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Abstract

Background: Bats are among the most widely distributed mammals worldwide and can represent hosts or reservoirs for
a number of different pathogens. Bartonella spp. are opportunistic bacterial pathogens, which are transmitted by a large
variety of arthropods. The aim of this study was to investigate the presence and host-associations of these Gram-negative
bacteria in heart tissues of bats collected in four different countries from eastern and central Europe and to analyze their
phylogenetic relationship with other bat-associated bartonellae.

Results: The results of this study show for the first time the presence of Bartonella spp. DNA in heart tissues of bats from
central and eastern Europe. The overall prevalence of the infection was 1.38%. Phylogenetic analysis identified four new
Bartonella spp. sequences, which were closely related with other Bartonella previously isolated from bats in Europe and
North America.

Conclusions: The gltA sequences of Bartonella spp. showed considerable heterogeneity in the phylogenetic
analysis resulting in six different clades. Our study demonstrated the presence of Bartonella spp. only in heart tissues of
bats from Romania, with two new bat species recorded as hosts (Myotis cf. alcathoe and Pipistrellus pipistrellus).

Keywords: Bacterial pathogens, Bartonella spp., Diversity, Heart tissues, Myotis, Pipistrellus

Background
Bats are among the most widespread mammalian species
worldwide with high local diversity and abundance.
They are divided in two suborders: Yinpterochiroptera
with distribution especially in the tropical regions and
Yangochiroptera more widely distributed and with higher
species diversity [1]. They are unique among mammals, as
they have the ability to fly, even for long distances during
the migration periods [2, 3]. Moreover, they can live in
dense colonies, sometimes consisting in several bat species.
Bats can adapt to various environmental conditions, and
act as potentially important reservoir hosts for multiple
pathogens, including zoonotic ones [4]. Multiple studies

demonstrated their role as natural reservoirs for different
pathogens including viruses [5–7], bacteria [8, 9] and
parasites [10–12].
The genus Bartonella is a relatively diverse group of

Gram-negative, facultative intracellular, haemotropic,
vector-borne, bacteria that infect a wide-range of mammals
and have a global distribution. After infection, the bacteria
eventually enter the erythrocytes and endothelial cells and
can persist asymptomatically in a wide range of mammalian
reservoir hosts such as rodents, insectivores, carnivores,
and ungulates [13–15]. The infection is transmitted mainly
by arthropod vectors including fleas [16], sand flies [17],
lice [18], mites [19] and ticks [20, 21]. The transmission
and evolution of Bartonella species in mammals is the
result of a complex relationship between multiple
hosts, vectors and pathogens. There are many species of
Bartonella, some of them with a large host spectrum and
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zoonotic potential (i.e. B. henselae, B. grahamii, B. eliza-
bethae, B. koehlerae and B. rochalimae) while some others
are known only from single host species [22–24].
Bartonella spp. has been reported with different preva-

lence and a high genetic diversity in bats and bat flies
[25–29]. However, the knowledge on the occurrence of
Bartonella in tissues of bats is still scarce. In Europe there
are two studies reporting the presence of Bartonella spp.
in bat tissues, involving different species [30, 31]. Both are
geographically located at the margins of the continent
(UK vs Georgia). Bai et al. [9] found 35 % of 218 bats posi-
tive for Bartonella DNA and more than 25 genetic vari-
ants were identified. Urushadze et al. [30] investigated the
presence of Bartonella in the blood of 212 live bats by
culture followed by PCR and found a 49.5 % prevalence.
Considering all these, the aim of our study was to

demonstrate the presence and diversity of Bartonella
spp. in heart tissues of different species of bats from
central and eastern Europe. We primarily targeted bat
species which are rarely recorded in caves (and are less
represented in epidemiological studies), with accent on
building-dwelling bats, the group with the highest contact
rate with humans and potentially posing a zoonotic risk.

Methods
A total of 435 carcasses were collected from different
countries from central and eastern Europe (Austria, Czech
Republic, Hungary and Romania) between 2001 and 2016
(Additional file 1: Table S1). The samples were collected
from carcasses of bats accidentally killed (collision with
man-made structures, road kills) or that had died of
natural causes (e. g. hypothermia caused by early spring
emergence) and stored in freezer at -20 °C (samples
from Czech Republic, Hungary and Romania) or at -80 °C
(samples from Austria) until their necropsy. From each bat
the heart was collected, as this was the only tissue available
from all animals. No live bat was harmed or killed for the
purpose of this study. Bats were identified to species level
using morphological keys [31]. Genomic DNA was ex-
tracted from 25 mg of heart tissue using DNeasy Blood
& Tissue Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions using 200 μl of elution
buffer and stored at -20 °C.
A PCR targeting the 370 bp of the gltA encoding

gene was employed, using the following primers: CSH1f
(5'-GCG AAT GAA GCG TGC CTA AA-3') and
BhCS.1137 (5'-AAT GCA AAA AGA ACA GTA AAC
A-3') [32]. The reactions were carried out in 25 μl reaction
mixture which contained 12.5 μl 2× Green Master Mix
(Rovalab GmBH, Teltow, Germany), 6.5 μl water, 1 μl of
each primer (0.01 mM final concentration) and 4 μl ali-
quot of isolated DNA. The PCR was performed using the
T1000™ Thermal Cycler (Bio-Rad, Hercules, CA, USA)
with the following conditions: initial denaturation at 95 °C

for 5 min, followed by 35 cycles of denaturation at 95 °C
for 30 s, annealing at 52.5 °C for 30 s and extension at
72 °C for 30 s and a final extension at 72 °C for 10 min.
For each set of reactions (45 samples), 2 negative con-
trols (PCR water) and one positive control which was
DNA obtained from a Bartonella henselae, strain (ID
54A) isolated from a cat from Israel [33]. Amplification
products were visualized by electrophoresis on 1.5%
agarose gel stained with RedSafe™ 20,000× Nucleic Acid
Staining Solution (Chembio, St Albans, UK), and their
molecular weight was assessed by comparison to a molecu-
lar marker (Hyperladder IV, Bioline, London, UK). PCR
products were purified using a commercial kit (Isolate II
PCR and Gel Kit, Bioline, London, UK) and sent for se-
quencing with the primers described above in both direc-
tions (Macrogen Europe, Amsterdam, Netherlands).
The sequences were compared with those available in

GenBank using Basic Local Alignments Tool (BLAST) ana-
lysis. The evolutionary history was inferred by Maximum
Likelihood method based on the Tamura-Nei model [34].
The gltA gene has been shown to be suitable for phylogen-
etic analysis among Bartonella species [35] and is currently
the most widely used to detect Bartonella infection. Using
the search query keywords ‘Bartonella bats gltA’, we re-
trieved from GenBank all the sequences available from bats
and their ectoparasites. Furthermore, based on the available
literature concerning bartonellae from bats, we produced a
database, where, from each unique Bartonella gltA geno-
type found, we included data on the host species and the
species of the ectoparasite, in the case they were present
(Additional file 2: Table S2). For phylogenetic analyses, as
the lengths of the downloaded gltA sequences were differ-
ent, they were trimmed to a length of 232 base pairs. In
total, the phylogenetic analysis included 210 unique Barto-
nella genotypes from bat flies as well as from bats belong-
ing to 8 families from both suborders. Brucella melitensis
was chosen as outgroup, as it is also an Alphaproteobac-
teria from the order Rhizobiales.
Statistical analysis was performed using EpiInfo™ 7 (CDC,

USA) software. The overall prevalence of Bartonella spp.,
the prevalence at locality level and the prevalence for each
bat species and their 95% confidence interval (95% CI) were
calculated.

Results
Overall, 435 samples were tested for the presence of
Bartonella spp. DNA. A total of 6 samples were positive
(1.38%). The positive samples belonged to three bat species:
Myotis cf. alcathoe (3/12; 25%), Nyctalus noctula (2/228;
0.88%) and Pipistrellus pipistrellus (1/68; 1.47%). The fol-
lowing species were negative (numbers of examined bats in
parentheses): Barbastella barbastellus (n = 2); Eptesicus
nilssonii (n = 1); E. serotinus (n = 6); Hypsugo savii (n = 9);
Miniopterus schreibersii (n = 4); My.bechsteinii (n = 4); My.
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cf. brandtii (n = 3); My. daubentonii (n = 2); My. myotis
(n = 6); My. cf. mystacinus (n = 4); My. nattereri (n = 1);
Nyctalus leisleri (n = 5); Pipistrellus kuhlii (n = 8); Pi.
nathusii (n = 28); Pi. pygmaeus (n = 5); Plecotus auritus
(n = 7); Pl. austriacus (n = 1); Rhinolophus euryale (n = 9);
R. ferrumequinum (n = 1); R. hipposideros (n = 1); and
Vespertilio murinus (n = 20).
All positive samples (n = 6) originated from three loca-

tions in Romania: Muntele Puciosu (3/31; 9.68%), Cheile
Bicazului (2/92; 2.17%) and Huda lui Papară (1/68; 1.47%)
(Table 1).
The analysis of the sequences showed that two from

Muntele Puciosu and two from Cheile Bicazului were
identical to each other, resulting in 4 unique sequences.
The four sequences differed from each other by 6–24
nucleotides (Table 2).
BLAST analysis of the gltA sequences showed 96–

98% similarity to different sequences, isolated from bats
in Europe (Georgia, GenBank: KX300154.1 and
KX300200.1; and UK, GenBank: AJ871614.1) (Table 3).
All sequences were submitted to the GenBank database
under the accession numbers MG914431-MG914434.
The global molecular phylogenetic analysis using the

gltA sequences of Bartonella spp. isolated from bats in
different parts of the world showed the presence of six
major clades (Table 4, Fig. 1).
The first clade consisted in Bartonella spp. genotypes

isolated from bats or bat flies in the Americas as well as
sequences of the zoonotic pathogen B. mayotimonensis
but also one of the sequences isolated from a bat in
Romania. The other three sequences of Bartonella spp.
in our study clustered in the second clade, together with
various sequences isolated from Europe (Finland, France,
Georgia, Spain and the UK) and four sequences isolated
from North America. The third cluster consisted in differ-
ent sequences isolated from the Old World (Asia, Europe
and Africa). The fourth clade was the largest and most di-
verse and included sequences isolated from four different
continents. The fifth clade comprised sequences from both
Old World and New World, while the sixth clade consisted
exclusively in sequences from South America, belonging to
Yangochiroptera (Fig. 1).

Discussion
This study investigated the presence, prevalence and
genetic diversity of Bartonella spp. in insectivorous bats
from three different countries from central and eastern
Europe and is the first evidence of the presence of these
bacteria in heart tissues of bats from eastern and central
Europe. This is the first study where My. cf. alcathoe and
Pi. pipistrellus were found positive for Bartonella spp.,
while Ny. noctula was previously reported to harbour this
group of pathogens [36, 37]. Multiple bat species may share
the same Bartonella species without evident host specificity

[38, 39] or they can harbour one or few Bartonella
species-specific for a particular bat species [25, 36, 40, 41].
Reports of Bartonella infections are known from blood

of bats from various countries across the world with differ-
ent prevalence. High prevalence was reported in Georgia
[30], Taiwan [42], Guatemala [38], Costa Rica [27], Kenya
[40] and China [43], compared with a low prevalence in
South Africa, Swaziland [29] and the USA [44]. Most of the
studies were focused on the detection of Bartonella spp. in

Table 1 Distribution and location of sample tested

Country Location n Bartonella spp.

Austria Baden 1 –

Hermagor 1 –

Hollabrun 1 –

Klosterneuburg 1 –

Korneuburg 3 –

Mauerbach 2 –

Mödling 4 –

Neulengbach 1 –

Salzburg 1 –

Stockerau 1 –

Telfs Innsbruck Land 1 –

Tulln 1 –

Vienna 42 –

Winer Neustadt 1 –

Czech Republic Brno 39 –

Heroltovice 1 –

Malá Morávka 1 –

Ochoz 3 –

Znojmo 1 –

Hungary Edelény 9 –

Eger 19 –

Romania Babadag 47 –

Bucureşti 8 –

Cheile Bicazului 88 Yes

Huda lui Papară 68 Yes

Iaşi 50 –

Muntele Puciosu 30 Yes

Peştera cu Apă din Valea Leşului 1 –

Peştera Meziad 1 –

Peştera Liliecilor- Bistriţa Monastery 1 –

Sântu Gheorghe 1 –

Sibiu 1 –

Peştera Tăuşoarele 1 –

Tulcea 1 –

Ugron 1 –

Abbreviation: n number of samples collected
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blood and bat associated ectoparasites [45, 46], but re-
searchers from Argentina [47], France, Spain [37], Georgia
[9] and the UK [36] tested also tissues for the presence of
the bacteria. The positive bats from France, Spain and
the UK, together with our positive samples belonged to
the family Vespertilionidae, which contain high number
of building-dwelling bats species. The positive bats
from Argentina and Georgia belonged to three different
bat families, the Molossidae, Rhinolophidae and Vesperti-
lionidae, with all the analysed bats were cave-dwelling spe-
cies. On the family level, the prevalence of Bartonella was
estimated to be between 7.3% on species of the family
Nycteridae and 54.4% on species of the Miniopteridae
[37]. The report of low prevalence of Bartonella DNA in
bats from Romania may be the result that we targeted
only one molecular marker (the gltA gene) instead of mul-
tiple markers [48] and the majority of bat species analyzed
are rarely parasitized by bat flies, which are suggested to
be the main vectors for Bartonella sp. [49].
The global phylogenetic analysis of the sequences con-

sidered in this study showed that there is a high diversity
among Bartonella isolated from bats and their ectopara-
sites. The distribution of Bartonella spp. in different bat
families depends also on the geographical distribution of
that particular family (Table 4). Three of the clades (I,
II and VI) include only Bartonella spp. isolated from
Yangochiroptera. The most diverse clade regarding the
number of bat host families was clade IV: the Miniop-
teridae and Vespertilionidae (Yangochiroptera) and the
Hipposideridae, Pteropodidae and Rhinolophidae (Yinpter-
ochiroptera) (Table 4). Sequences of Bartonella spp. iso-
lated from bats belonging to the family Vespertilionidae

were present in five out of six clades (all except clade V), as
this family is among the most diverse, widespread and
well-studied. In Europe there are 44 bat species out of
which 35 belong to Vespertilionidae [31] and all the studies
conducted in this part of the Old World for detection of
Bartonella spp. were focused mainly on this family [36, 37,
50, 51]. Our study was performed on various bat species,
with the positive samples belonging to the family Vesperti-
lionidae and the negative belonging to the families Miniop-
teridae and Rhinolophidae.
So far, the pathogenicity of bat-associated bartonellae

to humans remains unknown, and further studies are
needed to clarify their zoonotic potential. There are reports
from Finland and the USA where different Vespertilionidae
bats harboured the human pathogen B. mayotimonensis
[44, 50], which was originally detected in the resected aortic
valve of a 59-year-old patient from the USA [41]. Stuckey
et al. [37] suggested that studies regarding the detection of
Bartonella spp. in bats should be focused especially on
those belonging to the Vespertilionidae (genera Nyctalus,
Pipistrellus and Myotis), as the Bartonella isolated from
these genera seem to be genetically related to B. mayotimo-
nensis. Although all the positive samples from Romania
were isolated from species of the family Vespertilionidae,
our study did not reveal sequences related with any of the
zoonotic Bartonella genotypes.

Table 2 Differences regarding the number of nucleotides
between sequences isolated in Romania

MG914431.1 MG914432.1 MG914433.1

Distance

MG914432.1 0.032 – –

MG914433.1 0.009 0.038 –

MG914434.1 0.009 0.044 0.018

No. of nucleotides

MG914432.1 20 – –

MG914433.1 6 21 –

MG914434.1 6 24 11

Table 3 Results of the BLAST analysis

Sequence ID Identity (%) Acc. no. Origin Host

MG914431 98 KX300154.1 Georgia Myotis emarginatus

MG914432 97 KX300200.1 Georgia Eptesicus serotinus

MG914433 96 KX300154.1 Georgia Myotis emarginatus

MG914434 96 AJ871614.1 UK Pipistrellus sp.

Table 4 Hosts and geographical distribution of the six major
clades of bat-associated bartonellae

Clade Host order Host family Geographical distribution

I Yangochiroptera Phyllostomidae Central and South America

Mormoopidae Central and South America

Vespertilionidae North America, Europe

II Yangochiroptera Vespertilionidae North America, Europe

IIIa Yangochiroptera Vespertilionidae Asia, Europe

Yinpterochiroptera Pteropodidae Africa

Rhinolophidae Africa, Asia

IVa Yangochiroptera Miniopteridae Africa

Vespertilionidae Asia, Europe, North
America

Yinpterochiroptera Hipposideridae Africa, Asia

Pteropodidae Africa

Rhinolophidae Africa, Asia

Va Yangochiroptera Noctilionidae South America

Phyllostomidae Central and South America

Yinpterochiroptera Pteropodidae Africa

Rhinolophidae Asia

VI Yangochiroptera Phyllostomidae Central America

Vespertilionidae Central America
aPresent also sequences from bat flies
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Diverse genetic variants of Bartonella were found in
bats and their associated bat flies, suggesting that the
latter may act as vectors. Bartonella spp. prevalence is
higher in bat ectoparasites and have a much more gen-
etic diversity compared with those isolated from the
bats [26, 28, 38, 39, 42, 49, 50, 52–55].

Conclusions
This study showed that bats can harbour different strains
of Bartonella spp., but with a low prevalence, reporting
the presence of these bacteria in two new hosts (My. cf.
alcathoe and Pi. pipistrellus). The molecular phylogenetic
analysis conducted in this study revealed a high genetic
diversity among Bartonella spp. isolated from bats in dif-
ferent parts of the world, with the presence of six major
clades.

Additional files

Additional file 1: Table S1. Samples distribution according to locality
and species. (XLSX 14 kb)

Additional file 2: Table S2. Detailed information regarding the sequences
used in the phylogenetic analysis. (XLSX 29 kb)
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