ∈ X, we have x <−1 y if and only if y < x.

The lexicographic and max-lexicographic edge-orderings are natural, as Nešetřil and
Rödl [20] showed that these orderings are canonical in the following sense.

Theorem 3 ([20]). For every n ∈ N, there is a positive integer T (n) such that every
edge-ordered complete graph on T (n) vertices contains a copy of Kn such that the edges of
this copy induce one of the following four edge-orderings: lexicographic edge-ordering ≺,
max-lexicographic edge-ordering ≺′, ≺−1, or (≺′)−1.

Theorem 3 is also an unpublished result of Leeb; see [19]. It is thus natural to consider
the following variant of edge-ordered Ramsey numbers, which turns out to be more tractable
than general edge-ordered Ramsey numbers. The lexicographic edge-ordered Ramsey number
Rlex(G) of a lexicographically edge-ordered graph G is the minimum N such that every
2-coloring of the edges of the lexicographically edge-ordered complete graph KlexN on N
vertices contains a monochromatic copy of G as an edge-ordered subgraph of KlexN . Observe
that Re(G) ≤ Rlex(G) for every lexicographically edge-ordered graph G.

For every lexicographically edge-ordered graph G = (G,≺), the lexicographic edge-
ordered Ramsey number Rlex(G) can be estimated from above with the ordered Ramsey
number of some vertex-ordering of G. More specifically, we have the following result.

Lemma 4. Every lexicographically edge-ordered graph G = (G,≺) satisfies

Rlex(G) ≤ min
f
R(Gf ),

where the minimum is taken over all one-to-one correspondences f : V → {1, . . . , |V |} that
are consistent with the lexicographic edge-ordering G and Gf is the vertex-ordering of G
determined by f .
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Figure 1: (a) The edge-monotone path on 5 vertices. (b) The monotone path on 5 vertices.
(c) A different ordered path on 5 vertices and the corresponding lexicographic edge-ordering.
The label of each edge and vertex denotes the position in the edge- and vertex-ordering,
respectively.

We prove Lemma 4 in Section 5. Since R(Kn) = R(Kn), it follows from Lemma 4 and
from the well-known bound R(Kn) ≤ 22n by Erdős and Szekeres [11] that the numbers
Rlex(G) are always at most exponential in the number of vertices of G. In fact, we have
Rlex(Klexn ) = R(Kn) = R(Kn) for every n. The equality is achieved in the statement
of Lemma 4, for example, for graphs with a unique vertex-ordering determined by the
lexicographic edge-ordering. Such graphs include graphs where each edge is contained in a
triangle. Additionally, combining Lemma 4 with a result of Conlon et al. [10, Theorem 3.6]
gives the estimate

Rlex(G) ≤ 2O(d log2 (2n/d))

for every d-degenerate lexicographically edge-ordered graph G on n vertices. In particular,
Rlex(G) is at most quasi-polynomial in n if d is fixed.

We note that the bound in Lemma 4 is not always tight. For example, R(K1,n) =
Rlex(K1,n) for every edge-ordering K1,n of K1,n, as any two edge-ordered stars K1,n are
isomorphic as edge-ordered graphs. However, the Ramsey number R(K1,n) is known to be
strictly smaller than R(K1,n) for n even and for any vertex-ordering K1,n of K1,n; see [6]
and [2, Observation 11 and Theorem 12].

As an application of Lemma 4 we obtain asymptotically tight estimate on the following
lexicographic edge-ordered Ramsey numbers of paths. The edge-monotone path Pn = (Pn,≺)
is the edge-ordered path on n vertices v1, . . . , vn, where {v1, v2} ≺ · · · ≺ {vn−1, vn}; see
part (a) of Figure 1.

Proposition 5. For every integer n > 2, we have

Rlex(Pn) ≤ 2n− 3 +
√

2n2 − 8n+ 11.

The proof of Proposition 5 uses the fact that the one-to-one correspondence f consistent
with the lexicographic edge-ordering of Pn is not determined uniquely. Indeed, we can
choose the mapping f so that it determines the vertex-ordering Pn of Pn where edges are
between consecutive pairs of vertices. Such vertex-ordering Pn is called monotone path;
see part (b) of Figure 1. However, it is known that R(Pn) = (n− 1)2 + 1 [7] and thus we
cannot apply Lemma 4 to this ordering to obtain a linear bound on Rlex(Pn). Instead we
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choose a different mapping f that determines a vertex-ordering of Pn with linear ordered
Ramsey number; see part (c) of Figure 1.

As our last result, we show an upper bound on edge-ordered Ramsey numbers of
two graphs, where one of them is bipartite and suitably lexicographically edge-ordered.
This result uses a stronger assumption about G than Theorem 2, but gives much better
estimate. For m,n ∈ N, let Klexm,n be the lexicographic edge-ordering of Km,n that induces a
vertex-ordering, in which both parts of Km,n form an interval.

Theorem 6. Let H be a d-degenerate edge-ordered graph on n′ vertices and let G be an
edge-ordered subgraph of Klexn,n. Then

Re(H,G) ≤ (n′)2nd+1.

The proof of Theorem 1 is presented in Section 3. Both Theorem 2 and Theorem 6 are
proved in Section 4. Section 5 contains the proofs of Lemma 4 and Proposition 5. Finally,
we mention some open problems in Section 6.

3 Proof of Theorem 1
In this section, we prove Theorem 1 by showing that edge-ordered Ramsey numbers are
always finite. The proof is carried out using the Graham–Rothschild Theorem [16]. To state
this result, we need to introduce some definitions first. We follow the notation from [21].

Let N and t be nonnegative integers with t ≤ N and let A be a finite set of symbols
not containing the symbols λ1, . . . , λt. Then the set [A]

(
N
t

)
of t-parameter words of length

N over A is the set of mappings f : [N ] → A ∪ {λ1, . . . , λt} such that for every j with
1 ≤ j ≤ t there exists i ∈ [N ] such that f(i) = λj and min(f−1(λi)) < min(f−1(λj)) for all
i and j with 1 ≤ i < j ≤ t. The composition f · g ∈ [A]

(
N
r

)
of f ∈ [A]

(
N
t

)
and g ∈ [A]

(
t
r

)
is defined by

(f · g)(i) =

f(i), if f(i) ∈ A and
g(j), if f(i) = λj.

The following result, called the Graham–Rothschild Theorem, is a strengthening of the
famous Hales–Jewett Theorem.

Theorem 7 (The Graham–Rothschild Theorem [16, 21]). Let A be a finite alphabet and
let r, t ∈ N0 and k ∈ N be integers such that r ≤ t. Then there is a positive integer
N = GR(|A|, k, r, t) such that for every k-coloring χ′ of [A]

(
N
r

)
there exists a monochromatic

f ∈ [A]
(
N
t

)
, that is, f satisfies

χ′(f · g) = χ′(f · h)

for all g, h ∈ [A]
(
t
r

)
.

Applying the Graham–Rothschild Theorem similarly as in [21, Page 138], we can derive
the following result, which is actually a stronger statement than Theorem 1.
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Theorem 8. Let (F,≺v,≺e) be a graph with linear orderings ≺v and ≺e on its vertices
and edges, respectively. Then, for every k ∈ N, there exists a graph G with orderings lv

and le of its vertices and edges, respectively, such that for every k-coloring of the edges
of G there is a monochromatic induced copy of (F,≺v,≺e) in (G,lv,le).

Note that we can fix the vertex-ordering of the monochromatic copy as well as the
edge-ordering. Moreover, the obtained monochromatic copy of F is contained in the large
graph G as an induced subgraph. Unfortunately, as we discussed in Section 2, the obtained
bound on the number of vertices of G is enormous.

Proof of Theorem 8. We use n and m to denote the number of vertices and edges of F ,
respectively. Let G be defined as follows. Choose N ∈ N such that N ≥ GR(1, k, 3, n+m).
Let 2[N ] be the vertex set of G and let {X, Y } with X, Y ⊆ [N ] be an edge of G if X∩Y 6= ∅.
For any two sets X, Y ⊆ [N ] with min(X) < min(Y ), we set X l′v Y . Note that l′v is a
partial ordering on the vertices of G. We let lv be an arbitrary linear extension of l′v. For
two edges {X, Y } and {U, V } of G with min(X∩Y ) < min(U∩V ), we set {X, Y }l′e{U, V }.
Observe that l′e defines a partial ordering of the edges of G. We let le be an arbitrary
linear extension of l′e.

We show that (G,lv,le) satisfies the statement of the theorem. We use v1 ≺v · · · ≺v vn
and f1 ≺e · · · ≺e fm to denote the vertices and edges of F , respectively. Let χ be a
k-coloring of the edges of G. We use χ to define a k-coloring χ′ of 3-parameter words of
length N over the single-letter alphabet {0}. Given such a word w ∈ [{0}]

(
N
3

)
, we set

Si, i ∈ {1, 2, 3}, to be the set of positions from [N ] on which w contains the ith variable
symbol λi. Note that the sets S1, S2, S3 are pairwise disjoint, non-empty and, since the
first occurrence of λi precedes the first occurrence of λj in w for all i < j, we also have
min(S1) < min(S2) < min(S3). Setting X = S1 ∪ S3 and Y = S2 ∪ S3, we have two vertices
of G that form an edge of G and that satisfy X lv Y . We let χ′(w) = χ({X, Y }).

By the Graham–Rothschild Theorem (Theorem 7) applied with t = n+m and r = 3,
there is an (n + m)-parameter word w ∈ [{0}]

(
N

n+m

)
such that χ′(w · v) = χ′(w · v′) for

all v, v′ ∈ [{0}]
(
n+m

3

)
. Let b be the common color of the words w · v in χ′. Similarly as

before, for every i ∈ [n+m], we let Si ⊆ [N ] be the set of positions on which w contains
the ith variable symbol λi. Again, observe that the sets Si are pairwise disjoint and satisfy
min(S1) < · · · < min(Sn+m). For every i ∈ [n], we let

Fi = Si ∪
⋃

j : j∈[m],
vi∈fj

Sn+j.

The sets F1, . . . , Fn then induce a vertex-ordered and edge-ordered graph (F ∗,≺v,≺e)
in G. We show that F ∗ is a copy of (F,≺v,≺e) in (G,lv,le). Indeed, since min(S1) < · · · <
min(Sn+m), we have min(Fi) = min(Si) < min(Sj) = min(Fj) if i < j and thus Fi lv Fj
for all vi ≺v vj. Moreover, since the sets S1, . . . , Sn+m are pairwise disjoint, {Fi, Fj} is an
edge of F ∗ if and only if there is an edge fl of F with fl = {vi, vj}, which gives F as an
induced subgraph of G. This is because we have Fi ∩Fj = Sn+l. Let {Fi, Fj} and {Fi′ , Fj′}
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be two edges of F ∗. Since {Fi, Fj} and {Fi′ , Fj′} are edges of G, the sets Sn+l = Fi∩Fj and
Sn+l′ = Fi′ ∩ Fj′ correspond to the edges fl = {vi, vj} and fl′ = {vi′ , vj′} of F , respectively,
by the definition of F1, . . . , Fn. Assume fl ≺e fl′ . Then λn+l precedes λn+l′ , as l < l′, and
thus min(Sn+l) < min(Sn+l′). It follows from the fact Sn+l = Fi ∩ Fj and Sn+l′ = Fi′ ∩ Fj′

and from the definition of le that {Fi, Fj}le {Fi′ , Fj′} if and only if fl ≺e fl′ .
It remains to show that all edges of F ∗ are monochromatic in χ. Let {Fi, Fj} be an edge

of F ∗ with i < j and let Sn+l = Fi ∩ Fj. Note that the sets Fi \ Sn+l, Fj \ Sn+l, and Sn+l
are nonempty, pairwise disjoint, and satisfy min(Fi \ Sn+l) < min(Fj \ Sn+l) < min(Sn+l).
We let v ∈ {0, λ1, λ2, λ3}n+m be the word with symbols λ1, λ2, λ3 on positions from sets
{i} ∪ {n + s : vi ∈ fs 6= fl}, {j} ∪ {n + s : vj ∈ fs 6= fl}, and {n + l} in w, respectively.
Then v ∈ [{0}]

(
n+m

3

)
and w · v ∈ [{0}]

(
N
3

)
is the 3-parameter word with variable symbols

λ1, λ2, λ3 on positions from Fi \ Sn+l, Fj \ Sn+l, and Sn+l, respectively. By the choice of w,
we have b = χ′(w · v) = χ({Fi, Fj}). Thus all edges of F ∗ have the color b in χ.

Now, we obtain Theorem 1 as a corollary of Theorem 8.

Proof of Theorem 1. For a given edge-ordered graph G = (G,≺), let < be an arbitrary
ordering of the vertices of G. By Theorem 8, there is a graph H and orderings <′ and ≺′
of its vertices and edges, respectively, such that every 2-coloring of the edges of H contains
a monochromatic induced copy of (G,<,≺). It thus suffices to consider edge-ordered KN
that contains (H,≺′) as an edge-ordered subgraph. Then every 2-coloring of the edges
of KN contains a monochromatic copy of G as an edge-ordered subgraph (not necessarily
induced).

4 Proofs of Theorems 2 and 6
In this section, we prove both Theorems 2 and 6. That is, we derive a super-exponential
upper bound on the edge-ordered Ramsey numbers Re(H,G) of two edge-ordered graphs H
and G, where G is bipartite. We then improve this bound under the additional assumption
that G ⊆ Klexn,n.

As a first step, we prove the following lemma, which is used in proofs of both Theorem 2
and 6. The proof of this lemma is inspired by a similar “greedy-embedding” approach used,
for example, in [2].

Lemma 9. Let H be a d-degenerate graph on n′ vertices and let v1 l · · ·l vn′ be a vertex-
ordering of H such that each vj has at most d neighbors vi with i < j. Then, for every t ∈ N,
there is KN with N = (n′)2td+1 and with the vertex set partitioned into n′ sets I1, . . . , In′

of the same size such that the following statement holds. In every red-blue coloring of the
edges of KN , there is a blue copy of H in KN with a copy of each vi in Ii or a red copy of
Kt,t in KN with each part contained in a different set Ii.

Proof. Let v1l · · ·lvn′ be a vertex-ordering of H such that each vj has at most d neighbors
vi with i < j. Such an ordering exists, as H is d-degenerate. For N = (n′)2td+1 and for
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every vertex vi of H, let Ii be a set of vertices such that |Ii| = M = n′td+1 and let the
disjoint union I1 ∪ · · · ∪ In′ be the vertex set of KN .

Let χ be a red-blue coloring of the edges of KN . We now try to greedily embed a blue
copy of H on vertices h(v1), . . . , h(vn′) in χ such that h(vi) ∈ Ii for every i ∈ [n′]. We
proceed so that if the embedding fails at some step, we obtain a red copy of Kt,t in χ with
each part contained in a different set Ii.

For each i ∈ [n′], let Ci be a set of candidates for the vertex h(vi). Initially, we set
Ci = Ii. We then proceed in steps i = 1, . . . , n′, assuming that we have already determined
the vertices h(v1), . . . , h(vi−1) in steps 1, . . . , i− 1, respectively.

In step i, assume that, for every neighbor vj of vi in H with i < j, all but at most t− 1
vertices from Ci have at least |Cj|/t blue neighbors in Cj . In such a case, if |Ci| ≥ n′t, then
there is a vertex of Ci that has at least |Cj|/t blue neighbors in each Cj such that vj is a
neighbor of vi in H with i < j. This is because vi has at most n′ − 1 neighbors vj in H
with i < j and

|Ci| − (n′ − 1)(t− 1) ≥ n′t− (n′ − 1)(t− 1) > 0.

We let h(vi) be an arbitrary such vertex from Ci and we update Cj to be the blue
neighborhood of h(vi) in Cj. Thus the size of Cj decreases at most by a multiplicative
factor of t during each update. We update the set Cj so that |Cj| is a multiple of t. Note
that each set Cj is updated at most d times, as we update each Cj for every neighbor vi
of vj in H with i < j and there are at most d such neighbors of vj, as H is d-degenerate.
Since |Ii| = n′td+1, we indeed get |Ci| ≥ n′t after all updates.

If we manage to find h(vn′), then the vertices h(v1), . . . , h(vn′) induce a graph that
contains a blue copy of H in χ, as h(vi) is connected to every h(vj) with a blue edge for
every {vi, vj} ∈ E(H). Note that h(vi) ∈ Ci ⊆ Ii for every i ∈ [n′].

Thus it suffices to consider the case when we cannot find the vertex h(vi) in some step i.
That is, there is a neighbor vj of vi in H with i < j such that Ci contains a set W of t
vertices, each having at most |Cj|/t− 1 blue neighbors in Cj. Then, for each w ∈ W , we
remove all blue neighbors of w from Cj. The total number of vertices that stay in Cj after
the removal is at least |Cj| − t · (|Cj|/t− 1) = t. Together with W , this t-tuple of vertices
induces a red copy of Kt,t in χ between Ci ⊆ Ii and Cj ⊆ Ij.

We now proceed with the proof of Theorem 2. The proof is based on a probabilistic
argument, which uses the following Chernoff-type inequality.

Theorem 10 (Chernoff bound [18]). Let X = ∑k
i=1 Xi be a random variable, where

Pr[Xi = 1] = pi and Pr[Xi = 0] = 1− pi for every i ∈ [k] and all Xi are independent. Let
µ = E(X) = ∑k

i=1 pi. Then, for every δ ∈ (0, 1),

Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2.

We now state and prove the last auxiliary result needed in the proof of Theorem 2.
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Lemma 11. Let G be a bipartite edge-ordered graph with m edges and with both parts
having n vertices. For positive integers t and M that satisfy(

M

t

)2

· e−t2/(3n2m!) < 1,

there is an edge-ordering < of KM,M such that every copy of (Kt,t, <) in (KM,M , <) contains
a copy of G as an edge-ordered subgraph.

Proof. Let < be the ordering of the edges of KM,M chosen independently and uniformly from
the set of all edge-orderings of KM,M . The probability that a copy of (Kn,n, <) in (KM,M , <)
contains a copy of G is at least 1/m!. For a copy of Kt,t in KM,M , fix a decomposition
of Kt,t into copies B1, . . . , Bk of Kn,n where any two of them share at most a single edge.
Note that k ≥ (t/n)2, as we can partition each part of Kt,t into t/n sets of size n and
then consider copies of Kn,n induced by these parts. For i ∈ [k], let Xi be the random
variable such that Xi = 1 if (Bi, <) contains a copy of G and let Xi = 0 otherwise. Then
Pr[Xi = 1] ≥ 1/m!. Since any two copies Bi and Bj share at most a single edge, all the
variables Xi are independent. Let X = ∑k

i=1 Xi and note that

E(X) =
k∑
i=1

Pr[Xi = 1] ≥ k/m! ≥ t2

n2m! .

Clearly, the probability that a copy of (Kt,t, <) in (KM,M , <) does not contain a copy of G
is at most Pr[X = 0]. By Theorem 10,

Pr[X = 0] ≤ e−E(X)/3 ≤ e−t
2/(3n2m!).

The number of copies of Kt,t in KM,M is
(
M
t

)2
. The expected number of copies of (Kt,t, <)

in (KM,M , <) that do not contain a copy of G is thus at most(
M

t

)2

· e−t2/(3n2m!),

which is less than 1 according to our assumptions. Thus there is an edge-ordering < of
KM,M such that every copy of (Kt,t, <) in (KM,M , <) contains a copy of G.

We now combine Lemmas 9 and 11 to prove Theorem 2.

Proof of Theorem 2. Let H = (H,≺1) be a d-degenerate edge-ordered graph on n′ vertices
and let G = (G,≺2) be a bipartite edge-ordered graph with m edges and with both parts
having n vertices. We set t = 3n10m!, N = (n′)2td+1, and M = N/n′. Assuming d ≤ n and
n′ ≤ td+1, we show

Re(H,G) ≤ N.

We construct an edge-ordered complete graph KN = (KN , <) such that every red-blue
coloring of the edges of KN contains either a blue copy of H or a red copy of G. Let

10



v1, . . . , vn′ be a vertex-ordering of H such that each vj has at most d neighbors vi with
i < j. Such an ordering exists, as H is d-degenerate. For every vertex vi of H, let Ii be a
set of vertices such that |Ii| = M = n′td+1 and let the disjoint union I1 ∪ · · · ∪ In′ be the
vertex set of KN .

By Lemma 11, if
(
M
t

)2
· e−t2/(3n2m!) < 1, then there is an edge-ordering <′ of KM,M such

that every copy of (Kt,t, <
′) in (KM,M , <

′) contains a copy of G. We have(
M

t

)2

≤M2t = (n′)2tt2t(d+1),

thus it suffices to show that the expression

(n′)2tt2t(d+1) · e−t2/(3n2m!) ≤ e2t logn′+2t(d+1) log t−t2/(3n2m!)

is less than 1. From the choice of t and the fact m ≤ n2, we have log t ≤ 5n2 log n for
n ≥ 2. Also, since log n′ ≤ (d+ 1) log t and d ≤ n, we can bound the exponent in the above
expression from above by

4t(d+ 1) log t− t2/(3n2m!) ≤ t(20(d+ 1)n2 log n− n8) < 0

for n ≥ 2. Thus there is an edge-ordering <′ of KM,M such that every copy of (Kt,t, <
′) in

(KM,M , <
′) contains a copy of G.

We now define the edge-ordering < of KN . Let ≺′1 be an arbitrary linear ordering of
the edges of Kn′ with the same vertex set as H such that ≺′1 contains ≺1. For two edges
e = {u, v} and f = {x, y} with u ∈ Ii, v ∈ Ij and x ∈ Ik, y ∈ Il, where i 6= j, k 6= l and
|{i, j} ∩ {k, l}| ≤ 1, we set e < f if and only if {vi, vj} ≺′1 {vk, vl}. That is, < is a blow-up
of ≺′1 on I1, . . . , In′ . For all i and j with 1 ≤ i < j ≤ n′, we let < be the ordering <′ on the
complete bipartite graph induced by Ii ∪ Ij. Finally, we order the rest of the edges of KN

arbitrarily, obtaining the edge-ordered graph KN = (KN , <).
Let χ be a red-blue coloring of the edges of KN . By Lemma 9, there is a blue copy of H

in χ with an image of each vi in Ii or a red copy of Kt,t in χ with each part contained in a
different set Ii. In the first case, since copy of each vi lies in Ii and < is a blow-up of ≺′1 on
I1, . . . , In′ , this copy of H has edge-ordering isomorphic to ≺1 and we obtain a blue copy
of H in χ.

In the second case, we have a red copy of Kt,t between Ii and Ij. Since < corresponds
to the ordering <′ on the edges between Ii and Ij and, by the choice of <′, all copies of
(Kt,t, <

′) between Ii and Ij contain a copy of G, we obtain a red copy of G in χ.

The proof of Theorem 6 is also carried out using Lemma 9. However, since we are
working with lexicographically edge-ordered graph, we can order edges between two sets Ii
and Ij lexicographically and use the fact that G is an edge-ordered subgraph of Klexm,n. The
rest of the proof of Theorem 6 is then analogous to the proof of Theorem 2.

Proof of Theorem 6. Let H be a d-degenerate edge-ordered graph on n′ vertices and let G
be an edge-ordered subgraph of Klexn,n. We set N = (n′)2nd+1 and show that Re(G,H) ≤ N
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by constructing an edge-ordered complete graph KN = (KN , <) such that every red-blue
coloring of the edges of KN contains either a blue copy of H or a red copy of G.

Letting v1, . . . , vn′ be a vertex-ordering of H such that each vj has at most d neighbors
vi with i < j, for every vertex vi of H, we let Ii be a set of vertices such that |Ii| = N/n′.
We again let the disjoint union I1 ∪ · · · ∪ In′ be the vertex set of KN . Let ≺′1 be an arbitrary
linear ordering of the edges of Kn′ with the same vertex set such that ≺′1 contains ≺1. We
let < be the edge-ordering of KN that is a blow-up of ≺′1 on I1, . . . , In′ and we order edges
between two sets Ii and Ij so that they determine a copy of Klex|Ii|,|Ij |.

Again, for every red-blue coloring χ of the edges of KN , Lemma 9 gives a blue copy
of H in χ with an image of each vi in Ii or a red copy of Kn,n in χ with each part contained
in a different set Ii. In the first case, we obtain a blue copy of H as before. In the second
case, since the edges between any two sets Ji ⊆ Ii and Jj ⊆ Ij determine a copy of Klex|Ji|,|Jj |,
we obtain a red copy of G, as G is an edge-ordered subgraph of Klexn,n.

5 Lexicographic edge-ordered Ramsey numbers
Here, we include proofs of all statements about lexicographically edge-ordered graphs from
Section 2. We start with a simple proof of Lemma 4.

Proof of Lemma 4. For a lexicographically edge-ordered graph G = (G,≺) with the vertex
set V , let f : V → {1, . . . , |V |} be any one-to-one correspondence consistent with G and
let Gf be the vertex-ordering of G determined by f . More specifically, the vertex-ordering
Gf = (G,<′) is chosen such that u <′ v if and only if f(u) < f(v). Without loss of generality,
the edge-ordered graph KlexN has the vertex set [N ].

We show that every copy of Gf in KN on [N ] determines a copy of G in KlexN . Let
i : V → [N ] be an inclusion witnessing that Gf is an ordered subgraph of KN . That is,
i(u) < i(v) if and only if f(u) < f(v) for all u, v ∈ V . Then G is an edge-ordered subgraph
of KlexN , since, for edges {u, v} and {w, t} of G with f(u) < f(v) and f(w) < f(t), we have
{u, v} ≺ {w, t} if and only if f(u) < f(w) or ((f(u) = f(w) & f(v) < f(t)). This is true if
and only if i(u) < i(w) or ((i(u) = i(w) & i(v) < i(t)), which corresponds to {i(u), i(v)}
preceding {i(w), i(t)} in KlexN .

Thus, given a 2-coloring χ of the edges of KlexN with N = R(Gf), if we consider χ as a
2-coloring of the edges of KN , we obtain a monochromatic copy of Gf in χ. Since every copy
of Gf in KN on [N ] determines a copy of G in KlexN , we obtain a monochromatic copy of G
in χ. Since f is an arbitrary mapping consistent with G, it follows that Rlex(G) ≤ R(Gf)
and finishes the proof of Lemma 4.

Using Lemma 4, we now present a proof of Proposition 5. That is, we show that
Rlex(Pn) ≤ 2n− 3 +

√
2n2 − 8n+ 11 for every n > 2, where Pn is the edge-monotone path

on n vertices.

Proof of Proposition 5. The proof is based on the same idea used in [2, Proposition 15].
Let N be a positive integer and assume that there is a 2-coloring of the edges of KlexN with
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no monochromatic copy of Pn. Let [N ] be the vertex set of KlexN and assume that the
vertex-order < is determined by the lexicographic edge-ordering of KN . Without loss of
generality, we assume that at least half of the edges with one vertex from

[⌈
N
2

⌉]
and the

other one in
{⌈

N
2

⌉
+ 1, . . . , N

}
are colored red. Let M be an dn2 e × b

n
2 c matrix with entries

from {0, 1} such that it contains 1-entries on positions (i, i) and (i + 1, i) and 0-entries
otherwise. Note that M naturally corresponds to an ordered path P = (P,<) on vertices
1 < · · · < n by connecting i and dn/2e + j with an edge if and only if the (i, j) entry of
M is 1. Also the identity on the vertex set [n] of P is consistent with the lexicographic
ordering of the edges of P ; see Figure 1 for an example. Thus the matrix M represents the
edge-monotone path Pn.

Let A be an
⌈
N
2

⌉
×
⌊
N
2

⌋
matrix with entries from {0, 1} such that A contains 1-entries

on positions (i, j), where {i,
⌈
N
2

⌉
+ j} is a red edge of KlexN , and 0-entries otherwise. We

say that A contains the matrix M if A contains a submatrix that has 1-entries at all the
positions where M does. Observe that, since M represents the edge-monotone path Pn,
the matrix A cannot contain M as otherwise KlexN contains a red copy of Pn.

It follows from a result of Füredi and Hajnal [13] (see also Lemma 16 in [2]) that A
contains at most(⌊

n

2

⌋
− 1

) ⌈
N

2

⌉
+
(⌈
n

2

⌉
− 1

) ⌊
N

2

⌋
−
(⌈
n

2

⌉
− 1

)(⌊
n

2

⌋
− 1

)
≤ 2nN + 4n− 4N − 3− n2

4

1-entries, as M is so-called minimalist matrix. On the other hand, since red was the major
color among edges between

[⌈
N
2

⌉]
and

{⌈
N
2

⌉
+ 1, . . . , N

}
, we have at least 1

2

⌈
N
2

⌉ ⌊
N
2

⌋
≥

(N2 − 1)/8 such red edges and thus also at least that many 1-entries in A. Altogether,
we have the inequality (2nN + 4n − 4N − 3 − n2)/4 < (N2 − 1)/8, which gives N ≤
2n− 4 +

√
2n2 − 8n+ 11.

6 Open problems
Many questions about edge-ordered Ramsey numbers remain open, for example proving a
better upper bound on edge-ordered Ramsey numbers than the one obtained in the proof
of Theorem 1. Since edge-ordered Ramsey numbers do not increase by removing edges
of a given graph, it suffices to focus on edge-ordered complete graphs. It is possible that
edge-ordered Ramsey numbers of edge-ordered complete graphs do not grow significantly
faster than the standard Ramsey numbers.

Problem 12. Is there a constant C such that, for every n ∈ N and every edge-ordered
complete graph Kn on n vertices, we have Re(Kn) ≤ 2Cn?

We note that, very recently, Fox and Li [12] showed that Re(H) ≤ 2100n2 log2 n for every
edge-ordered graph H on n vertices.
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It might also be interesting to consider sparser graphs, for example graphs with maximum
degree bounded by a fixed constant, and try to prove better upper bounds on their edge-
ordered Ramsey numbers.

We have no non-trivial results about lower bounds on edge-ordered Ramsey numbers
and even lexicographically edge-ordered Ramsey numbers. Proving lower bounds for the
latter might be simpler, as one has to consider only the lexicographic edge-ordering of the
large complete graph. Is there a class of graphs with maximum degree bounded by a fixed
constant such that their corresponding edge-ordered Ramsey numbers grow superlinearly
in the number of vertices? If so, then such a result would contrast with the famous
result of Chvátal, Rödl, Szemerédi, and Trotter [8], which says that Ramsey numbers of
bounded-degree graphs grow at most linearly in the number of vertices.

Another interesting open problem is to determine the growth rate of the function T (n)
from Theorem 3. The current upper bound on T (n) is quite large as the proof of Nešetřil
and Rödl [20] uses Ramsey’s theorem for quadruples and 6! = 720 colors.

Finally, we showed that the inequality in Lemma 4 is not always tight using examples
with stars, where both sides of the inequality differ by 1. It is a natural question to ask how
wide this gap can be. In particular, is there a class of graphs for which the ratio between
both sides of the inequality in Lemma 4 is arbitrarily large?
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