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We comment on the paper of S. Postnikov et al. in Phys. Rev. D 82, 024016 (2010) and give
a modified formula that needs to be taken into account when calculating the tidal Love number of
neutron stars in case a first order phase-transition occurs at non-zero pressure. We show that the
error made when using the original formula tends to zero as p → 0 and we estimate the maximum
relative error to be ∼ 5% if the density discontinuity is at larger densities.

In Ref. [1] the authors investigated the qualitative dif-
ferences between the tidal Love numbers of self-bound
quark stars and neutron stars. In Eq. (14) they de-
rived an expression for the extra term that should be
subtracted from the logarithmic derivative y(r) of the
metric perturbation H(r) in case there is a first-order
phase transition in the equation of state (EoS). The au-
thors applied this formula to quark stars where there is a
core-crust phase transition at or below neutron-drip pres-
sure. Since then multiple papers have included or applied
this formula explicitly using EoSs with first-order phase
transitions at non-negligible pressures (e.g. [2, 3]). How-
ever, when the pressure pd corresponding to the density
discontinuity is non-negligible compared to the central
energy density of the neutron star, Eq. (14) of Ref. [1]
should be modified as shown below. In this comment we
derive the correct formula and estimate the error made
when using the other formula instead.

It needs to be added, that although Ref. [3] contains
the uncorrected formula, the results presented in the pa-
per were calculated using the correct relation, as it was
reported by the authors and also verified by the authors
of Ref. [1]. This also applies to more recent publications
including the same authors [4, 5]. Moreover, despite us-
ing the erroneous formula, the results of Ref. [2] are also
mainly unaffected by this error, since they only provide
approximate analytic fits for the ratios of tidal deforma-
bilities of the two components in binary neutron stars.
Thus, uncertainties of a few percent are inherently con-
tained in these fits, which encompass the errors of in-
dividual tidal deformabilities. The corrected fits – as it
was claimed by the authors of Ref. [1] – are negligibly
different from the reported fits in Ref. [2].

The tidal l = 2 tidal Love number can be expressed
the following way:

k2 =
8

5
(1− 2β)2β5[2β(yR − 1)− yR + 2]

× {2β[4(yR + 1)β4 + (6yR − 4)β3 + (26− 22yR)β2

+ 3(5yR − 8)β − 3yR + 6] + 3(1− 2β)2

× [2β(yR − 1)− yR + 2] ln (1− 2β)}−1, (1)
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where β = M/R is the compactness parameter of the
neutron star and yR = y(R) = [rH ′(r)/H(r)]r=R with
H(r) being a function related to the quadrupole metric
perturbation (see e.g. [6]). yR is obtained by solving the
following first-order differential equation:

ry′(r) + y(r)2 + r2Q(r)

+ y(r)eλ(r)
[
1 + 4πr2(p(r)− ε(r))

]
= 0, (2)

where ε and p are the energy density and pressure, re-
spectively, and

Q(r) = 4πeλ(r)
(

5ε(r) + 9p(r) +
ε(r) + p(r)

c2s(r)

)
−6

eλ(r)

r2
− (ν′(r))2. (3)

Here c2s = dp/dε is the sound speed squared, while eλ(r),
ν(r) metric functions are given by

eλ(r) =

[
1− 2m(r)

r

]−1
, (4)

ν′(r) =
2[m(r) + 4πr3p(r)]

r2 − 2m(r)r
, (5)

with the line element for the unperturbed star defined as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dϑ2 + sin2 ϑdϕ2), (6)

and where m(r) and p(r) are calculated through the
Tolman-Oppenheimer-Volkoff equations [7, 8]:

m′(r) = 4πr2ε(r), (7)

p′(r) = −[ε(r) + p(r)]
m(r) + 4πr3p(r)

r2 − 2m(r)r
. (8)

In case there is a first-order phase transition in the EoS,
there is a jump of ∆ε in the energy density at constant
pressure, hence c2s = 0 in that region and the term in
Eq. (3) containing 1/c2s diverges. Expressing 1/c2s in the
vicinity of the density discontinuity:

1

c2s
=

dε

dp

∣∣∣∣
p 6=pd

+ δ(p− pd)∆ε. (9)
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FIG. 1. Illustration of the EoS in the constant-sound-speed
construction [3, 9]. At ptrans a quark matter part with a
constant sound speed of cQM is attached to the nuclear matter
EoS after an energy density jump of ∆ε.

Changing the delta-function to a function in the radial
position r, inserting Eq. (9) into Eq. (2) and integrating
over an infinitesimal distance around rd one obtains:

y(r+d )−y(r−d ) = −4πrde
λ(rd)[ε(rd)+p(rd)]

∆ε

|p′(rd)|
. (10)

Using Eq. (8) we get:

y(r+d )− y(r−d ) = − 4πr3d∆ε

m(rd) + 4πr3dp(rd)

= − ∆ε

ε̃/3 + p(rd)
, (11)

where ε̃ = m(rd)/(4πr
3
d/3) is the average energy density

of the inner (r < rd) region. Eq. (11) shows that there is
an extra p(rd) term in the denominator as compared to
Eq. (14) of Ref. [1]. We see that if the phase transition
is at very low densities compared to the central energy
density then p(rd)/ε̃→ 0 1 and we get back the formula
in Ref. [1].

We investigated the difference caused by applying the
two different formulas using a constant-sound-speed con-
struction (see Fig. 1) [3, 9]:

ε(p) =

{
εNM(p) p < ptrans
εNM(ptrans) + ∆ε+ c−2QM(p− ptrans) p > ptrans

,

(12)

1 It is worth to note here that although ε̃ – the average energy
density of the inner core – is not equal to the central energy
density εc, it falls to the same order of magnitude (ε̃/εc & 0.25−
0.5 for M > 0.5 M�).
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FIG. 2. Tidal Love number – neutron star mass relations for
the SFHo (orange line) and DD2 (blue line) EoSs, as well as
for EoSs obtained from the constant-sound-speed construc-
tion. The different number pairs denote different values of
ntrans/n0 and ∆ε/εtrans, respectively. The tidal Love num-
bers calculated using Eq. (11) (solid lines) are reduced by a
few percent compared to the ones calculated using Eq. (14)
of Ref. [1] (dashed lines).

where we fixed c2QM = 1 as in Ref. [3], while varying the

values of ptrans (through ntrans ≡ nNM(ptrans)) and ∆ε.
For the nuclear matter (NM) part we chose the SFHo
[10] and DD2 [11] as two representative EoSs. We varied
the baryon number density at the phase transition ntrans
between n0 and 3.5n0 with n0 = 0.16 fm−3 being the
nuclear saturation density. The strength of the phase
transition ∆ε/εtrans was varied between 0 and 3, where
εtrans ≡ εNM(ptrans).

In Fig. 2 we show some examples of tidal Love num-
ber – neutron star mass relations. For EoSs with first-
order phase transitions, the Love numbers are reduced
when using Eq. (11) (red and green solid lines) compared
to using the formula in Ref. [1] (red and green dashed
lines). The maximum relative difference in the tidal Love
number as a function of the two parameters defining our
constant-sound-speed EoSs is shown in Fig. 3. We see
that the maximum relative difference reaches its max-
imum at ntrans/n0 ≈ 2.5 and ∆ε/εtrans ≈ 1.5 for the
SFHo EoS, and at ntrans/n0 ≈ 2.0 and ∆ε/εtrans ≈ 1.5
for the DD2 EoS, however, it does not exceed 5% for
the whole parameter range. The relative difference also
diminishes as we go to lower densities, as it is expected.
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FIG. 3. The maximum relative difference between the tidal Love numbers calculated using the two different equations with the
SFHo (left panel) and DD2 (right panel) nuclear matter EoSs in a constant-sound-speed construction. The maximum value is
∼ 4.2% for the SFHo and ∼ 4.3% for the DD2 EoS. Constant-sound-speed constructions with ntrans/n0 > 3.0 for the DD2 EoS
mostly contain mass-radius relations with no stable hybrid star branches and hence were omitted from the figure.
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