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Abstract. The number of people accessing online services is increasing
day by day, and with new users, comes a greater need for effective and
responsive cyber-security. In this paper, we aim to showcase some data
about the speed and efficiency, when it comes to dealing with security
vulnerabilities in certain programming languages. During our analysis of
some of the more popular ones, we found that the same issues might ap-
pear differently in different languages, and as such the provided solutions
vary just as much. These statistics may not be entirely indicative of the
projects’ standards when it comes to security, but they provide a good
reference point of what one should expect. We also found that similarly
sized projects can produce extremely different results, and have different
common weaknesses, even if they provide a solution to the same task.
Given a larger sample size these statistics could be made even more pre-
cise, and as such a better understanding of the security relevant activities
within the projects written in given languages could be achieved.
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1 Introduction

As more and more vital services are provided by software systems accessible
on the Internet, security concerns are becoming a top priority. Mitigating the
risks posed by malicious third parties should be at the core of the development
processes. However, eliminating all the security vulnerabilities is impossible, thus
we have to be able to detect and understand the security issues in existing code
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bases. How and what types of security vulnerabilities appear in programs written
in various languages, and how their developers react to them are questions still
lacking answers with satisfying empirical evidence.

In this paper, we present a small-scale, open-source study that aims to show
the differences between some languages based on their activity when it comes
to fixing security issues. We followed the basic ideas laid out by the work of
Matt Bishop [2] with the design of our study approach. Our goal was to create
and analyze a data set containing information about some of the most popular
languages. These include but are not limited to: the type of vulnerability found
and fixed, the time it took for that fix to occur, the number of people working on
the given project while the issue was active, and the required number of changes
to the code and files.

In short, the results show that while the severity of an issue may correlate
with the time it takes to fix it, that is not the case in general. Averages show a
similar pattern, which is likely because of the reintroduction of the same issues
several times in larger projects.

CVEs (short for Common Vulnerabilities and Exposures) [7]are publicly dis-
closed cyber-security vulnerabilities and exposures that are stored and freely
browsable online. These can be categorized into CWEs (short for Common
Weakness Enumeration) [8]. We used these entries to gauge the speed at which
developers fix major issues in different programming languages.

We extracted our proxy metrics for vulnerabilities based on the textual anal-
ysis of git logs and as such may not be indicative of the actual development
process. Git is a free and open-source distributed version control system.3 Com-
mits are a way to keep previously written code organized and available. They
usually have messages attached to them that explain what the contained changes
are and what purpose do they serve. We have used these messages to collect data
about CVEs.

We used a PostgreSQL database to store the collected CVE and CWE entries
extracted from commit logs. These were downloaded using an updated version
of an open-source project called cve manager.4 The commit messages were ex-
tracted using a mostly self-developed tool called git log parser.

We found that smaller and more user interface focused projects rarely docu-
ment CVE fixes, however, larger-scale projects, especially those concerning back-
end solutions and operating systems (package managers, etc.), are more inclined
to state major bug fixes. We also found that in some projects developers pre-
fer to only mention CVEs at larger milestones or releases, while in others, they
were present in the exact commit they were fixed in. The paper also looks at
CWEs more specifically, their prevalence in different languages. Some of these
are language-specific, while others are more general.

3 https://git-scm.com/
4 https://github.com/aatlasis/cve manager
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2 Approach

Our main concern in this study was security, which led us to look for CVEs and
CWEs in commit logs. This is a good way to identify major vulnerabilities with-
out the need for in-depth code analysis. We found that there are clear trends in
some languages when it comes to handling various vulnerability types (CWEs).
These can help others to apply a solution for an issue since these statistics can
serve as guides that show what to watch out for.

The approach we took can be best explained through the tools we created
to collect the necessary information. We will use the described tools as bullet
points to illustrate the flow of the entire study and the inner workings of the
miner. In the approach summary, we will explain things in more detail and also
explain the design decisions we took during planning the approach.

2.1 CVE Manager

CVE Manager5 is the backbone of most statistics and is essential to validating
the found CVE entries. It is a lightweight solution that downloads the CVE data
from the MITRE Corporation’s6 website. We store most of the collected data
in a PostgreSQL7 database. The tool is used to query for CVE entries found by
the miner and some of their properties like their id, impact score, severity, and
so on.

2.2 Git Log Parser

The other important tool used by the miner is our git log parser8 solution. It
simulates user commands using the Python subprocess module, which allows it
to bypass some of the git’s limitations. The script is prepared to mine local direc-
tories for data in the contained repository’s commits. The parser first navigates
to the path provided by the user through command line input, then issues the
git log command that lists every commit and their meta-data.

It then saves this information into a list that will later be printed into a JSON
file. This basic data is being extended with the line and file change information
by comparing each commit to its predecessor with the git diff command.

The reports generated by the parser can be useful in a variety of situations,
similar to ours, where an external utility needs the logs of a specific git repository.
Some of its results are not used by the miner but are intended for later use, for
example, the parser could check whether a commit is a merge or not, which is
currently ignored in finding CVEs.

5 https://github.com/gaborantal/cve manager
6 https://www.mitre.org/
7 https://www.postgresql.org/about/
8 https://github.com/gaborantal/git-log-parser
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2.3 CVE Miner

The main tool of our project is the miner9, which uses both the CVE Manager
and the Git Log Parser to create a JSON file and a database entry for each CVE
found and presumably, fixed in the actual repository. Figure 1 represents the
inner working of the miner and its interaction with the other tools.

Fig. 1: A schematic representation of our miner

The miner requires some initial setup since the CVE data needs to be down-
loaded and inserted into the local PostgreSQL database. This is done in two
steps. In the first step, the data is collected into a local NVD directory from
which we read and upload it to the database in the second step.

There are multiple ways to start working with the CVE Miner. It can mine
from both local and online sources. These options can be accessed using the
command-line interface. When an online source is provided, a “repos” directory
will be created if one does not already exist and the given repository will be
automatically downloaded into it. Then the miner will continue as if a local
directory had been provided. Multiple targets can be specified at once using a
JSON file and the appropriate command-line argument.

The miner then processes the repositories by using Git Log Parser. After the
JSON file is generated, the tool searches the messages attached to the commits

9 https://github.com/gaborantal/cve-miner
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for CVE entries. If a CVE is mentioned once, the miner assumes that the associ-
ated commit fixes the CVE. If it is mentioned multiple times, it is assumed that
the first occurrence implies that the CVE is found in the code, and any subse-
quent mentions are the fixes for that vulnerability. During this process, other
data is collected, including but not limited to the contributors, the number of
changed files, and the number of commits between the finding and fixing of the
CVE.

The next step is the calculation of statistics. The miner uses the previously
acquired information to calculate the average time between the commit that
found the CVE and the commit that fixed it. The other part of our statistics is
correlation testing. The tool calculates the correlation between a CVE entry’s
severity and the time needed to fix it.

The last step is storing the data. By default, the miner creates a JSON file
containing all the found CVEs and the calculated statistics. If chosen, the tool
also uploads it to an Airtable 10 database.

2.4 Approach Summary

Our main point of interest during this study was the collection of security-related
data, thus a large emphasis has been put on it. We focused mainly on creating
useful utilities for later research, and feel like we succeeded when it comes to
most of the tools created.

We took the approach of looking only for mentions of the text “CVE” in
commit logs as it is a fast solution providing sufficiently good approximation.
The best way to improve current data is of course to collect a much larger amount
of them.

3 Results

3.1 Time Based Statistics

Time elapsed between the finding and fixing commit. This statistic can be inter-
preted in multiple ways. First, we will cover the intended purpose, showing how
long it takes on average to fix a CVE entry. This is more accurate on projects at
a smaller scale or lifespan since those have a lower chance of false fixing claims
and reoccurring issues. Since we only check the textual references of CVE en-
tries in commit logs not the actions taken, these properties of the projects are
important.

The second way the statistics can be interpreted is, as we mentioned previ-
ously, an indication of reoccurring vulnerabilities. Most of the time a CVE entry
is mentioned in the context where it is claimed to be fixed, which is not surpris-
ing since you would not publicize an actual security issue in your system. Based
on this, most CVEs should be mentioned only once. However, this is not the
case with most large scale projects. We hypothesize that this happens because

10 https://airtable.com/product
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later changes may reintroduce a vulnerability previously fixed, which is likely
because in larger systems it is a lot harder to foresee every possible outcome a
change might have. Projects with longer code history usually have more reoc-
curring issues than others. When it comes to languages, a similar pattern can
be observed (see Figure 2). The differences are drastic since the scale and age of
the analyzed projects vary. Most of the C++ and Scheme projects we looked at
were larger projects, hence the reason for their dominance in the chart. Ruby is
an outlier, there it is common for an issue to resurface years after the vulnerabil-
ity has been fixed. The other reason vulnerabilities in some languages are more
prevalent than in the others also has to do with the fact that larger systems
usually do not allow developers to make changes directly to the working tree,
merges that happen later can also increase this fixing time. This is not a huge
issue since an error being fixed in a branch should not be considered fixed in the
application until it has not been merged.

Fig. 2: The average time elapsed in days between finding and fixing a CVE

Time elapsed between the publication and fixing of a CVE. This statistic (see
Figure 3) is similar in nature to the previous one, however, it also takes into
account the time each CVE spent in the code unnoticed after its publication.
Most of the languages show similar attributes compared to the previous chart,
however, when it comes to BitBake, a clear bump is visible, implying that it
takes longer to come up with the first fix for an issue in BitBake programs.
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Fig. 3: The average time elapsed between the publication and fixing of a cve
represanted in days

Correlation between time and severity. The chart in Figure. 4 shows the corre-
lation between the aforementioned statistics and the severity of the CVEs. The
correlation between the fixing and the finding of a CVE can be attributed to the
difficulty of the issue at hand, and the thoroughness of the testing.

Fig. 4: The correlation between the base score(severity) and time taken fixing
the cve
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The correlation between the publication date of CVEs and the time it took to
fix them shows how prepared developers were when it came to fixing these vul-
nerabilities, since, for example, in the case of Python, the more severe problems
were solved quicker than the others. This might imply that they put a larger
emphasis on getting rid of more severe issues.

3.2 Activity Based Statistics

Active contributors and commit count during the fixing of a CVE The results in
Figures 5 and 6) showcase not only how quickly some issues might be fixed, but
the activity within the project during the process of fixing an issue. Both charts
show activities withing projects, Figure 5 the number of contributors working on
the code between the first and last commit mentioning the same CVE. As we can
see several tens (e.g. JavaScript, Scheme) or even above 100 (Ruby) contributors
might work on a codebase in the period of fixing a security vulnerability.

Fig. 5: The average number of contributors between the finding and fixing
commit

Fig. 6: The average number of commits between the finding and fixing of a CVE
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The number of commits in the vulnerability fixing period is highest in Ruby
and Scheme (almost 1400). This implicates that a lot of code changes happen
while a security vulnerability is finally fixed.

3.3 Average File and Line Changes

The average changes to files and lines show how impactful an average CVE is
in each language. These numbers are of course extremely varied not only per
language but per project as well since some might use fewer, but longer files,
to store the same code, while others might separate code a bit more. They also
might only mention CVEs at larger milestones or merges, making some of the
results disorderly high. Table 1 shows the average total lines and files changed
per language upon fixing a CVE.

Table 1: Average total changes
Language Average Total Lines Changed Average Total Files Changed

BitBake 153.25 2.5

Go 123.23 5.69

JavaScript 288.46 4.53

Python 84.16 5.7

Ruby 58.77 4.19

3.4 Most Common CWEs by Language

The usefulness of CWEs. CWEs are a grouping used for CVEs based on the
weaknesses they cause. Knowing which CWE is most common in a language
can be extremely useful when it comes to finding, fixing, and looking out for
problems. This can reduce the time and energy needed to overcome certain
vulnerabilities, and can raise the quality of code.

Our figures in Table 2 are of course not entirely indicative of each language
as our scope is very limited, however, it might still give an idea of what to look
for. As an example, the most common CWE in C++ is CWE-119 11 which has
to do with incorrect memory management. An example of a more general CWE
is CWE-20 12, a possible cause of this is an improper input validation in the
code.

For some of the languages with a more diverse set of CWEs, we created pie
charts (seen Figure 7), to visually illustrate their distribution.

11 https://cwe.mitre.org/data/definitions/119.html
12 https://cwe.mitre.org/data/definitions/20.html
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Language CWE Group Percentage

BitBake CWE-119 21.40%
CWE-20 11.74%
CWE-125 18.87%

C CWE-400 25.00%
CWE-125 25.00%
CWE-20 50.00%

C++ CWE-119 92.39%
CWE-200 5.71%

Java CWE-200 15.00%
CWE-502 45.00%
CWE-20 20.00%

JavaScript CWE-119 6.45%
NVD-CWE-Other 5.38%

CWE-20 13.98%
CWE-400 15.05%
CWE-200 12.90%
CWE-79 7.53%

Language CWE Group Percentage

Go CWE-400 25.00%

Python CWE-200 9.68%
CWE-79 16.13%
CWE-601 9.68%
CWE-185 6.45%
CWE-20 16.13%
CWE-89 9.68%

Ruby CWE-79 26.92%
CWE-20 15.38%
CWE-264 11.54%
CWE-89 9.62%
CWE-22 5.77%
CWE-200 5.77%

Scheme CWE-20 8.29%
CWE-119 23.49%
CWE-125 8.09%
CWE-416 7.70%

Table 2: Most Common CWEs per language

Fig. 7: A visual representation of some of the data found in Table 2 (top left
Ruby, top right BitBake, bottom Scheme)
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4 Related Work

There are plenty of previous works investigating different aspects of security
vulnerabilities.

Li and Paxson [5] conducted a large-scale empirical study of security patches.
They investigated more than 4,000 bug fixes that affected more than 3,000 vul-
nerabilities in 682 open-source software projects. They also used the National
Vulnerability Database as a basis, but they used external sources (for example
GitHub) to collect information about a security issue. We only rely on data that
provided by NVD [10] or MITRE [7, 8]. In their work, they also investigated the
life-cycle of both security and non-security patches, compared their impact on
the code base, their characteristics. They found out that security patches have
a lower footprint in codebases than non-security fixes; the third of all security
issues were introduced more than 3 years before the fixing patch, and there were
also cases when a security bugfix failed to fix the corresponding security issue.

Frei et al. [3] presented a large-scale analysis of vulnerabilities, mostly con-
centrated on discovery, disclosure, exploit, and patch dates. The authors have
found out that until 2006, the hackers reacted faster to vulnerability than the
vendors.

Similar to the previous work, Shahzad et al. [9] presented a large-scale study
about various aspects of software vulnerabilities during their life cycle. They
created a large software vulnerability data set with more than 46,000 vulnera-
bilities. The authors also identified the most exploited forms of vulnerabilities
(for example DoS, XSS). In our research, we also use categories, however, our
categories are defined by CWE. They found that since 2008, the vendors have
become more agile in patching security issues. They also validated the fact the
vendors are getting faster than the hackers since than. Moreover, the patching
of vulnerabilities in closed-source software is faster than open-source software.

Kuhn et al. [4] analyzed the vulnerability trends between 2008 and 2016.
They also analyzed the severity of the vulnerabilities as well as the categories.
They found that number of design-related vulnerabilities is growing while there
are several other groups (for example CWE-89 (SQL Injection)) that show a
decreasing trend.

In their work, Wang et al. used Bayesian networks to categorize CVEs. They
used the vulnerable product and CVSS 13 base metric scores as the observed
variables. Although we do not use any machine learning methods in this study,
our long term goal is to use various machine learning methods using the data
presented in this study. Wang et al. proved that categorizing CVEs is possible
and machine learning can do that.

Gkortzis et al. presented VulinOSS, a vulnerability data set containing the
vulnerable open-source project versions, the details about the vulnerabilities,
and numerous metrics related to their development process (for example, if they
have tests, some static code metrics).

13 Common Vulnerability Scoring System, as presented by Mell et al. [6]
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In their work, Massacci et al. analyzed several research problems in the field
of vulnerability and security analysis, the corresponding empirical methods, and
vulnerable prediction. They summarized the databases used by several studies
and identified the most common features used by researchers. They also con-
ducted an experiment in which they integrated several data sources on Mozilla
Firefox. The authors also showed that different data sources might lead to dif-
ferent results to a specific question. Therefore, the quality of the database is a
key component. In our paper, we try our best to provide good quality and usable
database.

Abunadi et al. [1] presented an empirical study aiming to clarify how useful
cross-project vulnerability prediction could be. They conducted their research
on a publicly available data set in the context of cross-project vulnerability pre-
diction. In our research, we collected data from several programming languages.
Hence, we believe that our data set can be used in cross-project vulnerability
prediction.

Xu et al. [12] presented a low-level (binary-level) patch analysis framework,
that can identify security and non-security related patches by analyzing the
binaries. Their framework can also detect patterns that help to find similar
patches/vulnerabilities in the binaries. In contrast to their work, we use data
mining and static process metrics. Therefore, our approach does not need any
binaries, it does not require the project to be in an executable state which can
be extremely useful when a project’s older version could not be compiled.

Vásquez et al. [11] analyzed more than 600 Android-related vulnerabilities
and the corresponding patches. Their approach uses NVD and Google Android
security bulletins to identify security issues. Despite that we do not include
Android security bulletins in this research, we plan to extend our scope in the
future and include those vulnerabilities too as our framework is extensible.

5 Threats to Validity

The main weakness of our results is the limited scale at which we operated.
We only had the resources to mine a few repositories for most languages. For
this reason, some tables and graphs are missing some languages as one major
project’s practices had too large of an effect on the overall statistics.

One other major issue stems from the fact that we do not look at the code,
but rely on the commit messages left by the developers. This can be troublesome
when it comes to claiming that issues reappear since it could be the case that
they were never fixed in the first place. The way we check for CVE fixes is
also fairly limited, since we only look for the mention of a CVE in the commit
message, but do not check the context in which it appears. We assume that the
last commit at which a CVE is mentioned is the last time it occurred, and has
therefore been fixed. This might not be the case, it is possible that later a fix
happened, but the developer forgot to mention it.

We also do not account for merges, which can increase the number of lines
needed for a fix. We believe that an issue is not fixed until it is merged into the
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master branch. However, if we count the lines in the commit that fixed the issue
and the number of lines present in a merge that contains the commit getting rid
of a vulnerability might not be indicative of the actual amount of work needed
for a solution. In these cases, we currently just count the lines twice, but this
has caused some statistics to be left out since they portrayed false information
because of the practices the developers used when they merged larger pieces of
code at once.

6 Conclusion

We presented a study that focuses on security issues. Our main goals were to
determine if there were vulnerability types characteristic of languages. More
specifically, what these issues are, how quickly they get fixed, and how efficiently
does that fix happen.

We found that even at smaller sample sizes, specific weaknesses showed a
clear trend in most of the tested languages. For example, in the case of C++
CWE-119 (memory handling problems) was the biggest group of issues faced by
developers. This may not surprise those familiar with the language, but for a
new developer, it can be a clear pointer as to what to watch out for.

The best example of how interesting these statistics truly are is Ruby. It is
visible that for Ruby developers, the biggest issue is CWE-79, improper neutral-
ization of inputs. 14 These issues take less effort to fix than others, requiring on
average about 60 lines of code changes, and 4 file changes, however, the same
issue might reappear later, as shown in Figure 2. It is also visible that while in
Ruby it takes the least amount of lines to fix an issue, more severe vulnerabilities
take longer to get rid of, as seen in Figure 4.

In conclusion, each language has its share of common weaknesses, which
depend on a variety of factors, and being cautious of these is important.
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