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ABSTRACT: Nuclear quantum effects have significant contributions to thermodynamic
quantities and structural properties; furthermore, very expensive methods are necessary for
their accurate computation. In most calculations, these effects, for instance, zero-point energies,
are simply neglected or only taken into account within the quantum harmonic oscillator
approximation. Herein, we present a new method, Generalized Smoothed Trajectory Analysis, to
determine nuclear quantum effects from molecular dynamics simulations. The broad applicability
is demonstrated with the examples of a harmonic oscillator and different states of water. Ab initio
molecular dynamics simulations have been performed for ideal gas up to the temperature of 5000
K. Classical molecular dynamics have been carried out for hexagonal ice, liquid water, and vapor
at atmospheric pressure. With respect to the experimental heat capacity, our method outperforms
previous calculations in the literature in a wide temperature range at lower computational cost
than other alternatives. Dynamic and structural nuclear quantum effects of water are also
discussed.

1. INTRODUCTION
Calculations of reaction free energy profiles and activation
barriers are routinely performed within the rigid-rotor and
harmonic-oscillator approximation;1 meanwhile, the more
accurate computation of thermodynamic quantities or vibra-
tional spectra is still a great challenge.2−10 The inclusion of
nuclear quantum effects (NQEs), such as zero-point energy
(ZPE) or tunneling, is even more difficult.11−13 Path-integral
molecular dynamics (PIMD) and path integral Monte Carlo
(PIMC) simulations are accurate, yet highly expensive
methods to incorporate NQEs.14,15 The computational cost
of PIMD simulations can be significantly reduced by advanced
techniques.16−18 Recently developed algorithms, such as a
colored noise thermostat and quantum thermal bath, are more
effective to add quantum effects to classical simulations,19−21

but settings need to be chosen carefully to prevent zero-point
energy leakage.22,23

When empirical water models were used in PIMD
simulations, several properties deviated more from the
experiments than in the classical simulations.24−27 In these
quantum simulations, the liquid water becomes less structured
and less viscous. This has been explained by double counting
of quantum effects: once in the parameter optimization using
experimental data, second in the quantum simulations. This is
why several water models were reparametrized for accurate
PIMD simulations resulting in q-SPC/Fw,28 q-TIP4P/f,24 and
TIP4PQ/2005 models.29 Another solution to avoid double
counting is the application of PIMD with ab initio methods9 or
force fields trained on ab initio data.25,27,30 Numerous
methodological developments have also been made to calculate
quantum free energy values from PIMD simulations.31−35

In routine DFT calculations, with the optimized geometry in
hand, the free energies are summed for all the different
motions such as translation, rotation, and vibration, using the
partition functions of the particle in the box, rigid rotor, and
harmonic oscillator (RRHO) models.36 This approach works
satisfactorily for small molecules at ambient temperatures,
where the normal modes of vibrations can be considered as
decoupled harmonic oscillators. For systems, where anharmo-
nicity is significant, and/or the conformational space is
extended, the RRHO fails to reproduce the exact thermody-
namic quantities. Recognizing the need to address this issue,
more sophisticated approaches use slightly modified partition
functions on optimized geometries.37,38 There are a few
methods which can estimate quantum corrections from
classical MD trajectories, for example, one- and two-phase
thermodynamics methods (1PT, 2PT).39−41 In those cases the
vibrational density of states (VDOS) is determined from
molecular dynamics by the Fourier transformation of the
velocity autocorrelation function. Quantum corrections are
computed by the multiplication of VDOS with weight
functions derived from the partition functions of motions. In
the 1PT model, only vibrational modes are considered as
harmonic oscillators; in the 2PT model, gas phase motions
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such as rotational and translational modes are also taken into
account. The 2PT model is an improved method based on the
original work of Berens et al. which corresponds to the 1PT
method with anharmonic correction (1PT+AC).39

The 2PT and 1PT+AC methods were successfully applied
for the calculation of thermodynamic properties of several
systems such as Lennard-Jones fluids,40 water,39,41−47 organic
liquids,48,49 carbon dioxide,50 adsorbed urea to cellulose,51

ionic liquids,52,53 carbohydrates,54 mixtures,55 and interfaces.56

Heat capacity is generally used as a reference property for the
benchmark of force fields.42,48,49,53 The 1PT/2PT methods are
still in continuous development in respect to accuracy and
applicability.57−63

Here, we propose the Generalized Smoothed Trajectory
Analysis (GSTA) method, which is numerically beneficial to
the 1PT/2PT methods and, moreover, addresses their
limitations arising from the used approximations. Our theory
is demonstrated on the exact reproduction of heat capacity and
internal energy of a harmonic oscillator. We have chosen
different states of water as real-world examples as the heat
capacity varies widely between phases, and it is still one of the
most investigated materials in computations.64 Beyond
thermodynamic properties, structural and dynamic NQEs are
also investigated.

2. THEORY
In a molecular dynamics simulations, the velocity autocorre-
lation function (VACF) can be defined as follows:

t
v t v d

v
VACF( )

( ) ( )
2

∫ τ τ τ
=

+ ·

⟨ ⟩
−∞

+∞

(1)

where v is the velocity as a function of the time (t). Here, we
refer to mass (m)-weighted VACF, but we assume identical
masses in the derivations for simplicity. The vibrational density
of states (VDOS) is the representation of the autocorrelation
function (VACF) in the Fourier domain:

t t t tVDOS( ) VACF( ) ( ) 2 VACF( ) cos(2 )dt
0

∫ν ν πν= { } = ·
+∞

(2)

where ν is the frequency. Since in our calculations real
numbers are used, the Fourier cosine transform is applied.
Consequently, the VACF function is the inverse Fourier
transform of the VDOS function:

t t tVACF( ) VDOS( ) ( ) 2 VDOS( ) cos(2 )d
0

∫ν ν πν ν= { } = ·ν

+∞

(3)

Using t = 0, we get the norm of the VDOS function:

VDOS( ) (0) 2 VDOS( )d VACF(0)

1
0

∫ν ν ν{ } = =

=

ν

+∞

(4)

Applying ν = 0 in eq 2, we get the norm of the VACF function:

t t tVDOS(0) VACF( ) (0) 2 VACF( )dt
0

∫= { } =
+∞

(5)

Originally, Berens et al. proposed that quantum corrected
density of states can be determined by the multiplication of
VDOS with an appropriate weight function w:39

wVDOS ( ) VDOS( ) ( )q ν ν ν= · (6)

2.1. Corrections of Vibrational Density of States
(VDOS). 2.1.1. One-Phase Thermodynamics (1PT). In the
1PT method, only vibrational motions are considered. The
internal energy is

U U d

U w

2 VDOS ( )

2 VDOS( ) ( )dU

1PT
0

1

0

q

0
1

0

∫
∫

β ν ν

β ν ν ν

= +

= + ·

−
∞

−
∞

(7)

where U0 is the reference energy and β = (kBT)
−1, kB is the

Boltzmann constant, and T is the temperature.
The vibrational weight function wU for the energy originates

from the quantum harmonic oscillator model:36

w
h h

( )
2

coth
2

U ν β ν β ν= i
k
jjj

y
{
zzz

(8)

where h is the Planck constant and coth denotes the hyperbolic
cotangent function.
The heat capacity is the temperature derivative of the

internal energy:

c
U

T
k

Tw
T

2 VDOS( )
( ( ))

dV

U
1PT

1PT

B
0

∫ ν ν ν= ∂
∂

= · ∂
∂

∞

(9)

The last term in the integral is the weight function for the heat
capacity:36

w
Tw

T
h

h
h

( )
( ( ))

exp( )
1 exp( )

c
U 2

V ν ν β ν β ν
β ν

= ∂
∂

=
−

i
k
jjjjj

y
{
zzzzz

(10)

The weight functions are shown in Figure 1. Using this weight
function wcV(ν), the heat capacity can be obtained directly from
the classical VDOS by integrating over the frequency domain:

c k w2 VDOS( ) ( )dV
c1PT

B
0

V∫ ν ν ν= ·
∞

(11)

In the classical limit (h → 0), the 1PT method always gives kB
for the heat capacity, which corresponds to the classical
harmonic value, so it cannot model anharmonicity.

2.1.2. Two-Phase Thermodynamics (2PT). Gas-like mo-
tions such as translations and rotations are separated from
vibrations in the 2PT method. The total VDOS is decomposed
into vibrations, translations, and rotations:

VDOS( ) VDOS ( ) VDOS ( ) VDOS ( )vib trn rotν ν ν ν= + +
(12)

Translation and rotation are determined for the center of
mass and principal axes of the molecules, respectively.
Different weight functions are used for the different motions
in the calculation of the thermodynamic properties:

c k w w

w

2 (VDOS ( ) ( ) VDOS ( ) ( )

VDOS ( ) ( ))d

V
2PT

B
0

vib vib trn trn

rot rot

∫ ν ν ν ν

ν ν ν

= +

+

∞

(13)

The weight function of translation and rotation is 1/2 for the
heat capacity within the 2PT model.41

In the classical limit (h→ 0), the 2PT heat capacity can vary
between kB/2 and kB per atom, not incorporating any
anharmonicity, so the 2PT method cannot describe cases
where the classical heat capacity is above kB. Another limitation
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is that the molecular topology needs to remain the same during
the simulation, so bond breaking/formation, thus chemical
reactions, cannot be modeled. Moreover, intramolecular
rotations cannot be described properly with 2PT.
2.1.3. 1PT with Anharmonic Correction (1PT+AC). Berens

et al. proposed a quantum correction added to the classical
heat capacities:39

c c cV V V
1PT AC cl= ++ Δ

(14)

The quantum correction can be determined from the quantum
harmonic weight function cV

Δ given by

c k w2 VDOS( ) ( ( ) 1)dV
c

B
0

V∫ ν ν ν= · −Δ
∞

(15)

If the integral terms are partitioned differently then we get:

c k w c

k c c

2 VDOS( ) ( )d

2 VDOS( )d

V
c

V

V V

1PT AC
B

0

cl

B
0

1PT AC

V∫
∫

ν ν ν

ν ν

= · +

− = +

+
∞

∞

(16)

where the second term is the anharmonic correction. The 1PT
+AC internal energy can be gained analogously as the heat
capacity:

U U U1PT AC 1PT AC= ++ (17)

where the anharmonic correction is the deviation of the
classical internal energy (Ucl) from the ideal harmonic case:

U UAC cl 1β= − − (18)

The 1PT+AC model always satisfies the correspondence
principle in contrast with the 1PT or 2PT methods:

c clim
h

V V
0

1PT AC cl=
→

+
(19)

This also implies that the technique is able to describe
anharmonic motions to the extent of the method used to
obtain the original classical trajectory.

2.2. Generalized Smoothed Trajectory Analysis
(GSTA). In the previous sections, we briefly introduced the
relevant methods from the literature about the correction of
the VDOS function to get quantized thermodynamic proper-
ties. In this section, we present a derivation to show that a
similar correction can be performed in the time domain on the
VACF function and on the coordinates.

2.2.1. Correction of Velocity Autocorrelation Function.
Convolution of two functions f and g is defined as

f g t f t g( )( ) ( ) ( )d∫ τ τ τ∗ = + ·
−∞

+∞

(20)

is frequently used in digital processing for the smoothing of
signals or the filtering of high frequency noises.65 On the basis
of the convolution theorem, the multiplication of the VDOS
function with a weight function w is equivalent to a
convolution of the Fourier transforms of the two functions.
The quantum corrected VACF function is the inverse Fourier
transform of the quantum corrected VDOS function:

t t

w t w t

VACF ( ) VDOS ( ) ( )

VDOS( ) ( ) ( ) ( ( ) VACF)( )

q q ν

ν ν ν

= { }

= { · } = { }∗
ν

ν ν
(21)

The Fourier transform of the weight function can be used for
the quantum correction of the VACF function:

w( ) ( ) ( )γ τ ν τ= { }ν (22)

From the corrected VACF function, the thermodynamic
properties can also be calculated. For instance, the 1PT+AC
heat capacity:

c k c2 ( ) VACF( )dV
c

V
1PT AC

B
0

ACV∫ γ τ τ τ= · ++
+∞

(23)

where γcV is the Fourier transform of the weight function in eq
10 according to eq 22.

h h h h
( )

2
csch

2 2
coth

2
1c

2
2

2 2 2
Vγ τ π

β
π
β

τ π
β

τ π
β

τ= −
i
k
jjjj

y
{
zzzz
i

k
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i
k
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y
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zzzz

y
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(24)

where csch is the hyperbolic cosecant function. The 1PT+AC
internal energy takes the form

U U w U2 ( ( ) ( ) VACF( )dU1PT AC
0

1

0

AC∫β ν τ τ τ= + { } · +ν
+ −

+∞

(25)

and the weight function for VACF with the internal energy is
given by

Figure 1. Weight functions for VDOS.
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w
h h

( ) ( ) ( ) 2
2

coth
2

cos(2 )dU U

0
∫γ τ ν τ β ν β ν πντ ν= { } = ·ν

+∞ i
k
jjj

y
{
zzz

(26)

The integral in eq 26 fails to converge as the wU weight
function increases monotonously. Fortunately, in real systems,
the maximum frequency in the VDOS is always finite, so the
weight function can be cut at a high finite frequency with the
application of an exponentially decreasing function:

b
exp

ν− | |i
k
jjj

y
{
zzz (27)

where variable b controls the exponential decay. The decay is
faster as b increases. This function becomes unity as b
approaches infinity:

b
lim exp 1

b

ν− | | =
→∞

i
k
jjj

y
{
zzz (28)

The γU function can be determined as a limit of an integral:

h h
b

( ) lim 2
2

coth
2

exp cos(2 )dU

b 0
∫γ τ β ν β ν ν πντ ν= − | | ·

→∞

+∞ i
k
jjj

y
{
zzz i

k
jjj

y
{
zzz

(29)

The integral can be evaluated in eq 29, and finally, the γU

function can be expressed as a limit of a piecewise function:

h h

h

( ) lim

csch
2

coth
2

( )

U

0

2
2

2

2
γ τ

π
β

π
β

τ τ
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β

δ τ τ
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− | | > |ϵ|
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jjjj

y
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zzzz

i
k
jjjj

y
{
zzzz

(30)

where δ denotes the dirac delta function. The norm of the
function in eq 30 is 1. The coth function is the primitive
integral of the csch2 function. Since in the simulations the data
are represented at discrete time intervals Δt, it is useful to write
the γU function at discrete time steps in such a way that it is
directly applicable for integration, i.e.,

( ) ( )
n t

n t n t

t

( )

coth ( 0.5) coth ( 0.5)

2

U

h h
2 22 2

γ Δ

=
+ Δ − − Δ

Δ

π
β

π
β

(31)

where n is the index of the time step. When n = 0, the γU

function takes the simple form:

t
h

t(0) ( ) cothU 1
2

γ π
β

= Δ Δ− i
k
jjjj

y
{
zzzz

(32)

The weight functions of VACF are shown in Figure 2.
2.2.2. Correction of Trajectory. The velocity autocorrela-

tion function is actually a convolution function of the velocity
with itself, i.e., f = g = v in eq 20:

t
v v t

v
VACF( )

( )( )
2= ∗

⟨ ⟩ (33)

According to eqs 1 and 2, the VDOS can be written in the
form of:

v v t
v

VDOS( )
( )( ) ( )t

2ν
ν

=
{ ∗ }

⟨ ⟩ (34)

Similarly, the quantum corrected counterpart can be written as

v v t
v

VDOS ( )
( )( ) ( )tq

2ν
ν

=
{ ̃∗ ̃ }

⟨ ⟩ (35)

where ṽ is a modified velocity which satisfies eq 35. In the
following steps, we determine ṽ.
Substituting eqs 34 and 35 into eq 6:

v v t v v t w( )( ) ( ) ( )( ) ( ) ( )t tν ν ν{ ̃ ∗ ̃ } = { ∗ } · (36)

Using the convolution theorem:

v t v t w( ( )) ( )) ( ( )) ( )) ( )t t
2 2ν ν ν{ ̃ } = { } · (37)

Assuming that w(ν) is a non-negative real-valued function we
get

v t v t w( ) ( ) ( ) ( ) ( )t tν ν ν{ ̃ } = { } · (38)

In the time domain, the multiplication by w(ν) is replaced by
convolution.

v t v w t( ) ( ( ) )( )ν̃ = ∗ { }ν (39)

g t w t( ): ( ) ( )ν= { }ν (40)

Thus, we arrived to a g(t) function whereby convoluting the
velocities one can directly obtain ṽ and the quantum corrected
vibrational density of states in eq 35. If one wants to use a
general function, which can be applied any atomic velocity

Figure 2. Weight functions for VACF.
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function, then the vibrational weight function (eq 10) can be
chosen:

g t w t
h h

t( ) ( ) ( ) sech
2c c

2
2

2
v V ν π

β
π
β

= { } =ν
i
k
jjjj

y
{
zzzz

(41)

where sech means the hyperbolic secant function.
In the determination of a kernel function, the weight

function of the internal energy can also be used:

g t w t( ) ( ) ( )U U ν= { }ν (42)

Similarly to the determination of the γU function in eq 26,
the integral does not converge here either. We could not derive
an analytic form for the Fourier transform in eq 42. In order to
perform this Fourier transform numerically in a practical way,
the weight function of the internal energy can be split into two
parts:

w
h h h

h h

( )
2

coth
2 2

2
coth

2
1

U ν β ν β ν β ν

β ν β ν

= =

+ −
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y
{
zzz

i

k
jjjjjj

i
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y
{
zzz

y

{
zzzzzz (43)

The Fourier transform of the second term in eq 43 can be
readily evaluated numerically, while the Fourier transform of
the first part can be determined analytically in a similar way as
we did with the γU function:

h
t

h
b

t
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( ) lim
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The result can be given as a limit of a piecewise function:
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So the gU function can be calculated:
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When the convolution is performed at discrete time step, Δt,
the value of the kernel function in the nth step is

g n t
h
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t
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2 2
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At zero time
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The kernels of gU and gcV are shown in Figure 3. gU is
represented in discrete points with Δt = 0.5 fs.

Utilizing a kernel function defined in eq 40, one can obtain
filtered time-dependent variables such as coordinates, veloc-
ities, and forces (x̃, ṽ, F̃):

x t x g t( ): ( )( )̃ = ∗ (49)
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Having these variables smoothed, we are able to derive
smoothed energy components. The smoothed kinetic energy
(Ẽkin) can be obtained straightforwardly from smoothed
velocities.

E t mv( , ):
1
2kin

2η̃ = ̃
(52)

Figure 3. Kernels for trajectory filtration

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b00703
J. Chem. Theory Comput. 2020, 16, 3316−3334

3320

https://pubs.acs.org/doi/10.1021/acs.jctc.9b00703?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00703?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00703?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00703?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00703?ref=pdf


2.2.3. Correction of Potential Energy. For the definition of
the smoothed potential energy (Ẽpot), it can be expected to
fulfill the following condition:

E

x
F

d

d
pot−
̃

̃
= ̃

(53)

The smoothed total energy is simply the sum of the
smoothed kinetic and potential energies:

E E Etot kin pot̃ = ̃ + ̃ (54)

The kernel function can depend on several parameters like
the temperature or the Planck constant h. In order to connect
the classical systems with the quantum systems continuously, a
fictitious η variable is introduced. η = 0 corresponds to the
classical picture, and η = h is the quantum one. With η, we can
perform an integration from the classical state to the quantum
state.
It can be shown that the total energy remains conservative

upon smoothing:
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The total differential of the smoothed total energy is
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The negative of the first term can be called as work of
smoothing:
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The smoothed potential energy is defined at a specific time
(t0) as a correction on the original potential energy (Epot) with
the work of smoothing:
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Integrating this equation according to time yields the
expectation value of smoothed potential energy:
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E h E h h( ) ( ) ( )pot pot⟨ ̃ ⟩ = ⟨ ⟩ − ⟨Ω ⟩ (60)

The average change of kinetic energy is equal to the average
change of the potential energy (more details in Appendix A):

E E E Epot pot kin kin⟨Ω⟩ = ⟨ ⟩ − ⟨ ̃ ⟩ = ⟨ ⟩ − ⟨ ̃ ⟩ (61)

So the mean smoothed total energy is

E E E E2( )tot tot kin kin⟨ ̃ ⟩ = ⟨ ⟩ − ⟨ ⟩ − ⟨ ̃ ⟩ (62)

Note that eq 62 corresponds to U1PT+AC in eq 17. So we
arrived to the same result as the 1PT+AC method, which is
true for the heat capacity as well:

c cv v
GSTA 1PT AC= +

(63)

Quantum-corrected state functions can be determined from
the presented smoothed quantities, as shown by the example of
heat capacity below.

3. COMPUTATIONAL DETAILS
3.1. Calculation of Heat Capacity. According to the

Theory section, several estimators can be designed to
determine the heat capacity depending on what is corrected:
VDOS, VACF, or the trajectory. The quantum correction can
be introduced with different functions which correspond to the
heat capacity or the internal energy, but the resulting
thermodynamic functions can be transformed into each other
by integration/differentiation. We used the kernel function of
the heat capacity (eq 41) for the filtration since it is more
convenient; i.e., its analytical form is known.
We performed several (50−120) independent NVE

simulations around the T target temperature. The classical
temperature (Tcl) was determined simply from the average
classical kinetic energy for a particular trajectory:

T E k2 /cl kin B= ⟨ ⟩ (64)

The isochoric heat capacity can be determined from the
slope of the mean total energies vs Tcl functions:
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The classic temperature originates from the classical normal-
ization factor in eq 35. The isobaric heat capacity can be
determined from the slope of the H vs Tcl (or H̃ vs Tcl)
function:
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For condensed phases, p = 1 atm was applied instead of the
calculated average pressure because its fluctuation was larger
than several hundred atm. We used linear regression to
determine the heat capacities and their errors. The
uncertainties of our calculations are given at the 95%
confidence level. Representative fittings are shown in the
Supporting Information.

3.2. Born−Oppenheimer Molecular Dynamics Simu-
lations. We carried out classical microcanonical normal mode
sampling66 with Gaussian 09 Rev. E for the vibrations of one
water molecule using B3PW91/6-311G(d,p) level of
theory.67,68 This functional was chosen since it reproduced
the exact frequencies of a water molecule the most accurately
with an average error of 6.1 cm−1.69 Initial energies were
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distributed equally between modes according to the
equipartition theorem. The equations of motion for the
nuclear evolution were integrated employing the velocity
Verlet algorithm with a 0.1 fs time step.70 Then, 50
independent 1 ps long trajectories were generated around
the desired temperature, and the total energies represented a χ2

distribution.
3.3. Classical Molecular Dynamics Simulations.

Classical molecular dynamics simulations were performed
with the Tinker molecular modeling software.71 The
simulation box always contained 432 water molecules. For
the liquid and vapor phases, a cubic box was applied. For Ih
ice, water molecules were arranged according to the Bernal−
Fowler ice rules72 having a vanishing net dipole moment.
First, we performed 10 ps long NpT simulations starting

from previously equilibrated structures followed by 11 ps long
NVE simulations. The last 1 ps data were used for the
trajectory analysis. Here, 120 independent trajectories were
generated to determine the heat capacity at a given
temperature. In order to make the linear fitting more effective,
the temperature of the thermostat was varied around the target
temperature according to a χ2 distribution. The equations of
motion were integrated employing the Bussi−Parrinello
algorithm73 for the NpT ensemble and a modified Beeman
algorithm74 for the NVE ensemble with a 0.5 fs time step. In
condensed phase simulations, the particle mesh Ewald (PME)
method was applied for the long-range electrostatic interaction
with 9.0 Å cutoff distance.75 For the vapor phase, a larger
cutoff of 113.0 Å was used with a 30 × 30 × 30 grid size for the
Ewald summation.
We performed simulations for an NVT ensemble to

determine the structural properties of the SPC/Fw water
model at 298.15 K, with a simulation box size of 23.439 Å.
Then, 500 configurations were collected, and after 11 ps long
NVE simulations, the last 1 ps trajectory was filtered with the
gU function with Δt = 0.1 fs to get one filtered structure from
each trajectory. These 500 independent structures were used
to calculate the distributions of the intramolecular distances as
well as the radial distribution functions.
For the calculation of the IR absorption spectrum of the

AMOEBA14 water model, 120 independent NVE trajectories
were used. All simulations were 20 ps long, and they were
equilibrated at 298.15 K before. We used a four term
Blackman−Harris window before the Fourier transform of
the dipole autocorrelation function.76

3.4. Path Integral Molecular Dynamics Calculations.
PIMD simulations were carried out with AMBER1277 in a
canonical ensemble for 216 water molecules using the SPC/Fw
model. The settings were taken from ref 28, but 32 beads were
used instead of 24. The length of the cubic simulation box was
18.68 Å, according to the equilibrium density. After 1 ns long
equilibration, 1000 structures were collected for each bead in
an additional 1 ns long simulation. For the calculation of the
isochoric heat capacity, we performed canonical simulations at
288.15 and 308.15 K as well.
In order to determine the isobaric heat capacity for the

liquid phase, NpT simulations were also performed at
atmospheric pressure in the temperature range from 260.65
to 385.65 K.

4. RESULTS AND DISCUSSION
4.1. Harmonic Oscillator Model. Here, we show the

effect of two filters on the sum of two noncoupled oscillators at

298.15 K. One oscillator has high frequency (3000 cm−1),
while the other has low frequency (100 cm−1). The analytic
curves are shown in Figure 4. Here, gcV smooths the vibration
with high frequency, while gU enhances the high frequency
motion. The filtered function with gU corresponds to the
quantum fluctuation.

In the following section, we determine the fluctuation of the
coordinates for a single harmonic oscillator. The time
evolution of the position:

x t X t( ) cos(2 )πν= (69)

where X is the amplitude in a particular trajectory.
The probability distribution of the position for the harmonic

oscillator in canonical ensemble:
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where κ is the force constant of the harmonic potential. The
filtered position is
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The probability distribution of the filtered position is given by
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(72)

This corresponds to the exact quantum fluctuation of the
position for the harmonic oscillator. So the GSTA method is
exact for the harmonic model for not only in the
thermodynamic properties but for the coordinate distribution
as well. This is a clear advance of GSTA compared to the 2PT
method, since structural quantum effects cannot be inves-
tigated with 2PT.

4.2. BOMD Simulations of One Water Molecule. Apart
from cases where analytical solution exists, like a harmonic

Figure 4. Filtration of the sum of two harmonic functions.
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oscillator, we have chosen to test the proposed method on a
single water molecule as a more realistic system. Born−
Oppenheimer molecular dynamics (BOMD) simulations were
carried out without rotation in the temperature range from 25
to 5000 K using the B3PW91 functional.67 The vibrational part
of the isochoric heat capacity (cV

vib) was obtained as the slope of
the internal energy vs temperature function. For the sake of
comparison, we estimated the isobaric heat capacity (including
rotation and translation) based on these data as cp = cV

vib + 1.5R
+ 1.5R + R = cV

vib + 4R.
We compare GSTA results with heat capacities determined

using several different methods in Figure 5. The graph also

includes the ideal classical value, 7R = 58.2 J/K/mol (blue
line) as well as the values determined with the application of
the quantum harmonic oscillator model to the optimized
geometry (green circles). At low temperature, all methods give
very similar results, while at the higher temperature only the
trajectory smoothing (red crosses) is close to the experimental
values (black triangles).78 This illustrates that anharmonicity
can be described properly by GSTA in contrast with the
quantum harmonic oscillator model or the 1PT method
(purple squares).
4.3. Properties of Bulk Water. In order to demonstrate

that our approach can work in very different circumstances,
bulk water was considered as a test case in a wide temperature
range. The quantum effects are decreasing while anharmonicity
is increasing with temperature, and the heat capacity of water
changes significantly from zero to 76.0 J/mol/K between
different phases at atmospheric pressure.79,80 The intra-
molecular vibrations remain in the ground state at ambient
temperature; therefore, many rigid water models are successful
in reproducing the experimental values.64,81 For the sake of
generality, a flexible model is desired with which similar
approaches can be examined even at high temperatures where
excited vibrations can be populated as well. Three-site models
are beneficial because analytical Hessian can be calculated for
the optimized structures, which is not possible for polarizable
water models. Considering these requirements, we have chosen
the recently developed SPC/Fw82 water model which performs
well on several physical properties.81 The parameters of the
SPC/Fw water model were developed for classical molecular
dynamics simulations to reproduce experimental data such as
self-diffusion coefficient, dielectric constant, vibrational fre-
quencies, oxygen−oxygen radial pair distribution function, and
heat of evaporation.82

4.3.1. Static Properties. Classical simulations cannot
distinguish between the static properties of light and heavy
water. In principle, exactly the same thermodynamic and
structural properties should be determined for H2O and D2O
since classical statistical thermodynamics predicts that
equilibrium properties (heat capacity, molar density, surface
tension, etc.) are independent of the masses of atoms. To
reveal the different NQEs of classical trajectories, we need post
processing methods like 1PT, 2PT, 1PT+AC, or GSTA. An
important issue is to decide the reference which the computed
quantities are compared to. Converged PIMD simulations
provide exact static properties within the limit of the particular
water model. However, empirical potentials are developed to
reproduce various experimental data with classical simulations.
Thus, our strategy is to compare the different approximate
values to both PIMD results and experiments as well.

Heat Capacity. At a given temperature, we determined the
isobaric heat capacity as the derivative of the enthalpy vs
temperature function from 120 independent 1 ps micro-
canonical trajectories. Three states such as Ih ice, liquid water,
and vapor were simulated at temperatures from 25 to 1000 K
at atmospheric pressure (Figure 6). The classical ideal values
are also shown with blue lines for the condensed and vapor
phases in the figure (9R = 74.8 J/K/mol, 7R = 58.2 J/K/mol,
respectively).

The nuclear motions can be accurately described by
independent harmonic oscillators at low temperature; there-
fore, the heat capacity can be estimated quite well with all
methods in the case of hexagonal ice (black triangles in Figure
6). Our method (denoted with red crosses) also gives values
close to the experimental ones.79 The maximum deviation is
6.0 J/mol/K at T = 200 K, probably due to the fact that the
SPC/Fw water model was developed for liquid water and not
for ice. A typical indication of this is that the melting point of
the SPC/Fw water model is similar to that of the SPC/E water
model (215 K), well below the experimental value (273.15
K).83

For liquid water, the harmonic oscillator model is
qualitatively wrong as it fails to describe anharmonicity
captured already by classical simulations (yellow diamonds in
Figure 6). The smoothing correction successfully takes the
coupled motions of the molecules into account, thus
performing outstandingly when compared to the experimental
values. The isobaric heat capacity calculated by PIMD is
somewhat higher (green circles in Figure 6). Most importantly,

Figure 5. Isobaric heat capacities of a single water molecule from
BOMD simulations.

Figure 6. Isobaric heat capacities of bulk water in different phases.
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GSTA performs much better than the classical model or the
1PT method no matter what reference we use, i.e.,
experimental value or PIMD results. Intramolecular vibrations
are filtered out in the gcV-smoothed trajectories. In this aspect,
water molecules behave rigidly in these liquid simulations (see
the animation in the Supporting Information). This is in line
with the experience that the overall performance of rigid water
models is comparable to that of the flexible ones at room
temperature.64,81

For the vapor phase, we used the same water model and
trajectory analysis as in condensed phases (Figure 6). GSTA
gives reasonable results but overestimates the experimental
heat capacities by about 3.2 J/mol/K. This is probably due to
the fact that the dipole moment of the SPC/Fw water model is
adjusted to liquid properties and considering that it is high
compared to the dipole moment of a single water molecule in
the gas phase (2.39 vs 1.85 D, respectively). The 1PT method
overestimates the experimental values with 16 J/mol/K as a
consequence that it considers only harmonic vibrations.
Overall, the smoothed SPC/Fw simulations are able to

reproduce the heat capacity with an average error of 3.1 J/mol/
K in an extended temperature range at atmospheric pressure.
We have found two computational studies in the literature
which investigated the heat capacities of the three most
important phases of water. Yeh et al. used the 2PT method
with different rigid water models, and all calculated heat
capacities deviated more than 6.7 J/mol/K from the experi-
ments.45 Shinoda and Shiga performed PIMD simulations for
the three phases using the flexible SPC/F water model.84 They
reproduced the experimental values excellently for ice and gas
phase, but the heat capacity of liquid water was significantly
underestimated by 16.6 J/mol/K.
We have investigated other water models to examine their

performance for the calculated heat capacities of liquid water
(at T = 298.15 K, p = 1 atm). Besides the discussed SPC/Fw
model, other potentials were also tested including rigid,
polarizable, and four-site models. Table 1 includes results from
previous works as well for comparison. Regarding the classical
heat capacities (cp

cl), we have reproduced the literature data
with small differences, which validates our simulations. GSTA-
corrected heat capacities vary between 72.8 and 80.9 J/mol/K
with the different water models around the experimental value.
The 1PT and 2PT methods give values from 52.2 to 86.6 J/
mol/K, and generally, rigid models perform better. The PIMD
heat capacities range from 58.2 to 92.8 J/mol/K. The PIMD
values can be considered as the exact heat capacity for a
particular water model. Previously, the PIMD heat capacity of
the SPC/Fw water model was found to be 88.7 J/mol/K,
significantly higher than that of the experimental (75.4 J/mol/
K) or the GSTA values (72.8 J/mol/K). In our PIMD
simulations on an NpT ensemble, the isobaric heat capacity is
79.6 J/mol/K. In order to resolve this contradiction, we
performed PIMD simulations on a canonical ensemble with
the same settings as in the literature.28 Using the same number
of beads, 24, we obtain 79.8 J/mol/K for the heat capacity, but
with 32 beads it decreases to 76.6 J/mol/K. This indicates that
there is a discrepancy between the value obtained here and
those from earlier simulations. Still, we note that our PIMD
heat capacity is in reasonable agreement with the experimental
and the GSTA values. Our results indicate that the SPC/Fw
water model reproduces the experimental heat capacity
sufficiently. On the basis of the comparisons discussed here,
we conclude that GSTA is an accurate and robust method in

the sense that the calculated heat capacities are less sensitive to
the chosen potential.

Structure of Liquid Water. A quantum-corrected structure
can be obtained after the filtration of the coordinates with the
kernel function of the energy (gU). The largest NQE in the
structural properties of water is the quantum fluctuation of the
hydrogen atoms. This effect is illustrated in the distribution of
the intramolecular distances in Figure 7 and also in the
animation (Supporting Information). The distribution deter-
mined from PIMD simulations can be considered as the exact
reference. The distributions of the intramolecular distances
become broader compared to the classic results according to
the Heisenberg uncertainty principle. The classical distribu-
tions are too narrow, but the average distances are almost
identical (Table 2). The GSTA method reproduces almost
perfectly the exact distributions with a slight shift of 0.01 Å for
the maxima.
The classical and the filtered radial distribution functions are

shown in Figure 8 together with the experimental data.91 The
positions of the classical peaks are not altered significantly by
the filtration, but they become broadened and get closer to the
experimental curves. Note that the 1PT and 2PT methods do
not correct the structural properties.

Table 1. Calculated Isobaric Heat Capacities of Liquid
Watera

potential flexibility cp cp
cl

experiment 75.4 −
1PT or 1PT+AC

AMOEBA14 flexible 85.7b 110.6b

F3C flexible 84.5c,r 109.6c,r

SPC/E flexible 86.6d,r 123.7d,r

WATTS flexible 72.5e,r 107.3e,r

SPC/E rigid 73.0d,r 87.4d,r

2PT
AIMD−PBE flexible 52.2f,r 90.1f,r

F3C flexible 67.4f,r 104.6f,r

ReaxFF flexible 73.0f,r 108.4f,r

SPC-Fw flexible 69.3f,r 109.5f,r

SPC/E rigid 76.7f,r; 68g 87.3f,r; 87g

TIP3P rigid 58.3f,r; 60g 67.5f,r; 86g

TIP4P/2005 rigid 77.5f,r; 68g 85.5f,r; 89g

TIP4P-Ew rigid 69.0f,r; 69g 80.8f,r; 86g

PIMD
SPC/F flexible 59.0h,r 117.2h,r

SPC/F2 flexible 58.2i,r 117.2i,r

SPC-Fw flexible 88.7j,r; 79.6 ± 0.5 113.8j,r

q-SPC/Fw flexible 92.8j,r −
q-TIP4P/F flexible 66.7k,r −
TIP4PQ/2005 rigid 75.3l −

GSTA
AMOEBA14b flexible 80.9 ± 0.7 113.5 ± 0.6
F3Cc flexible 76.3 ± 0.7 108.4 ± 0.5
SPC-Fwm flexible 72.8 ± 0.6 109.3 ± 0.4
TIP3Fn flexible 72.8 ± 0.7 106.9 ± 0.6
TIP4P/2005Fo flexible 80.1 ± 0.9 113.4 ± 0.7
TIP3Pp rigid 75.0 ± 1.0 81.2 ± 0.9
TIP4P/2005q rigid 79.0 ± 0.7 87.1 ± 0.6

aT = 298.15 K, p = 1 atm; all values are given in J/mol/K. bref 42. cref
43. dref 44. eref 39; 2PT. fref 46. gref 45; PIMD. href 84. iref 85. jref
28. kref 26. lref 86; GSTA: this work. mref 82. nref 87. oref 88. pref 89.
qref 90. rcp was estimated from the given cV as cp = cV + 0.8 J/mol/K.
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Static Dielectric Constant. The static dielectric constant is
another equilibrium property which exhibits nuclear quantum
effects. Although, for liquid water the effect of deuterium
substitution is small, the experimental dielectric constants are
78.39 vs 78.06 for H2O and D2O;

92 in ice, the isotope effect is
the opposite and more enhanced. The static dielectric
constants of ordinary and heavy ice are 110 and 124 parallel
to the c axis of the crystal at −25 °C, and the difference is even
larger at lower temperature.
We have calculated the dielectric constant for both the

classical and filtered structures at 298.15 K using the following
relationship:

V
M M1

4
3

( )s
0

2 2πβϵ = +
ϵ

⟨ ⟩ − ⟨ ⟩
(73)

where ϵ0 is the vacuum permittivity, V is the volume of the
simulation box, and M is the total dipole moment of the
system. We computed the dielectric constant for SPC/Fw and
AMOEBA14 water models. In Table 3, we collected our GSTA
results along with previous classic and PIMD values from the

Figure 7. Probability distribution functions of intramolecular
distances.

Table 2. Intramolecular Distances of Bulk Water

OH distance/Å

classic GSTA PIMD

mean 1.03 1.04 1.03
standard deviation 0.03 0.07 0.07

HH distance/Å

classic GSTA PIMD

mean 1.66 1.68 1.66
standard deviation 0.06 0.12 0.12

Figure 8. Radial distribution functions of atom pairs in liquid water.
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literature. Our classical values are in good agreement with the
literature values. GSTA slightly increases the dielectric
constant with about 0.5, which is smaller than its uncertainty.
The differences between the classical and filtered trajectories
can be calculated pairwise, resulting in a more accurate
estimation 0.47 ± 0.03 and 0.6 ± 0.3 for AMOEABA14 and
SPC/Fw, respectively. The good agreement with the
experimental value is due to the fact that the parameters of
the SPC/Fw and AMOEBA14 water models were optimized to
reproduce the dielectric constant. The filtered dielectric
constant is only slightly larger than the classical value, which
is in line with the small difference between the dielectric
constants of H2O and D2O (78.39 vs 78.06, respectively).92

For the SPC/Fw water model, PIMD gives a smaller
dielectric constant by 16 than the classical value. Thus, GSTA
predicts a significantly lower quantum effect for the dielectric
constant than PIMD (+0.6 vs −16), so even the effect is the
opposite. The quantum effect determined by PIMD strongly
depends on the water model. In most cases, the dielectric
constant decreases drastically, but in some cases, it increases.
This implies that the overall effect comes from competing
quantum effects, as Habershon et al. proposed for the self-
diffusion coefficient of water.24 They also mentioned that this
may affect equilibrium properties such as the melting point of
ice.
In order to investigate the possible source of these

competing effects, we calculated the molecular dipole moment
μ and the Kirkwood g-factor GK for the SPC/Fw water model.
(For the AMOEBA14 model, it is not so straightforward to
calculate the molecular dipole moment because it is a
polarizable water model.) The molecular dipole moment is
calculated as a root-mean-square of the individual dipole
vectors:

N/
i

N

i
1

2
mol

mol

∑ μμ =
= (74)

where Nmol is the number of the molecules. The Kirkwood g-
factor is defined as

G
N
i j
N

i j
K

, 1

mol
2

mol μ μ

μ
=

∑ =

(75)

The dielectric constant can be expressed from the molecular
dipole moment and the GK factor.

V
N G1

4
3s

0
mol

2
K

πβ μϵ = +
ϵ (76)

The molecular dipole moments and the Kirkwood g-factor are
collected in Table 4 as well as the static dielectric constants.
The overall effect is a product of both the molecular dipole

moment and the Kirkwood g-factor. The sign of these effects
can be positive or negative depending on the water model, but
in experiments, the overall effect is small. Most of the PIMD
simulations indicate large quantum effects on the static
dielectric constant which implies a large effect on the
molecular dipole moment and/or on the Kirkwood g-factor
as well. This does not mean that PIMD would be inaccurate,
just indicates that these force fields were not designed to
reproduce the experimental NQE on dielectric constant with
PIMD simulations. GSTA predicts small effects on these
properties, which is in line with the experiments. The q-
TIP4P/F force field predicts the smallest NQE in PIMD
simulations, and the difference between the dielectric constants
is smaller than the uncertainty (Table 3).

4.3.2. Dynamical Properties. The investigation of NQEs on
dynamical properties is less straightforward than that on static
properties. Even classical simulations show drastic differences
for H2O and D2O simply because the deuterium moves slower
than protium due to the mass difference. Standard PIMD
calculations cannot model time-dependent processes, but there
are several approximate PIMD-based methods such as RPMD,
CMD, or LSC-IVR simulations which can imitate quantum
dynamics.13,18,97 Hence, it is challenging to separate quantum
and classical effects in isotope substitutions, and this makes it
difficult to validate new methods like GSTA on dynamical
NQEs.

Self-Diffusion Coefficient. The self-diffusion coefficient Ds
can be determined from the zero frequency value of VDOS:

Table 3. Static Dielectric Constant of Liquid Water

model classic GSTA PIMD

SPC/Fw 80 ± 2a; 79.1 ± 6 79.7 ± 6 64 ± 4b

AMOEBA14 79.4 ± 1.6c; 83.6 ± 7 84.1 ± 7
SPC/F 80 ± 8d 67 ± 9d

SPC/F2 94 ± 10d 74 ± 11d

TTM2.1-F 67 ± 2e 74 ± 2e

TTM3-F 94 ± 1f 81 ± 2g

q-SPC/Fw 86 ± 4b; 90 ± 3h

q-TIP4P/F 58 ± 1g 60 ± 3h

fm-TIP4P/F-TPSS-D3 48.38i 45.69i

experimentj D2O: 78.06; H2O: 78.39
aref 82. bref 28. cref 42. dref 93. eref 94. fref 95. gref 96. href 24. iref 25. jref 92.

Table 4. Components of Static Dielectric Constant of Water

model classic GSTA difference

ϵs AMOEBA14 83.6 ± 7 84.1 ± 7 0.47 ± 0.03
ϵs SPC/Fw 79.1 ± 6 79.7 ± 6 0.58 ± 0.33
μ/D SPC/Fw 2.3727 ± 0.0003 2.3993 ± 0.0007 0.0266 ± 0.0005
GK SPC/Fw 4.06 ± 0.31 4.00 ± 0.31 −0.059 ± 0.017
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D
m

VDOS(0)
12s β

=
(77)

Since the weight function wU(ν) is always 1 at zero frequency,
the self-diffusion coefficient does not change with the
application of the GSTA method (see eqs 8 and 77). The
self-diffusion coefficient can be calculated from the mean
square displacement of the atoms using the Einstein equation:

D
x t x

t
lim

( ( ) (0))
6t

s

2

= ⟨ − ⟩
→∞ (78)

From this equation it is also evident that one obtains the same
self-diffusion coefficient after filtering the classical trajectory,
since GSTA perturbs the classical coordinates with a few tenths
of Å which becomes negligible compared to the movement of
the atoms at a sufficiently long time. Thus, previous classical
self-diffusion coefficients are collected in Table 5 which are
identical with the GSTA values as well. PIMD-based
approximate quantum dynamics methods like CMD, RPMD,
or LSC-IVR change the classical value of self-diffusion
coefficient. The quantum effect (relative change to the classical
value) varies between 180% and −30% depending on the water
model and quantum dynamics method.
Although GSTA does not show any nuclear quantum effect

on the self-diffusion coefficient, classical simulations can also
reproduce the experimental isotope effect. The experimental
self-diffusion of heavy water is 23% slower than that of the light
water, and in classical simulations, this varies between 3% and
25%. We have found only two quantum simulations on heavy
water with q-TIP4P/F and TTM2.1-F water models, and the
calculated isotope effects (−29% and −18%) are in good
agreement with the experiment as well as the absolute values.
Infrared Absorption Spectrum. In the classical simulation,

the infrared spectrum of the SPC/Fw water model failed to
reproduce the experimental spectrum qualitatively because of
the harmonic model and the fixed point charges.28,106 This is

why we calculated the infrared absorption spectrum of the
AMOEBA14 water model which is polarizable, and the OH
bonds are anharmonic. We determined the infrared absorption
spectra both from the classical and filtered trajectory at
different levels of theory (see details in Appendix B).
For classical simulation, the absorption cross section is

Vhcn
h F tM M( )

4
3 ( )

(1 exp( )) (0) ( ) ( )tcl

2

0
α ν π ν

ν
β ν ν=

ϵ
− − {⟨ ⟩}

(79)

Using the harmonic quantum correction factor on the classical
line shape function we obtain107,108
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(80)

The absorption cross section is calculated from the filtered
trajectories by the expression
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(81)

Interestingly, almost identical spectra were obtained from
the filtered trajectories and from the classical simulation
applying the harmonic quantum correction factor (see orange
and blue lines in Figure 9). This implies that the dipole
moment changes linearly with the coordinates during the
filtration. The absorption spectrum of the classical trajectory
without quantum correction shows much lower intensities
(green line). The relative intensities are also different, but the
positions of the peaks are the same as in the quantum
corrected spectra. Comparison with the experimental spectrum
(black line) shows that the quantum corrected peaks deviate
with ±100 cm−1, and the relative intensities are reproduced
qualitatively.109 The peaks of the symmetric and antisymmetric
OH stretches are partially overlapped due to the anharmonicity
of the AMOEBA14 water model. The calculated spectrum also

Table 5. Calculated Self-Diffusion Coefficients of Liquid Water in Å2/ps

classic/GSTA quantum

model H2O D2O method H2O D2O quantum effect isotope effect

SPC/Fw 0.232a CMD 0.32b 38%
q-SPC/Fw 0.18b CMD 0.24b 39%
q-SPC/Fw 0.18b LSC-IVR 0.50c 178%
SPC/F 0.30d CMD 0.42d 40%
SPC/F2 0.22d CMD 0.38d 73%
q-TIP4P/F 0.192e RPMD 0.221e 0.172e 15% −29%
MB-pol 0.23f CMD 0.22g −4%
revPBE-D3 0.222h TRPMD 0.16h −28%
revPBE0-D3 0.267h TRPMD 0.229h −14%
fm-TIP4P/F-TPSS-D3 0.3i RPMD 0.288i −4%
TTM2.1-F 0.150j 0.140j CMD 0.225j 0.185j 50%; 32% −7%; −18%
TTM3F 0.27k CMD 0.30k 11%
vdW-cx 0.23k CMD 0.34k 48%
MCY 0.25l,m 0.198m −21%
SPC rigid 0.44n 0.33n −25%
SPC flexible 0.61n 0.59n −3%
SPC/E 0.224o 0.201o −10%
SPC-MPG 0.275p 0.244p −11%
TIP4P/2005F 0.22p 0.182p −17%
experiment 0.230q 0.177r −23%

aref 82. bref 28. cref 97. dref 93. eref 24. fref 98. gref 30. href 9. iref 25. jref 94. kref 27. lref 99. mref 100. nref 101. oref 102. pref 103. qref 104. rref
105.
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reproduces the smaller peaks at around 200 and 2200 cm−1

which are completely missing from the spectrum of non-
polarizable water models.
In previous dynamic simulations, the quantum spectra

deviated significantly from the ones computed from classical
simulations. The classical peaks are always blue-shifted
compared to the peaks of quantum simulations, the largest
difference is in the OH stretching being shifted by ∼100
cm−1.9,24,28,64,97,110−114 Assuming that GSTA does not change
the position of the peaks, the spectra of the filtered trajectories
are always blue-shifted relative to the spectra of quantum
simulations independently from the water model. The
justification is that in classic simulation the atoms vibrate at
the bottom of the potential well and experience less
anharmonicity than in real quantum dynamics where the
atoms reach higher potential energies because of the zero-point
energy. As mentioned in the Self-Diffusion Coefficient section,
filtration does not change the frequencies of the vibrations but
their intensities. Since GSTA is based on a harmonic
approximation, it cannot reproduce the exact position of the
vibrational frequencies as Marx already showed for quantum
harmonic correction.107

In previous simulations, imaginary frequencies were also
identified in the vibrational spectrum of water.112,115 GSTA
cannot reproduce these imaginary frequencies, because in
classical simulations, the VACF functions are even. Therefore,
only real frequencies appear in VDOS after Fourier transform.
Real time autocorrelation functions can also be determined

by the maximum entropy analytic continuation (MEAC)
method for the calculation of quantum properties.116−119 In
MEAC, the imaginary time correlation function is converted
into a real time correlation function, and the former is
generated from PIMD simulations. MEAC needs an
approximate real time function so-called prior which can be
a general function (i.e., flat prior) or a more specific one which

comes from a CMD, RPMD, or LSC-IVR calculation. The
input of GSTA is only a classical trajectory in the traditional
sense that it propagates in real time as a single bead. MEAC is
useful well below room temperature; therefore, it is not used
for liquid water. Typically, it is applied for liquid para-
hydrogen.117

4.4. Computational Cost and Accuracy. According to
the convolution theorem, the same results can be obtained for
the calculation of thermodynamic properties both in the time
and frequency domains. The Fourier transform should not
affect the results. This is true for continuous periodic signals,
but a finite number of data are represented in discrete points in
MD simulations. This is why the calculated quantities carry
numerical errors, and different estimators of the same property
can give different values. Here, we illustrate that the same
correction of the VDOS and VACF can give significantly
different results.
The VDOS function is generally determined via the Fourier

transformation of the VACF function. The Fourier transform
can be carried out with different numerical integrators. The
most common technique corresponds to the left Riemann
integral, which is probably the default algorithm in most of the
simulation programs:

n t n t tVDOS( ) 2 VACF( ) cos(2 )
n 0

∑ν πν≈ Δ · Δ Δ
=

∞

(82)

Using the trapezoidal rule for discrete Fourier transform we
get

n t n t t

VDOS( ) VACF(0)

2 VACF( ) cos(2 )
n 1

∑
ν

πν

≈

+ Δ · Δ Δ
=

∞

(83)

The calculated 1PT heat capacities are collected in Table 6.
In the generally applied method, the VDOS correction using
the left Riemann sum has a large error. It overestimates the
classical 1PT heat capacity 9R = 74.826 J/mol/K by 15%. The
corrected 1PT heat capacity is overestimated by 4%, but if it is
normalized with the classical value ( 74.826 34.18339.319

86.068
· = ),

then the underestimation is 9%. Using the trapezoidal rule for
integration, all methods give the same results within 0.01%.
In order to sample the low frequency motions for the

calculation of the VDOS, a long simulation time is necessary,
and as a rule of thumb, the length of the VACF should be at
least as long as the time period of the lowest frequency motion.
As was already shown in the Theory2.1 section, the calculation
and the correction of the VDOS are performed with a double
integral (eqs 2 and 16), which is more CPU-demanding than
the correction of the VACF which requires only a single
integral (eq 23). One can expect that the calculations will be
more accurate if all data are used; i.e., the length of the VACF
equals the simulation length. The γcV weight function and the
gcV kernel function converges exponentially to zero; therefore,

Figure 9. Infrared absorption spectrum of AMOEBA14 water model
at 298.15 K. Calculated intensities are scaled by a factor of 0.417.

Table 6. 1PT Heat Capacities of Liquid Water in J/mol/K

VDOS correction VACF correction

left Riemann sum trapezoidal rule left Riemann sum trapezoidal rule trajectory smoothing

classical 86.068 74.821 74.826 74.826 74.826
quantum 39.319 37.759 39.290 37.760 37.757
normalized quantum 34.183 37.762 39.290 37.760 37.757
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the contribution of the long times are negligible to the
thermodynamic properties. The question is this: what is the
maximum time separation which has a significant contribution
to the particular property?
We can give an upper limit for the maximum time separation

(tmax) with the calculation of the heat capacity of ideal
monatomic gases. The velocities can be considered as constant
between two collisions, and its autocorrelation function is 1. In
this case, there is no quantum effect, and the exact heat
capacity is 3/2kB. The heat capacity with the filtration of the
velocity considering the integration up to tmax is
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where tanh denotes the hyperbolic tangent function. For the
VACF correction
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Both estimators lead to the exact classical result with a long
tmax. The convergence of the functions are shown in Figure 10

at T = 298.15 K. The exact result is reached within 50 fs with
an error smaller than 0.01%. This means that a 50 fs long
VACF is enough for the quantum correction, and it is not
necessary to calculate the VACF for several ps long.

Calculations of the VACF consume considerable amounts of
memory which correlate with tmax, and the number of the
mathematical operations correlate with the square of tmax.

5. CONCLUSIONS

In summary, we have proposed a new method, GSTA for
quantum correction of classical and BOMD simulations. Our
qualitative findings are summarized in Table 7 regarding the
capability and accuracy of the GSTA method compared to
other methods. A clear advance of GSTA compared to 1PT or
2PT methods is that the effect of anharmonicity can be
determined rigorously using the work of smoothing defined by
eq 53. Another novelty is that structural NQEs can be
investigated with the filtration of the coordinates. In more
advanced methods, where anharmonicity can be described, the
classical dynamics is modified to incorporate NQEs (e.g., ZPEs
are added to the different normal modes of vibrations). The
good agreement with the experiments indicates the plausibility
of our smoothing technique. Zero-point vibrations are
automatically taken into account by the proper enhancement
of high frequency motions from the classical trajectories. The
necessary simulations are orders of magnitude faster than with
the golden standard technique, PIMD.
GSTA reproduced large NQEs for heat capacity and

structural properties. In contrast to PIMD computations,
GSTA does not change the IR absorption spectrum or the
dielectric constant significantly, and the self-diffusion coef-
ficient remains exactly the same as the classical value. The main
reason is that the input of GSTA is a classical trajectory. The
quantum fluctuations are added after the simulation, so it does
not change what the initial and final states were and how long
it took to get there. In contrast, in PIMD calculations, these
properties deviate notably from the classical values. While
PIMD requires reparametrized or ab initio models to avoid
double counting, GSTA can be applied on empirically derived
force fields or model potentials.
Our method offers an alternative way to estimate NQEs

routinely in theoretical investigations. In addition, force fields
and water models can be improved using GSTA. The proposed
method can be easily combined with molecular modeling
programs to perform simulations and analyze the trajectories
for which our source code is available at GitHub.120

Here, we have determined the heat capacity and some
structural and dynamical properties for various systems as a
proof of concept, but in subsequent studies, we show that
other thermodynamic quantities, such as entropy and free
energy, which are strongly related to the heat capacity, can be
estimated by GSTA. We also intend to test the applicability

Figure 10. Convergence of heat capacity of ideal monatomic gas with
maximum time separation.

Table 7. Reliability of Different Methods for Estimation of Nuclear Quantum Effectsa

static properties dynamical properties

method heat capacity structure dielectric constant diffusion absorption spectrum

classical/BOMD − − − − −
1PT + − − − −
2PT + − − − −
1PT+AC ++ − − − −
GSTA ++ ++ + − +
PIMD +++ +++ +++ − −
CMD, RPMD, LSC-IVR +++ +++ +++ ++ ++

a−, no effect; +, rough estimation; ++, good approximation; +++, exact for a particular potential.
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and the limitation of our method on other NQEs, like
tunneling, and further spectroscopic and dynamic properties.

■ APPENDIX A

Change of Potential and Kinetic Energy upon Smoothing
A trajectory can be described as a Fourier series with the
coefficients an:
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Without loss of generality, we assume that the x(t) function is
an even function, the periodicity of the trajectory is 2π, and a0
= 0. The an coefficients:
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Then, the filtered trajectories can be written with the w
weight functions:
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Here, n
2π

is the actual frequency as the first argument of the w

weight function for the Fourier series.
The smoothed kinetic energy can be written as
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The classic kinetic energy:
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The work of smoothing at a specific time:
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The average work of smoothing:
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After some trivial transformations and using eqs 93 and 60
we get

h E E h E E h( ) ( ) ( )kin kin pot pot⟨Ω ⟩ = ⟨ ⟩ − ⟨ ̃ ⟩ = ⟨ ⟩ − ⟨ ̃ ⟩ (97)

■ APPENDIX B

Calculation of Infrared Spectrum
The classical line shape function is the Fourier transform of the
autocorrelation of the classical total dipole moment:

I tM M( ) (0) ( ) ( )tcl ν ν= {⟨ ⟩} (98)

The classical infrared spectrum can be obtained as the classical
absorption cross section:

Vhcn
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(99)

This classical absorption spectrum can be seen in Figure 9.

The simplest incorporation of quantum effect is the
application of the harmonic quantum correction factor:107,108

Q
h

h
( )

(1 exp( ))HA ν β ν
β ν

=
− − (100)

The quantum corrected absorption cross section is the product
of eqs 99 and 100:
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After simplification we get
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One can estimate the real part of the line shape function as
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I tM M( ) (0) ( ) ( )tr ν ν= {⟨ ̃ ̃ ⟩} (103)

The complete line shape function is in the following
relationship with its real part:107
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The absorption cross section can be expressed as
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The penultimate term in the equation above is the weight
function in eq 8, so the final expression for the absorption cross
section:
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Translator and Hindered Rotor Models for Adsorbates: Partition
Functions and Entropies. J. Phys. Chem. C 2016, 120, 9719−9731.
(5) Duan, L.; Liu, X.; Zhang, J. Z. Interaction Entropy: A New
Paradigm for Highly Efficient and Reliable Computation of Protein−
Ligand Binding Free Energy. J. Am. Chem. Soc. 2016, 138, 5722−
5728.
(6) Chong, S.-H.; Ham, S. New Computational Approach for
External Entropy in Protein−Protein Binding. J. Chem. Theory
Comput. 2016, 12, 2509−2516.
(7) Li, Y.-P.; Bell, A. T.; Head-Gordon, M. Thermodynamics of
Anharmonic Systems: Uncoupled Mode Approximations for Mole-
cules. J. Chem. Theory Comput. 2016, 12, 2861−2870.
(8) Aieta, C.; Gabas, F.; Ceotto, M. An Efficient Computational
Approach for the Calculation of the Vibrational Density of States. J.
Phys. Chem. A 2016, 120, 4853−4862.
(9) Marsalek, O.; Markland, T. E. Quantum Dynamics and
Spectroscopy of Ab Initio Liquid Water: The Interplay of Nuclear
and Electronic Quantum Effects. J. Phys. Chem. Lett. 2017, 8, 1545−
1551.
(10) Moberg, D. R.; Straight, S. C.; Knight, C.; Paesani, F. Molecular
Origin of the Vibrational Structure of Ice Ih. J. Phys. Chem. Lett. 2017,
8, 2579−2583.
(11) Tuckerman, M. E. On the Quantum Nature of the Shared
Proton in Hydrogen Bonds. Science 1997, 275, 817−820.
(12) Guo, J.; Lu, J.-T.; Feng, Y.; Chen, J.; Peng, J.; Lin, Z.; Meng, X.;
Wang, Z.; Li, X.-Z.; Wang, E.-G.; Jiang, Y. Nuclear quantum effects of
hydrogen bonds probed by tip-enhanced inelastic electron tunneling.
Science 2016, 352, 321−325.
(13) Ceriotti, M.; Fang, W.; Kusalik, P. G.; McKenzie, R. H.;
Michaelides, A.; Morales, M. A.; Markland, T. E. Nuclear Quantum
Effects in Water and Aqueous Systems: Experiment, Theory, and
Current Challenges. Chem. Rev. 2016, 116, 7529−7550.
(14) Feynman, R. P.; Hibbs, A. R.; Styer, D. F. Quantum Mechanics
and Path Integrals; Amended ed.; Dover Books on Physics; Dover
Publications, 2010.
(15) Berne, B. J.; Thirumalai, D. On the Simulation of Quantum
Systems: Path Integral Methods. Annu. Rev. Phys. Chem. 1986, 37,
401−424.
(16) Liu, J.; Li, D.; Liu, X. A simple and accurate algorithm for path
integral molecular dynamics with the Langevin thermostat. J. Chem.
Phys. 2016, 145, No. 024103.
(17) Zhang, Z.; Liu, X.; Chen, Z.; Zheng, H.; Yan, K.; Liu, J. A
unified thermostat scheme for efficient configurational sampling for
classical/quantum canonical ensembles via molecular dynamics. J.
Chem. Phys. 2017, 147, No. 034109.
(18) Markland, T. E.; Ceriotti, M. Nuclear quantum effects enter the
mainstream. Nature Rev. Chem. 2018, 2, No. 0109.
(19) Ceriotti, M.; Bussi, G.; Parrinello, M. Langevin Equation with
Colored Noise for Constant-Temperature Molecular Dynamics
Simulations. Phys. Rev. Lett. 2009, 102, No. 020601.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b00703
J. Chem. Theory Comput. 2020, 16, 3316−3334

3331

https://pubs.acs.org/doi/10.1021/acs.jctc.9b00703?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00703/suppl_file/ct9b00703_si_003.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00703/suppl_file/ct9b00703_si_004.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00703/suppl_file/ct9b00703_si_005.mpg
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A%CC%81da%CC%81m+Madara%CC%81sz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-9408-318X
http://orcid.org/0000-0002-9408-318X
mailto:madarasz.adam@ttk.mta.hu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="De%CC%81nes+Berta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Da%CC%81vid+Ferenc"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Imre+Bako%CC%81"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00703?ref=pdf
https://dx.doi.org/10.1021/ja5112749
https://dx.doi.org/10.1021/ja5112749
https://dx.doi.org/10.1021/acs.jctc.7b00232
https://dx.doi.org/10.1021/acs.jctc.7b00232
https://dx.doi.org/10.1021/acs.jctc.7b00232
https://dx.doi.org/10.1021/acs.jctc.5b01094
https://dx.doi.org/10.1021/acs.jctc.5b01094
https://dx.doi.org/10.1021/acs.jctc.5b01094
https://dx.doi.org/10.1021/acs.jpcc.5b11616
https://dx.doi.org/10.1021/acs.jpcc.5b11616
https://dx.doi.org/10.1021/acs.jpcc.5b11616
https://dx.doi.org/10.1021/jacs.6b02682
https://dx.doi.org/10.1021/jacs.6b02682
https://dx.doi.org/10.1021/jacs.6b02682
https://dx.doi.org/10.1021/acs.jctc.6b00174
https://dx.doi.org/10.1021/acs.jctc.6b00174
https://dx.doi.org/10.1021/acs.jctc.5b01177
https://dx.doi.org/10.1021/acs.jctc.5b01177
https://dx.doi.org/10.1021/acs.jctc.5b01177
https://dx.doi.org/10.1021/acs.jpca.5b12364
https://dx.doi.org/10.1021/acs.jpca.5b12364
https://dx.doi.org/10.1021/acs.jpclett.7b00391
https://dx.doi.org/10.1021/acs.jpclett.7b00391
https://dx.doi.org/10.1021/acs.jpclett.7b00391
https://dx.doi.org/10.1021/acs.jpclett.7b01106
https://dx.doi.org/10.1021/acs.jpclett.7b01106
https://dx.doi.org/10.1126/science.275.5301.817
https://dx.doi.org/10.1126/science.275.5301.817
https://dx.doi.org/10.1126/science.aaf2042
https://dx.doi.org/10.1126/science.aaf2042
https://dx.doi.org/10.1021/acs.chemrev.5b00674
https://dx.doi.org/10.1021/acs.chemrev.5b00674
https://dx.doi.org/10.1021/acs.chemrev.5b00674
https://dx.doi.org/10.1146/annurev.pc.37.100186.002153
https://dx.doi.org/10.1146/annurev.pc.37.100186.002153
https://dx.doi.org/10.1063/1.4954990
https://dx.doi.org/10.1063/1.4954990
https://dx.doi.org/10.1063/1.4991621
https://dx.doi.org/10.1063/1.4991621
https://dx.doi.org/10.1063/1.4991621
https://dx.doi.org/10.1038/s41570-017-0109
https://dx.doi.org/10.1038/s41570-017-0109
https://dx.doi.org/10.1103/PhysRevLett.102.020601
https://dx.doi.org/10.1103/PhysRevLett.102.020601
https://dx.doi.org/10.1103/PhysRevLett.102.020601
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00703?ref=pdf


(20) Ceriotti, M.; Bussi, G.; Parrinello, M. Nuclear Quantum Effects
in Solids Using a Colored-Noise Thermostat. Phys. Rev. Lett. 2009,
103, No. 030603.
(21) Dammak, H.; Chalopin, Y.; Laroche, M.; Hayoun, M.; Greffet,
J.-J. Quantum Thermal Bath for Molecular Dynamics Simulation.
Phys. Rev. Lett. 2009, 103, 190601.
(22) Ceriotti, M.; Bussi, G.; Parrinello, M. Colored-Noise Thermo-
stats a ̀ la Carte. J. Chem. Theory Comput. 2010, 6, 1170−1180.
(23) Brieuc, F.; Bronstein, Y.; Dammak, H.; Depondt, P.; Finocchi,
F.; Hayoun, M. Zero-Point Energy Leakage in Quantum Thermal
Bath Molecular Dynamics Simulations. J. Chem. Theory Comput. 2016,
12, 5688−5697.
(24) Habershon, S.; Markland, T. E.; Manolopoulos, D. E.
Competing quantum effects in the dynamics of a flexible water
model. J. Chem. Phys. 2009, 131, No. 024501.
(25) Spura, T.; John, C.; Habershon, S.; Kühne, T. D. Nuclear
quantum effects in liquid water from path-integral simulations using
an ab initio force-matching approach. Mol. Phys. 2015, 113, 808−822.
(26) Ceriotti, M.; Manolopoulos, D. E.; Parrinello, M. Accelerating
the convergence of path integral dynamics with a generalized
Langevin equation. J. Chem. Phys. 2011, 134, No. 084104.
(27) Elton, D. C.; Fritz, M.; Fernańdez-Serra, M. Using a monomer
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Kolossvaŕy, I. W.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.;
Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.;
Ye, X.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M.
G.; Salomon-Ferrer, R.; Sagui, C. A.; Babin, V.; Luchko, T.; Gusarov,
S.; Kovalenko, A.; Kollman, P. A.; Cheatham, T. E.; Goetz, A. W.;
Kolossvai, I. AMBER12; University of California: San Francisco, 2012.
(78) Furtenbacher, T.; Szidarovszky, T.; Hruby,́ J.; Kyuberis, A. A.;
Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Csaśzaŕ, A. G. Definitive
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