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Scalar q-subresultants and Dickson matrices

Bence Csajbók∗

Abstract

Following the ideas of Ore and Li we study q-analogues of scalar
subresultants and show how these results can be applied to determine
the rank of an Fq-linear transformation f of Fqn . As an application we
show how certain minors of the Dickson matrix Dpfq, associated with
f , determine the rank of Dpfq and hence the rank of f .
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1 Introduction

Let fpxq “
řk

i“0 aix
i and gpxq “

řl
i“0 bix

i, with akbl ‰ 0, be two univariate
polynomials with coefficients in the field K

1. In elimination theory, the
classical resultant of f and g is

Respf, gq “ p´1qklbkl

lź

i“1

fpξiq,

where gpxq “ bl
śl

i“1px ´ ξiq with ξ1, ξ2, . . . , ξl P K (where K denotes the
algebraic closure of K). For 0 ď m ď mintk, lu consider the following
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pk ` l ´ 2mq ˆ pk ` l ´ 2mq matrix:

Rmpf, gq :“

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

ak ak´1 ak´2 . . . ak´l`m`1 . . . a2m´l`2 a2m´l`1

0 ak ak´1 . . . ak´l`m`2 . . . a2m´l`3 a2m´l`2

...
...

...
...

...
...

...
...

0 . . . 0 . . . ak . . . am`1 am
bl bl´1 bl´2 . . . . . . . . . b2m´k`2 b2m´k`1

0 bl bl´1 . . . . . . . . . b2m´k`3 b2m´k`2

...
...

...
...

...
...

...
...

0 . . . 0 bl . . . . . . bm`1 bm

˛

‹‹‹‹‹‹‹‹‹‹‹‹
‚

,

where coefficients out of range are considered to be 0.
The determinant of Rmpf, gq is also called them-th scalar subresultant of

f and g. Note that |R0pf, gq| “ Respf, gq and hence gcdpf, gq “ 1 if and only
if |R0pf, gq| ‰ 0. This result has the following well-known generalization in
elimination theory. For a proof we cite here the Appendix of [10] and the
references therein, since the proof of Theorem 2.1 was motivated by the
arguments found there.

Result 1.1. The degree of gcdpf, gq is t if and only if |R0pf, gq| “ . . . “
|Rt´1pf, gq| “ 0 and |Rtpf, gq| ‰ 0.

The strength of the Result 1.1 is that it provides a way to study the
number of common roots of f and g only by means of their coefficients.

Now let K be a field of characteristic p, and let q be a power of p. A
q-polynomial over K with q-degree m is a polynomial of the form fpxq “řm

i“0 aix
qi , with am ‰ 0 and a0, a1, . . . , am P K. When q “ p prime, q-

analogue of the classical resultant for q-polynomials was already mentioned
in [14, Chapter 1, Section 7], however, an explicit formula was not given
there. An explicit formula can be found for example in [17, page 59].

The subresultant theory was extended to Ore polynomials (cf. [15]) and
hence also to the non-commutative ring of q-polynomials by Li in [11]. Here
the non-commutative operation between two q-polynomials is composition,
while addition is defined as usual. Note that this ring is a right-Euclidean
domain with respect to the q-degree, cf. [14]. When g “ f ˝ h then we
will also say that h is a symbolic right divisor of g. Note that in the paper
of Li the word subresultant is used to what is also known as polynomial

subresultant. In the classical theory the m-th scalar subresultant is the
leading coefficient of the m-th polynomial subresultant. See for example

[1, Section 2] for a brief summary, where S
pmq
m corresponds to what we (and
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some other authors) call scalar subresultant. For the various notions consult
with [9].

Let K “ Fqn and consider K as an n-dimensional vector space over Fq.
Then there is an isomorphism between the ring of q-polynomials

#
n´1ÿ

i“0

aix
qi : a0, . . . , an´1 P Fqn

+

considered modulo pxq
n

´xq and the ring of Fq-linear transformations of Fqn .
The set of roots of a q-polynomial form an Fq-subspace and the dimension
of this subspace is the dimension of the kernel of the corresponding Fq-linear
transformation. Thus deg gcdpfpxq, xq

n

´ xq “ qn´k, where k is the rank of
the Fq-linear transformation of Fqn defined by fpxq. When n is clear from
the context, then we will say that k is the rank of f .

Result 1.2 (Ore [14, Theorem 2]). The greatest common symbolic right

divisor of two q-polynomials is the same as their ordinary greatest common

divisor.

It follows that the q-subresultant theory can be applied to determine
gcdpfpxq, xq

n

´xq and hence the rank of f . Our contribution to this theory is
a direct proof to a q-analogue of Result 1.1 providing sufficient and necessary
conditions which ensure that f has rank n ´ k (cf. Theorem 2.1).

Recall that the Dickson matrix associated with fpxq “
řn´1

i“0 aix
qi P

Fqnrxs is

Dpfq :“

¨

˚̊
˚
˝

a0 a1 . . . an´1

a
q
n´1 a

q
0 . . . a

q
n´2

...
...

...
...

a
qn´1

1 a
qn´1

2 . . . a
qn´1

0

˛

‹‹‹
‚
.

It is well-known that the rank of f equals the rank of Dpfq, see for
example [18, Proposition 4.4] or [13, Proposition 5]. In some recent con-
structions of maximum scattered subspaces and MRD-codes it was crucial
to the determine the rank of certain Dickson matrices (cf. [6, Section 7] and
[7, Section 5]). In these papers this was done by considering certain minors
of such matrices and excluding the possibility that their determinants vanish
at the same time. On the other hand, in [4, Section 3] Dickson matrices were
used to prove non-existence results of certain MRD-codes. This was done by
proving that, for a certain choice of the parameters, all 6ˆ 6 submatrices of
a 9ˆ9 Dickson matrix have zero determinant. As an application of Theorem
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2.1 we show that it is enough to investigate the nullity of the determinant
of at most k ` 1 well-defined minors to decide whether f has rank n ´ k.
This result can significantly simplify the above mentioned arguments.

To state here the main result of this paper we introduce the notionDmpfq
to denote the pn´mq ˆ pn´mq matrix obtained from Dpfq after removing
its first m columns and last m rows. Our main result is the following.

Theorem 1.3. dimqpker fq “ µ if and only if

|D0pfq| “ |D1pfq| “ . . . “ |Dµ´1pfq| “ 0 (1)

and |Dµpfq| ‰ 0.

Results in a similar direction have been obtained recently in [5] where
for each q-polynomial f of q-degree k, k conditions were given, in terms of
the coefficients of f , which are satisfied if and only if f has rank n´k (there
is a hidden pk ` 1q-th condition here as well, namely the assumption that

the coefficient of xq
k

in f is non-zero). Independently, in [16] it was proved
that the rank of f is n ´ m if and only if a certain k ˆ k matrix has rank
k ´ m. If m “ k, then this result gives back the main result of [5].

2 Scalar q-subresultants

Consider fpxq “
řk

i“0 aix
qi and gpxq “

řl
i“0 bix

qi , two q-polynomials with
coefficients in ĎFq such that akbl ‰ 0. Put

qµ “ deg gcdpf, gq.

By Result 1.2, µ also equals the q-degree of the symbolic greatest common
right divisor of f and g.

For m ď mintk, lu we define the pk ` l ´ 2mq ˆ pk ` l ´ 2mq matrix
Rm,qpf, gq as follows:

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

a
ql´m´1

k a
ql´m´1

k´1
a
ql´m´1

k´2
. . . a

ql´m´1

k`m´l`1
. . . a

ql´m´1

2m´l`2
a
ql´m´1

2m´l`1

0 a
ql´m´2

k a
ql´m´2

k´1
. . . a

ql´m´2

k`m´l`2
. . . a

ql´m´2

2m´l`3
a
ql´m´2

2m´l`2
...

...
...

...
...

...
...

...
0 . . . 0 . . . ak . . . am`1 am

b
qk´m´1

l b
qk´m´1

l´1
b
qk´m´1

l´2
. . . . . . . . . b

qk´m´1

2m´k`2
b
qk´m´1

2m´k`1

0 b
qk´m´2

l b
qk´m´2

l´1
. . . . . . . . . b

qk´m´2

2m´k`3
b
qk´m´2

2m´k`2
...

...
...

...
...

...
...

...
0 . . . 0 bl . . . . . . bm`1 bm

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹
‚

.
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Note that Rm`1,qpf, gq is obtained from Rm,qpf, gq by removing its first
and last columns, and its first and pl ´ m ` 1q-th rows.

We state here the q-analogue of Result 1.1.

Theorem 2.1. The q-degree of gcdpf, gq is µ if and only if |R0,qpf, gq| “
. . . “ |Rµ´1,qpf, gq| “ 0 and |Rµ,qpf, gq| ‰ 0.

We prove this result directly by following the proof of the classical Result
1.1. Theorem 2.1 will easily follow from Proposition 2.3.

Proposition 2.2. Recall qµ “ deg gcdpf, gq and let m ď µ. Let cpxq “řk´m
i“0 cix

qi and dpxq “
řl´m

i“0 dix
qi be q-polynomials over ĎFq with ck´m “

a
ql´m

k , dl´m “ b
qk´m

l , and their other coefficients are considered as un-

knowns. Then the set of solutions for these coefficients such that

d ˝ f ´ c ˝ g “ 0 (2)

form a pµ ´ mq-dimensional affine ĎFq-space.

Proof. First assume that f and g have only simple roots.
Let r be the greatest common monic symbolic right divisor of f and

g and suppose that (2) holds for some c and d. Then f “ f1 ˝ r and
g “ g1 ˝ r and (2) yields d ˝ f1 “ c ˝ g1, thus d is zero on f1pker g1q (in this
proof the kernel is always taken over ĎFq) and c is zero on g1pker f1q. Since
the greatest common symbolic right divisor of f1 and g1 is the identity
map, it follows that gcdpf1, g1q “ x and hence ker f1 X ker g1 “ t0u. Thus
dimq f1pker g1q “ dimq ker g1 “ l ´ µ and similarly dimq g1pker f1q “ k ´ µ.
It follows that the unique q-polynomial d1 of q-degree l´µ and with leading

coefficient b
qk´µ

l which vanishes on f1pker g1q is a divisor of d. By Result
1.2 gcdpd, d1q “ d1 is also a symbolic right divisor of d, i.e. d “ d2 ˝ d1, for
some monic d2 with q-degree pµ ´ mq. Similarly, the unique q-polynomial

c1 of q-degree k ´ µ and with leading coefficient a
ql´µ

k which vanishes on
g1pker f1q is a symbolic right divisor of c, i.e. c “ c2 ˝ c1, for some monic c2
with q-degree pµ ´ mq.

Note that
d1 ˝ f1 ´ c1 ˝ g1

has q-degree k ` l ´ 2µ ´ 1 (the coefficient of xq
k`l´2µ

vanishes because of
the assumptions on the leading coefficients of c and d) and it vanishes on
ker f1 ‘ ker g1. Thus it is the zero polynomial.

Then

c2 ˝ c1 ˝ g1 “ c ˝ g1 “ d ˝ f1 “ d2 ˝ d1 ˝ f1 “ d2 ˝ c1 ˝ g1

5



and hence c2 “ d2. On the other hand, if c2 “ d2, then we clearly have a
solution since (2) becomes d2 ˝ pd1 ˝f1 ´ c1 ˝g1q ˝ r with the zero polynomial
in the middle.

Since we can choose the first pµ ´ mq coefficients of d2pxq “
řµ´m

i“0 d̂ix
qi

arbitrarily, the assertion follows. More precisely, if d1pxq “
řµ´m

j“0 d̄jx
qj with

d̄l´µ “ b
qk´µ

l and with coefficients out of range defined as 0, then dpxq is of
the form

k´mÿ

i“0

iÿ

j“0

d̂i´j d̄j
qi´j

xq
i

,

with d̂k P ĎFq for 0 ď k ď µ ´ m ´ 1, d̂µ´m “ 1 and d̂l “ 0 for l ą µ ´ m.
These polynomials form a pµ ´ mq-dimensional affine ĎFq-space and as we
have seen, any such dpxq uniquely defines a cpxq for which (2) holds.

Now consider the case when f and g may have multiple roots. Let
f “ xq

k1 ˝ f̃ and g “ xq
l1 ˝ g̃ where f̃ and g̃ have only simple roots. W.l.o.g.

assume l1 ď k1. We want to find the dimension of the solutions of

d ˝ xq
k1

˝ f̃ “ c ˝ xq
l1

˝ g̃,

under the given assumptions on the degrees and leading coefficients of c and
d. Clearly, the multiplicities of the roots of the left hand side and the right
hand side have to coincide and hence c “ c1 ˝xq

k1´l1 . Let d̃ and c̃1 denote the
q-polynomials whose coefficients are the q´k1-th roots of the coefficients of
d and c, respectively. Then the solutions of the previous system correspond
to the solutions of

xq
k1

˝ d̃ ˝ f̃ “ xq
k1

˝ c̃1 ˝ g̃

and hence to those of
d̃ ˝ f̃ “ c̃1 ˝ g̃,

where the q-degree of d̃ is pl ´ l1q ´ pm ´ l1q and the q-degree of c̃1 is pk ´
k1q ´ pm ´ l1q. The roots of the q-polynomials f̃ and g̃ are simple, thus
we can apply the first part of this proof for these polynomials. The leading

coefficients of d̃ and c̃1 are b
qk´m´k1

l and a
ql´m´k1

k , respectively; the leading

coefficients of f̃ and g̃ are a
q´k1

k and b
q´l1

l , respectively. Since b
qk´m´k1

l “

b
q´l1 deg c̃1

l and a
ql´m´k1

k “ a
q´k1 deg d̃
k , the conditions on the leading coefficients

also hold. Note that the q-degree of gcdpf̃ , g̃q is µ´ l1. Then the dimension
of the solutions of this system is pµ ´ l1q ´ pm ´ l1q “ µ ´ m.
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Proposition 2.3. Suppose m ď µ. Then the nullity of the matrix Rm,qpf, gq
is µ ´ m.

Proof. Let f, g, c, d be defined as before, then

d ˝ f ´ c ˝ g “
l´mÿ

i“0

di

kÿ

j“0

a
qi

j x
qj`i

´
k´mÿ

i“0

ci

lÿ

j“0

b
qi

j x
qj`i

“

k`l´mÿ

i“0

˜
iÿ

j“0

di´ja
qi´j

j ´ ci´jb
qi´j

j

¸

xq
i

.

The q-degree of r :“ gcdpf, gq is µ ě m and r | d ˝ f ´ c ˝ g, thus d

and c form a solution to d ˝ f ´ c ˝ g “ 0 if and only if the q-degree of
d ˝ f ´ c ˝ g is less than m. In another words, we only have to concentrate
on the coefficients of terms with q-degree i P tm,m ` 1, . . . , k ` l ´ mu in
d ˝ f ´ c ˝ g.

Note that the coefficient of qk`l´m is dl´ma
ql´m

k ´ck´mb
qk´m

l (coefficients
out of range are considered to be 0), which is 0 because of our assumptions
on c and d. Now let

v “ pdl´m´1, dl´m´2, . . . , d0,´ck´m´1,´ck´m´2, . . . ,´c0q

and

b “ pbq
k´m

l a
ql´m

k´1 ´ a
ql´m

k b
qk´m

l´1 , . . . , b
qk´m

l a
ql´m

2m´l ´ a
ql´m

k b
qk´m

2m´kq.

We claim that
vRm,qpf, gq “ ´b (3)

holds if and only if
iÿ

j“0

di´ja
qi´j

j ´ ci´jb
qi´j

j “ 0 (4)

for all m ď i ď k` l´m´1. To see this we show that the pk` l´2m´ tq-th
coordinates in the vectors at the left and right hand side of (3) coincide if
and only if (4) holds with i “ m ` t. Indeed, in

m`tÿ

j“0

dm`t´ja
qm`t´j

j ´ cm`t´jb
qm`t´j

j (5)
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dm`t´j ‰ 0 only if j P tm ` t,m ` t ´ 1, . . . , 2m ` t ´ lu and cm`t´j ‰ 0
only if j P tm ` t,m ` t ´ 1, . . . , 2m ` t ´ ku. Thus, after changing indices
in the summation, (5) equals

l´mÿ

j“0

dl´m´ja
ql´m´j

2m`t´l`j ´
k´mÿ

j“0

ck´m´jb
qk´m´j

2m`t´k`j . (6)

Since dl´m “ b
qk´m

l and ck´m “ a
ql´m

k , the pk ` l ´ 2m ´ tq-th coordinates
on the left and right hand side of (3) coincide if and only if

l´m´1ÿ

j“0

dl´m´1´ja
ql´m´1´j

2m´l`1`t`j ´
k´m´1ÿ

s“0

ck´m´1´sb
qk´m´1´s

2m´k`1`t`j “

dl´ma
ql´m

2m´l`t ´ ck´mb
qk´m

2m´k`t,

and this happens if and only if (6) equals zero.
Thus the dimension of the kernel of the ĎFq-linear transformation of

ĎFq
k`l´2m

defined by x ÞÑ xRm,qpf, gq is the same as the dimension of the
set of solutions of (2) and this finishes the proof.

Corollary 2.4. Let f be a q-polynomial over Fqn and put gpxq “ xq
n

´ x.

Then dimqpker fq “ µ if and only if

|R0,qpf, gq| “ |R1,qpf, gq| “ . . . “ |Rµ´1,qpf, gq| “ 0 (7)

and |Rµ,qpf, gq| ‰ 0.

As an illustration, the pn`kqˆpn`kq matrix R0,qpf, gq in the particular

case when gpxq “ xq
n

´ x and fpxq “
řk

i“0 aix
qi has the following form:

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚
˝

a
qn´1

k a
qn´1

k´1
. . . a

qn´1

0 0 . . . 0 0 . . . 0

0 a
qn´2

k . . . a
qn´2

1 a
qn´2

0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 0 . . . ak ak´1 . . . a0
1 0 . . . 0 0 . . . 0 ´1 . . . 0
0 1 . . . 0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 0 . . . 0 0 . . . ´1

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹
‚

.
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The matrix Rm,qpf, gq can be obtained from R0,qpf, gq by removing its first
and last m columns and its first m rows together with the pn`1q-th, pn`2q-
th, . . . , pn ` mq-th rows.

Let f̃pxq “
řk´1

i“0 aix
qi and gpxq “ xq

n

´ x. If we substitute ak “ 0 in
Rm,qpf, gq, then its determinant equals either |Rm,qpf̃ , gq| or ´|Rm,qpf̃ , gq|.
This argument can be iterated and hence one can use Corollary 2.4 even if
the q-degree of f is not known, by considering the p2n´1´2mqˆp2n´1´2mq
m-th scalar q-subresultants of

řn´1
i“0 aix

qi and gpxq.

3 A connection with Dickson matrices

In this section we prove Theorem 1.3 but before that we need some prepa-
ration.

Result 3.1 (Schur’s determinant identity, [3]). Consider the square matrix

M :“

ˆ
X Y

Z W

˙
,

where W is also square and invertible. Then detpMq “ detpW qdetpX ´
YW´1Zq.

Corollary 3.2. Consider the square matrices

M :“

ˆ
A B C

Il O ´Il

˙
,

N :“
`
B A ` C

˘
,

where A and C are k ˆ l matrices, B is k ˆ pk ´ lq, Il denotes the l ˆ
l identity matrix and O is the l ˆ pk ´ lq zero matrix. Then detpMq “
p´1qlpk´l`1q detpNq.

Proof. Result 3.1 with X “
`
A B

˘
, Y “ C, Z “

`
Il O

˘
and W “ ´Il

gives

detpMq “ detp´Ilqdet
``
A B

˘
` C

`
Il O

˘˘
“ p´1ql det

`
A ` C B

˘
.

The result follows since N can be obtained from
`
A ` C B

˘
by lpk ´ lq

column changes.

Let us introduce the abbreviation

Rmpfq :“ Rm,qpf, gq,

where gpxq “ xq
n

´ x and fpxq “
řn´1

i“0 aix
qi for some ai P Fqn .

9



Lemma 3.3. |Dmpfq| “ |Rmpfq|.

Proof. Note that Dn´1pfq “ Rn´1pfq “ pan´1q, so we may assume m ă
n ´ 1. Let Tk denote the k ˆ k anti-diagonal matrix whose non-zero entries
equal to one and let Ik denote the kˆk identity matrix. By O we will always
denote a zero matrix whose dimension will be clear from the context. We
distinguish two cases.

If m ě pn ´ 1q{2, then 2n ´ 1 ´ 2m ď n and hence Rmpfq has the form:

ˆ
A B

In´1´m O

˙
,

where B “ Tn´mDmpfqTn´m. We have

ˇ̌
ˇ̌
ˆ

A B

In´1´m O

˙ˇ̌
ˇ̌ “ p´1qpn´m´1qpn´mq

ˇ̌
ˇ̌
ˆ
B A

O In´1´m

˙ˇ̌
ˇ̌ ,

and hence by Result 3.1

|Rmpfq| “ |B| “ |Dmpfq|.

If m ă pn ´ 1q{2, then first consider the last m rows of Rmpfq: for
k P t0, 1, . . . ,m ´ 1u the p2n ´ 2m ´ 1 ´ kq-th row of Rmpfq contains only
one non-zero entry, namely, a 1 at position n ´ 1 ´ m ´ k. Then it is easy
to see by row expansion applied to the last m rows that:

p´1qpn´1qm|Rmpfq| “

ˇ̌
ˇ̌
ˆ

A B C

In´2m´1 O ´In´2m´1

˙ˇ̌
ˇ̌ ,

where A and C are pn ´ mq ˆ pn ´ 2m ´ 1q matrices and

`
B A ` C

˘
“ Tn´mDmpfqTn´m.

According to Corollary 3.2,

p´1qpn´1qm|Rmpfq| “ p´1qpn´2m´1qpm`2q|Tn´mDmpfqTn´m|,

which proves the assertion.

Lemma 3.3 immediately yields Theorem 1.3.

For some s with gcdps, nq “ 1 put σ :“ qs. The set of σ-polynomials over
Fqn is isomorphic to the skew-polynomial ring Fqnrt, σs where tα “ ασt for

10



all α P Fqn . Analogies for some of the results of Section 2 should hold in these
non-commutative polynomial rings as well. Next we show a generalization
of Theorem 1.3 for σ-polynomials.

Consider the σ-polynomial fpxq :“
řn´1

i“0 aix
σi

P Fqnrxs, which is also
a q-polynomial. As before, by ker f we will denote gcdpfpxq, xq

n
´ xq and

similarly to Dpfq we define

Dσpfq :“

¨

˚̊
˚
˝

a0 a1 . . . an´1

aσn´1 aσ0 . . . aσn´2
...

...
...

...

aσ
n´1

1 aσ
n´1

2 . . . aσ
n´1

0

˛

‹‹‹
‚
.

We will denote by Dm,σpfq the pn ´ mq ˆ pn ´ mq matrix obtained from
Dσpfq after removing its first m columns and last m rows. Because of the
applications it might be useful to have conditions on other minors of Dσpfq.
In the next corollary we show some results also in this direction.

Corollary 3.4. If fpxq “
řn´1

i“0 aix
σi

P Fqnrxs with gcdps, nq “ 1, then

dimqpker fq “ µ if and only if

|D0,σpfq| “ |D1,σpfq| “ . . . “ |Dµ´1,σpfq| “ 0 (8)

and |Dµ,σpfq| ‰ 0.
Index the rows and columns of Dσpfq from 0 to n ´ 1. For 0 ď m ď

dimqpker fq if J,K Ď t0, 1, . . . , n´ 1u are two sets of m consecutive integers

modulo n then let MJ,Kpfq denote the pn ´ mq ˆ pn ´ mq matrix obtained

from Dσpfq after removing its rows and columns with indices in J and K,

respectively. Then

|MJ,Kpfq| “ 0 ô |Dm,σpfq| “ 0.

Proof. Consider f as a q-polynomial with dimqpker fq “ µ. This happens
if and only if Dpfq has rank µ. Recall that rows and columns of Dpfq are
indexed from 0 to n´ 1 and let P denote the permutation matrix for which
the i-th row of PA is the si-th row of A (considered modulo n). Then
PAP´1 “ Dσpfq and hence the rank of Dσpfq is the same as the rank of
Dpfq (cf. also [8, Remark 2.3]). Note that Dσpfq is the Dickson matrix of a
σ-polynomial considered as an Fσ-linear transformation of Fσn with kernel
a µ-dimensional Fσ-subspace of Fσn . By Theorem 1.3 this happens if and
only if the conditions on |Dm,σpfq| holds for 0 ď m ď µ.

For the second part take 0 ď m ď dimqpker fq. Note that for any σ-

polynomial gpxq “
řn´1

i“0 bix
σi

P Fqnrxs and for any non-negative integer t

the rank of gpxq is the same as

11



1. the rank of gpxqσ
t

considered modulo xq
n

´ x,

2. the rank of ĝpxq :“
řn´1

i“0 bσ
i

n´ix
σi

(since DσpgqT “ Dσpĝq, where by T

we denote matrix transposition).

Suppose J “ tj, j ` 1, . . . , j ` m ´ 1u and K “ tk, k ` 1, . . . , k ` m ´

1u considered modulo n. Then f1pxq :“ fpxqσ
n´k´m

modulo xq
n

´ x has

the same rank as fpxq and |MJ,K 1pf1q| “ |MJ,Kpfq|σ
n´k´m

where K 1 “

tn ´ m,m ` 1, . . . , n ´ 1u. Then f̂1pxq has the same rank as f1pxq and
|MK 1,Jpf̂1q| “ |MJ,K 1pf1q|. Finally, f2pxq :“ f̂1pxqσ

n´j

modulo xq
n

´ x

has the same rank as f̂1pxq and |MK 1,J 1pf2q| “ |MK 1,Jpf̂1q|σ
n´j

where J 1 “
t0, 1, . . . ,m ´ 1u. By definition MK 1,J 1pf2q “ Dm,σpf2q, and hence

|Dm,σpf2q| “ 0 ô |MK 1,Jpf̂1q| “ 0 ô |MJ,K 1pf1q| “ 0 ô |MJ,Kpfq| “ 0.

Recall 0 ď m ď dimqpker fq. Since f2 and f has the same rank, it follows
from the first part of the assertion that |Dm,σpf2q| “ 0 ô |Dm,σpfq| “ 0
and this finishes the proof.

3.1 Applications

A q-polynomial fpxq P Fqnrxs is called scattered if tfpxq{x : x P Fqnzt0uu
(the set of directions determined by the graph of f) has maximum size, that
is pqn ´1q{pq´1q. Put Uf “ tpx, fpxqq : x P Fqnu, which is an n-dimensional
Fq-subspace of F2

qn . The linear set of PGp1, qnq defined by f is the set of
projective points Lf :“ txpx, fpxqqyqn : x P Fqnzt0uu. The weight of a point
xpa, bqyFqn

P PGp1, qnq w.r.t. the Fq-subspace Uf is dimqxpa, bqyFqn
XUf . The

polynomial f is scattered if and only if the points of Lf have weight 1. In this
case Lf and Uf are called maximum scattered. This happens if and only if the
Fq-linear transformations of Fqn in the Fqn-subspace M :“ xx, fpxqyFqn

have
rank at least n´1. Equivalently, M is equivalent to an Fqn-linear maximum
rank distance (MRD for short) code of Fnˆn

q with minimum distance n ´ 1.
For more details about these objects and the relations among them we refer
to [16, Section 13.3.6] and the references therein.

Corollary 3.5. Consider the q-polynomial fpxq “
řn´1

i“0 aix
qi P Fqnrxs and

with y as a variable consider the matrix

H :“

¨

˚̊
˚
˝

y a1 . . . an´1

a
q
n´1 yq . . . a

q
n´2

...
...

...
...

a
qn´1

1 a
qn´1

2 . . . yq
n´1

˛

‹‹‹
‚
.
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The determinant of the pn ´ mq ˆ pn ´ mq matrix obtained from H after

removing its first m columns and last m rows is a polynomial Hmpyq P
Fqnrys. Then the following holds:

1. The roots of H0pyq are in Fqn,

2. the number of points of weight µ of Lf w.r.t. Uf is the same as the

number of common roots of H0pyq,H1pyq, . . . ,Hµ´1pyq which are not

roots of Hµpyq,

3. in particular fpxq is scattered if and only if H0pyq and H1pyq have no

common roots.

Proof. Let y0 be a root of H0pyq. Note that Lemma 3.3 does not require the
coefficients of f to be in Fqn , thus also for y0 P Fq we have 0 “ H0py0q “

|R0,qpy0x `
řn´1

i“1 aix
qi , xq

n
´ xq| and hence by Theorem 2.1 there exists

x0 P Fqnzt0u such that y0 “ ´
řn´1

i“1 aix
qi´1
0 . Here the right-hand side is in

Fqn and hence y0 P Fqn .
By Theorem 1.3 H0py0q “ H1py0q “ . . . “ Hµ´1py0q “ 0 and Hµpy0q ‰ 0

hold if and only if the q-polynomial py0 ´ a0qx ` fpxq P Fqnrxs has nullity
µ, equivalently, the point xp1, a0 ´ y0qyqn has weight µ.

The last part follows from the fact that f is scattered if and only if Lf

does not have points of weight larger than 1.

In [2] Part 3. of Corollary 3.5 is used to derive sufficient and necessary
conditions for fpxq “ bxq ` xq

4

P Fq6rxs to be a scattered polynomial and
to prove [6, Conjecture 7.5] regarding the number of scattered polynomials
of this form.

In [4] the authors study MRD-codes with maximum idealisers, or equiva-
lently, the problem of finding sets of distinct integers tt0, t1, . . . , tku such that
every Fq-linear transformation of Fqn in the Fqn-subspace xxq

t0 , xq
t1 , . . . , xq

tk yFqn

has rank at least n ´ k. In [4, Corollary 3.6] it is stated that in M :“
xx, xq, xq

2

, xq
4

yF
q9

one can find an Fq-linear transformation of Fq9 with rank

at most 5 and hence the set of integers t0, 1, 2, 4u does not satisfy the above
mentioned condition. In [4] this was proved by calculating sixteen 6 ˆ 6
submatrices of Dpfq, where fpxq “ ´x ` p1 ` c´qqxq ` cxq

2

´ xq
4

and
c P Fq9 satisfies certain conditions, and by proving that each of them has
zero determinant. According to Theorem 1.3 the same result follows also by
calculating only |D0pfq|, |D1pfq|, |D2pfq|, |D3pfq| and by proving that all
of them are zero.
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