
Manuscript submitted to doi:10.3934/xx.xxxxxxx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

SINGLE SPECIES POPULATION DYNAMICS IN SEASONAL1

ENVIRONMENT WITH SHORT REPRODUCTION PERIOD2
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Abstract. We present a periodic nonlinear scalar delay differential equation
model for a population with short reproduction period. By transforming the

equation to a discrete dynamical system, we reduce the infinite dimensional

problem to one dimension. We determine the basic reproduction number not
merely as the spectral radius of an operator, but as an explicit formula and

show that is serves as a threshold parameter for the stability of the trivial

equilibrium and for permanence.

1. Introduction. The mating season of several animal species is limited to a short3

period each year. This phenomenon, called seasonal breeding, helps the survival of4

juveniles as the timing of breeding season allows to optimize factors as ambient5

temperature, nutrition availability, predation by other species. Sexual interest and6

behaviour of both sexes are expressed and accepted only in this period. As exam-7

ples we might mention most of the bird species or the rut, i.e. the mating season8

of ruminant animals such as deer, elks, antelopes etc. For example, the rut of the9

white-tailed deer lasts approximately three weeks, that of the elk between 20 and 4510

days. Sexual maturation of females may depend on population density. To model11

this type of reproduction behaviour, several studies (see e.g. [1, 7]) considered hy-12

brid discrete–continuous models in which they assume that birth occurs at discrete13

time instants while death occurs throughout the whole year. To study the popula-14

tion dynamics of such a species, we propose the nonlinear scalar delay differential15

equation16

x′(t) = −a(t)x(t) + f(t, x(t− 1)), (1)

with f : R× [0,∞)→ [0,∞) satisfying{
f(t, x) = 0, if kP ≤ t ≤ kP + L, k = 0, 1, 2, . . . ,

f(t, x) > 0, elsewhere,

where we assume 1 ≤ L < P < L + 1. That is, we denote by P the period of the17

seasonally changing environment and P − L the length of the mating season. We18

note that P is usually equal to one year, however, in this work, for mathematical19

convenience, we set the maturation delay to be 1. The definition of f corresponds20

2020 Mathematics Subject Classification. 34K05; 34K20; 92D25.
Key words and phrases. Scalar population model, delay differential equation, threshold param-

eter, stability.
∗ Corresponding author: Attila Dénes.
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to the short mating season: there is no reproduction outside this period. The1

assumptions 1 ≤ L < P < L+ 1 are biologically realistic, as P < L+ 1 means that2

mating period is shorter than maturation period, which is in accordance with the3

above examples for seasonal breeders. The mortality rate a(t) is a nonnegative, P -4

periodic continuous function, while is the density-dependent reproduction function,5

P -periodic in the first variable. We assume f(t, 0) = 0 for all t ∈ R.6

2. Stability of the zero equilibrium of (1). Our main goal in this section is to7

determine a formula for the asymptotic stability of the zero equilibrium of (1). In8

general, a stability condition for periodic delay differential equations cannot be given9

as an explicit formula [5, 8]. In order to find an explicit condition in the case of (1),10

we will first transcribe the equation to a discrete dynamical system. Considering the11

properties of f(t, x), we can see that the equation x′(t) = −a(t)x(t) + f(t, x(t− 1))12

given in (1) can be written as x′(t) = −a(t)x(t) on the interval [0, L], hence, the13

solution of (1) on this interval can be obtained as14

x(t) = x0e
−

∫ t
0
a(u) du. (2)

Specially, for t = L, one has

x(L) = x0e
−

∫ L
0
a(u)du.

Substituting the right-hand side of (2) taken at time t− 1 into the last term of (1),
we get that for L ≤ t ≤ P , the equation takes the form

x′(t) = −a(t)x(t) + f
(
t, x0e

−
∫ t−1
0

a(u) du
)
,

hence, on [L,P ] we obtain that the solution started from x0 at t = 0 can be
written as

x(t) = e−
∫ t
L
a(u) du

(
x0e
−

∫ L
0
a(u) du +

∫ t

L

e
∫ s
L
a(u)duf

(
s, x0e

−
∫ s−1
0

a(u) du
)

ds

)
,

and substituting t = P , this formula gives15

x(P ) = e−
∫ P
L
a(u) du

(
x0e
−

∫ L
0
a(u) du +

∫ P

L

e
∫ s
L
a(u)duf

(
s, x0e

−
∫ s−1
0

a(u) du
)

ds

)
,

yielding an explicit formula for the value of the solution evaluated at the end of the16

period.17

Let us consider the discrete dynamical system induced by the function F : R→18

R, x0 7→ x(P ;x0), where x(t;x0) denotes the solution of (1) started from x0 at19

t = 0. (We note that because of the special form of f , it is enough to set an initial20

value x0 instead of an initial function.) The condition for the asymptotic stability21

of the zero equilibrium of the discrete system is |F ′(0)| < 1, i.e. the condition can22

be written as23

γ := e−
∫ P
0
a(u) du + e−

∫ P
L
a(u) du

∫ P

L

e
∫ s
L
a(u)dub(t)e−

∫ s−1
0

a(u) du ds < 1, (3)

with b(t) = D2f(t, 0), which yields us a necessary and sufficient condition for the24

asymptotic stability of the zero equilibrium of (1).25

Proceeding the other way around, i.e. linearizing (1) first to obtain26

x′(t) = −a(t)x(t) + b(t)x(t− 1), (4)

and then solving the linearized equation in an analogous way as it was done for27

(1), we obtain the same formula (3). To show that this condition also implies28



SINGLE SPECIES IN SEASONAL ENVIRONMENT 3

local asymptotic stability of the continuous system (4), see [3, Theorem 2.1 (iii)].1

The above calculations show that the stability condition for the discrete dynamical2

system induced by F and that for the delay equation are the same. Based on3

general theory of linearized stability for delay differential equations, this condition4

serves as an explicit formula to determine the local asymptotic stability of the zero5

equilibrium of (1).6

Note that the discrete dynamical system induced by F is closely related to Clark’s7

equation [2].8

We can easily obtain the following simple conditions for the global asymptotic9

stability of the zero solution of (1).10

Proposition 1. Let γ < 1.11

a) In case F does not have any nontrivial fixed points (F(x) < x for all x), the12

trivial solution is also globally asymptotically stable.13

b) Let f(t, x) ≤ b(t)x hold for all t, x. Then the zero equilibrium of (1) is globally14

asymptotically stable.15

2.1. Permanence for γ > 1 and bounded reproduction function. In the16

previous subsection we have shown that for γ < 1, the zero equilibrium of (1) is17

locally asymptotically stable. The next result states that in the opposite case, the18

species is permanent for bounded f .19

Proposition 2. Suppose that f is bounded, let max(t,x) f(t, x) = M . If γ > 1, then20

the species is permanent, i.e. there exist �m�,M > 0 such that �m� ≤ lim inft→∞ x(t) ≤21

lim supt→∞ x(t) ≤M for all initial value x0 > 0.22

Proof. Let us suppose that γ > 1 holds.23

Introducing the notation I = e−
∫ P
0
a(u) du < 1, we can give the following estima-

tion for F :

x0 7→ x1 = Ix0 +

∫ P

L

e−
∫ P
s
a(u) duf(s, x0e

−
∫ s−1
0

a(u) du) ds

≤ Ix0 +

∫ P

L

f(s, x0e
−

∫ s−1
0

a(u) du) ds ≤ Ix0 + (P − L)M.

By iterating F , we obtain similarly that

Fn(x0) =: xn ≤ Inx0 +

n−1∑
k=0

(P − L)MIk = Inx0 + (P − L)M
In−1 − 1

I − 1
.

Let M > (P−L)M
1−I . Then, for n large enough, Fn(x0) <M. As γ > 1, there exists a24

minimal δ > 0 such that F(δ) = δ. Let m := minδ≤x≤M F(x). We obtain from the25

above that, for n large enough, Fn(x0) <M, while it follows from the properties of26

δ and m that if x ∈ [δ,M], then F(x) ∈ [m,M], hence, we have that Fn(x0) ∈ [m,M]27

for n large enough.28

Now, applying an argumentation analogous to the one in the proof of [3, Theorem29

2.1 (iii)], we prove that the permanence of the continuous model follows from that30

of the discrete dynamical system.31

Let us define

mk := min
kP≤t≤(k+1)P

x(t;x0) and Mk := max
kP≤t≤(k+1)P

x(t;x0), k = 0, 1, 2, . . .
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and denote by tmk
and t

Mk
the time instants when these values are attained, re-

spectively. Using the comparison method from [6, Theorem 3.6], and the simple
estimation x′(t) ≥ −a(t)x(t), we get that for any t2 ≥ t1,

x(t2) ≥ x(t1)e−
∫ t2
t1 a(u) du.

Specially, we have

mk+1 ≥ x(kP )e−
∫ tmk+1
kP a(u) du ≥ x(kP )e−

∫ (k+1)P
kP a(u) du

= x(kP )e−
∫ P
0
a(u) du ≥ m e−

∫ P
0
a(u) du =: �m�

and

x(kP ) ≥Mke
−

∫ kP
tMk

a(u) du
≥Mke

−
∫ kP
(k−1)P

a(u) du = Mke
−

∫ kP
(k−1)P

a(u) du,

the latter inequality yielding

Mk ≤M e
∫ P
0
a(u) du =:M.

Hence, we have shown that for the solution x(t; t0, x0) of (1) started from x01

there exist �m�,M > 0 such that �m� ≤ lim inft→∞ x(t) ≤ lim supt→∞ x(t) ≤ M, i.e.2

the species is permanent if γ > 1.3

3. Existence and stability of positive equilibrium. As we have seen above,4

the zero equilibrium of the nonlinear model (1) loses its local stability when γ > 1.5

If this condition holds, the existence of a bounded nontrivial sequence of (1) implies6

the existence of a nontrivial equilibrium.7

If γ > 1 holds, it is clearly a sufficient condition for the existence of a positive
periodic solution of (1) if there exists x̃ > 0 such that F(x̃) < x̃ as this implies the
existence of a positive equilibrium of F(x). Let us introduce the notations

K := e−
∫ P
0
a(u) du

and

H(x) := e−
∫ P
L
a(u) du

∫ P

L

e
∫ s
L
a(u)duf

(
s, xe−

∫ s−1
0

a(u) du
)

ds,

with these notations we can formulate condition F(x̃) < x̃ as H(x̃) < (1 − K)x̃.8

A sufficient condition for the existence of a positive equilibrium of F is that there9

exists a ξ0 such that f(s, ξ) < ξ
1−K for all s if ξ > ξ0.10

Proposition 3. Let γ > 1.11

a) Suppose (1) has a positive equilibrium x̄. If the condition12

− 2 < B(x̄) := −H(x̄)

x̄
+H′(x̄) < 0 (5)

holds then x̄ is locally asymptotically stable13

b) Suppose that for f , the conditions

∂f

∂x
(t, x) ≥ 0 and

∂2f

∂x2
(t, x) ≤ 0

hold. Then (1) has a positive equilibrium x̄ which is globally attractive.14
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Proof. The proof of a) is straightforward.1

From the two assumpitons of b) we have that F ′(x) > 0 and F ′′(x) < 0, which,2

in turn, imply the existence of a unique positive fixed point of F . From this, the3

statement b) follows.4

5

4. Applications.6

4.1. Periodic Ricker-type birth function. We consider (1) with the periodic
Ricker-type birth function

f(t, x(t)) = α(t)x(t)e−β(t)x(t),

where α(t) and β(t) are P -periodic real functions. Here we choose

α(t) = α
(
cos
((
t− L+P

2

)
2π/P

)
− cos

((
L− L+P

2

)
2π/P

))
with α̂ ∈ R+ and β(t) ≡ 5. Let P = 1.7, L = 1.5 and a(t) = sin(2πt/P + 0.1) + 1.1.7

The function f(t, x) for various values of x is shown in Fig. 1.

0.5 1.0 1.5
t

100

200

300

400

f(t)

Figure 1. The function f(t, x) for x ∈ {5, 10, 100} and α̂ = 1000

8

Figure 2 shows the solutions of (1) and the iterates of the corresponding discrete9

dynamical system for various values of α̂. For α̂ = 100 (see Figure 2(a)), the value10

γ can be calculated as γ = 0.430605 which implies the local asymptotic stability of11

the zero equilibrium of (1), while from Proposition 1 b), we obtain that the trivial12

equilibrium is also globally asymptotically stable. As we increase α̂, we can observe13

that at α̂ ≈ 305.944, γ passes through 1, showing that the zero equilibrium loses its14

stability and a periodic solution of (1) arises (correspondingly, one can observe the15

arisal of a positive equilibrium of the discrete dynamical system). Figure 2(b) shows16

this situation at α̂ = 1000. For this value of our parameter, we can calculate that17

(5) holds as B(70.290454) ≈ −1.05279 in the equilibrium 70.290454 of the discrete18

dynamical system, implying the asymptotic stability of this equilibrium, and thus19

that of the periodic solution of (1). Simulations for larger values of α̂ are shown20

in Figures 2(c)–2(f), suggesting that further increasing this parameter results in21

periodic orbits of the discrete dynamical system and later in orbits which seem to22

be chaotic.23
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(f) α̂ = 50000

Figure 2. Solutions of (1) with periodic Ricker-type birth func-
tion for different values of parameter α̂.

4.2. Periodic Beverton–Holt-type birth function. In this subsection we con-1

sider model (1) with the periodic Beverton–Holt-type birth function2

f(t, x(t)) =
α(t)x(t)

β(t) + x(t)
, (6)

where α(t), β(t) are P -periodic real functions. In this example, we choose these
functions as

β(t) = cos
((
t− L+P

2

)
2π/P

)
− cos

((
L− L+P

2

)
2π/P

)
while α(t), P,L and a(t) are chosen as in the previous example. One can easily3

obtain that F ′(x) > 0 and F ′′(x) < 0. Hence, in accordance with Proposition4

3 b), two possible cases may arise, depending on the threshold parameter γ and5

for the model (6), γ provides a threshold parameter for global stability. If γ ≤ 1,6
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the zero equilibrium is globally asymptotically stable (here we can again apply1

Proposition 1 b)), while if γ > 1, a unique positive periodic solution is a global2

attractor as in the latter case F ′(x) > 0 and F ′′(x) < 0 imply that there is a unique3

positive fixed point of F . Figure 3(a) shows the case α̂ = 10. Here, γ = 0.772551,4

showing the local asymptotic stability of the zero equilibrium. Increasing α̂, the5

value of γ passes through 1 at α̂ ≈ 13.6779 Figure 3(b) shows the case α̂ = 30,6

where γ = 2.00941, thus, the zero equilibrium is unstable in this case.
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(b) α̂ = 20

Figure 3. Solutions of (1) with periodic Beverton–Holt-type birth
function for different values of parameter α̂.

7

5. Discussion. We established a model for a population with short reproduction8

period in a periodic environment, given by a scalar nonlinear delay equation, where9

time delay stands for maturation. Mortality rate and the density-dependent re-10

production function are assumed to be periodic. Usually, for periodic models, a11

threshold parameter for the persistence of a species or a disease can be determined12

as the spectral radius of a linear operator on a space of periodic functions [4, 8].13

However, for the periodic model established here, we were able to determine an14

explicit formula for this parameter and showed that is serves as a threshold for the15

stability of the trivial equilibrium and for permanence.16
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