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Scalar g-subresultants and Dickson matrices

Bence Csajbok*

Abstract

Following the ideas of Ore and Li we study g-analogues of scalar
subresultants and show how these results can be applied to determine
the rank of an F4-linear transformation f of Fg». As an application we
show how certain minors of the Dickson matrix D(f), associated with
f, determine the rank of D(f) and hence the rank of f.

Keywords: Dickson matriz, subresultant, linearized polynomial

1 Introduction
Let f(z) = Zf:o a;z' and g(z) = Zé:o bix!, with agb; # 0, be two univariate

polynomials with coefficients in the field K 1. In elimination theory, the
classical resultant of f and g is

l
Res(f,g) = (=)o} [ [ £(&),
=1

where g(z) = b ]_ﬁ:l(a: — &) with &1,&,...,& € K (where K denotes the
algebraic closure of K). For 0 < m < min{k,l} consider the following
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(k+1—2m) x (k+ 10— 2m) matrix:

a  ag—-1 Qag—2 ... Qk—l+m+1 -+ A2m—]+2 A2m—i+1
0  ar Gk-1 .o Q—lrmt2 -+ 2m—i+3  A2m—I+2
R (fg)‘— 0 0 ag Am+1 [07%9)
m L
' b b1 bio bom—k+2 bom—k+1 |’
0 bl blfl e ... e b2m7k+3 b2m7k+2
0 ... 0 b e b b

where coefficients out of range are considered to be 0.

The determinant of R,,(f, g) is also called the m-th scalar subresultant of
fand g. Note that |Ry(f, g)| = Res(f, g) and hence ged(f,g) = 1 if and only
if |[Ro(f,g)| # 0. This result has the following well-known generalization in
elimination theory. For a proof we cite here the Appendix of [I0] and the
references therein, since the proof of Theorem 1] was motivated by the
arguments found there.

Result 1.1. The degree of ged(f,g) is t if and only if |Ro(f,9)| = ... =
[Ri—1(f,9)| = 0 and |R.(f, g)| # 0.

The strength of the Result [[L1] is that it provides a way to study the
number of common roots of f and g only by means of their coefficients.

Now let K be a field of characteristic p, and let ¢ be a power of p. A
q-polynomial over K with g-degree m is a polynomial of the form f(z) =
divo a;z?, with a,, # 0 and ag,ai,...,a, € K. When ¢ = p prime, ¢-
analogue of the classical resultant for g-polynomials was already mentioned
in [I4, Chapter 1, Section 7|, however, an explicit formula was not given
there. An explicit formula can be found for example in [I7, page 59].

The subresultant theory was extended to Ore polynomials (cf. [I5]) and
hence also to the non-commutative ring of g-polynomials by Li in [I1]. Here
the non-commutative operation between two ¢-polynomials is composition,
while addition is defined as usual. Note that this ring is a right-Euclidean
domain with respect to the g-degree, cf. [I4]. When g = f o h then we
will also say that A is a symbolic right divisor of g. Note that in the paper
of Li the word subresultant is used to what is also known as polynomial
subresultant. In the classical theory the m-th scalar subresultant is the
leading coefficient of the m-th polynomial subresultant. See for example

)

[1, Section 2| for a brief summary, where Sr(nm corresponds to what we (and



some other authors) call scalar subresultant. For the various notions consult
with [9].

Let K = Fgn and consider K as an n-dimensional vector space over IF,.
Then there is an isomorphism between the ring of g-polynomials

n—1 )
A cF
a;xr* 1 agy...,0n—1 qm
=0

considered modulo (27" — ) and the ring of F,-linear transformations of Fn.
The set of roots of a g-polynomial form an F,-subspace and the dimension
of this subspace is the dimension of the kernel of the corresponding F,-linear
transformation. Thus degged(f(x), 7" — ) = ¢" %, where k is the rank of
the Fy-linear transformation of Fyn defined by f(z). When n is clear from
the context, then we will say that k is the rank of f.

Result 1.2 (Ore [I4, Theorem 2|). The greatest common symbolic right
divisor of two q-polynomials is the same as their ordinary greatest common
divisor.

It follows that the g¢-subresultant theory can be applied to determine
ged(f(z), 29" —x) and hence the rank of f. Our contribution to this theory is
a direct proof to a g-analogue of Result [[LT] providing sufficient and necessary
conditions which ensure that f has rank n — k (cf. Theorem 2.T]).

Recall that the Dickson matrix associated with f(z) = 7= azl €
Fqn [.Z'] is

ag aj . Ap—1
q q q
Ap—1 Qg Ap_2
D(f)=1] . :
n—1 n—1 n—1
af as coooad

It is well-known that the rank of f equals the rank of D(f), see for
example [I8, Proposition 4.4] or [13| Proposition 5]. In some recent con-
structions of maximum scattered subspaces and MRD-codes it was crucial
to the determine the rank of certain Dickson matrices (cf. [6] Section 7] and
[7, Section 5]). In these papers this was done by considering certain minors
of such matrices and excluding the possibility that their determinants vanish
at the same time. On the other hand, in [4, Section 3] Dickson matrices were
used to prove non-existence results of certain MRD-codes. This was done by
proving that, for a certain choice of the parameters, all 6 x 6 submatrices of
a 9 x 9 Dickson matrix have zero determinant. As an application of Theorem



2.1 we show that it is enough to investigate the nullity of the determinant
of at most k + 1 well-defined minors to decide whether f has rank n — k.
This result can significantly simplify the above mentioned arguments.

To state here the main result of this paper we introduce the notion D, (f)
to denote the (n —m) x (n —m) matrix obtained from D(f) after removing
its first m columns and last m rows. Our main result is the following.

Theorem 1.3. dimg(ker f) = p if and only if

[Do(f)] = [D1(f)l = ... = [Dua(f)| = 0 (1)
and |D,(f)| # 0.

Results in a similar direction have been obtained recently in [5] where
for each g-polynomial f of g-degree k, k conditions were given, in terms of
the coefficients of f, which are satisfied if and only if f has rank n — k (there
is a hidden (k + 1)-th condition here as well, namely the assumption that
the coefficient of 27" in f is non-zero). Independently, in [16] it was proved
that the rank of f is n —m if and only if a certain k£ x k& matrix has rank
k —m. If m = k, then this result gives back the main result of [5].

2 Scalar ¢-subresultants

Consider f(z) = 2?:0 a;z? and g(z) = Zé:o b;a?', two g-polynomials with
coefficients in IF, such that aib; # 0. Put

¢" = degged(f, g).

By Result [L2], i also equals the g-degree of the symbolic greatest common
right divisor of f and g.

For m < min{k,[} we define the (k + [ — 2m) x (k + [ — 2m) matrix
Ry, 4(f,g) as follows:

l—m—1 l—m—1 l—m—1 l—m—1 l—m—1 l—m—1
q q q q q q
ay, a1 ap—o o Qi1 0 Qom—iq2 Qom—iy
qlf'm72 qlf'm72 ql7m72 qlf'm72 ql7m72
0 ay, ap—1 o Qppmety2 o0 Qomei43 Qom—i42
0 0 ak e am
k—m—1 k—m—1 k—m—1 k—m—1 k—m—1
q q q q q
by bi_y bi_s e e R S
qk7m72 bqk7m72 bqk7m72 bqk7m72
0 bl -1 T T te 2m—k+3 2m—k-+2
0 0 b U b



Note that Ry,+1,4(f,g) is obtained from R,, ;(f,g) by removing its first
and last columns, and its first and (I —m + 1)-th rows.
We state here the g-analogue of Result [Tl

Theorem 2.1. The g-degree of ged(f,g) is p if and only if |Roq4(f,9)] =
oo = |Ru—1,4(f,9)| =0 and [R,, 4(f, g)| # 0.

We prove this result directly by following the proof of the classical Result
[Tl Theorem 211 will easily follow from Proposition 23]

roposition 2.2. Recall ¢* = degged(f,g) and let m < p. Let c(z) =
Proposition 2.2. Recall ¢* = degged dlet m < p. Let
Z%:én ezt and d(z) = Y20 diz?" be g-polynomials over F, with cj_p =

kim . . .
aZ , di_y, = b;] , and their other coefficients are considered as un-

knowns. Then the set of solutions for these coefficients such that
dof—cog=0 (2)
form a (pn — m)-dimensional affine F,-space.

Proof. First assume that f and g have only simple roots.

Let r be the greatest common monic symbolic right divisor of f and
g and suppose that ([2)) holds for some ¢ and d. Then f = f; or and
g=gor and () yields do f; = co g1, thus d is zero on fi(ker g;) (in this
proof the kernel is always taken over F;) and c is zero on g;(ker f1). Since
the greatest common symbolic right divisor of f; and ¢; is the identity
map, it follows that ged(f1,91) = x and hence ker f; n ker gy = {0}. Thus
dim, f1(ker g1) = dimg ker g1 = | — p and similarly dim, g; (ker f1) = k& — p.
It follows that the unique g-polynomial d; of ¢-degree [ — i and with leading
coefficient bgkiu which vanishes on fj(ker g;) is a divisor of d. By Result
ged(d, dy) = dy is also a symbolic right divisor of d, i.e. d = dy o dy, for
some monic dp with g-degree (u — m). Similarly, the unique g-polynomial
c1 of g-degree k — p and with leading coefficient azliu which vanishes on
g1(ker f1) is a symbolic right divisor of ¢, i.e. ¢ = ¢y 0 ¢1, for some monic ¢z
with ¢-degree (u —m).

Note that

diofi—coq

has g-degree k + 1 — 21 — 1 (the coefficient of 2977 vanishes because of
the assumptions on the leading coefficients of ¢ and d) and it vanishes on

ker f1 @ ker g;. Thus it is the zero polynomial.
Then

cpociogy=cogy=dofi=dyodiofi=dyocioq



and hence co = dy. On the other hand, if ¢o = dsy, then we clearly have a
solution since (2]) becomes ds o (dy o f1 — 1 0 g1) or with the zero polynomial
in the middle. _

Since we can choose the first (1 —m) coefficients of da(z) = > 1" d;z?
arbitrarily, the assertion follows. More precisely, if d; () = ;‘;5” d_jxqj with

di—y = b?kw and with coefficients out of range defined as 0, then d(z) is of
the form

WithczkeIET]for0<k:<u—m—1, cZ“,m —land d; =0 for | > pu—m.
These polynomials form a (i — m)-dimensional affine F-space and as we
have seen, any such d(x) uniquely defines a ¢(x) for which (2]) holds.

Now consider the case when f and g may have multiple roots. Let
f= 27 o fand g = ¢ " o § where f and § have only simple roots. W.Lo.g.
assume [; < k1. We want to find the dimension of the solutions of

k ~ 1
g1 = 7t 5 g
dox? of=coax? og,

under the given assumptions on the degrees and leading coefficients of ¢ and
d. Clearly, the multiplicities of the roots of the left hand side and the right
hand side have to coincide and hence ¢ = ¢/ 029" ", Let d and & denote the
g-polynomials whose coefficients are the ¢~*1-th roots of the coefficients of
d and ¢, respectively. Then the solutions of the previous system correspond
to the solutions of
27 odof:qul odog
and hence to those of
dof=7oj,

where the g-degree of d is (I —I;) — (m — ) and the g-degree of & is (k —
k1) — (m — 11). The roots of the g-polynomials f and ¢ are simple, thus
we can apply the first part of this proof for these polynomials. The leading

k—m—Fky l—m—kq

coefficients of d and & are b} and a, , respectively; the leading

. x ~ —kq ! . . k—m—kq
coefficients of f and g are aZ and b? , respectively. Since b? =

—11 deg & l—m—Fkq —k1 dee d oy . .
b? €< and az = aZ 8% the conditions on the leading coefficients

also hold. Note that the ¢-degree of ged(f,§) is o —I1. Then the dimension
of the solutions of this system is (u—11) — (m —11) = p — m.
]



Proposition 2.3. Suppose m < p. Then the nullity of the matric Ry, 4(f, 9)
18 [ — m.

Proof. Let f,g,c,d be defined as before, then

l-m k ) k—m l )
i giti i giti
o -eon= 30 R afar” = Yo S -
=0  j=0 =0 j=0
k+l—m i o o
q'Lf] q’L*] 7
Z Zdi—j%’ = ¢i—jb; z? .
=0 j=0

The g-degree of r := ged(f,g) is u = m and r | do f — co g, thus d
and ¢ form a solution to do f —co g = 0 if and only if the ¢g-degree of
do f —cogisless than m. In another words, we only have to concentrate
on the coefficients of terms with ¢g-degree i € {m,m + 1,...,k +1—m} in
dof—cog.

Note that the coefficient of ¢F /=" is dl_mazlim —ck_mb?kim (coefficients
out of range are considered to be 0), which is 0 because of our assumptions
on ¢ and d. Now let

vV = (dl—m—17 dl—m—27 cee 7d07 —Ck—m—1; —Ck—m—25-++, _CO)

and

k—m l—m l—m __k—m k—m l—m l—m __k—m
_ q q _ 44 q q q _ 44 q
b= apy —ay by .00 ag,  —ap by, ).
We claim that
VRinq(f,9) = —b (3)

holds if and only if

J

Z di_jag-iij - Ci_jbg»F =0 (4)
7=0

for all m <i < k+1—m—1. To see this we show that the (k+1—2m —t)-th
coordinates in the vectors at the left and right hand side of (B8] coincide if
and only if () holds with ¢ = m + t. Indeed, in

m+t

gmHt=i gmt—i
Z Am+t—ja; — Cmtt—jb; (5)
=0



dmit—j #0only if je {m+t,m+t—1,....2m+t—1} and ¢pqe—j # 0
onlyif je{m+t,m+t—1,...,2m+t¢ — k}. Thus, after changing indices
in the summation, () equals

l—m , ) k—m . )

a7 Z gt
Z Al Ay gy 145 Chm—jom gttt (6)
j=0 J=0

Since d;_,, = bgkim and cp_,, = azlim, the (k 4+ [ — 2m — t)-th coordinates
on the left and right hand side of (B]) coincide if and only if

l—m—1 k—m—1
qbﬂnflfj b k—m—1—s
Z dlfmflfja2m—l+1+t+j o Z Ck—m—1-sY9m _k414t+5 —
=0 s=0

l—m kE—m

Aty = Chmop_jo s>

and this happens if and only if (@) equals zero.

Thus the dimension of the kernel of the IFTq—linear transformation of

E’f*l*?m defined by x — xRy, 4(f,g) is the same as the dimension of the

set of solutions of (2]) and this finishes the proof. O

Corollary 2.4. Let f be a g-polynomial over Fyn and put g(x) = 29" — z.
Then dimg(ker f) = p if and only if

|R07q<f79)‘ = |R17q(f79)| =...= |Ru—l,q<f7g)‘ =0 (7)

and |RN7Q(f7 g9)| # 0.

As an illustration, the (n+k) x (n+k) matrix Ro4(f, g) in the particular
case when g(r) = 29" —x and f(z) = Zf:o a;z9 has the following form:

aj aj_, a 0 0 0 0
qn72 qn72 qn72
0 a aj ag
0 0 0 0 ar  Gp_1 ap
1 0 0 0 0 -1 0
1 0 0 0 0 0
0 0 0 0 0 0 -1



The matrix R, 4(f,g) can be obtained from Ry 4(f, g) by removing its first
and last m columns and its first m rows together with the (n+1)-th, (n+2)-
th, ..., (n +m)-th rows.

Let f(x) = Zf;ol a;z? and g(z) = 29" — z. If we substitute a; = 0 in
Ry, 4(f,g), then its determinant equals either |Rm7q(f;, g)| or —|Rm,q(f;, 9)|.
This argument can be iterated and hence one can use Corollary 24 even if
the g-degree of f is not known, by considering the (2n—1—-2m) x (2n—1—2m)
m-th scalar g-subresultants of Z?:_ol a;z? and g(z).

3 A connection with Dickson matrices

In this section we prove Theorem [[.3] but before that we need some prepa-
ration.

Result 3.1 (Schur’s determinant identity, [3]). Consider the square matriz

X Y
M= (Z W>’
where W is also square and invertible. Then det(M) = det(W)det(X —
YWw-12).

Corollary 3.2. Consider the square matrices

A B C
M= (Il 0 —[l>’

N:=(B A+C0C),

where A and C are k x | matrices, B is k x (k — 1), I denotes the | x
[ identity matriz and O is the | x (k — 1) zero matriz. Then det(M) =
(—=1){E=l+1) det(N).

Proof. Result Bl with X = (A B), Y =0C, 7= (Il O) and W = -1,

gives
det(M) = det(—I;)det (A B) +C (I, 0))=(-1)det(A+C B).

The result follows since N can be obtained from (A+C B) by l(k — 1)
column changes. O

Let us introduce the abbreviation

Rm(f) = Rm,q(fa g),

where g(z) = 29" — z and f(z) = Z?;ol a;z? for some a; € Fyn.

9



Lemma 3.3. |D,,,(f)| = |Rmn(f)].

Proof. Note that D,,—1(f) = Rp—1(f) = (an—1), so we may assume m <
n — 1. Let T} denote the k x k anti-diagonal matrix whose non-zero entries
equal to one and let I} denote the k x k identity matrix. By O we will always
denote a zero matrix whose dimension will be clear from the context. We
distinguish two cases.

If m > (n—1)/2, then 2n —1 — 2m < n and hence R,,(f) has the form:

A B
Inflfm 0)’

where B = T}, Dy (f)Tr—pm. We have

A B _ (_1)(nfm71)(nfm) B A
Inflfm O @) Inflfm

and hence by Result 3.1

[Bon (F)] = B[ = [Dm(f)]

If m < (n —1)/2, then first consider the last m rows of R,,(f): for
ke{0,1,...,m — 1} the (2n — 2m — 1 — k)-th row of R,,(f) contains only
one non-zero entry, namely, a 1 at position n — 1 —m — k. Then it is easy
to see by row expansion applied to the last m rows that:

)

A B C
| )
( ) | (f)| In—2m—l 0 - n—2m—1

where A and C are (n —m) x (n — 2m — 1) matrices and
(B A+C) = ThmDin(f) .
According to Corollary [3.2]
(=)D Ry (f)] = (=) OV D () T,

which proves the assertion.

Lemma immediately yields Theorem

For some s with ged(s,n) = 1 put o := ¢°. The set of o-polynomials over
[Fn is isomorphic to the skew-polynomial ring Fyn[t, o] where ta = ot for

10



all & € Fyn. Analogies for some of the results of Section 2lshould hold in these
non-commutative polynomial rings as well. Next we show a generalization
of Theorem for o-polynomials. _

Consider the o-polynomial f(z) := Z?;ol a;z° € Fyn[x], which is also
a g-polynomial. As before, by ker f we will denote ged(f(x), 29" — x) and
similarly to D(f) we define

a aj e Qp—1
o o o
a, 1 Qg A )}
Do(f) = .
o.nfl o.nfl o.nfl
1 a2 DY ao

We will denote by Dy, »(f) the (n —m) x (n —m) matrix obtained from
D, (f) after removing its first m columns and last m rows. Because of the
applications it might be useful to have conditions on other minors of D, (f).
In the next corollary we show some results also in this direction.

Corollary 3.4. If f(x) = Z?:_ol a;z’ € Fon[x] with ged(s,n) = 1, then
dimg(ker f) = p if and only if

|D0,cr(f)| = |D1,cr(f)| =7 |D,u—1,cr(f)| =0 (8)

and | Dy (f)| # 0.

Index the rows and columns of Dy(f) from 0 to n —1. For 0 < m <
dimg (ker f) if J, K < {0,1,...,n—1} are two sets of m consecutive integers
modulo n then let My (f) denote the (n —m) x (n —m) matriz obtained
from Dy (f) after removing its rows and columns with indices in J and K,
respectively. Then

[Myx(f)] =0 < [Dimno(f)] = 0.

Proof. Consider f as a g-polynomial with dimg(ker f) = p. This happens
if and only if D(f) has rank pu. Recall that rows and columns of D(f) are
indexed from 0 to n — 1 and let P denote the permutation matrix for which
the i-th row of PA is the si-th row of A (considered modulo n). Then
PAP~! = D,(f) and hence the rank of D, (f) is the same as the rank of
D(f) (cf. also [8, Remark 2.3]). Note that D,(f) is the Dickson matrix of a
o-polynomial considered as an F,-linear transformation of F,» with kernel
a p-dimensional F,-subspace of F,n. By Theorem this happens if and
only if the conditions on |Dy, »(f)| holds for 0 < m < p.

For the second part take 0 < m < dimg(ker f). Note that for any o-
polynomial g(x) = Y71 bjz® € Fyn[z] and for any non-negative integer t
the rank of g(z) is the same as

11



1. the rank of g(z)° considered modulo 24" — z,

2. the rank of §(z) := Y"1 6" 27" (since D,(9)T = Dy(y), where by ©

we denote matrix trarfs;?osi%ién).

Suppose J = {j,j+1,...,5+m—1} and K = {k,k+1,...,k+m —
1} considered modulo n. Then fi(z) := f(z)°" "™ modulo 29" — z has
the same rank as f(z) and |M; g/ (f1)| = |M(]7K(!)")|"n7kim where K' =
{n —=m,m +1,....,n —1}. Then fi(x) has the same rank as fi(z) and
(Mg (f)] = [Myxe(fi)]. Finally, fo(z) := fi(2)”"’ modulo 27" —
has the same rank as f)(z) and Mg g (f2)| = |MK/7J<fA1)‘O-n7j where J' =
{0,1,...,m — 1}. By definition Mg y(f2) = D o(f2), and hence

|Dino(fo)l = 0 < | Mg,y (fi)] = 0 & [Myeo(fr)] = 0 & [ My (f)] = 0.

Recall 0 < m < dimg(ker f). Since fo and f has the same rank, it follows
from the first part of the assertion that |Dy, ,(f2)| = 0 < |Dpyo(f)| =0
and this finishes the proof. O

3.1 Applications

A g-polynomial f(z) € Fyn[x] is called scattered if {f(z)/x: z € Fp\{0}}
(the set of directions determined by the graph of f) has maximum size, that
is (¢"—1)/(¢—1). Put Uy = {(z, f(x)): v € Fgn}, which is an n-dimensional
[F,-subspace of an. The linear set of PG(1,¢") defined by f is the set of
projective points Ly := {{(z, f(z)))¢n: © € Fgn\{0}}. The weight of a point
{(a,b))F, € PG(1,¢") w.r.t. the F -subspace Uy is dimy((a, b))r,» "Uy. The
polynomial f is scattered if and only if the points of L; have weight 1. In this
case Ly and Uy are called maximum scattered. This happens if and only if the
Fg-linear transformations of Fyn in the Fyn-subspace M := (z, f(z))r,, have
rank at least n— 1. Equivalently, M is equivalent to an [F»-linear maximum
rank distance (MRD for short) code of Fy*"™ with minimum distance n — 1.
For more details about these objects and the relations among them we refer
to [16l Section 13.3.6] and the references therein.

n—1

Corollary 3.5. Consider the q-polynomial f(x) = >/, a;zl € Fon[z] and
with y as a variable consider the matrix

Y at QAn—1

q q q
H Ap_1 Y Ap_2
qnfl qnfl n—1

ay a y1



The determinant of the (n — m) x (n — m) matriz obtained from H after
removing its first m columns and last m rows is a polynomial H,,(y) €
Fgn[y]. Then the following holds:

1. The roots of Hy(y) are in Fyn,

2. the number of points of weight i of Ly w.r.t. Uy is the same as the
number of common roots of Ho(y), Hi(y),...,H,—1(y) which are not
roots of H,(y),

3. in particular f(x) is scattered if and only if Ho(y) and Hy(y) have no
common roots.

Proof. Let yg be a root of Hy(y). Note that Lemma [3.3] does not require the
coefficients of f to be in Fyn, thus also for yg € E} we have 0 = Hy(yo) =
|Roq(yoxr + 37 ae?, 29" — x)| and hence by Theorem E] there exists
0 € Fn\{0} such that yg = — >} aia:gz_l. Here the right-hand side is in
Fy» and hence yo € Fyn.

By Theorem [L3 Ho(yo) = Hi(yo) = ... = Hy—1(yo) = 0 and H,,(yo) # 0
hold if and only if the g-polynomial (yop — ag)z + f(z) € Fyn[z] has nullity
i, equivalently, the point ((1,ag — yo))q» has weight p.

The last part follows from the fact that f is scattered if and only if L,
does not have points of weight larger than 1. O

In [2] Part 3. of Corollary is used to derive sufficient and necessary
conditions for f(x) = bz + 21" € F,s[x] to be a scattered polynomial and
to prove [0, Conjecture 7.5] regarding the number of scattered polynomials
of this form.

In [] the authors study MRD-codes with maximum idealisers, or equiva-
lently, the problem of finding sets of distinct integers {to, t1,. .., tx} such that
every F,-linear transformation of Fy» in the Fyn-subspace <xqt° , 27" e 2" >Fqn
has rank at least n — k. In [4, Corollary 3.6] it is stated that in M :=
(x, 29, qu,xq4>Fq9 one can find an [Fy-linear transformation of IF o with rank
at most 5 and hence the set of integers {0, 1,2,4} does not satisfy the above
mentioned condition. In [4] this was proved by calculating sixteen 6 x 6
submatrices of D(f), where f(z) = —z + (1 + ¢ 927 + cx? — 29" and
c € o satisfies certain conditions, and by proving that each of them has
zero determinant. According to Theorem the same result follows also by
calculating only |Do(f)], |D1(f)], |D2(f)], |D3(f)| and by proving that all
of them are zero.
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