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Abstract: All approaches currently used to study finite baryon density lattice QCD suffer

from uncontrolled systematic uncertainties in addition to the well-known sign problem. We

formulate and test an algorithm, sign reweighting, that works directly at finite µ = µB/3

and is yet free from any such uncontrolled systematics. With this algorithm the only

problem is the sign problem itself. This approach involves the generation of configurations

with the positive fermionic weight |Re detD(µ)| where D(µ) is the Dirac matrix and the

signs sign(Re detD(µ)) = ±1 are handled by a discrete reweighting. Hence there are only

two sectors, +1 and −1 and as long as the average 〈±1〉 6= 0 (with respect to the positive

weight) this discrete reweighting by the signs carries no overlap problem and the results

are reliable. The approach is tested on Nt = 4 lattices with 2+1 flavors and physical quark

masses using the unimproved staggered discretization. By measuring the Fisher (sometimes

also called Lee-Yang) zeros in the bare coupling on spatial lattices L/a = 8, 10, 12 we

conclude that the cross-over present at µ = 0 becomes stronger at µ > 0 and is consistent

with a true phase transition at around µB/T ∼ 2.4.
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1 Introduction

The numerical simulation of lattice QCD at finite baryon chemical potential is known to be

hindered by the notorious sign problem: the fermionic determinant is not real and hence

importance sampling techniques do not apply. Ways around the problem were nonethe-

less devised. These include Taylor expansion [1–14] around µ = µB/3 = 0, simulating at

imaginary chemical potential [15–30], complex Langevin approach [31–37] and reweight-

ing [38–43] from µ = 0.1 All of these approaches share the feature that for infinitesimally

small µ at fixed spatial volume they are all expected to give correct results. Once µ is not

infinitesimally small all approaches suffer from uncontrolled systematic uncertainties which

render them unreliable.

More precisely, the Taylor expansion method for non-infinitesimal µ requires the com-

putation of high order µ-derivatives at µ = 0. It has the advantage that it provides

well-defined physical quantities, namely the cumulants of the baryon number distribution

at µ = 0 directly. However, the measurement itself leads to ever growing cancellations

among fermion contractions as the order of the derivative increases. Furthermore even if

a potentially large number of Taylor coefficients are computed with acceptable statistical

uncertainty, the best case scenario is a reliable estimate of the radius of convergence. The

Taylor expansion method will only provide information within this radius and extrapolation

beyond it necessarily will involve uncontrolled systematics.

The second extrapolation method mentioned above involves simulating at imaginary

µ where there is no sign problem, but the extrapolation from negative µ2 to positive finite

µ2 requires assumptions about the functional form of the µ2 dependence. This leads again

to uncontrolled systematic uncertainty in the extrapolation, similar to the case of the

Taylor method.

1More speculative approaches such as the Lefschetz thimble [44–48] and dual variables [49, 50] are

currently not fully developed for lattice QCD.
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The third popular method, the complex Langevin approach, is appealing because it

is set up at finite µ directly but the precise set of necessary and sufficient conditions for

it to give the correct result in QCD is so far unknown. A set of sufficient conditions for

the correctness of the algorithm in general (some a priori, such as the holomorphicity of

the action, and some a posteriori, such as the quick decay of the field distributions at in-

finity) has been proven [51, 52], however these conditions are not satisfied in lattice QCD.

Although one may formulate various tests of incorrectness and the lack of observed such

signals may boost confidence in the correctness of the results, the systematic uncertainties

associated with the potential breakdown of the algorithm cannot be estimated quantita-

tively. Numerical investigations indicate that present incarnations of the method break

down at low temperatures. Whether an extension of the method capable of simulating also

at low temperatures exists is a matter of ongoing research.

Finally the fourth method, reweighting from µ = 0, leads to the well-known overlap

problem at some finite µ. This means that if a suitable weight is found, w(µ), which may

depend on any number of further parameters [40, 41] beyond µ, and expectation values are

computed via 〈O〉µ = 〈Ow(µ)〉0/〈w(µ)〉0, then the histogram of w(µ) becomes wider and

wider for increasing µ. Sampling the tail of the histogram becomes eventually prohibitively

expensive and a reliable error estimate at finite statistics impossible. Furthermore, there

is no sharply defined condition which would signal the presence of the overlap problem or

absence thereof. In practice one may attempt to confirm the lack of the overlap problem

from various statistical observations and may very well obtain reliable results, but the

inherent systematic uncertainty will nevertheless linger.

Our motivation for the present paper is to devise an algorithm which is free of uncon-

trolled systematic uncertainties and has a well-defined set of conditions for its applicability.

In other words we would like to have a trustworthy algorithm in the sense that results ob-

tained with it are reliable with well-defined statistical uncertainties and have quantifiable,

controlled systematic uncertainties. We will not solve the sign problem and do not aim to.

Our approach involves the generation of configurations with the positive fermionic weight

|Re detD(µ)| where D(µ) is the Dirac matrix and the signs sign(Re detD(µ)) = ±1 are

handled by a discrete reweighting.

As an application of the method we perform a study of the conjectured critical end

point in the µ− T phase diagram. At µ = 0 QCD has a cross-over thermal transition and

it is expected that as µ is increased the transition gets stronger and eventually at some

µ = µc it becomes a second order phase transition, beyond which at µ > µc the transition

is first order. We would like to unambiguously observe this strengthening of the transition

in a manner which is free of uncontrolled systematic uncertainties. The present paper will

be limited to the unimproved staggered discretization at fixed Nt = 4 hence we do not

claim to arrive at continuum results. Nonetheless even at fixed Nt the lattice system, as a

well defined statistical physics system, may or may not possess a critical end point. This

latter question is the one we attempt to address in our paper. Note that the mere idea

of using |Re detD(µ)| as a positive weight to generate configurations is not new [53–55].

Actual numerical simulations with this method were nevertheless only carried out in the

canonical approach in the past [56–58].
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The organization of the paper is as follows. In section 2 we formulate the relevant

path integrals in the presence of a chemical potential and reorganize them in a form which

allows for a numerical simulation. We present our numerical results in section 3 including

our Monte-Carlo algorithm directly at non-zero µ as well as the details of our analysis of

the leading Fisher (sometimes also called Lee-Yang) zeros of the partition function. The

volume scaling of the leading Fisher zeros is used to infer the order of the phase transition

at any given non-zero µ. Finally in section 4 we end with some conclusions and outlook

for future work.

2 Path integral at finite µ

At finite chemical potential the partition function and expectation values are computed as,

Z(µ) =

∫
dU detD(U, µ)e−Sg(U)

〈O〉µ =
1

Z(µ)

∫
dU O(U) detD(U, µ)e−Sg(U) , (2.1)

where D(U, µ) is the fermionic Dirac matrix involving all flavors and mass terms and Sg(U)

is the gauge action. As is well-known detD(U, µ) is complex for real µ 6= 0, but Z(µ) is

nonetheless real. Hence we may equivalently write,

Z(µ) =

∫
dU Re detD(U, µ)e−Sg(U) . (2.2)

It is worth emphasizing that taking the real part above is exact and does not introduce

any approximation, as Z(µ) in (2.1) and (2.2) are exactly identical if charge conjugation

invariance holds. For a large class of observables we may further write,

〈O〉µ =
1

Z(µ)

∫
dU O(U) Re detD(U, µ)e−Sg(U) , (2.3)

for instance if O(U) = O(U∗) or if the observable is related to derivatives of Z(µ) with

respect to a real µ or mass, etc. In this work we will only be concerned with observables

of this type and (2.3) will hold. Although the weights are real now the sign problem

of course persists as they can be negative. However one may split the sign ε(U, µ) =

sign Re detD(U, µ) of the weights from their absolute values and arrive at

Z(µ) =

∫
dU ε(U, µ) |Re detD(U, µ)|e−Sg(U)

〈O〉µ =
1

Z(µ)

∫
dU O(U) ε(U, µ) |Re detD(U, µ)|e−Sg(U) . (2.4)

Clearly, |Re detD(U, µ)|e−Sg(U) is positive and can be used as a weight in importance sam-

pling. Configurations will be generated using this weight and the corresponding expectation

values will be denoted by 〈. . .〉abs,µ. The signs ε(U, µ) = ±1 will be dealt with by a discrete

reweighting, leading to

〈O〉µ =
〈εO〉abs,µ
〈ε〉abs,µ

, (2.5)
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aµ 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1625 0.1750 0.1875 0.2000

βc 5.1870 5.1856 5.1847 5.1827 5.1796 5.1757 5.1739 5.1736 5.1704 5.1686

Table 1. The bare couplings used for the 10 different chemical potentials.

which is meaningful if the denominator is non-zero. Furthermore, if indeed the denominator

is non-zero then the result is trustworthy as there cannot be any overlap problem, since

the only reweighting we need to deal with is a reweighting with respect to a discrete set;

there are only two sectors, those with ε(U, µ) = +1 and −1. The sign problem is of course

still present and it will be signified by the denominator being zero within errors.

To summarize the above, what we have achieved by the formulation (2.5) is that the

only problem is the sign problem, there is no other uncontrolled systematic which may

spoil the result even when the sign problem is not prohibitively severe. Consequently, we

have both a sufficient and necessary condition for the correctness of the results: if at a

given set of parameters and lattice volumes 〈ε(U, µ)〉abs,µ is consistent with zero within

statistical uncertainties then we have no result, if on the other hand it is non-zero then

whatever the result is, it is reliable with well-defined statistical errors.

Let us denote the sets of configurations with ε(U, µ) = ±1 by U±(µ), which of course

depend on µ. Then we have,

Z(µ) = Z+(µ)− Z−(µ) > 0 , Z±(µ) =

∫
U±(µ)

dU |Re detD(U, µ)|e−Sg(U)

〈ε〉abs,µ =
Z+(µ)− Z−(µ)

Z+(µ) + Z−(µ)
> 0 (2.6)

〈O〉µ =
O+(µ)−O−(µ)

Z+(µ)− Z−(µ)
, O±(µ) =

∫
U±(µ)

dU O(U)|Re detD(U, µ)|e−Sg(U)

where the inequalities are meant as exact results at infinite statistics while at finite statistics

the left hand sides may of course be consistent with zero within errors.

3 Numerical results

In our simulations we employ the Wilson plaquette gauge action and 2 + 1 flavors of

rooted staggered (unimproved) fermions on Nt = 4 lattices. The spatial lattice sizes are

L/a = 8, 10, 12 and the fermion masses are set to their physical values amud = 0.0092 and

ams = 0.25. The chemical potential is introduced for the light quarks only, µu = µd = µ

and µs = 0 is set for the strange. The setup is identical to [42].

At each µ and spatial volume the bare coupling was set to βc as follows. For each µ,

initial βc0 values were taken from [59]. The leading Fisher zeros (see section 3.2), β1 + iβ2
were measured in shorter runs and βc0 was modified by ∆β = β1 − βc0 if necessary. Then

all further production runs were performed at these βc = βc0 + ∆β. The resulting values

are shown in table 1. From [59] we also glean that the spatial volume dependence of βc is

rather mild and in this first exploratory work we set the same bare coupling for all of our

3 spatial volumes.
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3.1 Monte-Carlo with µ > 0

We would like to generate configurations with the weight |Re detD(U, µ)|e−Sg(U). This is

a non-trivial problem and to our knowledge no pseudo-fermion type construction can be

found. What one may still do is rewrite the weight as

|Re detD(U, µ)|e−Sg(U) =
|Re detD(U, µ)|
|Re detD(U, 0)|

detD(U, 0)e−Sg(U) , (3.1)

since detD(U, 0) is real and positive, and utilize a standard (R)HMC algorithm at µ = 0

and include the µ-dependent ratio in the Metropolis accept/reject step at the end of the

trajectory. This will clearly be an expensive algorithm because the full determinant needs

to be computed, but with the help of the reduced matrix construction the cost is still

manageable for the lattice volumes we will consider in this paper.

Since we are working with rooted staggered fermions we need to compute the full

determinant, its square root, its real part and then its sign and absolute value. At finite

temperature these steps can most easily be done with the help of the reduced matrix [38].

This has 6(L/a)3 eigenvalues, λi(U), and the main utility of them is that the full staggered

determinant can be given at finite chemical potential as,

detDst(U, µ) =
∏
i

(
λi(U)e−

µ
2T − e

µ
2T

)
. (3.2)

For the precise definition of the reduced matrix see [38]. We will define the square root

branch factor-by-factor in the above product by requiring continuity in µ or in other words

by requiring that in the µ→ 0 limit each factor below goes to unity,

detD(U, µ)

detD(U, 0)
=

(
detDst(U, µ)

detDst(U, µ)

)1/2

=
∏
i

(
λi(U)e−

µ
2T − e

µ
2T

λi(U)− 1

)1/2

. (3.3)

The branch cut of the square root is placed on the negative real axis. This procedure fully

fixes the complex determinant ratio. The real part, sign and absolute value can then be

taken straightforwardly. Notice that with this procedure the partition function remains real

since detD(U∗, µ) = detD(U, µ)∗ for real µ, and so our approach maintains its validity.

Clearly, if µ is small the ratio |Re detD(U, µ)|/|Re detD(U, 0)| is close to unity and

hence will not affect the Metropolis step much, i.e., a tuned (R)HMC algorithm at µ = 0

will perform just as well. On a given spatial volume as µ increases the ratio will influence

the Metropolis step more and more and will decrease the acceptance rate. This can be

compensated by employing shorter (R)HMC trajectories as this will change the links less

and consequently the change in the ratio with respect to the beginning and end of the

trajectory will decrease. In this way we are able to keep the acceptance rate above 50%

for all runs. The shorter trajectories will of course lead to larger autocorrelation times.

Concretely, our estimate of integrated autocorrelation times of our key observable (3.5)

are between 50 and 500 depending on µ and L/a. The total number of configurations

are between 5 · 104 and 2 · 105, leading to a few hundred independent configurations for

each simulation point. We observe that “tunnelling” between the +1 and −1 sectors are
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Figure 1. Left: the average sign, 〈ε〉abs,µ for the 3 spatial volumes as a function of the chemical

potential µ. Right: the factor f(µ, V ) parametrizing the average sign; see (3.4).

frequent, i.e., the change in the µ-dependent ratio is small enough so that even if the

trajectory changes sector we observe good acceptance.

The crucial measure of whether the results are reliable or not is given by 〈ε〉abs,µ, i.e.,

the average sign, which at the same time measures the strength of the sign problem itself.

Since 〈ε〉abs,µ → 1 as µ→ 0 we parametrize it as,

〈ε〉abs,µ = e−V µ
2f(µ,V ) (3.4)

with the 4-volume V = L3/T and show in figure 1 both 〈ε〉abs,µ as well as f(µ, V ). Clearly,

f(µ, V ) depends mildly on V but does depend non-trivially on µ. As can be seen the

volumes L/a = 8, 10, 12 and chemical potentials aµ ≤ 0.2 are safely in the region where

〈ε〉abs,µ is several standard deviations away from zero, hence the sign reweighting (2.5) can

be performed without issues. In particular, as emphasized, there is no overlap problem to

contend with.

It is worth exploring what the effect of the sign reweighting is on some observables,

more precisely how different some observables are in the +1 and −1 sectors. As an example

we show the gauge action per unit space time volume in figure 2 as a function of the chemical

potential separately for the two sectors.

3.2 Fisher zeros

Once it has been determined which volumes and chemical potentials allow for the ap-

plication of the sign reweighting (2.5) we are able to compute observables. Since our

primary interest is the order of the phase transition as a function of µ we will compute the

Fisher zeros in the bare coupling β, i.e., we will look for complex bare couplings such that

Z(µ, β) = 0 at given µ and volume; see (2.6). This amounts to measuring the observables

O(U) = e
−(β−βc)

Sg(U)

βc (3.5)

for complex β, assuming the simulation was done at (real) bare coupling βc. Since O(U∗) =

O(U) our method can be applied without problems. More precisely, since Z(µ, β) has

– 6 –
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Figure 2. The gauge action per unit space time volume Sg a4/V = Sg (a/L)3 aT for the 3

spatial volumes and the sectors +1 and −1 separately. For the low chemical potentials there are no

configurations within the sector −1 in our ensembles.

several zeros as a function of complex β, we will be looking for the one closest to the real

axis, which in every run happens to coincide with the one closest to (βc, 0) in the complex

plane as well. This zero will be called the leading zero.

The volume scaling of Im β determines the order of the transition: if Im β → const as

L/a → ∞ the transition is a cross-over, if Im β ∼ a3/L3 the transition is first order and

finally if Im β ∼ (a/L)α with a non-trivial exponent α > 0 the transition is second order.

Although these leading order expressions are unambiguous in all three cases, the subleading

terms are a priori not known. Since we know that at µ = 0 the transition is a cross-over for

physical quark masses, it is generally expected that for small µ it will stay a cross-over. At

fixed µ > 0 the imaginary part of the leading Fisher zero is then extrapolated to infinite

volume via,

Imβ = A+B (a/L)3 , (3.6)

where the exponent 3 in the subleading term is merely an ansatz. In this first study we

only simulated at 3 volumes, L/a = 8, 10, 12 and hence we are unable to fit the exponent of

the subleading term simultaneously with A and B. Empirically, we do find that the above

fit function provides acceptable statistical fits for our choice of chemical potentials.
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Figure 3. Left: the measured imaginary parts of the Fisher zeros scaled by the spatial volume.

Right: the infinite volume extrapolated imaginary part of the Fisher zeros. The result at µ = 0 was

obtained using the standard (R)HMC algorithm.

The existence of a critical end point would suggest that Im β∞(µ) = A(µ) is a decreas-

ing function of µ and as µ→ µc we have A(µ)→ 0.

The real part of the leading Fisher zero on the other hand may be used to define the

critical coupling. The simulations we performed at particular values of βc = βc(µ) and we

have checked that for aµ > 0.1 the differences ∆β = Reβ − βc are deviating from zero

less than 3σ and rarely beyond 1.5σ. Note that a smooth cross-over means that different

observables may lead to different definitions of the pseudo-critical coupling.

The measured imaginary parts of the Fisher zeros are shown in the left panel of figure 3.

The extrapolations to infinite volume using L/a = 8, 10, 12 are shown in figure 4 together

with the resulting χ2/dof values of the fits. Out of the 10 extrapolations the largest χ2/dof

values are at aµ = 0.1, 0.1875, 0.2 and are 4.3, 2.37, 2.95. Note that dof = 1 and even

the largest χ2/dof = 4.3 leads to a q-value of 4%. The resulting Im (β∞(µ)) as a function

of µ is finally shown in the right panel of figure 3.

The most important result from our investigation can be gleaned from figure 3. Both

at finite volumes and correspondingly in infinite volume the imaginary part of the rele-

vant Fisher zero is decreasing as the chemical potential becomes sufficiently large. More

precisely, the infinite volume extrapolated result shows that the imaginary part of the lead-

ing Fisher zero is more or less flat up to aµ ∼ 0.15 and a sharp decrease is observed for

0.15 ≤ aµ ≤ 0.2. The observed flatness agrees within errors with the slight increase seen

in [42, 59], and cannot be significantly distinguished from it with the currently available

statistics. This means that in the range of chemical potentials where our results are re-

liable with trustworthy statistical errors, i.e., 〈ε〉abs,µ 6= 0, we are able to conclude with

high statistical significance that the leading singularity of log Z is eventually moving closer

and closer to the real axis. In fact, the location of the singularity is consistent with a real

value at aµ ∼ 0.2. This in turn means that the strength of the transition is eventually

increasing and very suggestive that a true phase transition occurs at around aµ ∼ 0.2.

This corresponds to µ/Tc ∼ 0.8, in agreement with [42], however the latter result should be

interpreted with caution since, as we explained, we do not expect the fixed Nt = 4 results
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Figure 4. The infinite volume extrapolations (3.6) of the imaginary parts of the leading Fisher

zeros at the various chemical potentials we have simulated at.
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to be particularly close to the continuum with our chosen discretization. Nonetheless our

results are trustworthy in the well defined statistical model given by the Nt = 4 lattice

system.

4 Conclusion and outlook

In this paper we have introduced a new technique for evaluating the path integral at

finite baryon chemical potential. The approach involves generating configurations by the

absolute value of the real part of the fermionic determinant and taking the signs into

account by a discrete reweighting. The first step necessitates the evaluation of the full

determinant during the Monte-Carlo simulation which makes the algorithm rather costly

but still manageable for 83×4, 103×4 and 123×4 which are the volumes we used. The second

step, the discrete reweighting by the sign of the real part of the fermionic determinant, is

a fully controlled step provided the average sign is several standard deviations away from

zero, i.e., the sign problem is not too severe. This requirement can be easily monitored and

once it is fulfilled, the results are completely trustworthy with well-defined statistical errors.

This feature is the main advantage of our method. It improves on traditional reweighting

in µ and/or some other continuous parameter because in that case the notorious overlap

problem may invalidate the results even though a naive application of the reweighting

formula 〈O〉µ = 〈Ow〉0/〈w〉0 seemingly presents no problems.

Since our main interest was the order of the thermal phase transition as a function

of the chemical potential, we have determined the first few Fisher zeros and the volume

scaling of the leading one (the one closest to the real axis) for 10 choices of µ in the range

0.025 ≤ aµ ≤ 0.2. We have observed that the strength of the phase transition stays flat

within errors for 0 < aµ < 0.15 and increases sharply for 0.15 < aµ < 0.2, signified by the

decrease in the imaginary part of the leading Fisher zero. The infinite volume extrapolation

of the leading Fisher zero at aµ ∼ 0.2, corresponding to µB/T ∼ 2.4, is in fact consistent

with a true phase transition, i.e., the imaginary part is consistent with zero.

There are however several avenues to improve on our work in the future. First, we have

performed simulations at fixed Nt = 4, i.e., we have not addressed the continuum limit at

all; simulations with larger temporal extents would be necessary in order to do so. Once the

continuum behavior is investigated it might be worthwhile to use an improved action, both

for the gauge and fermionic actions. In the present work we have used the Wilson plaquette

gauge action and unimproved staggered fermions. The motivation was to replicate the setup

of [42] where the critical end point was investigated using traditional reweighting in µ. It is

worth noting that even though the unimproved staggered discretization on Nt = 4 lattices

is far from the continuum, it is a well-defined lattice statistical physics model with a sign

problem. Hence it makes perfect sense to study it in order to gain valuable insight into the

sign problem in general.

Second, the volume scaling of the Fisher zeros is of central importance and our

ansatz (3.6) was simply motivated by empirically observing good statistical fits as well

as the fact that we only had data on 3 volumes. Hence we were unable to fit all 3 param-
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eters, A,B and C in the general form,

Imβ = A+B (a/L)C , (4.1)

which would otherwise be the justified procedure. Once an additional volume 143 × 4 is

added, the exponent C could be determined or at least constrained.

Third, we have set the quark masses to their physical values at β = βc at µ = 0 and

have not changed them for µ > 0 along the line of constant physics. Even though the effect

is expected to be negligible relative to other sources of errors, in future work we do plan

to follow the line of constant physics for µ > 0.

Fourth, we have included the chemical potential at the quark level as µu = µd =

µB/3 = µ and µs = 0 which corresponds to µS = µB/3. Nonetheless our method can

be trivially modified to include other chemical potential assignments, e.g., strangeness

neutrality 〈S〉 = 0 or µS = 0.

Finally we mention that the recently introduced geometric matching procedure [43]

provides a new rooting procedure at finite Nt which is nonetheless expected to agree with

the one followed in this paper towards the continuum limit. We repeated the determination

of the leading Fisher zeros using geometric matching and found that they agree with the

ones presented in this paper within statistical uncertainties. This type of cross-check will

be especially useful for future studies targeting the continuum limit.
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[28] S. Borsányi et al., Higher order fluctuations and correlations of conserved charges from

lattice QCD, JHEP 10 (2018) 205 [arXiv:1805.04445] [INSPIRE].

[29] R. Bellwied et al., Off-diagonal correlators of conserved charges from lattice QCD and how to

relate them to experiment, Phys. Rev. D 101 (2020) 034506 [arXiv:1910.14592] [INSPIRE].
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