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Abstract—Random geometric (hyperbolic) graphs are impor-
tant modeling tools in analyzing real-world complex networks.
Greedy navigation (routing) is one of the most promising infor-
mation forwarding mechanisms in complex networks. This paper
is dealing with greedy navigability of complex graphs generated
by using a metric (hyperbolic) space. Greedy navigability means
that every source-destination pairs in the graph can communicate
in such a way that every node passes the information towards that
neighboring node which is ”closest” to the destination in terms of
node coordinates in the metric space. A set of compulsory links
in greedy navigable graphs called Greedy Skeleton is identified.
Because the two-dimensional hyperbolic plane (H2, also known
as the two dimensional Bolyai-Lobachevsky Space [2]) turned
out to be extremely useful in modelling and generating real-
like networks, we deal with the statistical properties of the
Greedy Skeleton when the metric space is H2. Some examples of
numerical studies and simulation results supporting the analytical
formulae are also performed. The significance of the results lies
in that every (either artificial or natural) network formation
process aiming at greedy navigability must contain this Greedy
Skeleton. Furthermore, this could be an important step towards
the formal argumentation of the very high greedy navigability
of some models observed only experimentally for the time being,
and also to analyze equilibrium of greedy network navigation
games on H2.

Index Terms—Random Hyperbolic Graphs, Greedy Routing,
Scale-free Networks

I. INTRODUCTION

A graph embedded in a metric space (nodes of the graphs
are labeled with coordinates of the metric space) is said
to be greedy navigable (or equivalently said greedy routing
is applicable) if greedy path exists between any source-
destination pair. Greedy path is a set of consecutive links
between a source and a destination, in which the next hop
of a node along this path is the neighbor of this node which
is closest to the destination in terms of distance measured in
the metric space. Clearly, greedy path does not necessarily
exist in a graph with an underlying metric space. Informally,
if a piece of information (e.g. a packet) arrives at a node, this
node should calculate first which of its neighboring nodes is
closest to the destination (called also greedy next hop), and
then pass the information to this next hop node. In [3] R.
Kleinberg showed in his seminal paper that for each node of
an arbitrary graph a virtual coordinate in the hyperbolic plane
can be assigned, and greedy routing can be performed with
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respect to these virtual coordinates. The assignment is based
on his fundamental theorem that every connected finite graph
has a greedy embedding in the hyperbolic plane. Nevertheless,
this theorem does not provide that this embedding has the
desirable properties of low congestion (the number of distinct
pairs s, t whose greedy route uses a given node v) and low
stretch (the ratio of the number of hops on a greedy route to
the number of hops on the shortest route between the same
pair of nodes)

In what follows we expose that a skeleton (a set of links
in the graph) must exist in every 100% greedy navigable
graph. Let a node u be supposed to reach a node v through
a greedy path. Let also be the v−centered ball with d(u, v)
radius considered. If there is no other node connected to v
within this ball, then the (u, v) directed link should exist,
otherwise u can not reach v in a greedy manner. In other
words, u will be the closest node to v. Eventually, for all nodes
these directed links can be identified, we call them together
the Greedy Skeleton. Every node in such a skeleton has only
one incoming link (every node has one closest neighbour).
From this it immediately follows that the average degree of
the Greedy Skeleton is 1. (This could be a good checking point
when the degree distribution is derived). A node can have more
than one outgoing links (a node can act as a closest node of
more than one other nodes).

II. THE SKELETON OF GREEDY NAVIGABLE HYPERBOLIC
RANDOM GRAPHS ON H2

A very simple and appealing model using H2 as metric
space is introduced in [4] for generating scale-free graph,
which is as follows: First, place N points (nodes) on a
hyperbolic disk with radius R on H2, with generating their
polar coordinates (r, φ) according to the following density
functions 1 on the whole disk

ρ(r) =
α sinh(r)

cosh(αR)− 1
, ρ(φ) =

1

2π
, (1)

where α ≥ 1/2 is a parameter controlling the heterogeneity
of the layout. If α = 1, the nodes are distributed uniformly
over the hyperbolic disk because the area element at coordi-
nates (r, φ) is dA = sinh(r) dr dφ. Next, for every node pair

1Note, that the desired node scattering is achieved in simulations by placing
nodes u at polar coordinates ru = (1/α) arccosh {1 + [cosh(αR)− 1]U}
and φu = 2πU where U for each u is a random number drawn from the
uniform distribution on [0, 1].
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u, v establish a link between them, if they are not farther than
R from each other, i.e. d(u, v) ≤ R, where d(u, v) is the
hyperbolic distance between u, v on H2. This link generation
process can also be viewed that for every node u, a u-centered
circle is drawn with radius R, then every point within this
circle is connected to u. 2

The distance calculation on H2 by polar coordinates can be
performed by the hyperbolic law of cosine:

cosh(duv) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(φ)
(2)

where ru, rv are the radial coordinates of nodes u, v and φ is
the difference of their angle coordinates.

Now, similarly to the previous discussion, one can identify
the greedy skeleton of any greedy navigable graph generated
on H2 in the following way: Recall that the link (u, v) is
contained in GS if and only if the d(u, v)-disk centered at
v does not contain any node other than u (see Fig. 1). This
means that u cannot reach v by greedy routing through any
other nodes then v, and so a link must exist towards v to keep
greedy navigability of the graph. Note again, that the in-degree
of each node in GS will be exactly one.

In the next section, we analyze the statistical properties of
GS.
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Fig. 1. An edge in the GS

III. STATISTICAL PROPERTIES OF GS

A. The expected out degree and degree distribution of GS for
uniform node density (α = 1)

Because the area Tuv of the intersection of the R-disk
and the d(u, v)-disk at origin v plays central role in the
statistical properties of GS, first we give an approximation
for this. An acceptable approximation for Tuv is as follows:
Tuv is apparently equals to 2π(cosh duv − 1)(≈ πe

duv
2 for

not so small duv) when the duv−disk is completely inside
the R−disk. On contrary, if R − rv < d(u, v) (there is real
intersection) then much less evidently Tuv is approximately
Tuv ≈ 4e

duv
2 e

R−rv
2 . In Fig. III-A two characteristic cases are

depicted when there is real intersection of the duv-disk and
the R-disk. Let the polar coordinates of node v be (rv, φv),

2It can also be interpreted that the link establishment rule is a Heaviside
step function on d(u, v) as H(R − d(u, v)). In [4] a continuous relaxation
of H is also presented, nevertheless, in this paper we follow the model using
H .

and of node u be (ru, φu). Let φ = |φu−φv|. The area Tuv is
the function of ru, rv , φ, and R, and can be calculated as the
sum of the two circle sectors with angle 2α, radius duv and
angle 2β radius R, and minus the area of the two triangles
with angles α, β, γ. That is

Tuv = 2β (cosh(R)− 1)+2α (cosh(duv)− 1)−2 (π − α− β − γ) .
(3)

where the angles and duv are given by the hyperbolic law of
cosines, however, here the following simpler approximations
are used (which are accurate enough for larger ru and duv):

duv ≈ R+ rv + 2 ln
β

2
⇒ β ≈ 2e

duv
2 −

R+rv
2 (4)

R ≈ duv + rv + 2 ln
α

2
⇒ α ≈ 2e−

duv
2 +R−rv

2 . (5)

Applying (3) with neglecting the triangle areas, and using
cosh(R) − 1 ≈ eR/2, cosh(duv) − 1 ≈ eduv

2 we get
Tuv ≈ 4e

duv
2 e

R−rv
2 . In summary:

Tuv ≈

{
πeduv , if 0� duv < R− rv

4e
duv
2 e

R−rv
2 , if duv > R− rv .

(6)

The expected out-degree as the function of ru can be
expressed by the integral:

kout(ru) = (N − 1)

∫
R−disk

(
TR − Tuv

TR

)N−2
dT ≈

≈ δ
∫ R

0

∫ 2π

0

e−Tuvδdφ sinh(rv)drv , (7)

where Tuv (see Fig. 1) is the area of the intersection of the
R-disk and the d(u, v)-disk at origin v and δ = N/TR is the
density of the points (TR denotes the area of the R-disk).
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Fig. 2. Illustration for Tuv

These approximations are illustrated in Fig. 3 for R = 12,
rv = 6 and rv = 8. Solid lines are the exact Tuv calculations
based on (3) and exact computations of angles. Note that there
is a sharp change on logarithmic scale between the duv-slope
and duv/2-slope around R− rv . The dashed lines are the Tuv
approximations when duv > R− rv .

The joint asymptotic expansion of the double integral with
respect to rv and φ reveals that the dominant terms will be
those in which duv > R − rv . Hence, considering the first
integral by φ as

δ

∫ 2π

0

e−δTuvdφ . (8)
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Fig. 3. Tuv ≈ 4e
duv
2 e

R−rv
2 when there are real intersections (that is when

d(u, v) > 6 and 4, respectively).

can be approximated when Tuv is substituted by its approxi-
mation, that is by

δ

∫ 2π

0

e−δ4e
duv
2 e

R−rv
2 dφ . (9)

Applying the approximation e
duv
2 ≈ e

ru+rv
2

√
1−cosφ

2 the
integral can be approximated as

δ

∫ 2π

0

e−δ4e
duv
2 e

R−rv
2 dφ ≈ 2πδ(I(0, x)− S(0, x)) ≈ e−

R+ru
2

(10)
where x = 4δe

R+ru
2 and the last wave due to that I(0, x) −

S(0, x) (difference of the BesselI and the modified Struve
functions) quickly tends to 2

πx
−1. Now the second integration

by rv gives the expected degree approximation in the frame
topology, that is

kout,GS(ru) ≈
∫ R

0

e−
R+ru

2 sinh(rv)drv =

e−
R+ru

2 (cosh(R)− 1) ≈ 1

2
e
R
2 e−

ru
2 . (11)

The quality of this approximation can be checked with the
followings. The average in-degree in the frame topology is
exactly 1, therefore the average out-degree should also be 1,
that is

k̄out,GS =

∫ R

0

kout,GS(ru)
sinh(ru)

cosh(R)− 1
dru ≈

1

3
(3 + e−2R − 4e−R/2) ≈ 1 . (12)

Let us recall that in case of uniform distribution of points
on an R−disk of the hyperbolic plane, the density of the radial
coordinates of the points is

ρ(r) =
sinh r

coshR− 1
(13)

Note that the expected degree of node u is exponential in the
radial coordinate ru as in [4]. Because of this and the fact

that equilibrium graph of NNG is also sparse [1] the degree
distribution can be calculated in the same way as in [4] :

P (k) =

∫ R

0

g(k, kout(ru))ρ(ru)dru =
1

2

Γ(k − 2, 12 )

k!
(14)

where g(k, kout(ru)) is the conditional distribution of the
degree of a node with radial coordinate u, and it is Poissonian
with mean kout(ru) in case of sparse graphs. It can also be
shown that for larger k

P (k) ≈ 1

2k3
. (15)

The direct derivation of the complement cumulant degree
distribution from P (k) seems to be intangible, however, from
its approximation it can be computed as

F̄ (k) ≈ 1−
(∫

1

2k3
dk + C

)
(16)

where the constant C is 1, and k ≥ 1
2 (in order to have

distribution function), that is

F̄ (k) ≈ k̄2

4
k−2 , k ≥ 1

2
. (17)

It is interesting to show that this approximation can also be
obtained as the exact ccdf of the conditional expected node
degrees kout(ru). This approximation can be computed as

F̄ (k) ≈
∫ ru(k)

r=0

ρ(r)dr ≈ eru(k)−R (18)

where ru(k) is the inverse function of kout(ru, R) w.r.t. ru,
i.e.

ru(k) = R− 2 ln (2k) . (19)

Applying this one can obtain the same before as

F̄ (k) ≈ k̄2

4
k−2 , k ≥ 1

2
k̄ . (20)

Note that the average degree can also be computed as∫ ∞
k= 1

2

(
k
∂(1− F̄ (k))

∂k

)
= 1 (21)

and it is indeed 1.
We have studied the quality of the approximations above

also by extensive numerical investigations and eventually
found that the exponential decay of the expected degree of
nodes (kout(ru)) is extremely good approximation of the
numerically evaluated expected degree function for a wide
range of node density δ.

This is illustrated by the following examples. First consider
the setup R = 16.5, n = 10000. In this case δ = 2.17 · 10−4.
Fig. 4 shows how the expected degree decay is matching the
exponential decay. One can observe that for larger values of
ru the coincidence is very good, for smaller values of ru there
are larger errors of the approximation.

To quantify this observation, note that 99.9% of points have
ru > 10 (that is in case of uniformly distributed points on the
R(=16.5)-disk, only about 10 points of the 10000 is inside
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Fig. 4. Comparison of the exponential decay (C(R)e−
ru
2 , larger blue dots)

and the numerically evaluated exact decay (smaller red dots) of the expected
degree in the function of ru, R = 16.5, n = 10000.

the disk with radius 10). If we consider the relative errors of
the matching one can reveal that for ru > 10 it is smaller
than 0.15%, that is for 99.9% of points the expected degree
approximation has smaller than 0.15% relative error, as shown
by Fig. 5. To increase the number of points to n = 30000 and
n = 50000 (δ = 6.54 · 10−4, δ = 1.08 · 10−3), the relative
error is increasing, especially for smaller values of ru, but still
for 99.9% of the points the relative error smaller than 0.25%
and 1%, respectively. If we dramatically decrease the node-
density, for example n = 500, the relative errors also increase
(compared to the n = 10000 case), however, it still remains
under 0.2% for 99.9% of the points.
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Fig. 5. Relative error of matching the exponential decay in the function of
ru, R = 16.5, n = 10000.

B. The expected out degree and degree distribution of GS for
quasi-uniform node density

The radial coordinate density in case of quasi-uniform node
density is

ρ(r, α) :=
α sinh(αr)

cosh(αR)− 1
≈ αeα(r−R) (22)

while the angle density remains uniform ( 1
2π ) over the range

[1, 2π]. Given a point pair (u, v), first we determine the
probability p(ru, α) that the u → v link exists, then based
on this the average out degree k(ru, α) of u is calculated, and
finally F̄ (k, α) is also given.

The probability p(ru, α) is equal to that none of the remain-
ing N − 2 points fall in the intersection of the v-centered duv
circle and the R-disk. Let us denote by p1 the probability that
a point whose coordinates generated by randomly according
to the densities above falls inside the intersection. Using p1
the probability p(ru, α) can be calculated and approximated
as

p(ru, α) = (1− p1)N−2 ≈ e−Np1 (23)

The calculation of p1 can be performed by using the node
density function in the following way [4]

p1 =

∫ max(0,d−rv)

0

ρ(r, α)dr+
1

2π

∫ min(R,d+rv)

|d−rv|
ρ(r, α)2θ(r)dr

(24)
where

θ(r) = arccos
cosh rv cosh r − cosh d

sinh rv sinh r
. (25)

In [4] a useful approximation is presented for quite similar
integrals, based on which one can write

p1 ≈
4e

1
2 (d−R−rv)α

π(−1 + 2α)
(26)

for 0.5 < α ≤ 1 .
Now the expected out-degree of u can be written as

kout(ru, α) ≈ N

2π

∫ R

0

∫ 2π

0

e−Np1dφρ(rv)drv . (27)

Using the approximation of p1 and cosh(d/2) ≈ e
ru+rv

2 sin φ
2

one can formulate∫ 2π

0

e−Np1dφ ≈
∫ 2π

0

e−x sin φ
2 dφ ≈ 2π(I(0, x)−S(0, x)) ≈ 4

x
(28)

where

x = 4
N

π

α

2α− 1
e
ru−R

2 . (29)

Note, that x does not depend on rv , therefore the second
integration by rv results

kout(ru, α) ≈ N

2π

4

x

∫ R

0

ρ(rv, α)drv =
2α− 1

2α
e
R
2 e−

ru
2 .

(30)
Note, that for α = 1 we get back the result for the uniform
density case.

Now the (approximation of the) complement cumulative
distribution function F̄ (k) can be derived as,

F̄ (k) =

∫ ru(k)

0

ρ(r, α)dr ≈ eα(ru(k)−R) =

(
1− 1

2α

k

)2α

(31)
where ru(k) is the inverse function of kout(ru) .

Here we note that further investigations are needed for
deriving analytical formulae for the case 0 < α ≤ 0.5.



C. Comparing analytical and simulation results

For comparing the analytical formula and simulation results
of the degree distribution of GS, 20 random graphs have been
generated each with 5000 nodes distributed uniformly (α = 1)
on a hyperbolic disk with radius R = 15. For each graph the
pdf of node degrees is generated and ”averaged” them over
the 20 graphs. Fig 6 shows the results. One can observe good
matching for lower degrees, however, in this simulation setup
nodes having larger degree than 20 are very rare resulting less
reliable statistics for this region.
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Fig. 6. CCDF of the node degrees, analytical formula (continuous line) and
the simulation results on a log-log plot. N = 5000, R = 15.

IV. CONCLUSION

We have presented the Greedy Skeleton as a set of manda-
tory links in every 100% greedy navigable graphs. Statistical
properties of GS of greedy navigable graphs generated by the
metric space H2 have also been performed. As the main result
of this paper, it has been shown that the expected degree of
a node in the Greedy Skeleton is proportional to exp(− r2 )
(where r is the radial coordinate of the node in H2) and the
degree distribution of the Greedy Skeleton is scale-free that
is proportional to k−3. Numerical examples and simulation
results highlighted the accuracy of the analytical formulae.
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Fig. 7. The full graph N = 350, R = 10 to include the mandatory links for
navigation. Note that for the ease of illustration, hyperbolic polar coordinates
used as Euclidean ones, however, the link establishment is in full accordance
of the hyperbolic distance calculation.

Fig. 8. Skeleton necessary for 100% greedy navigable graphs, N = 350,
R = 10.


